

000 001 002 003 004 005 DEGREE-CONSCIOUS SPIKING GRAPH FOR CROSS- 006 DOMAIN ADAPTATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 Spiking Graph Networks (SGNs) have demonstrated significant potential in graph
029 classification by emulating brain-inspired neural dynamics to achieve energy-
030 efficient computation. However, existing SGNs are generally constrained to in-
031 distribution scenarios and struggle with distribution shifts. In this paper, we first
032 propose the domain adaptation problem in SGNs, and introduce a novel frame-
033 work named **Degree-Consscious Spiking Graph for Cross-Domain Adaptation**
034 (DeSGraDA). DeSGraDA enhances generalization across domains with three key
035 components. First, we introduce the degree-conscious spiking representation mod-
036 ule by adapting spike thresholds based on node degrees, enabling more expressive
037 and structure-aware signal encoding. Then, we perform temporal distribution
038 alignment by adversarially matching membrane potentials between domains, ensur-
039 ing effective performance under domain shift while preserving energy efficiency.
040 Additionally, we extract consistent predictions across two spaces to create reliable
041 pseudo-labels, effectively leveraging unlabeled data to enhance graph classification
042 performance. Furthermore, we establish the first generalization bound for SGDA,
043 providing theoretical insights into its adaptation performance. Extensive experi-
044 ments on benchmark datasets validate that DeSGraDA consistently outperforms
045 state-of-the-art methods in both classification accuracy and energy efficiency.
046

047 1 INTRODUCTION

048 Spiking Graph Networks (SGNs) (Zhu et al., 2022; Xu et al., 2021b) as a specialized neural network
049 combining Spiking Neural Networks (SNNs) (Gerstner & Kistler, 2002; Maass, 1997) with Graph
050 Neural Networks (GNNs) (Kipf & Welling, 2017; Scarselli et al., 2009), have emerged as a ground-
051 breaking paradigm in artificial neural networks, uniquely designed to process graph-structured data
052 by mimicking the bio-inspired mechanisms of the human brain. SGNs convert graph features into
053 binary spiking signals, replacing matrix multiplications with simple additions to achieve high energy
054 efficiency. They further exploit temporal spiking representations, encoding information in spike
055 timing to enable asynchronous, event-driven processing. It is particularly critical for applications
056 where energy consumption is a bottleneck, such as real-time brain-computer interfaces (Kumar et al.,
057 2022; Nason et al., 2020), large-scale sensor networks (Yao et al., 2021; Wilson et al., 2024), and
058 temporal analysis (Yin et al., 2024; Zhu et al., 2024; Zhou et al., 2021).

059 Despite their potential for energy-efficient graph representation, existing SGNs are primarily studied
060 under closed-world assumptions, where source and target data share identical distributions (Yin
061 et al., 2024; Duan et al., 2024). This assumption is inadequate for many real-world scenarios,
062 such as brain-computer interfaces (BCIs) (Binnie & Prior, 1994; Biasiucci et al., 2019) where
063 distribution shifts degrade performance (Zhao et al., 2020; 2021). Although recent advancements
064 in transfer learning for SNNs have shown promise in vision tasks by leveraging neuromorphic
065 adaptations (Zhan et al., 2024; Guo et al., 2024), they are primarily designed for grid-like inputs
066 and fail to generalize to graph data. The non-Euclidean nature and inherent irregularity of graphs
067 introduce fundamental challenges (Bronstein et al., 2017), as existing methods neglect topological
068 dependencies and message-passing mechanisms crucial for effective graph learning. Consequently,
069 directly applying these methods to SGNs results in suboptimal adaptation under domain shifts.
070

071 In this paper, we investigate the development of energy-efficient SGNs for scenarios involving
072 distribution shifts. However, designing an effective domain adaptation framework for SGNs poses
073

several fundamental challenges: (1) *How to adapt spiking representations to account for the structural diversity of graph-structured data?* Traditional SGNs typically assign a fixed firing threshold to all nodes, ignoring the structural diversity in graphs (Xu et al., 2021a; Yin et al., 2024). This uniform treatment leads to under-activation in nodes with fewer connections, where important features are missed, and over-activation in highly connected nodes, where excessive signals distort the learned representation. Both cases reduce the model’s representational effectiveness. (2) *How to design domain adaptation strategies that account for the temporal-based representations?* Unlike static neural models, SGNs encode information through temporal spike sequences, making them more sensitive to domain shifts (Zhou et al., 2023; Zhan et al., 2021). Existing methods fail to address how these shifts impact the spike sequences, resulting in suboptimal alignment across domains. (3) *How to theoretically characterize and bound the generalization error of SGNs under domain shift?* Despite empirical advances (Zhang et al., 2021; Zhan et al., 2024), the theoretical understanding of SGN domain adaptation remains limited. Without a principled framework to quantify generalization under distribution shift, it is difficult to design adaptation methods with guaranteed performance.

To tackle these challenges, we propose a framework called **Degree-Conscious Spiking Graph** for Cross-Domain Adaptation (DeSGraDA). This has three components: (1) degree-conscious spiking representation, which assigns variable firing thresholds to nodes based on their degrees, enabling adaptive control over spiking sensitivity. This degree-conscious mechanism balances the firing frequencies of high- and low-degree nodes, preventing information loss in sparsely connected nodes and avoiding distortion from excessive signals in highly connected ones, thus enhancing the expressiveness of the spiking representations; (2) temporal distribution alignment, which explicitly aligns the time-evolving spiking representations between the source and target domains. By leveraging membrane potential dynamics as evolving signals, the model captures domain-specific patterns, improving robustness to temporal shifts; and (3) pseudo-label distillation assigns reliable pseudo-labels by aligning consistent predictions from shallow and deep network layers. We also demonstrate that this pseudo-label distillation module can effectively reduce a generalization bound tailored for spiking graph domain adaptation. In summary, DeSGraDA provides a simple yet effective solution to a novel and underexplored problem, and offers deep insights into the spiking graph domain adaptation.

Our contributions can be summarized as follows: (1) **Problem Formulation:** We first introduce the spiking graph domain adaptation for graph classification, highlighting the challenges posed by the inflexible threshold mechanism of SGNs and theoretical limitations that hinder effective adaptation. (2) **Novel Architecture and Theoretical Analysis:** We propose DeSGraDA, a framework combining degree-conscious spiking representation and temporal distribution alignment. Moreover, we provide a generalization bound for spiking graph domain adaptation. (3) **Extensive Experiments.** We evaluate the proposed DeSGraDA on extensive spiking graph domain adaptation learning datasets, demonstrating that it can outperform various state-of-the-art methods.

2 RELATED WORK

Domain Adaptation (DA). DA transfers knowledge from a labeled source domain to an unlabeled target domain by mitigating the distributional shift between the two domains (Redko et al., 2017; Long et al., 2018; Shen et al., 2018). It has been widely applied to vision and language tasks (Wei et al., 2021b;a; Shi et al., 2024). Recently, DA has been extended to graph data to address the unique challenges posed by complex relationships, leading to the emergence of Graph Domain Adaptation (GDA) (You et al., 2023; Liu et al., 2024a; Cai et al., 2024). Most existing GDA approaches first leverage GNNs to generate node and graph representations (Zhu et al., 2021; Yin et al., 2022; Liu et al., 2024b), followed by adversarial learning to implicitly align feature distributions and reduce domain discrepancies. They also apply structure-aware strategies to explicitly align graph-level semantics and topological structures, incorporate spectral contrastive alignment to capture domain-invariant spectral patterns, and enforce smoothness constraints to promote consistent feature propagation across domains (Luo et al., 2024; Zhang et al., 2025; Chen et al., 2025b). However, GDA remains under-explored in the context of spiking graphs, where energy efficiency becomes a critical requirement for real-world applications. To bridge this gap, we introduce the novel problem of Spiking Graph Domain Adaptation (SGDA), extending GDA to spiking graphs for energy-efficient domain adaptation.

Spiking Graph Networks (SGNs). SGNs are a specialized neural network combining SNNs (Gerstner & Kistler, 2002; Maass, 1997) with GNNs, preserving energy efficiency while achieving competitive performance on various tasks (Li et al., 2023; Yao et al., 2023; Duan et al., 2024).

108 Existing research on SGNs focuses on capturing temporal information within graphs and enhancing
 109 scalability. For instance, (Xu et al., 2021a) utilizes spatial-temporal feature normalization within
 110 SNNs to effectively process dynamic graph data, ensuring robust learning and improved performance.
 111 (Zhao et al., 2024) proposes a method that adapts to evolving graph structures through a novel
 112 architecture that updates node representations in real time. Additionally, (Yin et al., 2024) adapts
 113 SNNs to dynamic graph settings and employs implicit differentiation for the node classification task.
 114 However, existing methods still suffer from data distribution shift issues when the training and test
 115 data come from different domains, resulting in degraded performance and generalization. To tackle
 116 these challenges, we propose a novel domain adaptation method for spiking graph networks.
 117

118 3 PRELIMINARIES

120 **Problem Setup.** Given a graph $G = (V, E, \mathbf{X})$ with node set V , edge set E , and node attribute
 121 matrix \mathbf{X} . To construct spiking-compatible inputs for SGNs, we sample binary features S from the
 122 Bernoulli distribution with probability of \mathbf{X} (i.e., $S \sim Ber(\mathbf{X})$) as input of SGNs (Zhao et al., 2024).
 123 In this paper, we focus on the problem of spiking GDA for graph classification. The source domain
 124 $\mathcal{D}^s = \{(G_i^s, y_i^s)\}_{i=1}^{N_s}$ is labeled, where N_s is the number of source-domain graphs G_i^s and y_i^s is the
 125 label of G_i^s . The target domain $\mathcal{D}^t = \{G_j^t\}_{j=1}^{N_t}$ is unlabeled and contains N_t graphs. Both domains
 126 share the same label space \mathcal{Y} but can have different graph topologies or attribute distributions.

127 **Domain Adaptation with Optimal Transport (OT).** Following (You et al., 2023), we factorize a
 128 trained model h as $g \circ f$, where $f : \mathcal{D} \mapsto \mathbb{R}^d$ is the feature extractor ($Z = f(\mathcal{D})$) and $g : \mathbb{R}^d \mapsto \mathcal{Y}$
 129 is the discriminator ($Y = g(Z)$). For simplicity, we focus on binary classification with $\mathcal{Y} = [0, 1]$.
 130 Denote the classifier predicting labels from the feature representation as $\hat{g} : \mathbb{R}^d \mapsto \mathcal{Y}$. The source and
 131 target risks are given by $\hat{\epsilon}_S(g, \hat{g}) = \frac{1}{N_s} \sum_{n=1}^{N_s} |g(Z_n) - \hat{g}(Z_n)|$ and $\epsilon_T(g, \hat{g}) = \mathbb{E}_{\mathbb{P}_T(Z)} |g(Z) - \hat{g}(Z)|$.
 132 DA with OT (Villani et al., 2008) addresses covariate shift by optimally transporting masses between
 133 source and target distributions while minimizing cost. Theorem 1 shows that the generalization gap
 134 depends on both domain divergence $2C_g W_1(\mathbb{P}_S(Z), \mathbb{P}_T(Z))$ and model discriminability ω .
 135

136 **Theorem 1** (Shen et al., 2018) *Assume that the discriminator g is C_g -Lipschitz. Let $\mathcal{H} := \{g : \mathcal{Z} \rightarrow$
 137 $\mathcal{Y}\}$ (where \mathcal{Z} is the feature space) be the set of bounded real-valued functions with pseudo-dimension
 138 $Pdim(\mathcal{H}) = d$. For any $g \in \mathcal{H}$, the following holds with probability at least $1 - \delta$:*

$$139 \epsilon_T(g, \hat{g}) \leq \hat{\epsilon}_S(g, \hat{g}) + \sqrt{\frac{4d}{N_s} \log \left(\frac{eN_s}{d} \right) + \frac{1}{N_s} \log \left(\frac{1}{\delta} \right)} + 2C_g W_1(\mathbb{P}_S(Z), \mathbb{P}_T(Z)) + \omega,$$

140 where $\omega = \min_{\|g\|_{Lip} \leq C_g} \{\epsilon_S(g, \hat{g}) + \epsilon_T(g, \hat{g})\}$ is the discriminative ability to capture source and target
 141 data, and $W_1(\mathbb{P}, \mathbb{Q})$ is the distribution divergence defined in (Redko et al., 2017; Shen et al., 2018).
 142

143 Applying OT-based DA methods to graph data introduces challenges due to the non-Euclidean nature
 144 of graphs and intricate dependencies between nodes. You et al. (2023) extends the OT-based DA
 145 framework to graphs and provides a generalization bound for GDA. Details are in Appendix A.
 146

147 **Spiking Graph Networks (SGNs).** Spiking Neural Networks (SNNs)(Maass, 1997; Gerstner &
 148 Kistler, 2002; Bohte et al., 2000) are brain-inspired models offering notable advantages in temporal
 149 information processing and energy efficiency. More details are in Appendix B. SGNs are a specialized
 150 form of SNNs tailored for graph data (Xu et al., 2021a; Zhu et al., 2022), where each node is modeled
 151 as a spiking neuron. The membrane of each node evolves based on both the temporal spiking
 152 dynamics and the graph's structural connectivity. Let $u_{\tau,i}$ be the membrane potential of node i at
 153 latency step τ . SGNs first updates the membrane potentials via input aggregation:
 154

$$155 u_{\tau+1,i} = \lambda(u_{\tau,i} - V_{th}s_{\tau,i}) + \sum_j w_{ij} \mathcal{A}(A, s_{\tau,j}) + b_i, \quad (1)$$

156 where $s_{\tau,i}$ is the spiking representation, $\lambda \in (0, 1)$ is the leak factor, V_{th} is the firing threshold, b_i is
 157 the bias, w_{ij} is the synaptic weight from node j to node i , A is the adjacency matrix, and \mathcal{A} is the
 158 graph-based aggregation operation. Next, spikes are triggered through thresholding:
 159

$$160 s_{\tau+1,i} = \mathbb{H}(u_{\tau+1,i} - V_{th}), \quad u_{\tau+1,i} = (1 - s_{\tau+1,i})u_{\tau+1,i} + s_{\tau+1,i}V_{reset}, \quad (2)$$

161 where V_{reset} is the reset potential, and $\mathbb{H}(x)$ is the Heaviside step function, which serves as the
 162 non-differentiable spiking function. Finally, the neuron is reset upon firing.

Figure 1: Overview of the proposed DeSGraDA. Degree-Conscious Spiking Representation generates source and target domain spiking representations by adapting neuron firing threshold based on node degrees. To align domain distributions, Temporal Distribution Alignment leverages adversarial training on temporal membrane potential to counter domain discrimination. Furthermore, Pseudo-label Distillation is employed to identify reliable target samples and reinforce overall model performance.

4 PROPOSED METHODOLOGY

This paper proposes a novel framework DeSGraDA for the problem of spiking graph domain adaptation. DeSGraDA consists of three parts: **Degree-Conscious Spiking Representation** (Section 4.1), which assigns adaptive firing thresholds based on node degrees to address the limitations of rigid, fixed-threshold architectures; **Temporal Distribution Alignment** (Section 4.2), which employs adversarial training on temporal membrane potentials against a domain discriminator to align spiking dynamics across domains; and **Pseudo-label Distillation** (Section 4.3) further applies the pseudo-label to enhance model performance. We also provide a theoretical generalization bound to support the effectiveness of DeSGraDA. An overview of the framework is in Figure 1.

4.1 DEGREE-CONSCIOUS SPIKING REPRESENTATION

First, we study the disadvantages of directly applying SNNs to graphs and then propose the degree-conscious spiking representation module. Existing SGNs (Li et al., 2023; Duan et al., 2024) usually employ a fixed global threshold (V_{th} in Eq. 1 and 2) for firing. Assume that the membrane potential of node $u_{\tau,i}$ follows the normal distribution $\mathcal{N}(\mu, \sigma^2)$ (Kipf & Welling, 2016). The following Proposition shows that the high-degree nodes are more likely to trigger spikes than the low-degree ones. Proof is in Appendix C.

Proposition 1 *With aggregation operation in SGNs (i.e., \mathcal{A} in Eq. 1), the expectation of the updated node membrane potential is: $\mathbb{E}(u_{\tau+1,i}) \sim \mathcal{N} \left(\left(1 + \sum_{j \in N(i)} w_{ij}\right) \mu, \left(1 + \sum_{j \in N(i)} w_{ij}\right)^2 \sigma^2 \right)$, where $N(i)$ is the set of node i 's neighbors, and w_{ij} is the weight between nodes i and j .*

From Proposition 1, we observe that node i follows a normal distribution with a mean of $(1 + \sum_{j \in N(i)} w_{ij})\mu$, determined by the aggregated weights of its neighboring nodes. We conduct an experiment to investigate the relationship between the aggregated weight ($\sum_{j \in N(i)} w_{ij}$) and spiking frequency (i.e., count of $u_T > V_{th}$) for a fixed threshold V_{th} . As shown in Figure 2, the spiking frequency and aggregation weights under fixed thresholds exhibit a relatively high correlation coefficient, indicating that nodes with higher degrees tend to accumulate more features from neighbors, making it easier to trigger spikes than those with fewer neighbors. Fixed thresholds inherently bias

Figure 2: Correlation between spiking frequency and aggregation weights under fixed thresholds on different datasets.

spiking activation toward high-degree nodes, leading to under-representation of structurally important yet sparsely connected nodes and undermining both expressiveness and generalization in SGNs.

To alleviate this problem, we propose the use of degree-conscious thresholds. Specifically, let B_i^s be the set of degrees for the nodes in graph G_i^s . We collect all unique node degrees across the source domain graphs with $B^s = \text{set}(B_1^s \cup \dots \cup B_{N_s}^s)$, where $\text{set}(\cdot)$ operation is an unordered sequence of distinct elements. With the observation from Proposition 1, we propose setting higher thresholds for high-degree nodes and lower for low-degree nodes. For node v with degree d_v^s , we have:

$$\begin{aligned} s_{\tau,v}^{d_v^s} &= \mathbb{H}(u_{\tau,v} - V_{th}^{d_v^s}), \quad V_{th,\tau+1}^{d_v^s} = (1 - \alpha)V_{th,\tau}^{d_v^s} + \alpha\bar{s}_{\tau,v}^{d_v^s}, \\ u_{\tau+1,v} &= \lambda(u_{\tau,v} - V_{th}^{d_v^s}) + \sum_{j \in N(v)} w_{ij} \mathcal{A}(A, s_{\tau,v}^{d_j^s}) + b_i, \end{aligned} \quad (3)$$

where $V_{th}^{d_v^s}$ is the threshold for nodes with degree $d_v^s \in B^s$, initially set to V_{th} , and α is a hyper-parameter. $\bar{s}_{\tau,v}^{d_v^s}$ is the average of spiking representation $s_{\tau,v}^{d_v^s}$ with degree d_v^s on latency step τ . In Eq. 3, we dynamically update the threshold $V_{th,\tau+1}^{d_v^s}$ with $(1 - \alpha)V_{th,\tau}^{d_v^s} + \alpha\bar{s}_{\tau,v}^{d_v^s}$ based on the average spiking frequency $\bar{s}_{\tau,v}^{d_v^s}$ of nodes with degree d_v^s . Consequently, high-degree nodes typically exhibit higher $\bar{s}_{\tau,v}^{d_v^s}$, resulting in increased thresholds $V_{th,\tau+1}^{d_v^s}$ to suppress over-activation, while low-degree nodes yield lower thresholds to enhance activation, enabling adaptive spiking control across structurally diverse nodes. For each node v in graph G_i^s , we calculate the membrane potential $u_{\tau,v}^s$, and summarize all the node representations with a readout function (Xu et al., 2018) into the graph-level representation:

$$\mathbf{s}_{G_i^s} = \text{READOUT}\left(\left\{s_{\tau,v}^{d_v^s}\right\}_{v \in G_i^s}\right), \quad (4)$$

where T is the total number of latency steps. Finally, we output the prediction $\hat{y}_{G_i^s}^s = H(\mathbf{s}_{G_i^s})$ with a classifier $H(\cdot)$ by minimizing the source classification loss $\mathcal{L}_S = \mathbb{E}_{G_i^s \in \mathcal{D}^s} l(y_{G_i^s}^s, \hat{y}_{G_i^s}^s)$, where $l(\cdot)$ is the loss function and y_i^s is the ground truth of graph G_i^s in the source domain.

4.2 TEMPORAL DISTRIBUTION ALIGNMENT

Unlike GNNs, spiking models rely on membrane potential dynamics to generate sparse spike trains, making their spike representations highly dynamic and non-differentiable. Existing GDA (Yin et al., 2023; Chen et al., 2025a) methods assume continuous, static embeddings and thus fail to align the time-dependent neural dynamics in SGNs. To address this, we propose a temporal-based alignment framework that captures and matches the evolution of spiking patterns across domains.

First, we introduce a temporal attention mechanism that adaptively aggregates time-dependent neuronal states. Specifically, given the temporal membrane potential of graphs on each latency step, we have $[\mathbf{u}_{1,G_i}, \dots, \mathbf{u}_{\tau,G_i}, \dots, \mathbf{u}_{T,G_i}]$, where $\mathbf{u}_{\tau,G_i} = \text{READOUT}(\{u_{\tau,v}\}_{v \in G_i})$ and $G_i \in \{\mathcal{D}^s, \mathcal{D}^t\}$. We stack the T steps membrane potential into $\mathbf{U}_{G_i} \in \mathbb{R}^{T \times d}$, where d is the hidden dimension. The goal is to learn an importance-weighted α_τ to summarize of temporal membrane potential representation, which is formulated as follows:

$$\alpha_\tau = \text{Atten}(\mathbf{U}_{G_i}), \quad \tilde{\mathbf{U}}_{G_i} = \sum_{\tau=1}^T \alpha_\tau \mathbf{u}_{\tau,G_i}, \quad (5)$$

where $\text{Atten}(\cdot)$ is the self-attention operation (Vaswani et al., 2017). Then, we propose the adversarial distribution alignment module to eliminate the discrepancy between the source and target domains. Specifically, for each source graph G_i^s and target graph G_j^t , we denote the semantic classifier as $H(\cdot)$ to produce predicted labels, and a domain discriminator $Q(\cdot)$ to distinguish features from the source and target domains. The temporal-based distribution alignment module is adversarially trained to align the feature spaces of the source and target domains, which is formulated as:

$$\mathcal{L}_{AD} = \mathbb{E}_{G_i^s \in \mathcal{D}^s} \log Q\left(H(\tilde{\mathbf{U}}_{G_i}^s) | V_{th}^{B^s}\right) + \mathbb{E}_{G_j^t \in \mathcal{D}^t, \exists d_j^t \notin B^s} \log \left(1 - Q\left(H(\tilde{\mathbf{U}}_{G_i}^s) | V_{th}^{B^s}, V_{th}^{B^t}\right)\right),$$

where $B^t = \{d_i^t | d_i^t \in B^t, d_i^t \notin B^s\}$. We iteratively update $V_{th}^{B^t}$ with Eq. 3 on each latency. Furthermore, we present an upper bound for temporal-based distribution alignment.

Theorem 2 Assume that the learned discriminator is C_g -Lipschitz continuous, the feature extractor f is C_f -Lipschitz that $\|f\|_{Lip} = \max_{G_1, G_2} \frac{\|f(G_1) - f(G_2)\|_2}{\eta(G_1, G_2)} = C_f$ for some graph distance measure

270 η and the loss function bounded by $C > 0$. Let $\mathcal{H} := \{h : \mathcal{G} \rightarrow \mathcal{Y}\}$ be the set of bounded functions
 271 with the pseudo-dimension $Pdim(\mathcal{H}) = d$ that $h = g \circ f \in \mathcal{H}$, and provided the spike training data
 272 set $S_n = \{(\mathbf{X}_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i \in [n]}$ drawn from \mathcal{D}^s , with probability at least $1 - \delta$ the inequality :
 273

$$274 \quad \epsilon_T(h, \hat{h}_T(\mathbf{X})) \leq \hat{\epsilon}_S(h, \hat{h}_S(\mathbf{S})) + 2\mathbb{E} \left[\sup \frac{1}{N_S} \sum_{i=1}^{N_S} \epsilon_i h(\mathbf{X}_i, y_i, p_i) \right] + C \sqrt{\frac{\ln(2/\delta)}{N_S}} \quad (6)$$

$$275 \quad + \omega + 2C_f C_g W_1(\mathbb{P}_S(G), \mathbb{P}_T(G)),$$

$$277$$

278 where the (empirical) source and target risks are $\hat{\epsilon}_S(h, \hat{h}(\mathbf{S})) = \frac{1}{N_S} \sum_{n=1}^{N_S} |h(\mathbf{S}_n) - \hat{h}(\mathbf{S}_n)|$ and
 279 $\epsilon_T(h, \hat{h}(\mathbf{X})) = \mathbb{E}_{\mathbb{P}_T(G)}\{|h(G) - \hat{h}(G)|\}$, respectively, where $\hat{h} : \mathcal{G} \rightarrow \mathcal{Y}$ is the labeling func-
 280 tion for graphs and $\omega = \min(|\epsilon_S(h, \hat{h}_S(\mathbf{X})) - \epsilon_S(h, \hat{h}_T(\mathbf{X}))|, |\epsilon_T(h, \hat{h}_S(\mathbf{X})) - \epsilon_T(h, \hat{h}_T(\mathbf{X}))|)$,
 281 ϵ_i is the Rademacher variable and p_i is the i^{th} row of \mathbf{P} , which is the probability matrix with:
 282
$$283 \quad \mathbf{P}_{kt} = \begin{cases} \exp\left(\frac{u_k(t) - V_{th}}{\sigma(u_k(t)) - u_{reset}}\right), & \text{if } u_\theta \leq u(t) \leq V_{th}, \\ 0, & \text{if } u_{reset} \leq u_k(t) \leq u_\theta. \end{cases}$$

$$284$$

$$285$$

286 The proof is proposed in Appendix D. Theorem 2 justifies that the generalization gap of spiking GDA
 287 relies on the domain divergence $2C_f C_g W_1(\mathbb{P}_S(G), \mathbb{P}_T(G))$ and model discriminability ω , as well as
 288 the model’s ability to avoid overfitting to the training data, which is quantified by the Rademacher
 289 complexity term $2\mathbb{E} \left[\sup \frac{1}{N_S} \sum_{i=1}^{N_S} \epsilon_i h(\mathbf{X}_i, y_i, p_i) \right]$. In the application of spiking GDA, this term
 290 captures how the model’s sensitivity to random fluctuations in the node feature aggregation (especially
 291 for higher-degree nodes) can lead to overfitting, thus affecting the model’s ability to generalize to the
 292 target domain. This overfitting risk is particularly relevant when the model is too flexible in fitting
 293 the training data, exacerbating the generalization gap, especially under domain shifts.

294 4.3 PSEUDO-LABEL DISTILLATION FOR DISCRIMINATION LEARNING

295 To further tiny the generalization gap between the target and source domains, we incorporate the
 296 pseudo-label distillation module into the DeSGraDA framework. The goal of the module is to
 297 ensure consistent prediction between the shallow and deep layers. Specifically, let $\mathbf{s}'^t_{\tau, G_i}$ be the
 298 shallow spiking graph representation of G_i on the latency step τ ($\tau < T$) in the target domain, and
 299 $\hat{y}_{G_i}^t = H(\mathbf{s}_{G_i})$ be the prediction of graph G_i . Then, to enhance consistency between the shallow and
 300 deep feature spaces and facilitate the generation of more accurate predictions, we cluster the shallow
 301 graphs features in the target domain into C clusters, and each cluster \mathcal{E}_j includes graphs $\{G_j^t\}$. After
 302 that, we find the dominating labels e_r in the cluster, i.e., $\max_r |\{\mathcal{E}_r : e_r = \hat{y}_{G_j}^t\}|$, and remove other
 303 samples with the same prediction but in different clusters. Formally, the pseudo-labels are signed as:
 304

$$305 \quad \mathcal{P} = \left\{ \left(G_j^t, \hat{y}_{G_j}^t \right) : e_j = \max_r \left| \left\{ \mathcal{E}_r : e_r = \hat{y}_{G_j}^t \right\} \right| \right\}. \quad (7)$$

$$306$$

$$307$$

Finally, we utilize the distilled pseudo-labels to guide the update of source degree thresholds on the
 target domain with Eq. 3, and to direct classification in the target domain:

$$310 \quad \mathcal{L}_T = \mathbb{E}_{G_j^t \in \mathcal{P}} l \left(H(\mathbf{s}_{G_j^t}^t), \hat{y}_{G_j^t}^t \right), \quad (8)$$

$$311$$

312 where $\mathbf{s}_{G_j^t}^t$ is the spiking graph representation of G_j^t in the target domain. $l(\cdot)$ is the loss function, and
 313 we implement it with cross-entropy loss. We further analyze the generalization bound by applying the
 314 pseudo-label distillation module, and the proof is detailed in Appendix E. From the proof, we observe
 315 that the bound is lower than simply aligning the distributions by incorporating the highly reliable
 316 pseudo-labels, demonstrating the effectiveness of pseudo-labels for spiking graph domain adaptation.

317 4.4 LEARNING FRAMEWORK

319 Overall, the training objective of DeSGraDA integrates classification loss \mathcal{L}_S , temporal-based distri-
 320 bution alignment loss \mathcal{L}_{AD} , and pseudo-label distillation loss \mathcal{L}_T , which is formulated as:
 321

$$322 \quad \mathcal{L} = \mathcal{L}_S + \mathcal{L}_T - \lambda \mathcal{L}_{AD}, \quad (9)$$

$$323$$

where λ is a hyper-parameter to balance the distribution alignment loss and classification loss. The
 learning procedure is illustrated in Algorithm F, and the complexity is shown in Appendix G.

324 Table 1: The graph classification results (in %) on SEED and BCI under edge density domain shift
325 (source→target). S0, S1, S2, B0, B1, and B2 denote the sub-datasets of SEED and BCI partitioned
326 with edge density, respectively. **Bold** results indicate the best performance.

Methods	SEED						BCI					
	S0→S1	S1→S0	S0→S2	S2→S0	S1→S2	S2→S1	B0→B1	B1→B0	B0→B2	B2→B0	B1→B2	B2→B1
WL subtree	40.7	36.8	42.6	35.0	35.6	38.3	47.9	47.7	46.0	46.7	47.7	47.5
GCN	46.5 \pm 0.6	47.4 \pm 0.9	46.6 \pm 1.2	47.7 \pm 1.4	45.8 \pm 1.2	47.1 \pm 1.6	49.6 \pm 2.5	48.7 \pm 2.8	51.1 \pm 1.0	51.5 \pm 2.0	49.6 \pm 2.4	49.1 \pm 1.7
GIN	47.4 \pm 1.7	48.0 \pm 1.6	47.3 \pm 1.4	47.5 \pm 1.8	41.6 \pm 2.0	46.1 \pm 1.3	49.4 \pm 2.5	48.4 \pm 2.1	51.8 \pm 1.4	51.2 \pm 2.5	50.0 \pm 1.7	48.7 \pm 2.1
GMT	46.5 \pm 0.5	47.8 \pm 1.3	47.2 \pm 0.7	47.2 \pm 1.3	46.4 \pm 0.9	46.4 \pm 1.2	48.8 \pm 1.3	47.8 \pm 1.1	49.4 \pm 1.0	48.5 \pm 1.5	50.7 \pm 0.9	51.5 \pm 1.5
CIN	46.9 \pm 0.5	48.4 \pm 1.1	47.0 \pm 1.5	47.3 \pm 0.7	47.0 \pm 1.6	47.0 \pm 0.9	50.3 \pm 1.6	48.8 \pm 1.5	50.4 \pm 1.3	50.4 \pm 1.2	50.1 \pm 1.5	50.9 \pm 1.7
SpikeGCN	46.3 \pm 1.0	47.4 \pm 0.8	45.8 \pm 1.2	47.7 \pm 1.1	45.8 \pm 1.5	46.4 \pm 1.2	52.5 \pm 1.6	52.8 \pm 1.3	54.1 \pm 1.9	52.1 \pm 1.0	51.7 \pm 1.8	50.5 \pm 2.3
DRSGNN	47.1 \pm 1.0	48.5 \pm 0.9	46.5 \pm 1.2	48.1 \pm 1.3	46.9 \pm 0.8	47.6 \pm 1.4	52.7 \pm 1.3	52.8 \pm 1.9	53.8 \pm 1.5	52.7 \pm 1.6	53.0 \pm 2.1	51.3 \pm 1.8
CDAN	52.6 \pm 1.2	54.5 \pm 0.7	53.9 \pm 0.7	55.9 \pm 1.3	51.6 \pm 1.1	53.6 \pm 0.8	51.9 \pm 1.3	52.6 \pm 1.4	51.8 \pm 1.1	55.4 \pm 1.8	52.5 \pm 1.5	53.1 \pm 1.4
ToAlign	51.2 \pm 1.3	52.3 \pm 0.8	51.5 \pm 0.9	49.7 \pm 1.5	49.6 \pm 1.1	49.4 \pm 1.3	52.5 \pm 1.7	53.7 \pm 1.5	52.2 \pm 1.4	54.4 \pm 1.2	52.7 \pm 1.0	51.8 \pm 1.3
MetaAlign	51.2 \pm 1.4	53.7 \pm 0.9	52.2 \pm 1.1	53.8 \pm 0.8	51.2 \pm 1.4	52.0 \pm 1.2	51.1 \pm 1.5	51.8 \pm 1.2	50.4 \pm 1.7	52.5 \pm 1.5	51.7 \pm 1.5	51.3 \pm 1.1
DEAL	57.4 \pm 1.1	57.5 \pm 1.4	56.6 \pm 0.7	58.1 \pm 1.2	53.9 \pm 0.7	57.8 \pm 1.3	53.7 \pm 1.4	52.5 \pm 2.2	52.6 \pm 1.6	54.5 \pm 1.4	52.7 \pm 1.7	52.8 \pm 1.2
CoCo	55.5 \pm 1.5	56.7 \pm 0.7	56.3 \pm 1.3	58.8\pm0.8	54.2 \pm 1.2	57.5 \pm 1.3	54.0 \pm 1.3	55.2\pm2.5	52.7 \pm 2.1	52.7 \pm 1.9	51.7 \pm 2.8	51.0 \pm 2.4
SGDA	47.1 \pm 0.6	41.6 \pm 1.4	43.8 \pm 0.7	45.9 \pm 1.2	49.4 \pm 1.1	50.1 \pm 1.5	49.7 \pm 1.6	48.4 \pm 1.5	50.6 \pm 1.0	50.4 \pm 1.3	50.5 \pm 1.2	50.7 \pm 1.4
StruRW	47.1 \pm 0.9	45.9 \pm 0.7	46.5 \pm 1.3	48.2 \pm 1.2	46.9 \pm 1.2	47.3 \pm 1.4	48.7 \pm 1.1	47.3 \pm 1.7	49.5 \pm 1.1	49.7 \pm 1.5	50.0 \pm 1.8	50.2 \pm 1.6
A2GNN	47.6 \pm 1.2	47.6 \pm 0.9	46.2 \pm 0.8	48.3 \pm 1.1	46.2 \pm 1.0	47.9 \pm 0.6	52.0 \pm 1.7	53.0 \pm 1.4	52.0 \pm 1.0	53.7 \pm 1.1	52.2 \pm 1.3	51.8 \pm 1.7
PA-BOTH	48.2 \pm 1.4	48.2 \pm 0.8	47.3 \pm 1.2	48.3 \pm 1.0	48.5 \pm 1.2	45.2 \pm 0.6	49.2 \pm 1.6	50.0 \pm 1.2	51.1 \pm 1.3	51.3 \pm 1.5	50.5 \pm 1.6	48.8 \pm 1.4
DeSGraDA	58.0\pm1.5	58.2\pm1.4	57.0\pm1.8	58.3 \pm 1.6	55.9\pm2.1	58.1\pm1.6	54.1\pm1.5	53.6 \pm 1.6	54.9\pm1.1	56.2\pm1.8	55.0\pm1.3	54.6\pm1.2

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Dataset. To evaluate the effectiveness of DeSGraDA, we conduct extensive experiments across two types of domain shifts: (1) structure-based domain shifts, where the discrepancy between domains arises primarily from differences in graph topology, such as variations in node and edge densities. This category includes datasets DD, PROTEINS (Dobson & Doig, 2003), SEED Zheng & Lu (2015); Duan et al. (2013), and BCI (Brunner et al., 2008); (2) feature-based domain shifts, where domains differ mainly in semantic information. This setting includes DD, PROTEINS, BZR, BZR_MD, COX2, and COX2_MD (Dobson & Doig, 2003; Sutherland et al., 2003). The specific statistics, distribution visualization, and detailed introduction of experimental datasets are presented in Appendix H.

Baselines. We compare DeSGraDA with competitive baselines on above datasets, including one graph kernel method: WL subtree (Shervashidze et al., 2011); four graph-based methods: GCN (Kipf & Welling, 2017), GIN (Xu et al., 2018), CIN (Bodnar et al., 2021) and GMT (Baek et al., 2021); two spiking-based graph methods: SpikeGCN (Zhu et al., 2022) and DRSGNN (Zhao et al., 2024); three domain adaptation methods: CDAN (Long et al., 2018), ToAlign (Wei et al., 2021b), and MetaAlign (Wei et al., 2021a); and six graph domain adaptation methods: DEAL (Yin et al., 2022), CoCo (Yin et al., 2023), SGDA (Qiao et al., 2023), StruRW (Liu et al., 2023), A2GNN (Liu et al., 2024a) and PA-BOTH (Liu et al., 2024b). More settings about baselines are introduced in Appendix I and J.

5.2 PERFORMANCE COMPARISON

We present the results of the proposed DeSGraDA with all baselines under two types of domain shifts on different datasets in Tables 1, 2, and 13-16. From these tables, we observe that: (1) GDA methods outperform traditional graph-based and spiking-based graph methods in most cases, highlighting the adverse impact of domain distribution shifts on conventional approaches and underscoring the importance of advancing research in spiking graph domain adaptation. (2) The spiking-based graph methods (i.e., SpikeGCN and DRSGNN) outperform the models specific for node classification (i.e., SGDA, StruRW, A2GNN, and PA-BOTH) but fall short compared to models for graph classification (i.e., DEAL and CoCo). This performance gap is primarily due to the limited exploration of graph classification under domain shift. Although spiking-based methods exhibit advantages over adapted

Figure 3: Correlation comparisons of spiking frequency and aggregation weights under adaptive thresholds on PROTEINS and DD datasets.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 2: Graph classification results (in %) under node and edge density domain shifts on the PROTEINS dataset, and feature domain shifts on DD, PROTEINS, BZR, BZR_MD, COX2, and COX2_MD. For convenience, PROTEINS, DD, COX2, COX2_MD, BZR, and BZR_MD are abbreviated as P, D, C, CM, B, and BM, respectively. **Bold** results indicate the best performance.

Methods	Node Shift			Edge Shift			Feature Shift					
	P0→P1	P0→P2	P0→P3	P0→P1	P0→P2	P0→P3	P→D	D→P	C→CM	CM→C	B→BM	BM→B
WL subtree	69.1	61.2	41.6	68.7	50.7	58.1	43.0	42.2	53.1	58.2	51.3	44.0
GCN	73.7±0.3	57.6±0.2	24.4±0.4	73.4±0.2	57.6±0.2	24.0±0.1	48.9±2.0	60.9±2.3	51.2±1.8	66.9±1.8	48.7±2.0	78.8±1.7
GIN	71.8±2.7	58.5±4.3	74.2±1.7	62.5±4.7	53.0±4.6	73.7±0.8	57.3±2.2	61.9±1.9	53.8±2.5	55.6±2.0	49.9±2.4	79.2±2.8
GMT	73.7±0.2	57.6±0.3	75.6±1.4	73.4±0.3	57.6±0.1	24.0±0.1	59.5±2.5	50.7±2.2	49.3±1.8	58.2±2.0	50.2±2.3	74.4±1.8
CIN	74.1±0.6	60.1±2.1	75.6±0.2	74.5±0.2	57.8±0.2	75.6±0.6	59.1±2.6	58.0±2.7	51.2±2.0	55.6±1.5	49.2±1.4	74.2±1.9
SpikeGCN	71.8±0.9	64.9±1.4	71.1±1.9	71.8±0.8	63.8±1.0	68.6±1.1	59.6±2.2	63.3±1.8	52.6±2.5	68.6±1.8	53.3±1.7	76.1±2.0
DRSGNN	73.6±1.1	64.6±1.2	70.2±1.7	72.6±0.6	63.1±1.4	70.4±1.9	60.9±2.4	65.4±1.9	52.9±1.8	66.9±2.3	52.8±1.7	76.4±2.7
CDAN	75.9±1.0	60.8±0.6	75.8±0.3	72.2±1.8	59.8±2.1	69.3±4.1	59.4±2.0	63.1±2.7	51.2±2.3	68.2±1.8	50.7±1.6	75.2±1.9
ToAlign	73.7±0.4	57.6±0.6	24.4±0.1	73.4±0.1	57.6±0.1	24.0±0.3	62.1±2.1	66.5±2.3	53.2±2.6	55.8±2.3	56.2±3.0	78.8±2.4
MetaAlign	74.3±0.8	60.6±1.7	76.3±0.3	75.5±0.9	64.8±1.6	69.3±2.7	63.3±2.1	66.2±1.9	51.2±2.0	69.5±2.3	48.7±1.8	76.8±2.7
DEAL	75.4±1.2	68.1±1.9	73.8±1.4	76.5±0.4	67.5±1.3	76.0±0.2	70.6±1.5	66.8±2.5	50.9±2.4	67.8±1.9	51.1±2.3	79.4±2.2
CoCo	74.8±0.6	65.5±0.4	72.4±2.9	75.5±0.2	59.8±0.5	73.6±2.3	66.0±2.7	61.2±2.3	53.6±1.8	78.2±2.0	57.8±1.6	79.8±1.8
SGDA	64.2±0.5	66.9±1.2	65.4±1.6	63.8±0.6	66.7±1.0	60.1±0.8	48.3±2.0	55.8±2.6	49.8±1.8	66.9±2.3	50.3±2.1	78.8±2.6
A2GNN	65.7±0.6	66.3±0.9	65.2±1.4	65.4±1.3	68.2±1.4	65.4±0.7	57.8±2.1	60.3±1.5	51.5±1.8	67.7±2.1	51.6±2.3	77.5±1.9
StruRW	71.9±2.3	66.7±1.8	52.8±1.9	72.6±2.2	66.2±2.2	48.9±2.0	59.1±2.3	58.8±2.8	51.2±2.0	54.8±2.9	49.2±1.4	74.7±2.1
PA-BOTH	61.0±0.8	60.3±0.6	63.7±1.5	63.1±0.7	64.3±0.5	66.3±0.7	54.2±3.2	56.7±2.6	52.9±2.8	61.8±2.0	47.5±3.0	78.8±1.9
DeSGraDA	76.3±1.9	69.2±2.3	77.5±2.2	76.8±1.9	68.6±1.8	76.5±2.8	73.6±1.9	71.2±1.6	54.7±1.8	78.6±2.2	56.3±1.5	80.3±1.9

node classification models, they remain less effective than specialized graph domain adaptation methods explicitly designed for graph-level tasks. (3) DeSGraDA outperforms all baselines in most cases, demonstrating its advantage over other methods. The superior performance can be attributed to two key factors. First, the degree-conscious spiking representations dynamically adjust node-specific firing thresholds in SNNs, enabling the model to capture more expressive and discriminative graph features. Second, the temporal-based distribution alignment aligns source and target domain representations by matching spiking membrane dynamics over time, effectively mitigating distributional discrepancies. Moreover, the pseudo-label distillation helps refine degree thresholds in the target domain, further enhancing generalization. More results can be found in Appendix K.1.

We further conduct experiments to examine the correlation between spiking frequency and aggregation weights under adaptive thresholds across different node degrees. As shown in Figure 3, the correlation coefficient under adaptive thresholds is significantly lower than that under fixed thresholds, demonstrating that DeSGraDA effectively smooths spiking frequency across node degrees, mitigates over-activation in high-degree nodes, and promotes balanced information aggregation.

Table 3: The results of ablation studies on the PROTEINS dataset (source → target).

Methods	P0→P1	P1→P0	P0→P2	P2→P0	P0→P3	P3→P0	P1→P2	P2→P1	P1→P3	P3→P1	P2→P3	P3→P2
DeSGraDA w/ CDAN	73.3	82.4	67.8	76.5	74.4	78.7	66.5	71.3	73.7	70.2	74.1	68.8
DeSGraDA w/ PL	73.7	81.2	67.1	81.2	75.9	79.6	67.8	71.9	74.7	69.0	75.4	68.3
DeSGraDA w/o CF	65.0	67.4	53.5	64.5	66.6	68.8	56.7	63.4	66.1	60.9	53.9	56.6
DeSGraDA w/o TL	73.6	80.6	65.6	80.6	73.1	78.4	63.9	69.3	69.6	68.7	72.9	64.5
DeSGraDA w/ CDAN & w/o PL	72.8	81.0	66.3	76.3	72.7	77.6	65.8	69.6	71.0	68.8	73.6	67.8
DeSGraDA w/ CDAN & w/o TL	73.1	80.3	65.2	75.9	72.5	78.0	63.9	69.0	69.5	68.2	73.3	64.9
DeSGraDA w/ CDAN, w/o PL & TL	71.4	78.7	63.5	74.2	71.2	76.2	62.3	68.0	68.4	67.3	70.5	63.0
DeSGraDA w/ PL & TL	72.2	79.9	65.4	78.6	73.1	77.7	63.0	69.9	69.0	68.0	72.4	63.7
DeSGraDA	76.3	84.6	69.2	83.6	77.5	83.7	69.8	74.0	76.2	73.0	77.8	70.5

5.3 ABLATION STUDY

We conduct comprehensive ablation studies to assess the contribution of each component: (1) DeSGraDA w/ CDAN: replaces the temporal-based alignment module with static distribution alignment; (2) DeSGraDA w/o PL: removes the pseudo-label distillation module; (3) DeSGraDA w/o CF: discards the classification loss \mathcal{L}_S ; (4) DeSGraDA w/o TL: applies fixed global thresholds to all nodes; (5) DeSGraDA w/ CDAN & w/o PL: employs static distribution alignment and removes pseudo-label distillation; (6) DeSGraDA w/ CDAN & w/o TL: adopts static alignment while using fixed global thresholds; (7) DeSGraDA w/ CDAN, w/o PL & TL: eliminates all three modules, retaining only the backbone with fixed thresholds; and (8) DeSGraDA w/o PL & TL: removes pseudo-label distillation and applies fixed thresholds.

Experimental results are shown in Table 3. From the table, we observe that: (1) The degree-conscious thresholding mechanism substantially improves representational capacity. When replaced with fixed global thresholds (DeSGraDA w/o TL), performance declines, showing that dynamically adjusting thresholds by node degree helps the model capture structural heterogeneity and encode informative

Figure 4: (a) Energy efficiency analysis and (b), (c) hyperparameter sensitivity analysis of latency step T and initial threshold V_{th}^{degree} on the PROTEINS dataset.

spiking representations. (2) The temporal-based distribution alignment and pseudo-label distillation modules are crucial for domain adaptation. Removing the temporal alignment module (DeSGraDA w/ CDAN) yields consistent drops across tasks, underscoring its role in mitigating domain shifts by aligning membrane dynamics. Similarly, eliminating pseudo-label distillation (DeSGraDA w/o PL) degrades performance, highlighting the importance of leveraging confident target predictions to refine threshold adaptation and support generalization. (3) When multiple components are removed simultaneously, performance drops more substantially across all transfer tasks, suggesting that each module contributes both independently and cooperatively to the overall effectiveness of the framework. This finding highlights that the degree-conscious representation, temporal alignment, and pseudo-label distillation modules function complementarily to strengthen the robustness of domain adaptation. (4) DeSGraDA outperforms all ablated variants across domain shifts, confirming the complementary strengths of its core components. Notably, removing the classification loss (DeSGraDA w/o CF) causes the largest degradation, underscoring the necessity of source supervision for learning discriminative features. We also provide ablation studies replacing SGNs with standard GNNs in Tables 8, 9, with results in Appendix K.3.

5.4 ENERGY EFFICIENCY ANALYSIS

To assess the energy efficiency of DeSGraDA, we use the metric from (Zhu et al., 2022) and quantify the energy consumption for graph classification in the inference stage. Specifically, the graph domain adaptation methods are evaluated on GPUs (NVIDIA A100), and the spiking-based methods are evaluated on neuromorphic chips (ROLLS (Indiveri et al., 2015)) following (Zhu et al., 2022). The results are shown in Figure 4a, where we find that compared with traditional graph domain adaptation methods, the spike-based methods (DeSGraDA and DRSGNN) have significantly lower energy consumption, demonstrating the superior energy efficiency of SGNs. Moreover, although the energy consumption of DeSGraDA is slightly higher than DRSGNN due to additional computations required for domain adaptation, the performance improvement justifies deploying DeSGraDA in low-power devices. Additionally, we present a comparison of training time and memory usage between DeSGraDA and other GDA methods, and the results are detailed in Tables 6 and 7.

5.5 SENSITIVITY ANALYSIS

We conduct the sensitivity analysis of DeSGraDA to investigate the impact of key hyperparameters: latency step T and degree threshold V_{th}^{degree} in SGNs. Specifically, T controls the number of SGNs propagation steps, and V_{th}^{degree} determines the firing threshold of each neuron based on node degree.

Figure 4b and 4c illustrates how T and V_{th}^{degree} affects the performance of DeSGraDA on the PROTEINS dataset. More results on other datasets are shown in Appendix K.4. We vary T in $\{5, 6, 7, 8, 9, 10\}$ and V_{th}^{degree} in $\{0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0\}$. From the results, we observe that: (1) The performance of DeSGraDA in Figure 4b generally exhibits an increasing trend at the beginning and then stabilizes when $T > 9$. We attribute this to smaller values of T potentially losing important information for representation, while larger values significantly increase model complexity. To balance effectiveness and efficiency, we set $T = 9$ as default. (2) Figure 4c indicates an initial increase followed by a decreasing trend in performance as V_{th}^{degree} increases. This trend arises because a lower threshold may cause excessive spiking for high-degree nodes, leading to unstable representation, while a higher threshold may suppress spiking for low-degree nodes, reducing information flow. Accordingly, we set V_{th}^{degree} to 0.2 as default.

486 Table 4: Wasserstein distance (W_1) between source and target domains before and after adaptation
 487 under node/edge density shifts (PROTEINS) and structure-based shifts (SEED, BCI).

Method	Node Density (PROTEINS)			Edge Density (PROTEINS)			SEED			BCI		
	P0→P1	P0→P2	P0→P3	P0→P1	P0→P2	P0→P3	S0→S1	S0→S2	S1→S2	B0→B1	B0→B2	B1→B2
Before	0.0087	0.0187	0.0081	0.0089	0.0254	0.0054	0.0052	0.0047	0.0053	0.0044	0.0053	0.0053
After	0.0082	0.0172	0.0077	0.0086	0.0242	0.0053	0.0050	0.0045	0.0049	0.0043	0.0051	0.0050

492 493 5.6 EMPIRICAL VALIDATION OF THEORETICAL ANALYSIS

494 Theorem 2 provides a generalization bound for SGDA, which describes the target-domain risk ϵ_T as:

$$496 \epsilon_T(h, \hat{h}) \leq \hat{\epsilon}_S(h, \hat{h}) + \underbrace{2C_f C_g W_1(P_S(G), P_T(G))}_{\text{domain divergence term}} + \underbrace{\omega}_{\substack{\text{model} \\ \text{discriminability}}} + \underbrace{\mathcal{O}\left(\sqrt{\frac{\ln(1/\delta)}{N_S}}\right)}_{\substack{\text{sample bound} \\ \text{complexity} \\ \text{term}}} + \mathcal{R}(h), \quad (10)$$

500 where $W_1(P_S, P_T)$ denotes the distance between graph domain distributions, ω measures discriminator alignment, and $\mathcal{R}(h)$ represents model complexity related to the spiking activation dynamics.

502 However, directly computing this bound is infeasible because both $W_1(P_S, P_T)$ and $\mathcal{R}(h)$ depend
 503 on the underlying spiking feature distributions and unknown Lipschitz constants. This makes the
 504 bound unobservable in practice, as is common in theoretical domain adaptation and SNN analyses.
 505 Following prior works (Shen et al., 2018; Redko et al., 2017; Maass, 1997; Zhu et al., 2022), we
 506 validate our theory through the empirical consistency of trends predicted by Eq. (10) rather than
 507 through direct numerical computation from the follow parts:

508 **Domain Divergence Term.** To validate the theoretical domain divergence term, we computed the
 509 Wasserstein distance between source and target domains before and after applying our alignment.
 510 As shown in Table 4, the distance decreases after adaptation, indicating that the temporal alignment
 511 module effectively narrows the distributional gap. This trend aligns with Theorem 2, where a smaller
 512 W_1 implies a smaller generalization gap. These results provide empirical evidence that DeSGraDA
 513 achieves the theoretically predicted domain alignment.

514 **Rademacher Complexity and Model Capacity.** The Rademacher complexity term reflects over-
 515 fitting risk from degree-induced activation bias. Figures 2 and 3 empirically verify that the Degree-
 516 Conscious mechanism reduces spiking over-activation. The correlation between node degree and
 517 spike frequency is strong before adaptation but notably weaker afterward, showing that the model
 518 avoids overfitting to structural patterns. This observation supports the theoretical claim that controlling
 519 model complexity (via reduced Rademacher complexity) enhances generalization stability.

520 **Target Risk ϵ_T and Domain Shift.** Tables 1 and 2 show that DeSGraDA consistently outperforms all
 521 baselines under both structure and feature domain shifts. These results empirically support Theorem 2:
 522 as the domain discrepancy decreases through alignment, the target risk ϵ_T also decreases. Conversely,
 523 when the shift intensifies, baselines show a larger rise in ϵ_T , whereas DeSGraDA remains stable,
 524 confirming the bound’s monotonic relationship between divergence and target error.

525 Overall, the empirical results provide comprehensive validation of the theoretical framework from
 526 multiple perspectives, including distributional alignment, complexity control, and generalization
 527 behavior. The consistent trends across datasets and experimental settings confirm that the theoretical
 528 analysis of DeSGraDA is mathematically rigorous and well supported by experimental evidence.

530 531 6 CONCLUSION

532 In this paper, we propose the problem of spiking graph domain adaptation and introduce a novel
 533 framework DeSGraDA for graph classification. DeSGraDA enhances the adaptability and per-
 534 formance of SGNs through three key aspects: degree-conscious spiking representation, temporal
 535 distribution alignment, and pseudo-label distillation. DeSGraDA captures expressive information
 536 via degree-dependent spiking thresholds, aligns feature distributions through temporal dynamics,
 537 and effectively exploits unlabeled target data via pseudo-label refinement. Extensive experiments
 538 on benchmark datasets demonstrate that DeSGraDA surpasses existing methods in accuracy while
 539 maintaining energy efficiency, showcasing its potential as a strong solution for DA in SGNs. In the
 future, we plan to extend DeSGraDA to source-free and domain-generalization scenarios.

540 ETHICS STATEMENT
541

542 This work complies with the ICLR Code of Ethics. We present DeSGraDA, a framework for
543 spiking graph domain adaptation, evaluated on publicly available benchmark datasets. These datasets
544 contain no personally identifiable or sensitive information, ensuring no risks to privacy or security.
545 Our research advances energy-efficient graph learning with potential benefits for scientific and
546 technological applications. All experimental protocols are transparently documented, with fair
547 comparisons to prior work. The contributions are intended solely for research, supporting AI
548 development.

550 REFERENCES
551

552 Hamdi Altaheri, Ghulam Muhammad, and Mansour Alsulaiman. Physics-informed attention temporal
553 convolutional network for eeg-based motor imagery classification. *IEEE transactions on industrial
554 informatics*, 19(2):2249–2258, 2022.

555 Hamdi Altaheri, Ghulam Muhammad, Mansour Alsulaiman, Syed Umar Amin, Ghadir Ali Altuwaijri,
556 Wadood Abdul, Mohamed A Bencherif, and Mohammed Faisal. Deep learning techniques for
557 classification of electroencephalogram (eeg) motor imagery (mi) signals: A review. *Neural
558 Computing and Applications*, 35(20):14681–14722, 2023.

560 Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations with
561 graph multiset pooling. In *Proceedings of the International Conference on Learning Representa-
562 tions*, 2021.

563 Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
564 structural results. *The Journal of Machine Learning Research.*, 3(Nov):463–482, 2002.

566 Andrea Biasiucci, Benedetta Franceschiello, and Micah M Murray. Electroencephalography. *Current
567 Biology*, 29(3):R80–R85, 2019.

569 CD Binnie and PF Prior. Electroencephalography. *Journal of Neurology, Neurosurgery & Psychiatry*,
570 57(11):1308–1319, 1994.

571 Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and
572 Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. *Proceedings of the Conference
573 on Neural Information Processing Systems*, 34:2625–2640, 2021.

575 Sander M Bohte, Joost N Kok, and Johannes A La Poutré. Spikeprop: backpropagation for networks
576 of spiking neurons. In *ESANN*, volume 48, pp. 419–424. Bruges, 2000.

578 Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
579 deep learning: going beyond euclidean data. *IEEE Signal Processing Magazine*, 34(4):18–42,
580 2017.

581 Clemens Brunner, Robert Leeb, Gernot Müller-Putz, Alois Schlögl, and Gert Pfurtscheller. Bci
582 competition 2008–graz data set a. *Institute for knowledge discovery (laboratory of brain-computer
583 interfaces)*, Graz University of Technology, 16(1-6):1, 2008.

585 Ruichu Cai, Fengzhu Wu, Zijian Li, Pengfei Wei, Lingling Yi, and Kun Zhang. Graph domain
586 adaptation: A generative view. *ACM Transactions on Knowledge Discovery from Data*, 18(3):
587 1–24, 2024.

588 Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for
589 energy-efficient object recognition. *Int. J. Comput. Vis.*, 113:54–66, 2015.

591 Wei Chen, Guo Ye, Yakun Wang, Zhao Zhang, Libang Zhang, Daixin Wang, Zhiqiang Zhang, and
592 Fuzhen Zhuang. Smoothness really matters: A simple yet effective approach for unsupervised
593 graph domain adaptation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pp.
594 15875–15883, 2025a.

594 Wei Chen, Guo Ye, Yakun Wang, Zhao Zhang, Libang Zhang, Daixin Wang, Zhiqiang Zhang, and
 595 Fuzhen Zhuang. Smoothness really matters: A simple yet effective approach for unsupervised
 596 graph domain adaptation. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 597 volume 39, pp. 15875–15883, 2025b.

598 Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
 599 alignments. *Journal of molecular biology*, 330(4):771–783, 2003.

601 Dexin Duan, Fei Wen, et al. Brain-inspired online adaptation for remote sensing with spiking neural
 602 network. *arXiv preprint arXiv:2409.02146*, 2024.

603 Ruo-Nan Duan, Jia-Yi Zhu, and Bao-Liang Lu. Differential entropy feature for eeg-based emotion
 604 classification. In *2013 6th international IEEE/EMBS conference on neural engineering (NER)*, pp.
 605 81–84. IEEE, 2013.

607 Wulfram Gerstner and Werner M Kistler. *Spiking neuron models: Single neurons, populations,
 608 plasticity*. Cambridge university press, 2002.

609 Weiyu Guo, Ying Sun, Yijie Xu, Ziyue Qiao, Yongkui Yang, and Hui Xiong. Spgesture: Source-free
 610 domain-adaptive sEMG-based gesture recognition with jaccard attentive spiking neural network.
 611 In *Proceedings of the Conference on Neural Information Processing Systems*, 2024.

613 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 614 *Proceedings of the Conference on Neural Information Processing Systems*, 30, 2017.

615 Giacomo Indiveri, Federico Corradi, and Ning Qiao. Neuromorphic architectures for spiking deep
 616 neural networks. In *2015 IEEE International Electron Devices Meeting (IEDM)*, pp. 4–2. IEEE,
 617 2015.

619 Thomas N Kipf and Max Welling. Variational graph auto-encoders. *arXiv preprint arXiv:1611.07308*,
 620 2016.

621 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 622 In *Proceedings of the International Conference on Learning Representations*, 2017.

624 Dominik Klepl, Fei He, Min Wu, Daniel J Blackburn, and Ptolemaios Sarrigiannis. Eeg-based
 625 graph neural network classification of alzheimer’s disease: An empirical evaluation of functional
 626 connectivity methods. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 30:
 627 2651–2660, 2022.

628 Neelesh Kumar, Guangzhi Tang, Raymond Yoo, and Konstantinos P Michmizos. Decoding eeg with
 629 spiking neural networks on neuromorphic hardware. *Transactions on Machine Learning Research*,
 630 2022.

631 Gabriele Lagani, Fabrizio Falchi, Claudio Gennaro, and Giuseppe Amato. Spiking neural networks
 632 and bio-inspired supervised deep learning: a survey. *arXiv preprint arXiv:2307.16235*, 2023.

634 Petr Lansky and Susanne Ditlevsen. A review of the methods for signal estimation in stochastic
 635 diffusion leaky integrate-and-fire neuronal models. *Biological cybernetics*, 99(4):253–262, 2008.

637 Jintang Li, Zhouxin Yu, Zulun Zhu, Liang Chen, Qi Yu, Zibin Zheng, Sheng Tian, Ruofan Wu, and
 638 Changhua Meng. Scaling up dynamic graph representation learning via spiking neural networks.
 639 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 8588–8596, 2023.

640 Junnan Li, Caiming Xiong, and Steven CH Hoi. Learning from noisy data with robust representation
 641 learning. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, 2021.

642 Meihan Liu, Zeyu Fang, Zhen Zhang, Ming Gu, Sheng Zhou, Xin Wang, and Jiajun Bu. Rethinking
 643 propagation for unsupervised graph domain adaptation. *Proceedings of the AAAI Conference on
 644 Artificial Intelligence*, pp. 13963–13971, 2024a.

646 Shikun Liu, Tianchun Li, Yongbin Feng, Nhan Tran, Han Zhao, Qiang Qiu, and Pan Li. Structural
 647 re-weighting improves graph domain adaptation. In *Proceedings of the International Conference
 on Machine Learning*, pp. 21778–21793. PMLR, 2023.

648 Shikun Liu, Deyu Zou, Han Zhao, and Pan Li. Pairwise alignment improves graph domain adaptation.
 649 *Proceedings of the International Conference on Machine Learning*, 2024b.
 650

651 Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
 652 domain adaptation. *Proceedings of the Conference on Neural Information Processing Systems*, 31,
 653 2018.

654 Junyu Luo, Yiyang Gu, Xiao Luo, Wei Ju, Zhiping Xiao, Yusheng Zhao, Jingyang Yuan, and Ming
 655 Zhang. Gala: Graph diffusion-based alignment with jigsaw for source-free domain adaptation.
 656 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.

657 Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
 658 *Neural networks*, 10(9):1659–1671, 1997.

660 Colin McDiarmid et al. On the method of bounded differences. *Surveys in combinatorics*, 141(1):
 661 148–188, 1989.

662 Samuel R Nason, Alex K Vaskov, Matthew S Willsey, Elissa J Welle, Hyochan An, Philip P Vu,
 663 Autumn J Bullard, Chrono S Nu, Jonathan C Kao, Krishna V Shenoy, et al. A low-power
 664 band of neuronal spiking activity dominated by local single units improves the performance of
 665 brain-machine interfaces. *Nature biomedical engineering*, 4(10):973–983, 2020.

666 Victor M. Panaretos and Yoav Zemel. Statistical aspects of wasserstein distances. *Annual Re-
 667 view of Statistics and Its Application*, 2018. URL <https://api.semanticscholar.org/CorpusID:88523547>.

668 Ziyue Qiao, Xiao Luo, Meng Xiao, Hao Dong, Yuanchun Zhou, and Hui Xiong. Semi-supervised
 669 domain adaptation in graph transfer learning. In *Proceedings of the International Joint Conference
 670 on Artificial Intelligence*, pp. 2279–2287, 2023.

671 Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical analysis of domain adaptation with
 672 optimal transport. In *ECML-PKDD*, pp. 737–753, 2017.

673 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
 674 graph neural network model. *IEEE Transactions on Neural Networks*, 20(1):61–80, 2009.

675 Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein distance guided representation
 676 learning for domain adaptation. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 677 2018.

678 Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
 679 Borgwardt. Weisfeiler-lehman graph kernels. *The Journal of Machine Learning Research.*, 12(9),
 680 2011.

681 Xinyu Shi, Zecheng Hao, and Zhaofei Yu. Spikingresformer: Bridging resnet and vision transformer
 682 in spiking neural networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 683 Pattern Recognition*, pp. 5610–5619, 2024.

684 Li Sun, Zhenhao Huang, Qiqi Wan, Hao Peng, and Philip S. Yu. Spiking graph neural network
 685 on riemannian manifolds. In *Proceedings of the Conference on Neural Information Processing
 686 Systems*, 2024.

687 Jeffrey J Sutherland, Lee A O'brien, and Donald F Weaver. Spline-fitting with a genetic algorithm:
 688 A method for developing classification structure- activity relationships. *Journal of chemical
 689 information and computer sciences*, 43(6):1906–1915, 2003.

690 Doron Tal and Eric L Schwartz. Computing with the leaky integrate-and-fire neuron: logarithmic
 691 computation and multiplication. *Neural computation*, 9(2):305–318, 1997.

692 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 693 Kaiser, and Illia Polosukhin. Attention is all you need. In *Proceedings of the Conference on Neural
 694 Information Processing Systems*, volume 30, 2017.

695 Cédric Villani et al. *Optimal transport: old and new*, volume 338. Springer, 2008.

702 Guoqiang Wei, Cuiling Lan, Wenjun Zeng, and Zhibo Chen. Metaalign: Coordinating domain
 703 alignment and classification for unsupervised domain adaptation. In *Proceedings of the IEEE/CVF*
 704 *Conference on Computer Vision and Pattern Recognition*, pp. 16643–16653, 2021a.

705 Guoqiang Wei, Cuiling Lan, Wenjun Zeng, Zhizheng Zhang, and Zhibo Chen. Toalign: Task-
 706 oriented alignment for unsupervised domain adaptation. *Proceedings of the Conference on Neural*
 707 *Information Processing Systems*, 34:13834–13846, 2021b.

708 Allan J Wilson, WS Kiran, AS Radhamani, and A Pon Bharathi. Optimizing energy-efficient cluster
 709 head selection in wireless sensor networks using a binarized spiking neural network and honey
 710 badger algorithm. *Knowledge-Based Systems*, 299:112039, 2024.

711 Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain adaptive
 712 graph convolutional networks. In *Proceedings of the ACM Web Conference*, pp. 1457–1467, 2020.

713 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 714 networks? In *Proceedings of the International Conference on Learning Representations*, 2018.

715 M. Xu, Yujie Wu, Lei Deng, Faqiang Liu, Guoqi Li, and Jing Pei. Exploiting spiking dynamics with
 716 spatial-temporal feature normalization in graph learning. In *Proceedings of the International Joint*
 717 *Conference on Artificial Intelligence*, 2021a.

718 Mingkun Xu, Yujie Wu, Lei Deng, Faqiang Liu, Guoqi Li, and Jing Pei. Exploiting spiking dynamics
 719 with spatial-temporal feature normalization in graph learning. In *Proceedings of the International*
 720 *Joint Conference on Artificial Intelligence*, pp. 3207–3213, 2021b.

721 Man Yao, Huanhuan Gao, Guanshe Zhao, Dingheng Wang, Yihan Lin, Zhaoxu Yang, and Guoqi Li.
 722 Temporal-wise attention spiking neural networks for event streams classification. In *Proceedings*
 723 *of the IEEE/CVF international conference on computer vision*, pp. 10221–10230, 2021.

724 Man Yao, Guanshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi
 725 Li. Attention spiking neural networks. *IEEE Transactions on Pattern Analysis and Machine*
 726 *Intelligence*, 45(8):9393–9410, 2023.

727 Nan Yin, Li Shen, Baopu Li, Mengzhu Wang, Xiao Luo, Chong Chen, Zhigang Luo, and Xian-
 728 Sheng Hua. Deal: An unsupervised domain adaptive framework for graph-level classification. In
 729 *Proceedings of the ACM International Conference on Multimedia*, pp. 3470–3479, 2022.

730 Nan Yin, Li Shen, Mengzhu Wang, Long Lan, Zeyu Ma, Chong Chen, Xian-Sheng Hua, and Xiao Luo.
 731 Coco: A coupled contrastive framework for unsupervised domain adaptive graph classification.
 732 In *Proceedings of the International Conference on Machine Learning*, pp. 40040–40053. PMLR,
 733 2023.

734 Nan Yin, Mengzhu Wang, Zhenghan Chen, Giulia De Masi, Huan Xiong, and Bin Gu. Dynamic
 735 spiking graph neural networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 736 volume 38, pp. 16495–16503, 2024.

737 Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. Graph domain adaptation via theory-
 738 grounded spectral regularization. In *Proceedings of the International Conference on Learning*
 739 *Representations*, 2023.

740 Qiugang Zhan, Guisong Liu, Xiurui Xie, Guolin Sun, and Huajin Tang. Effective transfer learning
 741 algorithm in spiking neural networks. *IEEE Transactions on Cybernetics*, 52(12):13323–13335,
 742 2021.

743 Qiugang Zhan, Guisong Liu, Xiurui Xie, Ran Tao, Malu Zhang, and Huajin Tang. Spiking transfer
 744 learning from rgb image to neuromorphic event stream. *IEEE Transactions on Image Processing*,
 745 2024.

746 Haoyu Zhang, Yuxuan Cheng, Wenqi Fan, Yulong Chen, and Yifan Zhang. Rethinking graph domain
 747 adaptation: A spectral contrastive perspective. In *Joint European Conference on Machine Learning*
 748 and *Knowledge Discovery in Databases*, pp. 448–464. Springer, 2025.

756 Yuhang Zhang, Lindong Wu, Weihua He, Ziyang Zhang, Chen Yang, Yaoyuan Wang, Ying Wang, Kun
 757 Tian, Jianxing Liao, and Ying Yang. An event-driven spatiotemporal domain adaptation method
 758 for dvs gesture recognition. *IEEE Transactions on Circuits and Systems II: Express Briefs*, 69(3):
 759 1332–1336, 2021.

760 Han Zhao, Xu Yang, Cheng Deng, and Junchi Yan. Dynamic reactive spiking graph neural network.
 761 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 16970–16978,
 762 2024.

763 He Zhao, Qingqing Zheng, Kai Ma, Huiqi Li, and Yefeng Zheng. Deep representation-based domain
 764 adaptation for nonstationary eeg classification. *IEEE Transactions on Neural Networks and*
 765 *Learning Systems*, 32(2):535–545, 2020.

766 Li-Ming Zhao, Xu Yan, and Bao-Liang Lu. Plug-and-play domain adaptation for cross-subject
 767 eeg-based emotion recognition. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 768 volume 35, pp. 863–870, 2021.

769 Wei-Long Zheng and Bao-Liang Lu. Investigating critical frequency bands and channels for eeg-
 770 based emotion recognition with deep neural networks. *IEEE Transactions on autonomous mental*
 771 *development*, 7(3):162–175, 2015.

772 Shibo Zhou, Xiaohua Li, Ying Chen, Sanjeev T Chandrasekaran, and Arindam Sanyal. Temporal-
 773 coded deep spiking neural network with easy training and robust performance. In *Proceedings of*
 774 *the AAAI Conference on Artificial Intelligence*, volume 35, pp. 11143–11151, 2021.

775 Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng YAN, Yonghong Tian, and
 776 Li Yuan. Spikformer: When spiking neural network meets transformer. In *Proceedings of the*
 777 *International Conference on Learning Representations*, 2023.

778 Qi Zhu, Carl Yang, Yidan Xu, Haonan Wang, Chao Zhang, and Jiawei Han. Transfer learning of
 779 graph neural networks with ego-graph information maximization. *Proceedings of the Conference*
 780 *on Neural Information Processing Systems*, 34:1766–1779, 2021.

781 Rui-Jie Zhu, Malu Zhang, Qihang Zhao, Haoyu Deng, Yule Duan, and Liang-Jian Deng. Tcja-snn:
 782 Temporal-channel joint attention for spiking neural networks. *IEEE Transactions on Neural*
 783 *Networks and Learning Systems*, 2024.

784 Zulun Zhu, Jiaying Peng, Jintang Li, Liang Chen, Qi Yu, and Siqiang Luo. Spiking graph convolutional
 785 networks. In *Proceedings of the International Joint Conference on Artificial Intelligence*,
 786 2022.

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

APPENDICES

A DA BOUND FOR GRAPHS

DA Bound for Graphs. Due to the DA theory is agnostic to data structures and encoders, You et al. (2023) directly rewrite it for graph-structured data (G) accompanied with graph feature extractors (f) as follows, and the covariate shift assumption is reframed as $\mathbb{P}_S(Y|G) = \mathbb{P}_T(Y|G)$.

Theorem 3 (You et al., 2023) *Assume that the learned discriminator is C_g -Lipschitz continuous as in (Redko et al., 2017), and the graph feature extractor f is C_f -Lipschitz that $\|f\|_{Lip} = \max_{G_1, G_2} \frac{\|f(G_1) - f(G_2)\|_2}{\eta(G_1, G_2)} = C_f$ for some graph distance measure η . Let $\mathcal{H} := \{h : \mathcal{G} \rightarrow \mathcal{Y}\}$ be the set of bounded real-valued functions with pseudo-dimension $Pdim(\mathcal{H}) = d$ that $h = g \circ f \in \mathcal{H}$, with probability at least $1 - \delta$ the following inequality holds:*

$$\epsilon_T(h, \hat{h}) \leq \hat{\epsilon}_S(h, \hat{h}) + \sqrt{\frac{4d}{N_S} \log \left(\frac{eN_S}{d} \right) + \frac{1}{N_S} \log \left(\frac{1}{\delta} \right)} + 2C_f C_g W_1(\mathbb{P}_S(G), \mathbb{P}_T(G)) + \omega,$$

where $\epsilon_T(h, \hat{h}) = \mathbb{E}_{\mathbb{P}_T(G)}\{|h(G) - \hat{h}(G)|\}$ is the (empirical) target risk, $\hat{\epsilon}_S(h, \hat{h}) = \frac{1}{N_S} \sum_{n=1}^{N_S} |h(G_n) - \hat{h}(G_n)|$ is the (empirical) source risk, $\hat{h} : \mathcal{G} \rightarrow \mathcal{Y}$ is the labeling function for graphs and $\omega = \min_{\|g\|_{Lip} \leq C_g, \|f\|_{Lip} \leq C_f} \{\epsilon_S(h, \hat{h}) + \epsilon_T(h, \hat{h})\}$, and $W_1(\mathbb{P}, \mathbb{Q}) = \sup_{\|g\|_{Lip} \leq 1} \{\mathbb{E}_{\mathbb{P}_S(Z)} g(Z) - \mathbb{E}_{\mathbb{P}_T(Z)} g(Z)\}$ is the first Wasserstein distance (Villani et al., 2008).

B SPIKING NEURAL NETWORKS

Spiking Neural Networks (SNNs) are brain-inspired models that communicate through discrete spike events rather than continuous-valued activations Maass (1997); Gerstner & Kistler (2002); Bohte et al. (2000). This design provides significant advantages in temporal information processing and energy efficiency. Different from traditional neural networks, SNNs emulate biological mechanisms such as membrane potential integration, threshold-triggered firing, and post-spike resetting Cao et al. (2015); Zhu et al. (2022). To capture these biological dynamics, SNNs employ neuron models that mathematically describe the temporal evolution of membrane potentials and the conditions for spike generation Lagani et al. (2023). A widely used neuron model in SNNs is the Leaky Integrate-and-Fire (LIF) model Tal & Schwartz (1997); Lansky & Ditlevsen (2008), which operates through three fundamental stages:

(1) Integrate: At each latency step t , the membrane potential $V[t]$ is updated by integrating the input current $I[t]$ and applying a decay to the previous potential $V[t - 1]$:

$$V[t] = \lambda V[t - 1](1 - S[t - 1]) + I[t] \quad (11)$$

where $\lambda \in (0, 1)$ is the decay factor that controls the leakage rate, and $S[t - 1]$ is the binary spike indicator from the previous time step.

(2) Fire: A spike is emitted when the membrane potential exceeds the threshold V_{th} :

$$S[t] = H(V[t] - V_{th}), \quad (12)$$

where $H(\cdot)$ denotes the Heaviside step function, a non-differentiable function defined as:

$$H(x) = \begin{cases} 1, & x \geq 0, \\ 0, & \text{otherwise.} \end{cases} \quad (13)$$

(3) Reset: After a spike is emitted, the membrane potential is reset according to the following rule:

$$V[t] = (1 - S[t])V[t] + S[t]V_{reset}, \quad (14)$$

where V_{reset} denotes the resting potential, typically set to zero.

Due to the non-differentiability of $H(\cdot)$, surrogate gradient methods are commonly employed to approximate its derivative during backpropagation, enabling gradient-based optimization in deep SNN architectures Bohte et al. (2000); Sun et al. (2024).

864 **C PROOF OF PROPOSITION 1**
 865

866 Assuming that the node feature h_i follows a normal distribution $\mathcal{N}(\mu, \sigma^2)$, then for each node in the
 867 graph, we follow the message-passing mechanism and have the information aggregation as:
 868

869
$$h_i = h_i + \sum_{j \in N(i)} w_{ij} h_j, \quad (15)$$

 870

871 where $N(i)$ is the neighbor set of node i . Therefore, we have the expectation:
 872

873
$$\mathbb{E}(h_i) = \mathbb{E}(h_i) + \sum_{j \in N(i)} w_{ij} \mathbb{E}(h_j). \quad (16)$$

 874

875 Since $\mathbb{E}(h_j) \sim \mathcal{N}(\mu, \sigma^2)$, we have:
 876

877
$$\mathbb{E}(h_i) \sim \mathcal{N} \left((1 + \sum_{j \in N(i)} w_{ij})\mu, (1 + \sum_{j \in N(i)} w_{ij})^2 \sigma^2 \right). \quad (17)$$

 878

879 From the results, we observe that node i follows a normal distribution with a mean of $(1 +$
 880 $\sum_{j \in N(i)} w_{ij})^2 \mu$, determined by the aggregated weights of its neighboring nodes. To provide a
 881 more intuitive understanding, we visualize the aggregated neighbor weights of GCN (Kipf & Welling,
 882 2017) and GIN (Xu et al., 2018) in Figure 2. The results show that as the degree increases, the
 883 aggregated weights also increase progressively. Consequently, high-degree nodes tend to follow a
 884 normal distribution with a higher mean and variance. In other words, nodes with higher degrees
 885 accumulate greater signals, making them more likely to trigger spiking. Based on this, we propose
 886 assigning higher thresholds to high-degree nodes and lower thresholds to low-degree nodes.
 887

888 **D PROOF OF THEOREM 2**
 889

890 **Theorem 2** Assuming that the learned discriminator is C_g -Lipschitz continuous as described in
 891 Theorem 3, the graph feature extractor f (also referred to as GNN) is C_f -Lipschitz that $\|f\|_{Lip} =$
 892 $\max_{G_1, G_2} \frac{\|f(G_1) - f(G_2)\|_2}{\eta(G_1, G_2)} = C_f$ for some graph distance measure η and the loss function bounded
 893 by $C > 0$. Let $\mathcal{H} := \{h : \mathcal{G} \rightarrow \mathcal{Y}\}$ be the set of bounded real-valued functions with the pseudo-
 894 dimension $Pdim(\mathcal{H}) = d$ that $h = g \circ f \in \mathcal{H}$, and provided the spike training data set $S_n =$
 895 $\{(\mathbf{X}_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i \in [n]}$ drawn from \mathcal{D}^s , with probability at least $1 - \delta$ the following inequality:
 896

897
$$\epsilon_T(h, \hat{h}_T(\mathbf{X})) \leq \hat{\epsilon}_S(h, \hat{h}_S(\mathbf{S})) + 2\mathbb{E} \left[\sup \frac{1}{N_S} \sum_{i=1}^{N_S} \epsilon_i h(\mathbf{X}_i, y_i, p_i) \right] + C \sqrt{\frac{\ln(2/\delta)}{N_S}} + \omega + 2C_f C_g W_1(\mathbb{P}_S(G), \mathbb{P}_T(G)), \quad (18)$$

 898

899 where the (empirical) source and target risks are $\hat{\epsilon}_S(h, \hat{h}(\mathbf{S})) = \frac{1}{N_S} \sum_{n=1}^{N_S} |h(\mathbf{S}_n) - \hat{h}(\mathbf{S}_n)|$ and
 900 $\epsilon_T(h, \hat{h}(\mathbf{X})) = \mathbb{E}_{\mathbb{P}_T(G)} \{ |h(G) - \hat{h}(G)| \}$, respectively, where $\hat{h} : \mathcal{G} \rightarrow \mathcal{Y}$ is the labeling function for
 901 graphs and $\omega = \min(|\epsilon_S(h, \hat{h}_S(\mathbf{X})) - \epsilon_S(h, \hat{h}_T(\mathbf{X}))|, |\epsilon_T(h, \hat{h}_S(\mathbf{X})) - \epsilon_T(h, \hat{h}_T(\mathbf{X}))|)$, ϵ_i is the
 902 Rademacher variable and p_i is the i^{th} row of \mathbf{P} , which is the probability matrix with:
 903

904
$$\mathbf{P}_{kt} = \begin{cases} \exp \left(\frac{u_k(t) - V_{th}}{\sigma(u_k(t) - u_{reset})} \right), & \text{if } u_\theta \leq u(t) \leq V_{th}, \\ 0, & \text{if } u_{reset} \leq u_k(t) \leq u_\theta. \end{cases} \quad (19)$$

 905

906 *Proof.*
 907

908 Before showing the designated lemma, we first introduce the following inequality to be used that:
 909

910
$$\begin{aligned} |\epsilon_S(h, \hat{h}_S) - \epsilon_T(h, \hat{h}_T)| &= |\epsilon_S(h, \hat{h}_S) - \epsilon_S(h, \hat{h}_T) + \epsilon_S(h, \hat{h}_T) - \epsilon_T(h, \hat{h}_T)| \\ &\leq |\epsilon_S(h, \hat{h}_S) - \epsilon_S(h, \hat{h}_T)| + |\epsilon_S(h, \hat{h}_T) - \epsilon_T(h, \hat{h}_T)| \\ &\stackrel{(a)}{\leq} |\epsilon_S(h, \hat{h}_S) - \epsilon_S(h, \hat{h}_T)| + 2C_f C_g W_1(\mathbb{P}_S(G), \mathbb{P}_T(G)), \end{aligned} \quad (20)$$

 911

918 where (a) results from (Shen et al., 2018) Theorem 3 with the assumption
 919 $\max(\|h\|_{Lip}, \max_{G_1, G_2} \frac{|\hat{h}_D(G_1) - \hat{h}_D(G_2)|}{\eta(G_1, G_2)}) \leq C_f C_g, D \in \{S, T\}$. Similarly, we obtain:
 920

$$|\epsilon_S(h, \hat{h}_S) - \epsilon_T(h, \hat{h}_T)| \leq |\epsilon_T(h, \hat{h}_S) - \epsilon_T(h, \hat{h}_T)| + 2C_f C_g W_1(\mathbb{P}_S(G), \mathbb{P}_T(G)). \quad (21)$$

921 We therefore combine them into:
 922

$$\begin{aligned} |\epsilon_S(h, \hat{h}_S) - \epsilon_T(h, \hat{h}_T)| &\leq 2C_f C_g W_1(\mathbb{P}_S(G), \mathbb{P}_T(G)) \\ &\quad + \min(|\epsilon_S(h, \hat{h}_S) - \epsilon_S(h, \hat{h}_T)|, |\epsilon_T(h, \hat{h}_S) - \epsilon_T(h, \hat{h}_T)|), \end{aligned} \quad (22)$$

923 i.e. the following holds to bound the target risk $\epsilon_T(h, \hat{h}_T)$:
 924

$$\begin{aligned} \epsilon_T(h, \hat{h}_T) &\leq \epsilon_S(h, \hat{h}_S) + 2C_f C_g W_1(\mathbb{P}_S(G), \mathbb{P}_T(G)) \\ &\quad + \min(|\epsilon_S(h, \hat{h}_S) - \epsilon_S(h, \hat{h}_T)|, |\epsilon_T(h, \hat{h}_S) - \epsilon_T(h, \hat{h}_T)|). \end{aligned} \quad (23)$$

925 We next link the bound with the empirical risk and labeled sample size by showing, with probability
 926 at least $1 - \delta$ that:
 927

$$\begin{aligned} \epsilon_T(h, \hat{h}_T) &\leq \epsilon_S(h, \hat{h}_S) + 2C_f C_g W_1(\mathbb{P}_S(G), \mathbb{P}_T(G)) \\ &\quad + \min(|\epsilon_S(h, \hat{h}_S) - \epsilon_S(h, \hat{h}_T)|, |\epsilon_T(h, \hat{h}_S) - \epsilon_T(h, \hat{h}_T)|). \end{aligned} \quad (24)$$

928 The \hat{h} above is the abbreviation of $\hat{h}(x)$, which means the input is the continuous feature. Provided
 929 the spike training data set $S_n = \{(\mathbf{X}_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i \in [n]}$ drawn from \mathcal{D} , and motivated by (Yin
 930 et al., 2024), we have:
 931

$$\lim_{\tau \rightarrow \infty} P\left(\hat{h}(S_n)_{\tau, i} > \hat{h}(\mathbf{X}_{\tau, i}) + \epsilon\right) \leq e^{-\epsilon^2/2(\sigma + \hat{w}_i \epsilon/3)}, \quad (25)$$

932 where $\hat{w}_i = \max\{w_{i1}, \dots, w_{id}\}$ and $h(\mathbf{x}_{ij}) = \sum_{j=1}^d w_{ij} \mathbf{x}_{ij}$. From Equation 2, we observe that
 933 as $\tau \rightarrow \infty$, the difference between spike and real-valued features will be with the probability of
 934 $p = e^{-\epsilon^2/2(\sigma + \hat{w}_i \epsilon/3)}$ to exceed the upper and lower bounds.
 935

936 Furthermore, motivated by the techniques given by (Bartlett & Mendelson, 2002), we have:
 937

$$\epsilon_S(h, \hat{h}_S(S_n)) \leq \hat{\epsilon}_S(h, \hat{h}_S(S_n)) + \underbrace{\sup_{R(S_n, \mathbf{P})} [\epsilon_S(h, \hat{h}_S(S_n)) - \hat{\epsilon}_S(h, \hat{h}_S(S_n))]}, \quad (26)$$

938 where \mathbf{P} is the probability matrix with:
 939

$$\mathbf{P}_{kt} = \begin{cases} \exp\left(\frac{u_k(t) - V_{th}}{\sigma(u_k(t) - u_{reset})}\right), & \text{if } u_\theta \leq u(t) \leq V_{th}, \\ 0, & \text{if } u_{reset} \leq u_k(t) \leq u_\theta, \end{cases} \quad (27)$$

940 where k indicates the k -th spiking neuron and the membrane threshold u_{theta} is relative to the
 941 excitation probability threshold $p_\theta \in (0, 1]$. Let p_k is the k -th row vector of \mathbf{P} . Thus, we have the
 942 probability at least $1 - e^{-\epsilon^2/2(\sigma + \hat{w}_i \epsilon/3)}$ to hold:
 943

$$\epsilon_S(h, \hat{h}_S(\mathbf{X}_n)) \leq \hat{\epsilon}_S(h, \hat{h}_S(S_n)) + \underbrace{\sup_{R(S_n, \mathbf{P})} [\epsilon_S(h, \hat{h}_S(S_n)) - \hat{\epsilon}_S(h, \hat{h}_S(S_n))]}, \quad (28)$$

944 Let S'_n denote the sample set that the i^{th} sample (\mathbf{X}_i, y_i) is replaced by (\mathbf{X}'_i, y'_i) , and correspondingly
 945 \mathbf{P}' is the possibility matrix that the i^{th} row vector p_i is replaced by p'_i , for $i \in [n]$. For the loss
 946 function bounded by $C > 0$, we have:
 947

$$\begin{cases} |R(S_n, \mathbf{P}) - R(S'_n, \mathbf{P})| \leq C/n, \\ |R(S_n, \mathbf{P}) - R(S_n, \mathbf{P}')| \leq C/n. \end{cases} \quad (29)$$

948 From McDiarmid's inequality (McDiarmid et al., 1989), with probability at least $1 - \delta$, we have:
 949

$$R(S_n, \mathbf{P}) \leq \mathbb{E}_{S_n \in \mathcal{D}, \mathbf{P}} [R(S_n, \mathbf{P})] + C \sqrt{\frac{\ln(2/\delta)}{N_S}}. \quad (30)$$

972 It is observed that:
973

$$974 R(S_n, \mathbf{P}) = \sup \mathbb{E}_{\tilde{S}_n \in \mathcal{D}, \tilde{\mathbf{P}}} [\hat{\epsilon}(\hat{h}(S_n); \tilde{S}_n, \tilde{\mathbf{P}}) - \tilde{\mathbf{P}}[\hat{\epsilon}(\hat{h}(S_n); S_n, \mathbf{P})]], \quad (31)$$

975 where \tilde{S}_n is another collection drawn from \mathcal{D} as well as $\tilde{\mathbf{P}}$. Thus, we have
976

$$\begin{aligned} 977 \mathbb{E}_{S_n \in \mathcal{D}, \mathbf{P}} [R(S_n, \mathbf{P})] &\leq \mathbb{E} \left[\sup \left[\hat{\epsilon}(\hat{h}(S_n); \tilde{S}_n, \tilde{\mathbf{P}}) - \tilde{\mathbf{P}}[\hat{\epsilon}(\hat{h}(S_n); S_n, \mathbf{P})] \right] \right] \\ 978 &= \mathbb{E} \left[\sup \frac{1}{n} \sum_{i=1}^n [\hat{h}(\tilde{\mathbf{X}}_i, \tilde{y}_i, \tilde{p}_i) - \hat{h}(\mathbf{X}_i, y_i, p_i)] \right] \\ 979 &\leq 2 \mathbb{E} \left[\sup \frac{1}{n} \sum_{i=1}^n \epsilon_i \hat{h}(\mathbf{X}_i, y_i, p_i) \right], \\ 980 &\quad (32) \\ 981 &\leq 2 \mathbb{E} \left[\sup \frac{1}{n} \sum_{i=1}^n \epsilon_i \hat{h}(\mathbf{X}_i, y_i, p_i) \right], \\ 982 &\leq 2 \mathbb{E} \left[\sup \frac{1}{n} \sum_{i=1}^n \epsilon_i \hat{h}(\mathbf{X}_i, y_i, p_i) \right], \\ 983 &\leq 2 \mathbb{E} \left[\sup \frac{1}{n} \sum_{i=1}^n \epsilon_i \hat{h}(\mathbf{X}_i, y_i, p_i) \right], \\ 984 &\leq 2 \mathbb{E} \left[\sup \frac{1}{n} \sum_{i=1}^n \epsilon_i \hat{h}(\mathbf{X}_i, y_i, p_i) \right], \end{aligned}$$

985 where ϵ_i is the Rademacher variable. Combining Eq. 29 30 32, we have:
986

$$\begin{aligned} 987 \epsilon_S(h, \hat{h}_S(\mathbf{X}_n)) &\leq \hat{\epsilon}_S(h, \hat{h}_S(S_n)) + 2 \mathbb{E} \left[\sup \frac{1}{N_S} \sum_{i=1}^{N_S} \epsilon_i h(\mathbf{X}_i, y_i, p_i) \right] + C \sqrt{\frac{\ln(2/\delta)}{N_S}}. \\ 988 &\quad (33) \\ 989 \end{aligned}$$

990 Finally, we have:
991

$$\begin{aligned} 992 \epsilon_T(h, \hat{h}_T(\mathbf{X})) &\leq \epsilon_S(h, \hat{h}_S(\mathbf{X})) + 2C_f C_g W_1(\mathbb{P}_S(G), \mathbb{P}_T(G)) \\ 993 &\quad + \min \left(|\epsilon_S(h, \hat{h}_S(\mathbf{X})) - \epsilon_S(h, \hat{h}_T(\mathbf{X}))|, |\epsilon_T(h, \hat{h}_S(\mathbf{X})) - \epsilon_T(h, \hat{h}_T(\mathbf{X}))| \right) \\ 994 &\leq \hat{\epsilon}_S(h, \hat{h}_S(S_n)) + 2 \mathbb{E} \left[\sup \frac{1}{N_S} \sum_{i=1}^{N_S} \epsilon_i h(\mathbf{X}_i, y_i, p_i) \right] + C \sqrt{\frac{\ln(2/\delta)}{N_S}} \\ 995 &\quad + \min \left(|\epsilon_S(h, \hat{h}_S(\mathbf{X})) - \epsilon_S(h, \hat{h}_T(\mathbf{X}))|, |\epsilon_T(h, \hat{h}_S(\mathbf{X})) - \epsilon_T(h, \hat{h}_T(\mathbf{X}))| \right) \\ 996 &\quad + 2C_f C_g W_1(\mathbb{P}_S(G), \mathbb{P}_T(G)). \\ 997 &\quad (34) \\ 998 \end{aligned}$$

1003 E GENERALIZATION BOUND WITH PSEUDO-LABEL DISTILLATION MODULE

1004
1005
1006 **Theorem 4** Under the assumption of Theorem 3, we further assume that there exists a small amount
1007 of i.i.d. samples with pseudo labels $\{(G_n, Y_n)\}_{n=1}^{N'_T}$ from the target distribution $\mathbb{P}_T(G, Y)$ ($N'_T \ll$
1008 N_S) and bring in the conditional shift assumption that domains have different labeling function
1009 $\hat{h}_S \neq \hat{h}_T$ and $\max_{G_1, G_2} \frac{|\hat{h}_D(G_1) - \hat{h}_D(G_2)|}{\eta(G_1, G_2)} = C_h \leq C_f C_g (D \in \{S, T\})$ for some constant C_h and
1010 distance measure η , and the loss function bounded by $C > 0$. Let $\mathcal{H} := \{h : \mathcal{G} \rightarrow \mathcal{Y}\}$ be the set of
1011 bounded real-valued functions with the pseudo-dimension $Pdim(\mathcal{H}) = d$, and provided the spike
1012 training data set $S_n = \{(\mathbf{X}_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i \in [n]}$ drawn from \mathcal{D}^s , with probability at least $1 - \delta$ the
1013 following inequality holds:
1014

$$\begin{aligned} 1015 \epsilon_T(h, \hat{h}_T(\mathbf{X})) &\leq \frac{N'_T}{N_S + N'_T} \hat{\epsilon}_T(h, \hat{h}_T(S)) + \frac{N_S}{N_S + N'_T} \left(\hat{\epsilon}_S(h, \hat{h}_S(S)) + 2C_f C_g W_1(\mathbb{P}_S(G), \mathbb{P}_T(G)) \right. \\ 1016 &\quad \left. + 2 \mathbb{E} \left[\sup \frac{1}{N_S} \sum_{i=1}^{N_S} \epsilon_i h(\mathbf{X}_i, y_i, p_i) \right] + C \sqrt{\frac{\ln(2/\delta)}{N_S}} + \omega \right) \\ 1017 &\leq Eq. 6, \\ 1018 &\quad (35) \\ 1019 \end{aligned}$$

1020 where the (empirical) source and target risks are $\hat{\epsilon}_S(h, \hat{h}) = \frac{1}{N_S} \sum_{n=1}^{N_S} |h(G_n) - \hat{h}(G_n)|$ and
1021 $\epsilon_T(h, \hat{h}) = \mathbb{E}_{\mathbb{P}_T(G)} \{ |h(G) - \hat{h}(G)| \}$, respectively, where $\hat{h} : \mathcal{G} \rightarrow \mathcal{Y}$ is the labeling function for
1022 graphs and $\omega = \min \left(|\epsilon_S(h, \hat{h}_S(\mathbf{X})) - \epsilon_S(h, \hat{h}_T(\mathbf{X}))|, |\epsilon_T(h, \hat{h}_S(\mathbf{X})) - \epsilon_T(h, \hat{h}_T(\mathbf{X}))| \right)$, ϵ_i
1023 is the Rademacher variable and p_i is the i^{th} row of \mathbf{P} , which is defined in Theorem 2.
1024

1026 *Proof.*

1027 As proved in Theorem 2, we have:

1028

1029

1030

$$\begin{aligned}
\epsilon_T(h, \hat{h}_T(\mathbf{X})) &\leq \hat{\epsilon}_S(h, \hat{h}_S(S_n)) + 2\mathbb{E} \left[\sup \frac{1}{N_S} \sum_{i=1}^{N_S} \epsilon_i h(\mathbf{X}_i, y_i, p_i) \right] + C \sqrt{\frac{\ln(2/\delta)}{N_S}} \\
&\quad + \min \left(|\epsilon_S(h, \hat{h}_S(\mathbf{X})) - \epsilon_S(h, \hat{h}_T(\mathbf{X}))|, |\epsilon_T(h, \hat{h}_S(\mathbf{X})) - \epsilon_T(h, \hat{h}_T(\mathbf{X}))| \right) \\
&\quad + 2C_f C_g W_1(\mathbb{P}_S(G), \mathbb{P}_T(G)). \tag{36}
\end{aligned}$$

1031

1032

1033

1034

1035

1036

1037

1038

Similar with Eq. 33, there exists:

1039

1040

1041

$$\epsilon_T(h, \hat{h}_T(\mathbf{X}_n)) \leq \hat{\epsilon}_T(h, \hat{h}_T(S_n)) + 2\mathbb{E} \left[\sup \frac{1}{N'_T} \sum_{i=1}^{N'_T} \epsilon_i h(\mathbf{X}_i, y_i, p_i) \right] + C \sqrt{\frac{\ln(2/\delta)}{N'_T}}. \tag{37}$$

1042

1043

1044

1045

1046

1047

1048

$$\begin{aligned}
\epsilon_T(h, \hat{h}_T(\mathbf{X})) &\stackrel{(a)}{\leq} \frac{N'_T}{N_S + N'_T} \left(\hat{\epsilon}_T(h, \hat{h}_T(S)) + 2\mathbb{E} \left[\sup \frac{1}{N'_T} \sum_{i=1}^{N'_T} \epsilon_i h(\mathbf{X}_i, y_i, p_i) \right] + C \sqrt{\frac{\ln(2/\delta)}{N'_T}} \right) \\
&\quad + \frac{N_S}{N_S + N'_T} \left(\hat{\epsilon}_S(h, \hat{h}_S(S)) + 2\mathbb{E} \left[\sup \frac{1}{N_S} \sum_{i=1}^{N_S} \epsilon_i h(\mathbf{X}_i, y_i, p_i) \right] + C \sqrt{\frac{\ln(2/\delta)}{N_S}} \right) \\
&\quad + \frac{N_S}{N_S + N'_T} \left(2C_f C_g W_1(\mathbb{P}_S(G), \mathbb{P}_T(G)) \right. \\
&\quad \left. + \min \left(|\epsilon_S(h, \hat{h}_S(\mathbf{X})) - \epsilon_S(h, \hat{h}_T(\mathbf{X}))|, |\epsilon_T(h, \hat{h}_S(\mathbf{X})) - \epsilon_T(h, \hat{h}_T(\mathbf{X}))| \right) \right) \\
&\leq \frac{N'_T}{N_S + N'_T} \hat{\epsilon}_T(h, \hat{h}_T(S)) + \frac{N_S}{N_S + N'_T} \hat{\epsilon}_S(h, \hat{h}_S(S)) \\
&\quad + \frac{N_S}{N_S + N'_T} \left(2C_f C_g W_1(\mathbb{P}_S(G), \mathbb{P}_T(G)) \right. \\
&\quad \left. + \min \left(|\epsilon_S(h, \hat{h}_S(\mathbf{X})) - \epsilon_S(h, \hat{h}_T(\mathbf{X}))|, |\epsilon_T(h, \hat{h}_S(\mathbf{X})) - \epsilon_T(h, \hat{h}_T(\mathbf{X}))| \right) \right) \\
&\quad + \frac{N'_T}{N_S + N'_T} \left(2\mathbb{E} \left[\sup \frac{1}{N'_T} \sum_{i=1}^{N'_T} \epsilon_i h(\mathbf{X}_i, y_i, p_i) \right] + C \sqrt{\frac{\ln(2/\delta)}{N'_T}} \right) \\
&\quad + \frac{N_S}{N_S + N'_T} \left(2\mathbb{E} \left[\sup \frac{1}{N_S} \sum_{i=1}^{N_S} \epsilon_i h(\mathbf{X}_i, y_i, p_i) \right] + C \sqrt{\frac{\ln(2/\delta)}{N_S}} \right) \\
&\stackrel{(b)}{=} \frac{N'_T}{N_S + N'_T} \hat{\epsilon}_T(h, \hat{h}_T(S)) + \frac{N_S}{N_S + N'_T} \hat{\epsilon}_S(h, \hat{h}_S(S)) \\
&\quad + \frac{N_S}{N_S + N'_T} \left(2\mathbb{E} \left[\sup \frac{1}{N_S} \sum_{i=1}^{N_S} \epsilon_i h(\mathbf{X}_i, y_i, p_i) \right] + C \sqrt{\frac{\ln(2/\delta)}{N_S}} \right)
\end{aligned}$$

$$\begin{aligned}
& + \frac{N_S}{N_S + N'_T} \left(2C_f C_g W_1(\mathbb{P}_S(G), \mathbb{P}_T(G)) \right. \\
& \quad \left. + \min(|\epsilon_S(h, \hat{h}_S(\mathbf{X})) - \epsilon_S(h, \hat{h}_T(\mathbf{X}))|, |\epsilon_T(h, \hat{h}_S(\mathbf{X})) - \epsilon_T(h, \hat{h}_T(\mathbf{X}))|) \right) \\
& = \frac{N'_T}{N_S + N'_T} \hat{\epsilon}_T(h, \hat{h}_T(S)) + \frac{N_S}{N_S + N'_T} \left(\hat{\epsilon}_S(h, \hat{h}_S(S)) + 2C_f C_g W_1(\mathbb{P}_S(G), \mathbb{P}_T(G)) \right. \\
& \quad \left. + 2\mathbb{E} \left[\sup \frac{1}{N_S} \sum_{i=1}^{N_S} \epsilon_i h(\mathbf{X}_i, y_i, p_i) \right] + C \sqrt{\frac{\ln(2/\delta)}{N_S}} \right. \\
& \quad \left. + \min(|\epsilon_S(h, \hat{h}_S(\mathbf{X})) - \epsilon_S(h, \hat{h}_T(\mathbf{X}))|, |\epsilon_T(h, \hat{h}_S(\mathbf{X})) - \epsilon_T(h, \hat{h}_T(\mathbf{X}))|) \right)
\end{aligned}$$

where (a) is the outcome of applying the union bound with coefficient $\frac{N'_T}{N_S + N'_T}$, $\frac{N_S}{N_S + N'_T}$ respectively; (b) additionally adopt the assumption $N'_T \ll N_S$, following the sleight-of-hand in (Li et al., 2021) Theorem 3.2.

Due to the samples are selected with high confidence, thus, we have the following assumption:

$$\begin{aligned}
& \hat{\epsilon}_T \leq \epsilon_T \leq \hat{\epsilon}_S(h, \hat{h}(\mathbf{X})) + 2\mathbb{E} \left[\sup \frac{1}{N_S} \sum_{i=1}^{N_S} \epsilon_i h(\mathbf{X}_i, y_i, p_i) \right] \\
& \quad + C \sqrt{\frac{\ln(2/\delta)}{N_S}} + 2C_f C_g W_1(\mathbb{P}_S(G), \mathbb{P}_T(G)) + \omega,
\end{aligned} \tag{38}$$

where $\omega = \min(|\epsilon_S(h, \hat{h}_S(\mathbf{X})) - \epsilon_S(h, \hat{h}_T(\mathbf{X}))|, |\epsilon_T(h, \hat{h}_S(\mathbf{X})) - \epsilon_T(h, \hat{h}_T(\mathbf{X}))|)$, $\hat{\epsilon}_T$ is the empirical risk on the high confidence samples, ϵ_T is the empirical risk on the target domain. Besides, we have:

$$\begin{aligned}
& \min(|\epsilon_S(h, \hat{h}_S(\mathbf{X})) - \epsilon_S(h, \hat{h}_T(\mathbf{X}))|, |\epsilon_T(h, \hat{h}_S(\mathbf{X})) - \epsilon_T(h, \hat{h}_T(\mathbf{X}))|) \leq \\
& \quad \min(\epsilon_S(h, \hat{h}_S(\mathbf{X})) + \epsilon_T(h, \hat{h}_S(\mathbf{X})))
\end{aligned} \tag{39}$$

Then,

$$\begin{aligned}
& \epsilon_T(h, \hat{h}_T(\mathbf{X})) \leq \frac{N'_T}{N_S + N'_T} \hat{\epsilon}_T(h, \hat{h}_T(S)) + \frac{N_S}{N_S + N'_T} \left(\hat{\epsilon}_S(h, \hat{h}_S(S)) + 2C_f C_g W_1(\mathbb{P}_S(G), \mathbb{P}_T(G)) \right. \\
& \quad \left. + 2\mathbb{E} \left[\sup \frac{1}{N_S} \sum_{i=1}^{N_S} \epsilon_i h(\mathbf{X}_i, y_i, p_i) \right] + C \sqrt{\frac{\ln(2/\delta)}{N_S}} \right. \\
& \quad \left. + \min(|\epsilon_S(h, \hat{h}_S(\mathbf{X})) - \epsilon_S(h, \hat{h}_T(\mathbf{X}))|, |\epsilon_T(h, \hat{h}_S(\mathbf{X})) - \epsilon_T(h, \hat{h}_T(\mathbf{X}))|) \right) \\
& \leq \hat{\epsilon}_S(h, \hat{h}_S(S)) + 2\mathbb{E} \left[\sup \frac{1}{N_S} \sum_{i=1}^{N_S} \epsilon_i h(\mathbf{X}_i, y_i, p_i) \right] + C \sqrt{\frac{\ln(2/\delta)}{N_S}} \\
& \quad + 2C_f C_g W_1(\mathbb{P}_S(G), \mathbb{P}_T(G)) + \omega.
\end{aligned} \tag{40}$$

F ALGORITHM

G COMPLEXITY ANALYSIS

Here we analyze the computational complexity of the proposed DeSGraDA. The computational complexity primarily relies on Degree-Conscious spiking representations. For a given graph G , $\|A\|_0$

1134 **Algorithm 1** Learning Algorithm of DeSGraDA
 1135
 1136 **Input:** Source data \mathcal{D}^s , Target data \mathcal{D}^t
 1137 **Output:** The parameters θ of Degree-Conscious spiking encoder, parameters γ of domain discriminator, and parameter η of semantic classifier.
 1138
 1139 1: Initialize model parameters θ , γ , and η
 1140 2: **while** not converged **do**
 1141 3: Sample mini-batches \mathcal{B}^s and \mathcal{B}^t from \mathcal{D}^s and \mathcal{D}^t
 1142 4: Forward propagate \mathcal{B}^s and \mathcal{B}^t through the Degree-Conscious spiking encoder
 1143 5: Perform pseudo-label distillation
 1144 6: Compute the loss function using Eq. 9
 1145 7: Update model parameters θ , γ , and η via backpropagation
 1146 8: **end while**
 1147

1158 Figure 5: Visualization of different distributions on the PROTEINS dataset.
 1159
 1160

1161 denotes the number of nonzeros in the adjacency matrix of G . d is the feature dimension. L denote
 1162 the layer number of spiking encoder. $|V|$ is the number of nodes. T denotes the number of latency
 1163 step. The spiking encoder takes $\mathcal{O}(T \cdot L \cdot (\|A\|_0 \cdot d + |V| \cdot d^2))$ computational time for each graph.
 1164 As a result, the complexity of our DeSGraDA is proportional to both $|V|$ and $\|A\|_0$.
 1165

H DATASET

1171 Table 5: Statistics of the experimental datasets.
 1172

1174	Datasets	Graphs	Avg. Nodes	Avg. Edges	Classes
1175	SEED	3,818	62.00	125.74	3
1176	BCI	1,440	22.00	119.80	2
1177	PROTEINS	1,113	39.10	72.80	2
1178	DD	1,178	284.32	715.66	2
1179	COX2	467	41.22	43.45	2
1180	COX2_MD	303	26.28	335.12	2
1181	BZR	405	35.75	38.36	2
1182	BZR_MD	306	21.30	225.06	2

H.1 DATASET DESCRIPTION

1183
 1184 We conduct extensive experiments on different types of datasets. The dataset statistics can be found
 1185 in Table 5, and their details are shown as follows:
 1186

Figure 6: Visualization of different distributions on the DD dataset.

Figure 7: Visualization of edge density distributions on the BCI (left) and SEED (right) datasets.

- **SEED.** The SJTU Emotion EEG Dataset (SEED) (Zheng & Lu, 2015; Duan et al., 2013) is a widely used Electroencephalography (EEG) benchmark for emotion recognition. It contains EEG recordings from 15 participants watching emotional movie clips that evoke positive, neutral, and negative emotions. Each recording consists of 62-channel EEG signals sampled at 1000 Hz. Based on the edge density, we partition the SEED dataset into three sub-datasets, namely S0, S1, and S2. The sub-datasets exhibit substantial domain disparities among them.
- **BCI.** The Brain-Computer Interface (BCI) Competition IV-2a dataset Brunner et al. (2008) is a widely used benchmark for motor imagery EEG classification. It includes EEG recordings from 9 subjects performing four motor imagery tasks: left hand, right hand, feet, and tongue. Each subject completed two sessions on different days, with signals recorded from 22 EEG channels at a sampling rate of 250 Hz. Based on the edge density, we partition the dataset into three parts: B0, B1, and B2.
- **PROTEINS and DD.** The PROTEINS (Dobson & Doig, 2003) and DD datasets comprise protein structure graphs commonly used for graph classification tasks. In both datasets, nodes represent amino acids, forming edges between spatially or sequentially adjacent residues. In PROTEINS, each graph is labeled to indicate whether the protein is an enzyme, with edges defined between residues less than 6 Angstroms apart. The DD dataset, derived from the Protein Data Bank, focuses on classifying proteins by structural class and typically exhibits denser graph connectivity than PROTEINS. Additionally, we partition the PROTEINS and DD datasets into four parts based on edge density and node density, P0 to P3 and D0 to D3, respectively.
- **COX2 and COX2_MD.** The COX2 dataset Sutherland et al. (2003) consists of 467 molecular graphs, while COX2_MD contains 303 structurally modified counterparts. In both datasets, nodes represent atoms and edges correspond to chemical bonds. Specifically, COX2_MD introduces structural variations to the original COX2 molecules while preserving their semantic labels.

1242
 1243 • **BZR and BZR_MD.** The BZR dataset Sutherland et al. (2003) comprises 405 molecular
 1244 graphs, while BZR_MD includes 306 structurally modified graphs derived from BZR. In
 1245 both datasets, nodes represent atoms and edges denote chemical bonds. BZR_MD introduces
 1246 structural variations to simulate domain shifts while preserving the original label semantics.

1247 **H.2 DATA PROCESSING**

1249 In our implementation, we process the above datasets as follows:

1250
 1251 • For datasets from TUDataset¹, including PROTEINS, DD, BZR, BZR_MD, COX2, and
 1252 COX2_MD, we utilize the TUDataset module from PyTorch Geometric for loading. Self-
 1253 loops are added during the preprocessing stage to prevent isolated nodes.

1254 • For the SEED dataset, we utilize the TorchEEG library² to transform raw EEG signals into
 1255 graph-structured data. During graph construction, edges are removed following the approach
 1256 described in Klepl et al. (2022).

1257 • For the BCI dataset, we focus on a binary classification subset involving left-hand and right-
 1258 hand motor imagery tasks, a widely adopted evaluation setting in BCI research. Following
 1259 the construction protocols proposed in Altaheri et al. (2022; 2023), we randomly remove a
 1260 portion of edges from each graph during preprocessing.

1261 **I BASELINES**

1264 In this part, we introduce the details of the compared baselines as follows:

1265 **Graph kernel method.** We compare DeSGraDA with one graph kernel method:

1267
 1268 • **WL subtree:** Weisfeiler-Lehman (WL) subtree (Shervashidze et al., 2011) is a graph kernel
 1269 method, which calculates the graph similarity by a kernel function, where it encodes local
 1270 neighborhood structures into subtree patterns, efficiently capturing the topology information
 1271 contained in graphs.

1272 **Graph-based methods.** We compare DeSGraDA with four widely used graph-based methods:

1273
 1274 • **GCN:** GCN (Kipf & Welling, 2017) is a spectral-based neural network that iteratively
 1275 updates node representations by aggregating information from neighboring nodes, effectively
 1276 capturing both local graph structure and node features.

1277 • **GIN:** GIN (Xu et al., 2018) is a message-passing neural network designed to distinguish
 1278 graph structures using an injective aggregation function, theoretically achieving the expres-
 1279 sive power of the Weisfeiler-Lehman test.

1280 • **CIN:** CIN (Bodnar et al., 2021) extends the Weisfeiler-Lehman framework by integrating cel-
 1281 lular complexes into graph neural networks, allowing for the capture of higher-dimensional
 1282 topological features.

1283 • **GMT:** GMT (Baek et al., 2021) utilizes self-attention mechanisms to dynamically adjust
 1284 the importance of nodes based on their structural dependencies, thereby enhancing both
 1285 adaptability and performance.

1286 **Spiking-based graph methods.** We compare DeSGraDA with two spiking-based graph methods:

1288
 1289 • **SpikeGCN:** SpikeGCN (Zhu et al., 2022) introduces an end-to-end framework designed to
 1290 integrate the fidelity characteristics of SNNs with graph node representations.

1291 • **DRSGNN:** DRSGNN (Zhao et al., 2024) dynamically adapts to evolving graph structures
 1292 and relationships through a novel architecture that updates node representations in real-time.

1293 **Domain adaption methods.** We compare DeSGraDA with two recent domain adaption methods:

1¹<https://chrsmrrs.github.io/datasets/>

2²<https://torcheeg.readthedocs.io/en/latest/>

1296 Table 6: GPU memory consumption of different graph domain methods in training stage for each
 1297 training epoch (in GB).

	DeSGraDA	DEAL	CoCo	SGDA	StruRW	A2GNN	PA-BOTH
PROTEINS	1.0	1.2	1.2	1.0	1.2	22.3	1.7
DD	5.6	6.4	2.5	3.9	4.5	35.1	16.8
SEED	1.1	1.4	1.5	2.6	0.8	16.8	2.8
BCI	0.7	0.8	0.7	0.7	0.7	14.5	1.6

1304 Table 7: Time consumption of different graph domain methods in training stage for each training
 1305 epoch (in seconds).

	DeSGraDA	DEAL	CoCo	SGDA	StruRW	A2GNN	PA-BOTH
PROTEINS	0.195	0.103	22.123	0.088	0.088	1.313	0.949
DD	0.427	0.400	184.015	0.135	0.140	2.263	0.787
SEED	0.192	0.137	26.187	0.126	0.075	1.414	0.311
BCI	0.224	0.211	35.162	0.103	0.086	0.781	0.123

- **CDAN:** CDAN (Long et al., 2018) employs a conditional adversarial learning strategy to reduce domain discrepancy by conditioning adversarial adaptation on discriminative information from multiple domains.
- **ToAlign:** ToAlign (Wei et al., 2021b) uses token-level alignment strategies within Transformer architectures to enhance cross-lingual transfer, optimizing the alignment of semantic representations across languages.
- **MetaAlign:** MetaAlign (Wei et al., 2021a) is a meta-learning framework for domain adaptation that dynamically aligns feature distributions across domains by learning domain-invariant representations.

1325 **Graph domain adaptation methods.** We compare DeSGraDA with six graph domain adaption
 1326 methods:

- **DEAL:** DEAL (Yin et al., 2022) uses domain adversarial learning to align graph representations across different domains without labeled data, overcoming discrepancies between the source and target domains.
- **CoCo:** CoCo (Yin et al., 2023) leverages contrastive learning to align graph representations between source and target domains, enhancing domain adaptation by promoting intra-domain cohesion and inter-domain separation in an unsupervised manner.
- **SGDA:** SGDA (Qiao et al., 2023) utilizes labeled data from the source domain and a limited amount of labeled data from the target domain to learn domain-invariant graph representations.
- **StruRW:** StruRW (Liu et al., 2023) introduces a structural re-weighting mechanism that dynamically adjusts the importance of nodes and edges based on their domain relevance. It enhances feature alignment by emphasizing transferable structures while suppressing domain-specific noise.
- **A2GNN:** A2GNN (Liu et al., 2024a) introduces a novel propagation mechanism to enhance feature transferability across domains, improving the alignment of graph structures and node features in an unsupervised setting.
- **PA-BOTH:** PA-BOTH (Liu et al., 2024b) aligns node pairs between source and target graphs, optimizing feature correspondence at a granular level to improve the transferability of structural and feature information across domains.

1350 **J IMPLEMENTATION DETAILS**

1351
 1352 DeSGraDA and all baseline models are implemented using PyTorch³ and PyTorch Geometric⁴. We
 1353 conduct experiments for DeSGraDA and all baselines on NVIDIA A100 GPUs for a fair comparison,
 1354 where the learning rate of Adam optimizer set to 10^{-4} , hidden embedding dimension 256, weight
 1355 decay 10^{-12} , and GNN layers 4. Additionally, DeSGraDA and all baseline models are trained
 1356 using all labeled source samples and evaluated on unlabeled target samples (Wu et al., 2020). The
 1357 performances of all models are measured and averaged on all samples for five different runs.
 1358

1359 **K MORE EXPERIMENTAL RESULTS**

1360 **K.1 MORE PERFORMANCE COMPARISON**

1361
 1362 In this part, we provide additional results for our proposed method DeSGraDA compared with all
 1363 baseline models across various datasets, as illustrated in Table 13-16. These results consistently show
 1364 that DeSGraDA outperforms the baselines in most cases, validating the superiority of our proposed
 1365 method.

1366
 1367 Additionally, we find that different domain shift scenarios exhibit similar results in Table 1. However,
 1368 Table 2 shows that the $P0 \rightarrow P2$ scenario yields significantly inferior results compared to $P0 \rightarrow P1$
 1369 and $P0 \rightarrow P3$. To further understand this phenomenon, we analyze the relevant quantitative statistics
 1370 through the calculation of Wasserstein Distances Panaretos & Zemel (2018) between each pair of
 1371 sub-datasets. Then, we find that:

1372

- 1373 • On the SEED and BCI datasets, the adaptation accuracies across the main domain shift
 1374 scenarios are consistently clustered and exhibit close values. Specifically, for SEED, the
 1375 accuracies are 58.0%, 57.0%, and 55.9% for $S0 \rightarrow S1$, $S0 \rightarrow S2$, and $S1 \rightarrow S2$, with the
 1376 corresponding Wasserstein Distances being 0.0052, 0.0047, and 0.0053, respectively. For
 1377 BCI, the accuracies for $B0 \rightarrow B1$, $B0 \rightarrow B2$, and $B1 \rightarrow B2$ are 54.1%, 56.2%, and 55.0%, with
 1378 Wasserstein Distances of 0.0044, 0.0053, and 0.0051, respectively. These consistently low
 1379 values of distributional shift are reflected in the stable adaptation performance observed
 1380 across the various subdomain pairs in both datasets.
- 1381 • On the PROTEINS dataset, both node shift and edge shift scenarios demonstrate a strong
 1382 correspondence between adaptation performance and distributional divergence. For the node
 1383 domain shift setting, the accuracies for $P0 \rightarrow P1$, $P0 \rightarrow P2$, and $P0 \rightarrow P3$ are 76.3%, 69.2%,
 1384 and 77.5%, respectively, with Wasserstein Distances of 0.0087, 0.0187, and 0.0081. For the
 1385 edge domain shift setting, the accuracies are 76.8%, 68.6%, and 76.5% for $P0 \rightarrow P1$, $P0 \rightarrow P2$,
 1386 and $P0 \rightarrow P3$, with Wasserstein Distances of 0.0089, 0.0254, and 0.0054, respectively. In
 1387 both settings, the $P0 \rightarrow P2$ scenario consistently exhibits the lowest performance and the
 1388 highest distributional divergence, demonstrating that substantial domain shifts, as quantified
 1389 by larger Wasserstein Distances, lead to pronounced degradation in adaptation performance.

1390
 1391 Furthermore, our theoretical analysis in Appendix D also formalizes the connection between domain
 1392 divergence and transferability using the Wasserstein Distance, thereby providing additional support
 1393 for our empirical findings.

1394 **K.2 TRAINING TIME AND MEMORY COMPARISON**

1395
 1396 We provide detailed comparisons of GPU memory consumption and training time per epoch for
 1397 DeSGraDA and other graph domain adaptation methods under identical experimental settings in this
 1398 part, as shown in Tables 6 and 7. It is worth noting that the training phase is typically conducted on
 1399 more powerful hardware to achieve optimal performance within a reasonable time frame.

1400
 1401
 1402
 1403 ³<https://pytorch.org/>

⁴<https://www.pyg.org/>

1404
1405 Table 8: The results of DeSGraDA with different widely used graph neural networks (GIN, GCN and
1406 SAGE) on the PROTEINS and DD dataset. **Bold** results indicate the best performance.

Methods	PROTEINS				DD			
	P0→P1	P1→P0	P0→P2	P2→P0	D0→D1	D1→D0	D0→D2	D2→D0
DeSGraDA w GCN	71.9	76.8	64.8	68.6	58.2	70.2	57.6	64.1
DeSGraDA w SAGE	73.9	79.8	65.5	74.5	57.8	71.6	59.1	66.7
DeSGraDA w GIN	74.1	81.5	66.4	78.7	59.3	73.0	61.1	68.8
DeSGraDA	76.3	84.6	69.2	83.6	60.1	76.1	63.9	71.7

1414
1415 Table 9: The results of DeSGraDA with different widely used graph neural networks (GIN, GCN and
1416 SAGE) on the SEED and BCI dataset. **Bold** results indicate the best performance.

Methods	SEED				BCI			
	S0→S1	S1→S0	S0→S2	S2→S0	B0→B1	B1→B0	B0→B2	B2→B0
DeSGraDA w GCN	55.7	54.5	53.7	54.0	52.8	51.6	52.2	54.2
DeSGraDA w SAGE	55.3	54.5	54.2	54.9	52.7	52.2	52.8	54.7
DeSGraDA w GIN	56.6	57.1	55.8	56.9	53.3	52.9	53.8	55.4
DeSGraDA	58.0	58.2	57.0	58.3	54.1	53.6	54.9	56.2

K.3 MORE ABLATION STUDY

To validate the effectiveness of the different components in DeSGraDA, we conduct more experiments with four variants on DD, SEED, and BCI datasets, i.e., DeSGraDA w CDAN, DeSGraDA w/o PL, DeSGraDA w/o CF and DeSGraDA w/o TL. The results are shown in Table 11 and 12. From the results, we have similar observations as summarized in Section 5.3.

Additionally, we conduct ablation studies to examine the effect of directly replacing the SGNs with commonly used Graph Neural Networks (GNNs) for generating representations for DeSGraDA: (1) DeSGraDA w GCN: It replaces SGNs with GCN (Kipf & Welling, 2017); (2) DeSGraDA w GIN: It replaces SGNs with GIN (Xu et al., 2018); (3) DeSGraDA w SAGE: It replaces SGNs with GraphSAGE (Hamilton et al., 2017). The experimental results across the PROTEINS, DD, SEED, and BCI datasets are shown in Table 8 and 9. However, the critical aspect of our work lies in the specific problem we set up, i.e., low-power and distribution shift environments. In this context, directly replacing SGNs with commonly used GNNs like GIN or GCN is not feasible, as these models are unsuitable for deployment on low-energy devices. As demonstrated in Section 5.4, GNN-based methods have much higher energy consumption than the spike-based methods.

K.4 MORE SENSITIVITY ANALYSIS

In this part, we provide additional sensitivity analysis of the proposed DeSGraDA with respect to the impact of its hyperparameters: the latency step T and initial threshold value V_{th}^{degree} in SNNs on the DD, SEED and BCI datasets. The results are illustrated in Figure 8 and 9, where we observe trends similar to those discussed in Section 5.5.

Additionally, we conduct a sensitivity analysis of the hyperparameter λ in Eq. 9, which balances the adversarial alignment loss, on the PROTEINS dataset. We vary λ within the range $\{0.1, 0.3, 0.5, 0.7, 0.9\}$. As shown in Table 10, the results demonstrate that DeSGraDA consistently achieves strong performance across different λ values, with the best result obtained at $\lambda = 0.9$. Model performance remains stable for moderate to high values of λ , indicating that the adversarial alignment loss serves as an effective regularizer without destabilizing the training process.

	P0→P1	P1→P0	P0→P2	P2→P0
$\lambda = 0.1$	75.3	84.0	68.2	82.5
$\lambda = 0.3$	75.4	83.7	68.0	82.8
$\lambda = 0.5$	75.3	84.2	68.3	82.9
$\lambda = 0.7$	75.8	84.3	68.8	82.8
$\lambda = 0.9$	76.3	84.6	69.2	83.6

Table 10: Hyperparameter sensitivity analysis of λ on the PROTEINS dataset.

Figure 8: Hyperparameter sensitivity analysis of latency step T in SNNs on the DD, SEED and BCI datasets.

Figure 9: Hyperparameter sensitivity analysis of the initial threshold V_{th}^{degree} in SNNs on the DD, SEED and BCI datasets.

L LIMITATION

The proposed DeSGraDA framework, while demonstrating significant improvements in spiking graph domain adaptation, does have some limitations. It assumes a substantial domain shift between the source and target domains, which may not always be applicable in real-world scenarios where domain shifts are minimal. Additionally, the computational complexity introduced by adversarial feature distribution alignment and pseudo-label distillation could become a bottleneck, especially for large-scale datasets. The framework’s sensitivity to hyperparameters, such as time latency and threshold values, also requires careful tuning for different datasets, which may hinder its practical application. Furthermore, while the method provides a generalization bound, its robustness in diverse real-world settings and its ability to address privacy or fairness concerns in sensitive domains remain underexplored. These aspects highlight opportunities for further refinement and broader applicability of DeSGraDA.

M THE USE OF LARGE LANGUAGE MODELS (LLMs)

Large language models (LLMs) were only used to improve the clarity, grammar, and fluency of the manuscript. They were not involved in the development of research ideas, experimental design, data analysis, or any other aspect of the scientific content.

1512

1513 Table 11: The results of ablation studies on the DD dataset (source → target). **Bold** 1514 results indicate the best performance.

Methods	D0→D1	D1→D0	D0→D2	D2→D0	D0→D3	D3→D0	D1→D2	D2→D1	D1→D3	D3→D1	D2→D3	D3→D2
DeSGraDA w CDAN	57.3	72.7	59.9	68.8	57.4	58.1	68.1	60.9	75.9	59.3	80.2	77.9
DeSGraDA w/o PL	58.3	71.8	58.1	69.8	57.9	58.2	67.1	59.3	75.1	60.7	79.1	76.8
DeSGraDA w/o CF	51.0	62.0	57.1	61.8	54.0	51.5	59.0	54.3	62.3	52.9	64.1	69.3
DeSGraDA w/o TL	58.0	72.0	60.4	68.2	58.4	58.8	68.7	60.8	77.6	60.5	76.6	77.4
DeSGraDA	60.1	76.1	63.9	71.7	61.1	62.3	73.6	64.2	80.9	64.7	82.0	80.6

1519

1520

1521

1522 Table 12: The results of ablation studies on the SEED and BCI datasets (source → target). **Bold** 1523 results indicate the best performance.

Methods	SEED						BCI					
	S0→S1	S1→S0	S0→S2	S2→S0	S1→S2	S2→S1	B0→B1	B1→B0	B0→B2	B2→B0	B1→B2	B2→B1
DeSGraDA w CDAN	54.1	55.2	53.5	56.8	53.9	55.7	52.0	52.3	51.5	53.6	52.7	52.4
DeSGraDA w/o PL	55.6	55.7	54.3	56.1	53.7	54.5	53.3	52.9	52.6	52.8	52.1	52.2
DeSGraDA w/o CF	29.7	47.2	45.8	47.5	45.6	32.8	43.0	44.3	44.2	44.7	33.1	34.2
DeSGraDA w/o TL	53.8	54.6	53.2	55.4	52.0	53.4	51.1	50.9	52.2	53.9	50.5	51.3
DeSGraDA	58.0	58.2	57.0	58.3	55.9	58.1	54.1	53.6	54.9	56.2	55.0	54.6

1530

1531

1532 Table 13: The graph classification results (in %) on PROTEINS under node density domain shift 1533 (source→target). P0, P1, P2, and P3 denote the sub-datasets partitioned with node density. **Bold** 1534 results indicate the best performance.

Methods	P0→P1	P1→P0	P0→P2	P2→P0	P0→P3	P3→P0	P1→P2	P2→P1	P1→P3	P3→P1	P2→P3	P3→P2	Avg.
WL subtree	69.1	59.7	61.2	75.9	41.6	83.5	61.5	72.7	24.7	72.7	63.1	62.9	62.4
GCN	73.7±0.3	82.7±0.4	57.6±0.2	84.0±1.3	24.4±0.4	17.3±0.2	57.6±0.1	70.9±0.7	24.4±0.5	26.3±0.1	37.5±0.2	42.5±0.8	49.9
GIN	71.8±2.7	70.2±4.7	58.5±4.3	56.9±4.9	74.2±1.7	78.2±3.3	63.3±2.7	67.1±3.8	35.9±4.2	61.0±2.4	71.9±2.1	65.1±1.0	64.5
GMT	73.7±0.2	82.7±0.1	57.6±0.3	83.1±0.5	75.6±1.4	17.3±0.6	57.6±1.5	73.7±0.6	75.6±0.4	26.3±1.2	75.6±0.7	42.4±0.5	61.8
CIN	74.1±0.6	83.8±1.0	60.1±2.1	78.6±3.1	75.6±0.2	74.8±3.7	63.9±2.7	74.1±0.6	57.0±4.3	58.9±3.3	75.6±0.7	63.6±1.0	70.0
SpikeGCN	71.8±0.9	80.9±1.2	64.9±1.4	79.1±2.2	71.1±1.9	73.8±1.6	62.4±2.0	71.8±2.3	70.1±2.4	66.9±1.9	72.1±1.9	64.5±1.7	70.9
DRSGNN	73.6±1.1	81.3±1.5	64.6±1.2	80.6±1.4	70.2±1.7	76.1±2.3	64.1±1.5	71.9±1.9	70.4±1.6	64.1±3.1	74.7±1.4	64.3±1.1	71.3
CDAN	75.9±1.0	83.1±0.6	60.8±0.6	82.6±0.2	75.8±0.3	70.9±2.4	64.7±0.3	77.7±0.6	73.3±1.8	75.4±0.7	75.8±0.4	67.1±0.8	73.6
ToAlign	73.7±0.4	82.7±0.3	57.6±0.6	82.7±0.8	24.4±0.1	82.7±0.3	57.6±0.4	73.7±0.2	24.4±0.7	73.7±0.3	24.4±0.5	57.6±0.4	59.6
MetaAlign	74.3±0.8	83.3±2.2	60.6±1.7	71.2±2.1	76.3±3.3	77.3±2.4	64.6±1.2	72.0±1.0	76.0±0.5	73.3±1.8	74.4±1.7	56.9±1.4	71.7
DEAL	75.4±1.2	78.0±2.4	68.1±1.9	80.8±2.1	73.8±1.4	80.6±2.3	65.7±1.7	74.7±2.4	74.7±1.6	71.0±2.1	68.1±2.6	70.3±0.4	73.4
CoCo	74.8±0.6	84.1±1.1	65.5±0.4	83.6±1.1	72.4±2.9	83.1±0.4	69.7±0.5	75.8±0.5	71.4±2.3	73.4±1.3	72.5±2.7	66.4±1.7	74.4
SGDA	64.2±0.5	61.0±0.7	66.9±1.2	61.9±0.9	65.4±1.6	66.5±1.0	64.6±1.1	60.1±0.5	66.3±1.3	59.3±0.8	66.0±1.6	66.2±1.3	64.1
StruRW	71.9±2.3	82.6±1.9	66.7±1.8	74.5±2.8	52.8±1.9	57.3±2.0	62.2±2.4	63.3±2.1	59.5±1.6	56.3±2.0	66.6±2.3	52.4±2.0	63.8
A2GNN	65.7±0.6	65.9±0.8	66.3±0.9	65.6±1.1	65.2±1.4	65.6±1.3	65.9±1.7	65.8±1.6	65.0±1.5	66.1±1.2	65.2±1.9	65.9±1.8	65.7
PA-BOTH	61.0±0.8	61.2±1.3	60.3±0.6	66.7±2.1	63.7±1.5	61.9±2.0	66.2±1.4	69.9±2.3	68.0±0.7	69.4±1.8	61.5±0.4	67.6±1.0	64.9
DeSGraDA	76.3±1.9	84.6±2.5	69.2±2.3	83.6±2.6	77.5±2.2	83.7±1.9	69.8±2.4	74.0±1.6	76.2±2.0	73.0±2.1	77.8±2.3	70.5±1.7	76.4

1548

1549

1550 Table 14: The graph classification results (in %) on PROTEINS under edge density domain shift 1551 (source→target). P0, P1, P2, and P3 denote the sub-datasets partitioned with edge density. **Bold** 1552 results indicate the best performance.

Methods	P0→P1	P1→P0	P0→P2	P2→P0	P0→P3	P3→P0	P1→P2	P2→P1	P1→P3	P3→P1	P2→P3	P3→P2	Avg.
WL subtree	68.7	82.3	50.7	82.3	58.1	83.8	64.0	74.1	43.7	70.5	71.3	60.1	67.5
GCN	73.4±0.2	83.5±0.3	57.6±0.2	84.2±1.8	24.0±0.1	16.6±0.4	57.6±0.2	73.7±0.4	24.0±0.1	26.6±0.2	39.9±0.9	42.5±0.1	50.3
GIN	62.5±4.7	74.9±3.7	53.0±4.6	59.6±4.2	73.7±0.8	64.7±3.4	60.6±2.7	69.8±0.6	31.1±2.8	63.1±3.4	72.3±2.7	64.6±1.4	62.5
GMT	73.4±0.3	83.5±0.2	57.6±0.1	83.5±0.3	24.0±0.1	83.5±0.1	57.4±0.2	73.4±0.2	24.1±0.1	73.4±0.3	24.0±0.1	57.6±0.2	59.6
CIN	74.5±0.2	84.1±0.5	57.8±0.2	82.7±0.9	75.6±0.6	79.2±2.2	61.5±2.7	74.0±0.1	75.5±0.8	72.5±2.1	76.0±0.3	60.9±1.2	72.9
SpikeGCN	71.8±0.8	79.5±1.3	63.8±1.0	78.9±1.4	68.6±1.1	76.5±1.8	62.3±2.2	72.1±1.5	68.1±2.1	67.2±1.9	69.2±2.1	64.2±1.8	70.2
DRSGNN	72.6±0.6	80.1±1.6	63.1±1.4	79.5±1.8	70.4±1.9	78.6±2.1	64.1±1.7	70.7±2.3	67.8±1.6	65.6±1.4	71.3±1.3	62.1±1.0	70.5
CDAN	72.2±1.8	82.4±1.6	59.8±2.1	76.8±2.4	69.3±4.1	71.8±3.7	64.4±2.5	74.3±0.4	46.3±2.0	69.8±1.8	74.4±1.7	62.6±2.3	68.7
ToAlign	73.4±0.1	83.5±0.2	57.6±0.1	83.5±0.2	24.0±0.3	83.5±0.4	57.6±0.1	73.4±0.1	24.0±0.2	73.4±0.2	24.0±0.1	57.6±0.3	59.6
MetaAlign	75.5±0.9	84.9±0.6	64.8±1.6	85.9±1.1	69.3±2.7	83.3±0.6	68.7±1.2	74.2±0.7	73.3±3.3	72.2±0.9	69.9±1.8	63.6±2.3	73.8
DEAL	76.5±0.4	83.1±0.4	67.5±1.3	77.6±1.8	76.0±0.2	80.1±2.7	66.1±1.3	75.4±1.5	42.3±4.1	68.1±3.7	73.1±2.2	67.8±1.2	71.1
CoCo	75.5±0.2	84.2±0.4	59.8±0.5	83.4±0.2	73.6±2.3	81.6±2.4	65.8±0.3	76.2±0.2	75.8±0.2	71.1±2.1	76.1±0.2	67.1±0.6	74.2
SGDA	63.8±0.6	65.2±1.3	66.7±1.0	59.1±1.5	60.1±0.8	64.4±1.2	65.2±0.7	63.9±0.9	64.5±0.6	61.1±1.3	58.9±1.4	64.9±1.2	63.2
StruRW	72.6±2.2	84.5±1.7	66.2±2.2	72.5±2.4	48.9±2.0	56.5±2.3	63.1±1.8	64.4±2.4	55.8±2.0	56.6±2.4	67.0±2.6	42.4±2.0	62.5
A2GNN	65.4±1.3	66.3±1.1	68.2±1.4	66.3±1.2	65.4±0.7	65.9±0.9	66.9±1.3	65.4±1.2	65.6±0.9	65.5±1.2	66.1±2.0	66.0±1.8	66.1
PA-BOTH	63.1±0.7	67.2±1.1	64.3±0.5	72.1±1.8	66.3±0.7	64.1±1.2	69.7±2.1	67.5±1.8	61.2±1.4	67.7±2.3	61.2±1.6	65.5±0.6	65

1566
1567
1568
1569
1570
1571

1572 Table 15: The graph classification results (in %) on DD under node density domain shift
1573 (source→target). D0, D1, D2, and D3 denote the sub-datasets partitioned with node. **Bold**
1574 results indicate the best performance.

1575

Methods	D0→D1	D1→D0	D0→D2	D2→D0	D0→D3	D3→D0	D1→D2	D2→D1	D1→D3	D3→D1	D2→D3	D3→D2	Avg.
WL subtree	49.2	56.8	29.6	20.1	21.0	18.4	59.5	50.5	57.3	48.1	63.9	66.9	49.3
GCN	48.9 \pm 2.8	59.0 \pm 1.7	20.7 \pm 2.0	27.3 \pm 2.3	15.1 \pm 1.8	26.9 \pm 2.2	61.6 \pm 1.9	53.6 \pm 1.5	68.1 \pm 1.6	52.9 \pm 2.6	64.9 \pm 2.1	69.7 \pm 2.3	47.4
GIN	48.8 \pm 1.9	24.7 \pm 2.1	44.1 \pm 1.8	22.4 \pm 2.3	57.0 \pm 2.1	18.4 \pm 2.0	73.0 \pm 1.8	52.5 \pm 2.3	63.2 \pm 1.6	53.6 \pm 1.5	70.3 \pm 2.6	69.4 \pm 1.8	49.6
GMT	49.1 \pm 1.9	32.9 \pm 2.2	31.8 \pm 1.8	27.3 \pm 2.3	52.5 \pm 1.5	27.6 \pm 1.8	75.4 \pm 1.9	53.2 \pm 2.1	74.1 \pm 2.6	57.9 \pm 2.4	70.9 \pm 1.8	71.1 \pm 2.7	52.0
CIN	50.4 \pm 1.8	18.4 \pm 2.0	21.2 \pm 2.1	36.8 \pm 1.8	43.0 \pm 2.1	22.9 \pm 1.9	53.4 \pm 1.7	56.5 \pm 1.5	62.3 \pm 1.6	53.3 \pm 1.9	75.0 \pm 2.1	69.3 \pm 2.0	51.4
SpikeGCN	53.4 \pm 1.3	61.5 \pm 1.1	28.4 \pm 2.1	48.0 \pm 1.4	20.8 \pm 1.4	51.2 \pm 1.4	69.3 \pm 2.0	62.4 \pm 1.6	77.9 \pm 1.1	64.1 \pm 1.5	76.8 \pm 2.1	71.9 \pm 1.8	57.1
DRSGNN	52.1 \pm 1.5	69.7 \pm 1.6	28.7 \pm 1.7	42.4 \pm 2.1	18.6 \pm 2.0	48.3 \pm 2.8	79.5 \pm 2.0	59.5 \pm 1.5	77.7 \pm 1.9	63.1 \pm 1.5	76.4 \pm 2.1	72.1 \pm 2.3	57.4
CDAN	49.6 \pm 2.2	69.8 \pm 1.6	44.1 \pm 1.8	33.9 \pm 1.9	43.1 \pm 2.4	42.3 \pm 2.0	70.5 \pm 1.8	60.3 \pm 2.2	76.6 \pm 2.1	60.1 \pm 1.4	75.8 \pm 2.5	70.5 \pm 2.3	58.1
ToAlign	54.0 \pm 2.4	71.0 \pm 2.1	34.8 \pm 1.8	46.9 \pm 1.9	29.6 \pm 2.3	45.7 \pm 1.8	71.9 \pm 2.2	61.6 \pm 2.1	76.7 \pm 1.9	62.8 \pm 2.3	76.4 \pm 2.0	71.0 \pm 1.3	58.5
MetaAlign	48.1 \pm 2.0	70.0 \pm 1.9	30.7 \pm 1.4	18.4 \pm 1.8	24.9 \pm 2.3	18.4 \pm 1.9	70.1 \pm 2.3	51.9 \pm 1.5	74.6 \pm 2.4	51.9 \pm 2.2	75.1 \pm 1.8	69.3 \pm 1.7	52.7
DEAL	57.9 \pm 2.3	71.6 \pm 2.0	57.2 \pm 1.8	59.3 \pm 1.5	62.2\pm2.2	59.4 \pm 1.9	72.1 \pm 2.3	63.9 \pm 1.7	78.2 \pm 2.2	62.6 \pm 1.8	78.3 \pm 2.1	77.3 \pm 1.9	66.5
CoCo	59.5 \pm 2.1	70.4 \pm 1.7	56.6 \pm 2.6	58.3 \pm 2.2	59.4 \pm 1.9	53.9 \pm 2.5	74.7\pm1.4	62.7 \pm 2.0	70.6 \pm 1.6	63.1 \pm 2.0	77.2 \pm 1.7	76.4 \pm 2.4	65.2
SGDA	57.7 \pm 1.5	63.8 \pm 2.1	49.8 \pm 2.3	54.1 \pm 1.7	42.6 \pm 2.3	54.9 \pm 1.6	74.1 \pm 2.8	63.0 \pm 2.3	78.7 \pm 2.7	64.5 \pm 2.1	76.8 \pm 2.2	74.2 \pm 1.6	62.9
StruRW	50.0 \pm 2.3	53.1 \pm 1.9	32.4 \pm 2.4	40.6 \pm 2.1	26.0 \pm 2.4	38.4 \pm 2.0	73.3 \pm 1.6	61.7 \pm 1.8	71.2 \pm 1.9	53.6 \pm 2.3	75.2 \pm 2.1	71.0 \pm 2.2	53.9
A2GNN	56.1 \pm 2.0	68.5 \pm 1.6	48.7 \pm 2.1	52.5 \pm 1.8	42.9 \pm 1.4	48.4 \pm 1.8	70.8 \pm 1.7	51.9 \pm 2.0	76.3 \pm 2.2	51.9 \pm 1.8	75.1 \pm 1.6	69.3 \pm 2.4	59.4
PA-BOTH	51.4 \pm 1.8	62.7 \pm 2.1	31.8 \pm 2.0	40.5 \pm 2.3	28.5 \pm 1.9	45.0 \pm 2.2	69.5 \pm 1.6	61.0 \pm 1.5	68.4 \pm 1.7	57.8 \pm 2.2	73.0 \pm 2.4	73.3 \pm 2.5	55.3
DeSGraDA	60.1\pm2.2	76.1\pm1.8	63.9\pm1.9	71.7\pm2.0	61.1 \pm 1.9	62.3\pm1.6	73.6 \pm 2.3	64.2\pm2.0	80.9\pm2.2	64.7\pm1.8	82.0\pm2.5	80.6\pm2.1	70.1

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600 Table 16: The graph classification results (in %) on DD under edge density domain shift
1601 (source→target). D0, D1, D2, and D3 denote the sub-datasets partitioned with node. **Bold**
1602 results indicate the best performance.

1603

Methods	D0→D1	D1→D0	D0→D2	D2→D0	D0→D3	D3→D0	D1→D2	D2→D1	D1→D3	D3→D1	D2→D3	D3→D2	Avg.
WL subtree	51.5	59.5	28.6	23.8	23.4	19.4	56.8	51.2	54.9	50.2	61.5	57.3	44.8
GCN	49.6 \pm 2.2	62.7 \pm 2.3	22.8 \pm 2.0	26.9 \pm 1.4	13.9 \pm 2.0	22.6 \pm 1.9	74.6 \pm 1.3	58.7 \pm 2.4	75.1 \pm 1.1	52.2 \pm 1.6	76.6 \pm 1.3	67.5 \pm 2.1	50.3
GIN	48.9 \pm 2.8	25.9 \pm 1.6	44.6 \pm 1.5	23.0 \pm 2.0	57.2 \pm 1.8	23.0 \pm 2.0	71.8 \pm 1.9	54.8 \pm 2.4	62.2 \pm 1.5	52.7 \pm 1.9	71.3 \pm 1.7	67.5 \pm 2.4	50.0
GMT	50.8 \pm 2.2	42.7 \pm 2.5	34.9 \pm 2.7	34.8 \pm 1.8	48.2 \pm 2.0	29.6 \pm 2.5	68.9 \pm 1.5	52.6 \pm 1.6	71.2 \pm 1.5	57.1 \pm 2.1	75.9 \pm 1.4	67.8 \pm 1.6	52.9
CIN	50.4 \pm 2.2	29.4 \pm 2.0	23.1 \pm 1.4	31.6 \pm 1.7	42.8 \pm 2.0	24.6 \pm 1.6	54.2 \pm 1.2	57.5 \pm 1.6	73.5 \pm 2.2	52.7 \pm 1.3	75.6 \pm 1.6	67.1 \pm 2.1	48.6
SpikeGCN	56.4 \pm 1.9	70.5 \pm 2.1	34.1 \pm 2.6	53.2 \pm 2.9	20.7 \pm 1.6	49.1 \pm 1.7	79.7 \pm 2.4	66.5 \pm 1.2	77.3 \pm 2.1	61.7 \pm 1.6	78.7 \pm 2.0	71.0 \pm 1.5	59.9
DRSGNN	55.3 \pm 2.4	69.9 \pm 2.2	27.4 \pm 2.0	47.6 \pm 2.7	17.9 \pm 1.6	47.4 \pm 2.1	70.7 \pm 2.0	65.9 \pm 1.7	76.9 \pm 2.1	62.2 \pm 1.4	78.5 \pm 1.8	71.4 \pm 1.6	57.6
CDAN	49.7 \pm 1.9	65.3 \pm 2.3	45.4 \pm 1.8	43.1 \pm 2.1	42.8 \pm 1.7	51.8 \pm 1.6	71.5 \pm 2.0	64.9 \pm 1.6	74.5 \pm 2.5	59.2 \pm 2.2	77.9 \pm 2.1	69.0 \pm 1.5	59.5
ToAlign	52.3 \pm 2.5	66.5 \pm 2.0	47.1 \pm 1.6	45.6 \pm 1.8	41.2 \pm 2.2	51.2 \pm 1.8	73.9 \pm 1.9	65.9 \pm 2.3	77.6 \pm 2.0	60.8 \pm 1.6	78.1 \pm 2.4	70.2 \pm 2.1	60.9
MetaAlign	48.1 \pm 2.0	67.3 \pm 1.7	32.8 \pm 2.0	19.4 \pm 1.8	23.9 \pm 2.5	19.4 \pm 1.7	70.1 \pm 1.8	51.9 \pm 2.1	77.3 \pm 3.2	51.9 \pm 1.6	76.1 \pm 1.8	70.5 \pm 2.0	50.7
DEAL	58.4 \pm 1.5	70.6 \pm 2.0	63.9 \pm 1.6	54.1 \pm 2.1	66.9 \pm 2.4	51.8 \pm 1.6	75.1 \pm 2.5	67.4\pm1.8	77.8 \pm 1.9	60.3 \pm 2.1	80.5 \pm 1.8	75.0 \pm 2.0	66.8
CoCo	60.9 \pm 2.3	69.6 \pm 1.2	62.2 \pm 2.2	66.2 \pm 2.0	66.0 \pm 1.8	52.5 \pm 2.3	71.1 \pm 2.4	65.3 \pm 1.5	78.9 \pm 1.3	60.3 \pm 1.4	79.6 \pm 2.1	73.5 \pm 1.8	67.3
SGDA	57.2 \pm 1.5	68.8 \pm 1.8	42.3 \pm 2.0	61.4 \pm 1.7	39.8 \pm 2.2	52.0 \pm 1.8	66.7 \pm 1.9	66.4 \pm 2.3	78.1 \pm 2.1	63.6 \pm 2.6	73.6 \pm 1.6	70.8 \pm 1.9	61.7
StruRW	52.5 \pm 2.5	56.7 \pm 1.3	39.0 \pm 2.3	40.1 \pm 2.0	24.4 \pm 2.1	29.7 \pm 2.4	75.4 \pm 1.7	63.3 \pm 2.0	74.8 \pm 1.6	53.4 \pm 1.5	75.4 \pm 1.4	68.7 \pm 1.7	54.6
A2GNN	53.1 \pm 2.0	65.3 \pm 1.7	42.8 \pm 1.9	40.5 \pm 2.1	33.9 \pm 2.5	39.4 \pm 1.8	69.8 \pm 2.2	61.9 \pm 1.9	77.3 \pm 2.1	61.9 \pm 2.0	76.1 \pm 2.3	67.2 \pm 1.8	57.4
PA-BOTH	51.9 \pm 1.8	50.6 \pm 2.0	35.8 \pm 1.5	37.7 \pm 1.7	27.6 \pm 2.3	43.7 \pm 1.9	62.1 \pm 1.6	61.2 \pm 1.9	65.7 \pm 2.0	58.2 \pm 1.5	73.3 \pm 1.8	69.5 \pm 2.5	53.1
DeSGraDA	62.1\pm2.0	72.0\pm2.4	69.1\pm1.7	71.7\pm2.2	68.7\pm1.6	58.6\pm2.1	76.1\pm1.9	66.4\pm1.7	80.7\pm2.2	63.6\pm1.6	81.9\pm1.5	78.6\pm2.3	70.8

1615

1616

1617

1618

1619