
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DEGREE-CONSCIOUS SPIKING GRAPH FOR CROSS-
DOMAIN ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Graph Networks (SGNs) have demonstrated significant potential in graph
classification by emulating brain-inspired neural dynamics to achieve energy-
efficient computation. However, existing SGNs are generally constrained to in-
distribution scenarios and struggle with distribution shifts. In this paper, we first
propose the domain adaptation problem in SGNs, and introduce a novel frame-
work named Degree-Consicious Spiking Graph for Cross-Domain Adaptation
(DeSGraDA). DeSGraDA enhances generalization across domains with three key
components. First, we introduce the degree-conscious spiking representation mod-
ule by adapting spike thresholds based on node degrees, enabling more expressive
and structure-aware signal encoding. Then, we perform temporal distribution
alignment by adversarially matching membrane potentials between domains, ensur-
ing effective performance under domain shift while preserving energy efficiency.
Additionally, we extract consistent predictions across two spaces to create reliable
pseudo-labels, effectively leveraging unlabeled data to enhance graph classification
performance. Furthermore, we establish the first generalization bound for SGDA,
providing theoretical insights into its adaptation performance. Extensive experi-
ments on benchmark datasets validate that DeSGraDA consistently outperforms
state-of-the-art methods in both classification accuracy and energy efficiency.

1 INTRODUCTION

Spiking Graph Networks (SGNs) (Zhu et al., 2022; Xu et al., 2021b) as a specialized neural network
combining Spiking Neural Networks (SNNs) (Gerstner & Kistler, 2002; Maass, 1997) with Graph
Neural Networks (GNNs) (Kipf & Welling, 2017; Scarselli et al., 2009), have emerged as a ground-
breaking paradigm in artificial neural networks, uniquely designed to process graph-structured data
by mimicking the bio-inspired mechanisms of the human brain. SGNs convert graph features into
binary spiking signals, replacing matrix multiplications with simple additions to achieve high energy
efficiency. They further exploit temporal spiking representations, encoding information in spike
timing to enable asynchronous, event-driven processing. It is particularly critical for applications
where energy consumption is a bottleneck, such as real-time brain-computer interfaces (Kumar et al.,
2022; Nason et al., 2020), large-scale sensor networks (Yao et al., 2021; Wilson et al., 2024), and
temporal analysis (Yin et al., 2024; Zhu et al., 2024; Zhou et al., 2021).

Despite their potential for energy-efficient graph representation, existing SGNs are primarily studied
under closed-world assumptions, where source and target data share identical distributions (Li et al.,
2023; Yin et al., 2024; Duan et al., 2024). This assumption is inadequate for many real-world
scenarios, such as brain–computer interfaces (BCIs) (Binnie & Prior, 1994; Biasiucci et al., 2019)
where distribution shifts can significantly degrade performance(Zhao et al., 2020; 2021; Wang et al.,
2022). Although recent advancements in transfer learning for SNNs have shown promise in vision
tasks by leveraging neuromorphic adaptations (Zhang et al., 2021; Zhan et al., 2024; Guo et al., 2024),
they are primarily designed for grid-like inputs and fail to generalize to graph data. The non-Euclidean
nature and inherent irregularity of graphs introduce fundamental challenges (Bronstein et al., 2017),
as existing methods neglect the topological dependencies and message-passing mechanisms crucial
for effective graph learning. Consequently, directly applying these methods to SGNs results in
suboptimal adaptation under domain shifts.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this paper, we investigate the development of energy-efficient SGNs for scenarios involving
distribution shifts. However, designing an effective domain adaptation framework for SGNs poses
several fundamental challenges: (1) How to adapt spiking representations to account for the structural
diversity of graph-structured data? Traditional SGNs typically assign a fixed firing threshold to all
nodes, ignoring the structural diversity in graphs (Xu et al., 2021a; Yin et al., 2024). This uniform
treatment leads to under-activation in nodes with fewer connections, where important features are
missed, and over-activation in highly connected nodes, where excessive signals distort the learned
representation. Both cases reduce the model’s representational effectiveness. (2) How to design
domain adaptation strategies that account for the temporal-based representations? Unlike static
neural models, SGNs encode information through temporal spike sequences, making them more
sensitive to domain shifts (Zhou et al., 2023; Zhan et al., 2021). Existing methods fail to address
how these shifts impact the spike sequences, resulting in suboptimal alignment across domains. (3)
How to theoretically characterize and bound the generalization error of SGNs under domain shift?
Despite empirical advances (Zhang et al., 2021; Zhan et al., 2024), the theoretical understanding of
SGN domain adaptation remains limited. Without a principled framework to quantify generalization
under distribution shift, it is difficult to design adaptation methods with guaranteed performance.

To tackle these challenges, we propose a framework called Degree-Conscious Spiking Graph for
Cross-Domain Adaptation (DeSGraDA). This has three components: (1) degree-conscious spiking
representation, which assigns variable firing thresholds to nodes based on their degrees, enabling
adaptive control over spiking sensitivity. This degree-conscious mechanism balances the firing
frequencies of high- and low-degree nodes, preventing information loss in sparsely connected
nodes and avoiding distortion from excessive signals in highly connected ones, thus enhancing the
expressiveness of the spiking representations; (2) temporal distribution alignment, which explicitly
aligns the time-evolving spiking representations between the source and target domains. By leveraging
membrane potential dynamics as evolving signals, the model captures domain-specific patterns,
improving robustness to temporal shifts; and (3) pseudo-label distillation assigns reliable pseudo-
labels by aligning consistent predictions from shallow and deep network layers. We also demonstrate
that this pseudo-label distillation module can effectively reduce a generalization bound tailored for
spiking graph domain adaptation. In summary, DeSGraDA provides a simple yet effective solution to
a novel and underexplored problem, and offers deep insights into the spiking graph domain adaptation.

Our contributions can be summarized as follows: (1) Problem Formulation: We first introduce the
spiking graph domain adaptation for graph classification, highlighting the challenges posed by the
inflexible threshold mechanism of SGNs and theoretical limitations that hinder effective adaptation.
(2) Novel Architecture and Theoretical Analysis: We propose DeSGraDA, a framework combining
degree-conscious spiking representation and temporal distribution alignment. Moreover, we provide
a generalization bound for spiking graph domain adaptation. (3) Extensive Experiments. We
evaluate the proposed DeSGraDA on extensive spiking graph domain adaptation learning datasets,
demonstrating that it can outperform various state-of-the-art methods.

2 RELATED WORK

Domain Adaptation (DA). DA transfers knowledge from a labeled source domain to an unlabeled
target domain by mitigating the distributional shift between the two domains (Redko et al., 2017;
Long et al., 2018; Shen et al., 2018). It has been widely applied to vision and language tasks (Wei
et al., 2021b;a; Shi et al., 2024). Recently, DA has been extended to graph data to address the unique
challenges posed by complex relationships, leading to the emergence of Graph Domain Adaptation
(GDA) (Yin et al., 2023; Liu et al., 2024a; Cai et al., 2024). Most existing GDA approaches first
leverage GNNs to generate node and graph representations (Zhu et al., 2021; Yin et al., 2022; Liu et al.,
2024b), followed by adversarial learning to implicitly align feature distributions and reduce domain
discrepancies. They also apply structure-aware strategies to explicitly align graph-level semantics
and topological structures, thereby enhancing generalization across diverse graph domains (You et al.,
2023; Liu et al., 2024b; Luo et al., 2024). However, GDA remains under-explored in the context of
spiking graphs, where energy efficiency becomes a critical requirement for real-world applications.
To bridge this gap, we introduce the novel problem of Spiking Graph Domain Adaptation (SGDA),
extending GDA to spiking graphs for energy-efficient domain adaptation.

Spiking Graph Networks (SGNs). SGNs are a specialized neural network combining SNNs (Ger-
stner & Kistler, 2002; Maass, 1997) with GNNs, preserving energy efficiency while achieving

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

competitive performance on various tasks (Li et al., 2023; Yao et al., 2023; Duan et al., 2024).
Existing research on SGNs focuses on capturing temporal information within graphs and enhancing
scalability. For instance, (Xu et al., 2021a) utilizes spatial-temporal feature normalization within
SNNs to effectively process dynamic graph data, ensuring robust learning and improved performance.
(Zhao et al., 2024) proposes a method that adapts to evolving graph structures through a novel
architecture that updates node representations in real time. Additionally, (Yin et al., 2024) adapts
SNNs to dynamic graph settings and employs implicit differentiation for the node classification task.
However, existing methods still suffer from data distribution shift issues when the training and test
data come from different domains, resulting in degraded performance and generalization. To tackle
these challenges, we propose a novel domain adaptation method for spiking graph networks.

3 PRELIMINARIES

Problem Setup. Given a graph G = (V,E,X) with node set V , edge set E, and node attribute
matrix X. To construct spiking-compatible inputs for SGNs, we sample binary features S from the
Bernoulli distribution with probability of X (i.e., S ∼ Ber(X)) as input of SGNs (Zhao et al., 2024).
In this paper, we focus on the problem of spiking GDA for graph classification. The source domain
Ds = {(Gs

i , y
s
i)}

Ns
i=1 is labeled, where Ns is the number of source-domain graphs Gs

i and ysi is the
label of Gs

i . The target domain Dt = {Gt
j}

Nt
j=1 is unlabeled and contains N t graphs. Both domains

share the same label space Y but can have different graph topologies or attribute distributions.

Domain Adaptation with Optimal Transport (OT). Following (You et al., 2023), we factorize a
trained model h as g ◦ f , where f : D 7→ Rd is the feature extractor (Z = f(D)) and g : Rd 7→ Y
is the discriminator (Y = g(Z)). For simplicity, we focus on binary classification with Y = [0, 1].
Denote the classifier predicting labels from the feature representation as ĝ : Rd 7→ Y . The source and
target risks are given by ϵ̂S(g, ĝ) =

1
Ns

∑Ns

n=1 |g(Zn)− ĝ(Zn)| and ϵT (g, ĝ) = EPT (Z)|g(Z)− ĝ(Z)|.
DA with OT (Villani et al., 2008) addresses covariate shift by optimally transporting masses between
source and target distributions while minimizing cost. Theorem 1 shows that the generalization gap
depends on both domain divergence 2CgW1(PS(Z),PT (Z)) and model discriminability ω.

Theorem 1 (Shen et al., 2018) Assume that the discriminator g is Cg-Lipschitz. Let H := {g : Z →
Y} (where Z is the feature space) be the set of bounded real-valued functions with pseudo-dimension
Pdim(H) = d. For any g ∈ H, the following holds with probability at least 1− δ:

ϵT (g, ĝ) ≤ϵ̂S(g, ĝ) +

√
4d

NS
log

(
eNS

d

)
+

1

NS
log

(
1

δ

)
+ 2CgW1(PS(Z),PT (Z)) + ω,

where ω= min
∥g∥Lip≤Cg

{ϵS(g, ĝ) + ϵT (g, ĝ)} is the discriminative ability to capture source and target

data, and W1(P,Q) is the distribution divergence defined in (Redko et al., 2017; Shen et al., 2018).

Applying OT-based DA methods to graph data introduces challenges due to the non-Euclidean nature
of graphs and intricate dependencies between nodes. You et al. (2023) extends the OT-based DA
framework to graphs and provides a generalization bound for GDA. Details are in Appendix A.

Spiking Graph Networks (SGNs). Spiking Neural Networks (SNNs)(Maass, 1997; Gerstner &
Kistler, 2002; Bohte et al., 2000) are brain-inspired models offering notable advantages in temporal
information processing and energy efficiency. More details are in Appendix B. SGNs are a specialized
form of SNNs tailored for graph data (Xu et al., 2021a; Zhu et al., 2022), where each node is modeled
as a spiking neuron. The membrane of each node evolves based on both the temporal spiking
dynamics and the graph’s structural connectivity. Let uτ,i be the membrane potential of node i at
latency step τ . SGNs first updates the membrane potentials via input aggregation:

uτ+1,i = λ(uτ,i − Vthsτ,i) +
∑

j
wijA(A, sτ,j) + bi, (1)

where sτ,i is the spiking representation, λ ∈ (0, 1) is the leak factor, Vth is the firing threshold, bi is
the bias, wij is the synaptic weight from node j to node i, A is the adjacency matrix, and A is the
graph-based aggregation operation. Next, spikes are triggered through thresholding:

sτ+1,i = H(uτ+1,i − Vth), uτ+1,i = (1− sτ+1,i)uτ+1,i + sτ+1,iVreset, (2)
where Vreset is the reset potential, and H(x) is the Heaviside step function, which serves as the
non-differentiable spiking function. Finally, the neuron is reset upon firing.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Overview of the proposed DeSGraDA. Degree-Conscious Spiking Representation generates
source and target domain spiking representations by adapting neuron firing threshold based on
node degrees. To align domain distributions, Temporal Distribution Alignment leverages adversarial
training on temporal membrane potential to counter domain discrimination. Furthermore, Pseudo-labe
Distillation is employed to identify reliable target samples and reinforce overall model performance.

4 PROPOSED METHODOLOGY

This paper proposes a novel framework DeSGraDA for the problem of spiking graph domain adapta-
tion. DeSGraDA consists of three parts: Degree-Conscious Spiking Representation (Section 4.1),
which assigns adaptive firing thresholds based on node degrees to address the limitations of rigid,
fixed-threshold architectures; Temporal Distribution Alignment (Section 4.2), which employs
adversarial training on temporal membrane potentials against a domain discriminator to align spiking
dynamics across domains; and Pseudo-label Distillation (Section 4.3) further applies the pseudo-
label to enhance model performance. We also provide a theoretical generalization bound to support
the effectiveness of DeSGraDA. An overview of the framework is in Figure 1.

4.1 DEGREE-CONSCIOUS SPIKING REPRESENTATION

Figure 2: Correlation between spiking frequency and aggre-
gation weights under fixed thresholds on different datasets.

First, we study the disadvantages of
directly applying SNNs to graphs and
then propose the degree-conscious
spiking representation module. Ex-
isting SGNs (Li et al., 2023; Duan
et al., 2024) usually employ a fixed
global threshold (Vth in Eq. 1 and 2)
for firing. Assume that the membrane
potential of node uτ,i follows the nor-
mal distribution N (µ, σ2) (Kipf &
Welling, 2016). The following Proposition shows that the high-degree nodes are more likely to
trigger spikes than the low-degree ones. Proof is in Appendix C.

Proposition 1 With aggregation operation in SGNs (i.e., A in Eq. 1), the expectation of the updated

node membrane potential is: E(uτ+1,i) ∼ N
((

1 +
∑

j∈N(i) wij

)
µ,
(
1 +

∑
j∈N(i) wij

)2
σ2

)
,

where N(i) is the set of node i’s neighbors, and wij is the weight between nodes i and j.

From Proposition 1, we observe that node i follows a normal distribution with a mean of (1 +∑
j∈N(i) wij)µ, determined by the aggregated weights of its neighboring nodes We conduct an

experiment to investigate the relationship between the aggregated weight (
∑

j∈N(i) wij) and spiking
frequency (i.e., count of uT > Vth) for a fixed threshold Vth. As shown in Figure 2, the spiking
frequency and aggregation weights under fixed thresholds exhibit a relatively high correlation
coefficient, indicating that nodes with higher degrees tend to accumulate more features from neighbors,
making it easier to trigger spikes than those with fewer neighbors. Fixed thresholds inherently bias

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

spiking activation toward high-degree nodes, leading to under-representation of structurally important
yet sparsely connected nodes and undermining both expressiveness and generalization in SGNs.

To alleviate this problem, we propose the use of degree-conscious thresholds. Specifically, let Bs
i be

the set of degrees for the nodes in graph Gs
i . We collect all unique node degrees across the source

domain graphs with Bs = set(Bs
1 ∪ · · · ∪Bs

Ns
), where set(·) operation is an unordered sequence of

distinct elements. With the observation from Proposition 1, we propose setting higher thresholds for
high-degree nodes and lower for low-degree nodes. For node v with degree dsv , we have:

s
ds
v

τ,v = H(uτ,v − V
ds
v

th), V
ds
v

th,τ+1 = (1− α)V
ds
v

th,τ + αs̄
ds
v

τ,v,

uτ+1,v = λ(uτ,v − Vths
ds
v

τ,v) +
∑

j∈N(v)
wijA

(
A, s

ds
j

τ,v

)
+ bi,

(3)

where V
ds
v

th is the threshold for nodes with degree dsv ∈ Bs, initially set to Vth, and α is a hyper-
parameter. s̄d

s
v

τ is the average of spiking representation s
ds
v

τ with degree dsv on latency step τ . In Eq. 3,
we dynamically update the threshold V

ds
v

th,τ+1 with (1−α)V
ds
v

th,τ +αs̄
ds
v

τ,v based on the average spiking

frequency s̄
ds
v

τ,v of nodes with degree dsv . Consequently, high-degree nodes typically exhibit higher s̄d
s
v

τ,v ,
resulting in increased thresholds V ds

v

th,τ+1 to suppress over-activation, while low-degree nodes yield
lower thresholds to enhance activation, enabling adaptive spiking control across structurally diverse
nodes. For each node v in graph Gs

i , we calculate the membrane potential us
τ,v, and summarize all

the node representations with a readout function (Xu et al., 2018) into the graph-level representation:

sGs
i
= READOUT

({
s
ds
v

T

}
v∈Gs

i

)
, (4)

where T is the total number of latency steps. Finally, we output the prediction ŷsGs
i
= H(sGs

i
) with a

classifier H(·) by minimizing the source classification loss LS = EGs
i∈Ds l(ysGs

i
, ŷsGs

i
), where l(·) is

the loss function and ysi is the ground truth of graph Gs
i in the source domain.

4.2 TEMPORAL DISTRIBUTION ALIGNMENT

Unlike GNNs, spiking models rely on membrane potential dynamics to generate sparse spike trains,
making their spike representations highly dynamic and non-differentiable. Existing GDA (Yin et al.,
2023; Chen et al., 2025) methods assume continuous, static embeddings and thus fail to align the
time-dependent neural dynamics in SGNs. To address this, we propose a temporal-based alignment
framework that captures and matches the evolution of spiking patterns across domains.

First, we introduce a temporal attention mechanism that adaptively aggregates time-dependent
neuronal states. Specifically, given the temporal membrane potential of graphs on each latency
step, we have [u1,Gi

, . . . ,uτ,Gi
, · · · ,uT,Gi

], where uτ,Gi
= READOUT({uτ,v}v∈Gi

) and Gi ∈
{Ds,Dt}. We stack the T steps membrane potential into UGi

∈ RT×d, where d is the hidden
dimension. The goal is to learn an importance-weighted ατ to summarize of temporal membrane
potential representation, which is formulated as follows:

ατ = Atten(UGi
), ŨGi

=
∑T

τ=1
ατuτ,Gi

, (5)

where Atten(·) is the self-attention operation (Vaswani et al., 2017). Then, we propose the adversarial
distribution alignment module to eliminate the discrepancy between the source and target domains.
Specifically, for each source graph Gs

i and target graph Gt
j , we denote the semantic classifier as H(·)

to produce predicted labels, and a domain discriminator Q(·) to distinguish features from the source
and target domains. The temporal-based distribution alignment module is adversarially trained to
align the feature spaces of the source and target domains, which is formulated as:

LAD = EGs
i∈Ds logQ

(
H(Ũs

Gi
)|V Bs

th

)
+ EGt

j∈Dt,∃dt
j /∈Bs log

(
1−Q

(
H(Ũt

Gi
)|V Bs

th , V Bt

th

))
,

where Bt = {dti|dti ∈ Bt, dti /∈ Bs}. We iteratively update V Bt

th with Eq. 3 on each latency.
Furthermore, we present an upper bound for temporal-based distribution alignment.

Theorem 2 Assume that the learned discriminator is Cg-Lipschitz continuous, the feature extractor
f is Cf -Lipschitz that ||f ||Lip = maxG1,G2

||f(G1)−f(G2)||2
η(G1,G2)

= Cf for some graph distance measure

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

η and the loss function bounded by C > 0. Let H := {h : G → Y} be the set of bounded functions
with the pseudo-dimension Pdim(H) = d that h = g ◦ f ∈ H, and provided the spike training data
set Sn = {(Xi, yi) ∈ X × Y}i∈[n] drawn from Ds, with probability at least 1− δ the inequality :

ϵT (h, ĥT (X)) ≤ϵ̂S(h, ĥS(S)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+ ω + 2CfCgW1 (PS(G),PT (G)) ,

(6)

where the (empirical) source and target risks are ϵ̂S(h, ĥ(S)) =
1

NS

∑NS

n=1 |h(Sn) − ĥ(Sn)| and

ϵT (h, ĥ(X)) = EPT (G{|h(G) − ĥ(G)|}, respectively, where ĥ : G → Y is the labeling func-

tion for graphs and ω = min
(
|ϵS(h, ĥS(X))− ϵS(h, ĥT (X))|, |ϵT (h, ĥS(X))− ϵT (h, ĥT (X))|

)
,

ϵi is the Rademacher variable and pi is the ith row of P, which is the probability matrix with:

Pkt =

{
exp

(
uk(t)−Vth

σ(uk(t)−ureset)

)
, if uθ ≤ u(t) ≤ Vth,

0, if ureset ≤ uk(t) ≤ uθ.

The proof is proposed in Appendix D. Theorem 2 justifies that the generalization gap of spiking GDA
relies on the domain divergence 2CfCgW1(PS(G),PT (G)) and model discriminability ω, as well as
the model’s ability to avoid overfitting to the training data, which is quantified by the Rademacher
complexity term 2E

[
sup 1

NS

∑NS

i=1 ϵih(Xi, yi, pi)
]
. In the application of spiking GDA, this term

captures how the model’s sensitivity to random fluctuations in the node feature aggregation (especially
for higher-degree nodes) can lead to overfitting, thus affecting the model’s ability to generalize to the
target domain. This overfitting risk is particularly relevant when the model is too flexible in fitting
the training data, exacerbating the generalization gap, especially under domain shifts.

4.3 PSEUDO-LABEL DISTILLATION FOR DISCRIMINATION LEARNING

To further tiny the generalization gap between the target and source domains, we incorporate the
pseudo-label distillation module into the DeSGraDA framework. The goal of the module is to
ensure consistent prediction between the shallow and deep layers. Specifically, let s′tτ,Gi

be the
shallow spiking graph representation of Gi on the latency step τ (τ < T) in the target domain, and
ŷtGi

= H(sGi
) be the prediction of graph Gi. Then, to enhance consistency between the shallow and

deep feature spaces and facilitate the generation of more accurate predictions, we cluster the shallow
graphs features in the target domain into C clusters, and each cluster Ej includes graphs {Gt

j}. After
that, we find the dominating labels er in the cluster, i.e., maxr |{Er : er = ŷtGj

}|, and remove other
samples with the same prediction but in different clusters. Formally, the pseudo-labels are signed as:

P =
{(

Gt
j , ŷ

t
Gj

)
: ej = max

r

∣∣∣{Er : er = ŷtGj

}∣∣∣} . (7)

Finally, we utilize the distilled pseudo-labels to guide the update of source degree thresholds on the
target domain with Eq. 3, and to direct classification in the target domain:

LT = EGt
j∈P l

(
H(s

t
Gt

j
), ŷtGt

j

)
, (8)

where stGt
j

is the spiking graph representation of Gt
j in the target domain. l(·) is the loss function, and

we implement it with cross-entropy loss. We further analyze the generalization bound by applying the
pseudo-label distillation module, and the proof is detailed in Appendix E. From the proof, we observe
that the bound is lower than simply aligning the distributions by incorporating the highly reliable
pseudo-labels, demonstrating the effectiveness of pseudo-labels for spiking graph domain adaptation.

4.4 LEARNING FRAMEWORK

Overall, the training objective of DeSGraDA integrates classification loss LS , temporal-based distri-
bution alignment loss LAD, and pseudo-label distillation loss LT , which is formulated as:

L = LS + LT − λLAD, (9)

where λ is a hyper-parameter to balance the distribution alignment loss and classification loss. The
learning procedure is illustrated in Algorithm F, and the complexity is shown in Appendix G.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: The graph classification results (in %) on SEED and BCI under edge density domain shift
(source→target). S0, S1, S2, B0, B1, and B2 denote the sub-datasets of SEED and BCI partitioned
with edge density, respectively. Bold results indicate the best performance.

Methods SEED BCI
S0→S1 S1→S0 S0→S2 S2→S0 S1→S2 S2→S1 B0→B1 B1→B0 B0→B2 B2→B0 B1→B2 B2→B1

WL subtree 40.7 36.8 42.6 35.0 35.6 38.3 47.9 47.7 46.0 46.7 47.7 47.5
GCN 46.5±0.6 47.4±0.9 46.6±1.2 47.7±1.4 45.8±1.2 47.1±1.6 49.6±2.5 48.7±2.8 51.1±1.0 51.5±2.0 49.6±2.4 49.1±1.7

GIN 47.4±1.7 48.0±1.6 47.3±1.4 47.5±1.8 41.6±2.0 46.1±1.3 49.4±2.5 48.4±2.1 51.8±1.4 51.2±2.5 50.0±1.7 48.7±2.1

GMT 46.5±0.5 47.8±1.3 47.2±0.7 47.2±1.3 46.4±0.9 46.4±1.2 48.8±1.3 47.8±1.1 49.4±1.0 48.5±1.5 50.7±0.9 51.5±1.5

CIN 46.9±0.5 48.4±1.1 47.0±1.5 47.3±0.7 47.0±1.6 47.0±0.9 50.3±1.6 48.8±1.5 50.4±1.3 50.4±1.2 50.1±1.5 50.9±1.7

SpikeGCN 46.3±1.0 47.4±0.8 45.8±1.2 47.7±1.1 45.8±1.5 46.4±1.2 52.5±1.6 52.8±1.3 54.1±1.9 52.1±1.0 51.7±1.8 50.5±2.3

DRSGNN 47.1±1.0 48.5±0.9 46.5±1.2 48.1±1.3 46.9±0.8 47.6±1.4 52.7±1.3 52.8±1.9 53.8±1.5 52.7±1.6 53.0±2.1 51.3±1.8

CDAN 52.6±1.2 54.5±0.7 53.9±0.7 55.9±1.3 51.6±1.1 53.6±0.8 51.9±1.3 52.6±1.4 51.8±1.1 55.4±1.8 52.5±1.5 53.1±1.4

ToAlign 51.2±1.3 52.3±0.8 51.5±0.9 49.7±1.5 49.6±1.1 49.4±1.3 52.5±1.7 53.7±1.5 52.2±1.4 54.4±1.2 52.7±1.0 51.8±1.3

MetaAlign 51.2±1.4 53.7±0.9 52.2±1.1 53.8±0.8 51.2±1.4 52.0±1.2 51.1±1.5 51.8±1.2 50.4±1.7 52.5±1.5 51.7±1.5 51.3±1.1

DEAL 57.4±1.1 57.5±1.4 56.6±0.7 58.1±1.2 53.9±0.7 57.8±1.3 53.7±1.4 52.5±2.2 52.6±1.6 54.5±1.4 52.7±1.7 52.8±1.2

CoCo 55.5±1.5 56.7±0.7 56.3±1.3 58.8±0.8 54.2±1.2 57.5±1.3 54.0±1.3 55.2±2.5 52.7±2.1 52.7±1.9 51.7±2.8 51.0±2.4

SGDA 47.1±0.6 41.6±1.4 43.8±0.7 45.9±1.2 49.4±1.1 50.1±1.5 49.7±1.6 48.4±1.5 50.6±1.0 50.4±1.3 50.5±1.2 50.7±1.4

StruRW 47.1±0.9 45.9±0.7 46.5±1.3 48.2±1.2 46.9±1.2 47.3±1.4 48.7±1.1 47.3±1.7 49.5±1.1 49.7±1.5 50.0±1.8 50.2±1.6

A2GNN 47.6±1.2 47.6±0.9 46.2±0.8 48.3±1.1 46.2±1.0 47.9±0.6 52.0±1.7 53.0±1.4 52.0±1.0 53.7±1.1 52.2±1.3 51.8±1.7

PA-BOTH 48.2±1.4 48.2±0.8 47.3±1.2 48.3±1.0 48.5±1.2 45.2±0.6 49.2±1.6 50.0±1.2 51.1±1.3 51.3±1.5 50.5±1.6 48.8±1.4

DeSGraDA 58.0±1.5 58.2±1.4 57.0±1.8 58.3±1.6 55.9±2.1 58.1±1.6 54.1±1.5 53.6±1.6 54.9±1.1 56.2±1.8 55.0±1.3 54.6±1.2

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Dataset. To evaluate the effectiveness of DeSGraDA, we conduct extensive experiments across two
types of domain shifts: (1) structure-based domain shifts, where the discrepancy between domains
arises primarily from differences in graph topology, such as variations in node and edge densities.
This category includes datasets DD, PROTEINS (Dobson & Doig, 2003), SEED Zheng & Lu (2015);
Duan et al. (2013), and BCI (Brunner et al., 2008); (2) feature-based domain shifts, where domains
differ mainly in semantic information. This setting includes DD, PROTEINS, BZR, BZR MD, COX2,
and COX2 MD (Dobson & Doig, 2003; Sutherland et al., 2003). The specific statistics, distribution
visualization, and detailed introduction of experimental datasets are presented in Appendix H.

Baselines. We compare DeSGraDA with competitive baselines on above datasets, including one
graph kernel method: WL subtree (Shervashidze et al., 2011); four graph-based methods: GCN (Kipf
& Welling, 2017), GIN (Xu et al., 2018), CIN (Bodnar et al., 2021) and GMT (Baek et al., 2021); two
spiking-based graph methods: SpikeGCN (Zhu et al., 2022) and DRSGNN (Zhao et al., 2024); three
domain adaptation methods: CDAN (Long et al., 2018), ToAlign (Wei et al., 2021b), and MetaAlign
(Wei et al., 2021a); and six graph domain adaptation methods: DEAL (Yin et al., 2022), CoCo (Yin
et al., 2023), SGDA (Qiao et al., 2023), StruRW (Liu et al., 2023), A2GNN (Liu et al., 2024a) and
PA-BOTH (Liu et al., 2024b). More settings about baselines are introduced in Appendix I and J.

5.2 PERFORMANCE COMPARISON

Figure 3: Correlation comparisons of spiking frequency
and aggregation weights under adaptive thresholds on PRO-
TEINS and DD datasets.

We present the results of the proposed
DeSGraDA with all baselines under
two types of domain shifts on differ-
ent datasets in Tables 1, 2, and 12-15.
From these tables, we observe that:
(1) GDA methods outperform tradi-
tional graph-based and spiking-based
graph methods in most cases, high-
lighting the adverse impact of domain
distribution shifts on conventional ap-
proaches and underscoring the impor-
tance of advancing research in spiking graph domain adaptation. (2) The spiking-based graph
methods (i.e., SpikeGCN and DRSGNN) outperform the models specific for node classification (i.e.,
SGDA, StruRW, A2GNN, and PA-BOTH) but fall short compared to models for graph classification
(i.e., DEAL and CoCo). This performance gap is primarily due to the limited exploration of graph
classification under domain shift. Although spiking-based methods exhibit advantages over adapted

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Graph classification results (in %) under node and edge density domain shifts on the
PROTEINS dataset, and feature domain shifts on DD, PROTEINS, BZR, BZR MD, COX2, and
COX2 MD. For convenience, PROTEINS, DD, COX2, COX2 MD, BZR, and BZR MD are abbrevi-
ated as P, D, C, CM, B, and BM, respectively. Bold results indicate the best performance.

Methods Node Shift Edge Shift Feature Shift

P0→P1 P0→P2 P0→P3 P0→P1 P0→P2 P0→P3 P→D D→P C→CM CM→C B→BM BM→B

WL subtree 69.1 61.2 41.6 68.7 50.7 58.1 43.0 42.2 53.1 58.2 51.3 44.0
GCN 73.7±0.3 57.6±0.2 24.4±0.4 73.4±0.2 57.6±0.2 24.0±0.1 48.9±2.0 60.9±2.3 51.2±1.8 66.9±1.8 48.7±2.0 78.8±1.7
GIN 71.8±2.7 58.5±4.3 74.2±1.7 62.5±4.7 53.0±4.6 73.7±0.8 57.3±2.2 61.9±1.9 53.8±2.5 55.6±2.0 49.9±2.4 79.2±2.8
GMT 73.7±0.2 57.6±0.3 75.6±1.4 73.4±0.3 57.6±0.1 24.0±0.1 59.5±2.5 50.7±2.2 49.3±1.8 58.2±2.0 50.2±2.3 74.4±1.8
CIN 74.1±0.6 60.1±2.1 75.6±0.2 74.5±0.2 57.8±0.2 75.6±0.6 59.1±2.6 58.0±2.7 51.2±2.0 55.6±1.5 49.2±1.4 74.2±1.9
SpikeGCN 71.8±0.9 64.9±1.4 71.1±1.9 71.8±0.8 63.8±1.0 68.6±1.1 59.6±2.2 63.3±1.8 52.6±2.5 68.6±1.8 53.3±1.7 76.1±2.0
DRSGNN 73.6±1.1 64.6±1.2 70.2±1.7 72.6±0.6 63.1±1.4 70.4±1.9 60.9±2.4 65.4±1.9 52.9±1.8 66.9±2.3 52.8±1.7 76.4±2.7

CDAN 75.9±1.0 60.8±0.6 75.8±0.3 72.2±1.8 59.8±2.1 69.3±4.1 59.4±2.0 63.1±2.7 51.2±2.3 68.2±1.8 50.7±1.6 75.2±1.9
ToAlign 73.7±0.4 57.6±0.6 24.4±0.1 73.4±0.1 57.6±0.1 24.0±0.3 62.1±2.1 66.5±2.3 53.2±2.6 55.8±2.3 56.2±3.0 78.8±2.4
MetaAlign 74.3±0.8 60.6±1.7 76.3±0.3 75.5±0.9 64.8±1.6 69.3±2.7 63.3±2.1 66.2±1.9 51.2±2.0 69.5±2.3 48.7±1.8 76.8±2.7

DEAL 75.4±1.2 68.1±1.9 73.8±1.4 76.5±0.4 67.5±1.3 76.0±0.2 70.6±1.9 66.8±2.5 50.9±2.4 67.8±1.9 51.1±2.3 79.4±2.2
CoCo 74.8±0.6 65.5±0.4 72.4±2.9 75.5±0.2 59.8±0.5 73.6±2.3 66.0±2.7 61.2±2.3 53.6±1.8 78.2±2.0 57.8±1.6 79.8±1.8
SGDA 64.2±0.5 66.9±1.2 65.4±1.6 63.8±0.6 66.7±1.0 60.1±0.8 48.3±2.0 55.8±2.6 49.8±1.8 66.9±2.3 50.3±2.1 78.8±2.6
A2GNN 65.7±0.6 66.3±0.9 65.2±1.4 65.4±1.3 68.2±1.4 65.4±0.7 57.8±2.1 60.3±1.5 51.5±1.8 67.7±2.1 51.6±2.3 77.5±1.9
StruRW 71.9±2.3 66.7±1.8 52.8±1.9 72.6±2.2 66.2±2.2 48.9±2.0 59.1±2.3 58.8±2.8 51.2±2.0 54.8±2.9 49.2±1.4 74.7±2.1
PA-BOTH 61.0±0.8 60.3±0.6 63.7±1.5 63.1±0.7 64.3±0.5 66.3±0.7 54.2±3.2 56.7±2.6 52.9±2.8 61.8±2.0 47.5±3.0 78.8±1.9

DeSGraDA 76.3±1.9 69.2±2.3 77.5±2.2 76.8±1.9 68.6±1.8 76.5±2.8 73.6±1.9 71.2±1.6 54.7±1.8 78.6±2.2 56.3±1.5 80.3±1.9

node classification models, they remain less effective than specialized graph domain adaptation
methods explicitly designed for graph-level tasks. (3) DeSGraDA outperforms all baselines in most
cases, demonstrating its advantage over other methods. The superior performance can be attributed to
two key factors. First, the degree-conscious spiking representations dynamically adjust node-specific
firing thresholds in SNNs, enabling the model to capture more expressive and discriminative graph
features. Second, the temporal-based distribution alignment aligns source and target domain repre-
sentations by matching spiking membrane dynamics over time, effectively mitigating distributional
discrepancies. Moreover, the pseudo-label distillation helps refine degree thresholds in the target
domain, further enhancing generalization. More results can be found in Appendix K.1.

We further conduct experiments to examine the correlation between spiking frequency and aggre-
gation weights under adaptive thresholds across different node degrees. As shown in Figure 3, the
correlation coefficient under adaptive thresholds is significantly lower than that under fixed thresholds,
demonstrating that DeSGraDA effectively smooths spiking frequency across node degrees, mitigates
over-activation in high-degree nodes, and promotes balanced information aggregation.

Table 3: The results of ablation studies on the PROTEINS dataset (source → target).

Methods P0→P1 P1→P0 P0→P2 P2→P0 P0→P3 P3→P0 P1→P2 P2→P1 P1→P3 P3→P1 P2→P3 P3→P2

DeSGraDA w/ CDAN 73.3 82.4 67.8 76.5 74.4 78.7 66.5 71.3 73.7 70.2 74.1 68.8
DeSGraDA w/o PL 73.7 81.2 67.1 81.2 75.9 79.6 67.8 71.9 74.7 69.0 75.4 68.3
DeSGraDA w/o CF 65.0 67.4 53.5 64.5 66.6 68.8 56.7 63.4 66.1 60.9 53.9 56.6
DeSGraDA w/o TL 73.6 80.6 65.6 80.6 73.1 78.4 63.9 69.3 69.6 68.7 72.9 64.5

DeSGraDA 76.3 84.6 69.2 83.6 77.5 83.7 69.8 74.0 76.2 73.0 77.8 70.5

5.3 ABLATION STUDY

We conduct ablation studies to examine the contributions of each component: (1) DeSGraDA w/
CDAN: It utilizes the static distribution alignment instead of temporal-based module; (2) DeSGraDA
w/o PL: It removes the pseudo-label distilling module; (3) DeSGraDA w/o CF: It removes the
classification loss LS ; (4) DeSGraDA w/o TL: It utilizes the fixed global thresholds on all nodes.

Experimental results are shown in Table 3. From the table, we observe that: (1) The degree-aware
thresholding mechanism substantially improves representational capacity. When replaced with fixed
global thresholds (DeSGraDA w/o TL), performance declines, showing that dynamically adjusting
thresholds by node degree helps the model capture structural heterogeneity and encode informative
spiking representations. (2) The temporal-based distribution alignment and pseudo-label distillation
modules are crucial for domain adaptation. Removing the temporal alignment module (DeSGraDA
w/ CDAN) yields consistent drops across tasks, underscoring its role in mitigating domain shifts by
aligning membrane dynamics. Similarly, eliminating pseudo-label distillation (DeSGraDA w/o PL)
degrades performance, highlighting the importance of leveraging confident target predictions to refine
threshold adaptation and support generalization. (3) DeSGraDA outperforms all ablated variants
across domain shifts, confirming the complementary strengths of its core components. Notably,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

PROTEINS DD SEED BCI
108

1011

1014

1017

E
ne

rg
y

/ p
J

DeSGraDA
DRSGNN

DEAL
CoCo

A2GNN
PA-BOTH

(a) Energy Consumption

5 6 7 8 9 10
0.65

0.75

0.85

0.95

A
cc

ur
ac

y

P0 -> P1
P1 -> P0

P0 -> P2
P2 -> P0

(b) Latency Step T

0.05 0.1 0.2 0.5 1.0 2.0 5.0

0.65

0.75

0.85

0.95

A
cc

ur
ac

y

P0 -> P1
P1 -> P0

P0 -> P2
P2 -> P0

(c) Initial Threshold V degree
th

Figure 4: (a) Energy efficiency analysis and (b), (c) hyperparameter sensitivity analysis of latency
step T and initial threshold V degree

th on the PROTEINS dataset.

removing the classification loss (DeSGraDA w/o CF) causes the largest degradation, underscoring
the necessity of source supervision for learning discriminative features. We also provide ablation
studies replacing SGNs with standard GNNs in Tables 7, 8, with results in Appendix K.3.

5.4 ENERGY EFFICIENCY ANALYSIS

To assess the energy efficiency of DeSGraDA, we use the metric from (Zhu et al., 2022) and quantify
the energy consumption for graph classification in the inference stage. Specifically, the graph domain
adaptation methods are evaluated on GPUs (NVIDIA A100), and the spiking-based methods are
evaluated on neuromorphic chips (ROLLS (Indiveri et al., 2015)) following (Zhu et al., 2022).
The results are shown in Figure 4a, where we find that compared with traditional graph domain
adaptation methods, the spike-based methods (DeSGraDA and DRSGNN) have significantly lower
energy consumption, demonstrating the superior energy efficiency of SGNs. Moreover, although the
energy consumption of DeSGraDA is slightly higher than DRSGNN due to additional computations
required for domain adaptation, the performance improvement justifies deploying DeSGraDA in
low-power devices. Additionally, we present a comparison of training time and memory usage
between DeSGraDA and other GDA methods, and the results are detailed in Tables 5 and 6.

5.5 SENSITIVITY ANALYSIS

We conduct the sensitivity analysis of DeSGraDA to investigate the impact of key hyperparameters:
latency step T and degree threshold V degree

th in SGNs. Specifically, T controls the number of SGNs
propagation steps, and V degree

th determines the firing threshold of each neuron based on node degree.

Figure 4b and 4c illustrates how T and V degree
th affects the performance of DeSGraDA on the

PROTEINS dataset. More results on other datasets are shown in Appendix K.4. We vary T in
{5, 6, 7, 8, 9, 10} and V degree

th in {0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0}. From the results, we observe
that: (1) The performance of DeSGraDA in Figure 4b generally exhibits an increasing trend at the
beginning and then stabilizes when T > 9. We attribute this to smaller values of T potentially
losing important information for representation, while larger values significantly increase model
complexity. To balance effectiveness and efficiency, we set T = 9 as default. (2) Figure 4c
indicates an initial increase followed by a decreasing trend in performance as V degree

th increases. This
trend arises because a lower threshold may cause excessive spiking for high-degree nodes, leading
to unstable representation, while a higher threshold may suppress spiking for low-degree nodes,
reducing information flow. Accordingly, we set V degree

th to 0.2 as default.

6 CONCLUSION

In this paper, we propose the problem of spiking graph domain adaptation and introduce a novel
framework DeSGraDA for graph classification. DeSGraDA enhances the adaptability and per-
formance of SGNs through three key aspects: degree-conscious spiking representation, temporal
distribution alignment, and pseudo-label distillation. DeSGraDA captures expressive information
via degree-dependent spiking thresholds, aligns feature distributions through temporal dynamics,
and effectively exploits unlabeled target data via pseudo-label refinement. Extensive experiments
on benchmark datasets demonstrate that DeSGraDA surpasses existing methods in accuracy while
maintaining energy efficiency, showcasing its potential as a strong solution for DA in SGNs. In the
future, we plan to extend DeSGraDA to source-free and domain-generalization scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. We present DeSGraDA, a framework for
spiking graph domain adaptation, evaluated on publicly available benchmark datasets. These datasets
contain no personally identifiable or sensitive information, ensuring no risks to privacy or security.
Our research advances energy-efficient graph learning with potential benefits for scientific and
technological applications. All experimental protocols are transparently documented, with fair
comparisons to prior work. The contributions are intended solely for research, supporting AI
development.

REFERENCES

Hamdi Altaheri, Ghulam Muhammad, and Mansour Alsulaiman. Physics-informed attention temporal
convolutional network for eeg-based motor imagery classification. IEEE transactions on industrial
informatics, 19(2):2249–2258, 2022.

Hamdi Altaheri, Ghulam Muhammad, Mansour Alsulaiman, Syed Umar Amin, Ghadir Ali Altuwaijri,
Wadood Abdul, Mohamed A Bencherif, and Mohammed Faisal. Deep learning techniques for
classification of electroencephalogram (eeg) motor imagery (mi) signals: A review. Neural
Computing and Applications, 35(20):14681–14722, 2023.

Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations with
graph multiset pooling. In Proceedings of the International Conference on Learning Representa-
tions, 2021.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. The Journal of Machine Learning Research., 3(Nov):463–482, 2002.

Andrea Biasiucci, Benedetta Franceschiello, and Micah M Murray. Electroencephalography. Current
Biology, 29(3):R80–R85, 2019.

CD Binnie and PF Prior. Electroencephalography. Journal of Neurology, Neurosurgery & Psychiatry,
57(11):1308–1319, 1994.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and
Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. Proceedings of the Conference
on Neural Information Processing Systems, 34:2625–2640, 2021.

Sander M Bohte, Joost N Kok, and Johannes A La Poutré. Spikeprop: backpropagation for networks
of spiking neurons. In ESANN, volume 48, pp. 419–424. Bruges, 2000.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Clemens Brunner, Robert Leeb, Gernot Müller-Putz, Alois Schlögl, and Gert Pfurtscheller. Bci
competition 2008–graz data set a. Institute for knowledge discovery (laboratory of brain-computer
interfaces), Graz University of Technology, 16(1-6):1, 2008.

Ruichu Cai, Fengzhu Wu, Zijian Li, Pengfei Wei, Lingling Yi, and Kun Zhang. Graph domain
adaptation: A generative view. ACM Transactions on Knowledge Discovery from Data, 18(3):
1–24, 2024.

Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for
energy-efficient object recognition. Int. J. Comput. Vis., 113:54–66, 2015.

Wei Chen, Guo Ye, Yakun Wang, Zhao Zhang, Libang Zhang, Daixin Wang, Zhiqiang Zhang, and
Fuzhen Zhuang. Smoothness really matters: A simple yet effective approach for unsupervised
graph domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence, pp.
15875–15883, 2025.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 330(4):771–783, 2003.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dexin Duan, Fei Wen, et al. Brain-inspired online adaptation for remote sensing with spiking neural
network. arXiv preprint arXiv:2409.02146, 2024.

Ruo-Nan Duan, Jia-Yi Zhu, and Bao-Liang Lu. Differential entropy feature for eeg-based emotion
classification. In 2013 6th international IEEE/EMBS conference on neural engineering (NER), pp.
81–84. IEEE, 2013.

Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons, populations,
plasticity. Cambridge university press, 2002.

Weiyu Guo, Ying Sun, Yijie Xu, Ziyue Qiao, Yongkui Yang, and Hui Xiong. Spgesture: Source-free
domain-adaptive sEMG-based gesture recognition with jaccard attentive spiking neural network.
In Proceedings of the Conference on Neural Information Processing Systems, 2024.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Proceedings of the Conference on Neural Information Processing Systems, 30, 2017.

Giacomo Indiveri, Federico Corradi, and Ning Qiao. Neuromorphic architectures for spiking deep
neural networks. In 2015 IEEE International Electron Devices Meeting (IEDM), pp. 4–2. IEEE,
2015.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In Proceedings of the International Conference on Learning Representations, 2017.

Dominik Klepl, Fei He, Min Wu, Daniel J Blackburn, and Ptolemaios Sarrigiannis. Eeg-based
graph neural network classification of alzheimer’s disease: An empirical evaluation of functional
connectivity methods. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30:
2651–2660, 2022.

Neelesh Kumar, Guangzhi Tang, Raymond Yoo, and Konstantinos P Michmizos. Decoding eeg with
spiking neural networks on neuromorphic hardware. Transactions on Machine Learning Research,
2022.

Gabriele Lagani, Fabrizio Falchi, Claudio Gennaro, and Giuseppe Amato. Spiking neural networks
and bio-inspired supervised deep learning: a survey. arXiv preprint arXiv:2307.16235, 2023.

Petr Lansky and Susanne Ditlevsen. A review of the methods for signal estimation in stochastic
diffusion leaky integrate-and-fire neuronal models. Biological cybernetics, 99(4):253–262, 2008.

Jintang Li, Zhouxin Yu, Zulun Zhu, Liang Chen, Qi Yu, Zibin Zheng, Sheng Tian, Ruofan Wu, and
Changhua Meng. Scaling up dynamic graph representation learning via spiking neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 8588–8596, 2023.

Junnan Li, Caiming Xiong, and Steven CH Hoi. Learning from noisy data with robust representation
learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021.

Meihan Liu, Zeyu Fang, Zhen Zhang, Ming Gu, Sheng Zhou, Xin Wang, and Jiajun Bu. Rethinking
propagation for unsupervised graph domain adaptation. Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 13963–13971, 2024a.

Shikun Liu, Tianchun Li, Yongbin Feng, Nhan Tran, Han Zhao, Qiang Qiu, and Pan Li. Structural
re-weighting improves graph domain adaptation. In Proceedings of the International Conference
on Machine Learning, pp. 21778–21793. PMLR, 2023.

Shikun Liu, Deyu Zou, Han Zhao, and Pan Li. Pairwise alignment improves graph domain adaptation.
Proceedings of the International Conference on Machine Learning, 2024b.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. Proceedings of the Conference on Neural Information Processing Systems, 31,
2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Junyu Luo, Yiyang Gu, Xiao Luo, Wei Ju, Zhiping Xiao, Yusheng Zhao, Jingyang Yuan, and Ming
Zhang. Gala: Graph diffusion-based alignment with jigsaw for source-free domain adaptation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659–1671, 1997.

Colin McDiarmid et al. On the method of bounded differences. Surveys in combinatorics, 141(1):
148–188, 1989.

Samuel R Nason, Alex K Vaskov, Matthew S Willsey, Elissa J Welle, Hyochan An, Philip P Vu,
Autumn J Bullard, Chrono S Nu, Jonathan C Kao, Krishna V Shenoy, et al. A low-power
band of neuronal spiking activity dominated by local single units improves the performance of
brain–machine interfaces. Nature biomedical engineering, 4(10):973–983, 2020.

Victor M. Panaretos and Yoav Zemel. Statistical aspects of wasserstein distances. Annual Re-
view of Statistics and Its Application, 2018. URL https://api.semanticscholar.org/
CorpusID:88523547.

Ziyue Qiao, Xiao Luo, Meng Xiao, Hao Dong, Yuanchun Zhou, and Hui Xiong. Semi-supervised
domain adaptation in graph transfer learning. In Proceedings of the International Joint Conference
on Artificial Intelligence, pp. 2279–2287, 2023.

Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical analysis of domain adaptation with
optimal transport. In ECML-PKDD, pp. 737–753, 2017.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein distance guided representation
learning for domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence,
2018.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. The Journal of Machine Learning Research., 12(9),
2011.

Xinyu Shi, Zecheng Hao, and Zhaofei Yu. Spikingresformer: Bridging resnet and vision transformer
in spiking neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5610–5619, 2024.

Li Sun, Zhenhao Huang, Qiqi Wan, Hao Peng, and Philip S. Yu. Spiking graph neural network
on riemannian manifolds. In Proceedings of the Conference on Neural Information Processing
Systems, 2024.

Jeffrey J Sutherland, Lee A O’brien, and Donald F Weaver. Spline-fitting with a genetic algorithm:
A method for developing classification structure- activity relationships. Journal of chemical
information and computer sciences, 43(6):1906–1915, 2003.

Doron Tal and Eric L Schwartz. Computing with the leaky integrate-and-fire neuron: logarithmic
computation and multiplication. Neural computation, 9(2):305–318, 1997.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the Conference on Neural
Information Processing Systems, volume 30, 2017.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2008.

Yixin Wang, Shuang Qiu, Dan Li, Changde Du, Bao-Liang Lu, and Huiguang He. Multi-modal
domain adaptation variational autoencoder for eeg-based emotion recognition. IEEE/CAA Journal
of Automatica Sinica, 9(9):1612–1626, 2022.

Guoqiang Wei, Cuiling Lan, Wenjun Zeng, and Zhibo Chen. Metaalign: Coordinating domain
alignment and classification for unsupervised domain adaptation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 16643–16653, 2021a.

12

https://api.semanticscholar.org/CorpusID:88523547
https://api.semanticscholar.org/CorpusID:88523547

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Guoqiang Wei, Cuiling Lan, Wenjun Zeng, Zhizheng Zhang, and Zhibo Chen. Toalign: Task-
oriented alignment for unsupervised domain adaptation. Proceedings of the Conference on Neural
Information Processing Systems, 34:13834–13846, 2021b.

Allan J Wilson, WS Kiran, AS Radhamani, and A Pon Bharathi. Optimizing energy-efficient cluster
head selection in wireless sensor networks using a binarized spiking neural network and honey
badger algorithm. Knowledge-Based Systems, 299:112039, 2024.

Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain adaptive
graph convolutional networks. In Proceedings of the ACM Web Conference, pp. 1457–1467, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Proceedings of the International Conference on Learning Representations, 2018.

M. Xu, Yujie Wu, Lei Deng, Faqiang Liu, Guoqi Li, and Jing Pei. Exploiting spiking dynamics with
spatial-temporal feature normalization in graph learning. In Proceedings of the International Joint
Conference on Artificial Intelligence, 2021a.

Mingkun Xu, Yujie Wu, Lei Deng, Faqiang Liu, Guoqi Li, and Jing Pei. Exploiting spiking dynamics
with spatial-temporal feature normalization in graph learning. In Proceedings of the International
Joint Conference on Artificial Intelligence, pp. 3207–3213, 2021b.

Man Yao, Huanhuan Gao, Guangshe Zhao, Dingheng Wang, Yihan Lin, Zhaoxu Yang, and Guoqi Li.
Temporal-wise attention spiking neural networks for event streams classification. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 10221–10230, 2021.

Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi
Li. Attention spiking neural networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(8):9393–9410, 2023.

Nan Yin, Li Shen, Baopu Li, Mengzhu Wang, Xiao Luo, Chong Chen, Zhigang Luo, and Xian-
Sheng Hua. Deal: An unsupervised domain adaptive framework for graph-level classification. In
Proceedings of the ACM International Conference on Multimedia, pp. 3470–3479, 2022.

Nan Yin, Li Shen, Mengzhu Wang, Long Lan, Zeyu Ma, Chong Chen, Xian-Sheng Hua, and Xiao Luo.
Coco: A coupled contrastive framework for unsupervised domain adaptive graph classification.
In Proceedings of the International Conference on Machine Learning, pp. 40040–40053. PMLR,
2023.

Nan Yin, Mengzhu Wang, Zhenghan Chen, Giulia De Masi, Huan Xiong, and Bin Gu. Dynamic
spiking graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 16495–16503, 2024.

Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. Graph domain adaptation via theory-
grounded spectral regularization. In Proceedings of the International Conference on Learning
Representations, 2023.

Qiugang Zhan, Guisong Liu, Xiurui Xie, Guolin Sun, and Huajin Tang. Effective transfer learning
algorithm in spiking neural networks. IEEE Transactions on Cybernetics, 52(12):13323–13335,
2021.

Qiugang Zhan, Guisong Liu, Xiurui Xie, Ran Tao, Malu Zhang, and Huajin Tang. Spiking transfer
learning from rgb image to neuromorphic event stream. IEEE Transactions on Image Processing,
2024.

Yuhan Zhang, Lindong Wu, Weihua He, Ziyang Zhang, Chen Yang, Yaoyuan Wang, Ying Wang, Kun
Tian, Jianxing Liao, and Ying Yang. An event-driven spatiotemporal domain adaptation method
for dvs gesture recognition. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(3):
1332–1336, 2021.

Han Zhao, Xu Yang, Cheng Deng, and Junchi Yan. Dynamic reactive spiking graph neural network.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 16970–16978,
2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

He Zhao, Qingqing Zheng, Kai Ma, Huiqi Li, and Yefeng Zheng. Deep representation-based domain
adaptation for nonstationary eeg classification. IEEE Transactions on Neural Networks and
Learning Systems, 32(2):535–545, 2020.

Li-Ming Zhao, Xu Yan, and Bao-Liang Lu. Plug-and-play domain adaptation for cross-subject
eeg-based emotion recognition. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 863–870, 2021.

Wei-Long Zheng and Bao-Liang Lu. Investigating critical frequency bands and channels for eeg-
based emotion recognition with deep neural networks. IEEE Transactions on autonomous mental
development, 7(3):162–175, 2015.

Shibo Zhou, Xiaohua Li, Ying Chen, Sanjeev T Chandrasekaran, and Arindam Sanyal. Temporal-
coded deep spiking neural network with easy training and robust performance. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pp. 11143–11151, 2021.

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng YAN, Yonghong Tian, and
Li Yuan. Spikformer: When spiking neural network meets transformer. In Proceedings of the
International Conference on Learning Representations, 2023.

Qi Zhu, Carl Yang, Yidan Xu, Haonan Wang, Chao Zhang, and Jiawei Han. Transfer learning of
graph neural networks with ego-graph information maximization. Proceedings of the Conference
on Neural Information Processing Systems, 34:1766–1779, 2021.

Rui-Jie Zhu, Malu Zhang, Qihang Zhao, Haoyu Deng, Yule Duan, and Liang-Jian Deng. Tcja-snn:
Temporal-channel joint attention for spiking neural networks. IEEE Transactions on Neural
Networks and Learning Systems, 2024.

Zulun Zhu, Jiaying Peng, Jintang Li, Liang Chen, Qi Yu, and Siqiang Luo. Spiking graph convolu-
tional networks. In Proceedings of the International Joint Conference on Artificial Intelligence,
2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDICES

A DA BOUND FOR GRAPHS

DA Bound for Graphs. Due to the DA theory is agnostic to data structures and encoders, You et al.
(2023) directly rewrite it for graph-structured data (G) accompanied with graph feature extractors (f)
as follows, and the covariate shift assumption is reframed as PS(Y |G) = PT (Y |G).

Theorem 3 (You et al., 2023) Assume that the learned discriminator is Cg-Lipschitz continu-
ous as in (Redko et al., 2017), and the graph feature extractor f is Cf -Lipschitz that ||f ||Lip =

maxG1,G2

||f(G1)−f(G2)||2
η(G1,G2)

= Cf for some graph distance measure η. Let H := {h : G → Y} be
the set of bounded real-valued functions with pseudo-dimension Pdim(H) = d that h = g ◦ f ∈ H,
with probability at least 1− δ the following inequality holds:

ϵT (h, ĥ) ≤ ϵ̂S(h, ĥ) +

√
4d

NS
log

(
eNS

d

)
+

1

NS
log

(
1

δ

)
+ 2CfCgW1(PS(G),PT (G)) + ω,

where ϵT (h, ĥ) = EPT (G{|h(G) − ĥ(G)|} is the (empirical) target risk, ϵ̂S(h, ĥ) =
1

NS

∑NS

n=1 |h(Gn) − ĥ(Gn)| is the (empirical) source risk, ĥ : G → Y is the labeling func-

tion for graphs and ω = min||g||Lip≤Cg,||f ||Lip≤Cf
{ϵS(h, ĥ) + ϵT (h, ĥ)}, and W1(P,Q) =

sup||g||Lip≤1

{
EPS(Z)g(Z)− EPT (Z)g(Z)

}
is the first Wasserstein distance (Villani et al., 2008).

B SPIKING NEURAL NETWORKS

Spiking Neural Networks (SNNs) are brain-inspired models that communicate through discrete spike
events rather than continuous-valued activations Maass (1997); Gerstner & Kistler (2002); Bohte
et al. (2000). This design provides significant advantages in temporal information processing and
energy efficiency. Different from traditional neural networks, SNNs emulate biological mechanisms
such as membrane potential integration, threshold-triggered firing, and post-spike resetting Cao et al.
(2015); Zhu et al. (2022). To capture these biological dynamics, SNNs employ neuron models that
mathematically describe the temporal evolution of membrane potentials and the conditions for spike
generation Lagani et al. (2023). A widely used neuron model in SNNs is the Leaky Integrate-and-Fire
(LIF) model Tal & Schwartz (1997); Lansky & Ditlevsen (2008), which operates through three
fundamental stages:

(1) Integrate: At each lantency step t, the membrane potential V [t] is updated by integrating the input
current I[t] and applying a decay to the previous potential V [t− 1]:

V [t] = λV [t− 1](1− S[t− 1]) + I[t] (10)

where λ ∈ (0, 1) is the decay factor that controls the leakage rate, and S[t− 1] is the binary spike
indicator from the previous time step.

(2) Fire: A spike is emitted when the membrane potential exceeds the threshold Vth:

S[t] = H(V [t]− Vth), (11)

where H(·) denotes the Heaviside step function, a non-differentiable function defined as:

H(x) =

{
1, x ≥ 0,

0, otherwise.
(12)

(3) Reset: After a spike is emitted, the membrane potential is reset according to the following rule:

V [t] = (1− S[t])V [t] + S[t]Vreset, (13)

where Vreset denotes the resting potential, typically set to zero.

Due to the non-differentiability of H(·), surrogate gradient methods are commonly employed to
approximate its derivative during backpropagation, enabling gradient-based optimization in deep
SNN architectures Bohte et al. (2000); Sun et al. (2024).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C PROOF OF PROPOSITION 1

Assuming that the node feature hi follows a normal distribution N (µ, σ2), then for each node in the
graph, we follow the message-passing mechanism and have the information aggregation as:

hi = hi +
∑

j∈N(i)

wijhj , (14)

where N(i) is the neighbor set of node i. Therefore, we have the expectation:

E(hi) = E(hi) +
∑

j∈N(i)

wijE(hj). (15)

Since E(hj) ∼ N (µ, σ2), we have:

E(hi) ∼ N

(1 +
∑

j∈N(i)

wij)µ, (1 +
∑

j∈N(i)

wij)
2σ2

 . (16)

From the results, we observe that node i follows a normal distribution with a mean of (1 +∑
j∈N(i) wij)

2µ, determined by the aggregated weights of its neighboring nodes. To provide a
more intuitive understanding, we visualize the aggregated neighbor weights of GCN (Kipf & Welling,
2017) and GIN (Xu et al., 2018) in Figure 2. The results show that as the degree increases, the
aggregated weights also increase progressively. Consequently, high-degree nodes tend to follow a
normal distribution with a higher mean and variance. In other words, nodes with higher degrees
accumulate greater signals, making them more likely to trigger spiking. Based on this, we propose
assigning higher thresholds to high-degree nodes and lower thresholds to low-degree nodes.

D PROOF OF THEOREM 2

Theorem 2 Assuming that the learned discriminator is Cg-Lipschitz continuous as described in
Theorem 3, the graph feature extractor f (also referred to as GNN) is Cf -Lipschitz that ||f ||Lip =

maxG1,G2

||f(G1)−f(G2)||2
η(G1,G2)

= Cf for some graph distance measure η and the loss function bounded
by C > 0. Let H := {h : G → Y} be the set of bounded real-valued functions with the pseudo-
dimension Pdim(H) = d that h = g ◦ f ∈ H, and provided the spike training data set Sn =
{(Xi, yi) ∈ X × Y}i∈[n] drawn from Ds, with probability at least 1− δ the following inequality:

ϵT (h, ĥT (X)) ≤ϵ̂S(h, ĥS(S)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS
+ ω + 2CfCgW1 (PS(G),PT (G)) ,

(17)
where the (empirical) source and target risks are ϵ̂S(h, ĥ(S)) =

1
NS

∑NS

n=1 |h(Sn) − ĥ(Sn)| and

ϵT (h, ĥ(X)) = EPT (G{|h(G)− ĥ(G)|}, respectively, where ĥ : G → Y is the labeling function for

graphs and ω = min
(
|ϵS(h, ĥS(X))− ϵS(h, ĥT (X))|, |ϵT (h, ĥS(X))− ϵT (h, ĥT (X))|

)
, ϵi is the

Rademacher variable and pi is the ith row of P, which is the probability matrix with:

Pkt =

{
exp

(
uk(t)−Vth

σ(uk(t)−ureset)

)
, if uθ ≤ u(t) ≤ Vth,

0, if ureset ≤ uk(t) ≤ uθ.
(18)

Proof.

Before showing the designated lemma, we first introduce the following inequality to be used that:

|ϵS(h, ĥS)− ϵT (h, ĥT)| = |ϵS(h, ĥS)− ϵS(h, ĥT) + ϵS(h, ĥT)− ϵT (h, ĥT)|
≤ |ϵS(h, ĥS)− ϵS(h, ĥT)|+ |ϵS(h, ĥT)− ϵT (h, ĥT)|
(a)

≤ |ϵS(h, ĥS)− ϵS(h, ĥT)|+ 2CfCgW1 (PS(G),PT (G)) ,

(19)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where (a) results from (Shen et al., 2018) Theorem 3 with the assumption
max(||h||Lip,maxG1,G2

|ĥD(G1)−ĥD(G2)|
η(G1,G2)

) ≤ CfCg , D ∈ {S, T}. Similarly, we obtain:

|ϵS(h, ĥS)− ϵT (h, ĥT)| ≤ |ϵT (h, ĥS)− ϵT (h, ĥT)|+ 2CfCgW1(PS(G),PT (G)). (20)

We therefore combine them into:

|ϵS(h, ĥS)− ϵT (h, ĥT)| ≤2CfCgW1(PS(G),PT (G))

+ min
(
|ϵS(h, ĥS)− ϵS(h, ĥT)|, |ϵT (h, ĥS)− ϵT (h, ĥT)|

)
,

(21)

i.e. the following holds to bound the target risk ϵT (h, ĥT):

ϵT (h, ĥT) ≤ϵS(h, ĥS) + 2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS)− ϵS(h, ĥT)|, |ϵT (h, ĥS)− ϵT (h, ĥT)|

)
.

(22)

We next link the bound with the empirical risk and labeled sample size by showing, with probability
at least 1− δ that:

ϵT (h, ĥT) ≤ϵS(h, ĥS) + 2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS)− ϵS(h, ĥT)|, |ϵT (h, ĥS)− ϵT (h, ĥT)|

)
.

(23)

The ĥ above is the abbreviation of ĥ(x), which means the input is the continuous feature. Provided
the spike training data set Sn = {(Xi, yi) ∈ X × Y}i∈[n] drawn from D, and motivated by (Yin
et al., 2024), we have:

lim
τ→∞

P
(
ĥ(Sn)τ,i > ĥ(Xτ,i) + ϵ

)
≤ e−ϵ2/2(σ+ŵiϵ/3), (24)

where ŵi = max{wi1, · · · , wid} and h(xij) =
∑d

j=1 wijxij . From Equation 2, we observe that
as τ → ∞, the difference between spike and real-valued features will be with the probability of
p = e−ϵ2/2(σ+ŵiϵ/3) to exceed the upper and lower bounds.

Furthermore, motivated by the techniques given by (Bartlett & Mendelson, 2002), we have:

ϵS(h, ĥS(Sn)) ≤ ϵ̂S(h, ĥS(Sn)) + sup[ϵS(h, ĥS(Sn))− ϵ̂S(h, ĥS(Sn))]︸ ︷︷ ︸
R(Sn,P)

,
(25)

where P is the probability matrix with:

Pkt =

{
exp

(
uk(t)−Vth

σ(uk(t)−ureset)

)
, if uθ ≤ u(t) ≤ Vth,

0, if ureset ≤ uk(t) ≤ uθ,
(26)

where k indicates the k − th spiking neuron and the membrane threshold utheta is relative to the
excitation probability threshold pθ ∈ (0, 1]. Let pk is the k − th row vector of P. Thus, we have the
probability at least 1− e−ϵ2/2(σ+ŵiϵ/3) to hold:

ϵS(h, ĥS(Xn)) ≤ ϵ̂S(h, ĥS(Sn)) + sup[ϵS(h, ĥS(Sn))− ϵ̂S(h, ĥS(Sn))]︸ ︷︷ ︸
R(Sn,P)

, (27)

Let S′
n denote the sample set that the ith sample (Xi, yi) is replaced by (X′

i, y
′
i), and correspondingly

P′ is the possibility matrix that the ith row vector pi is replaced by p′i, for i ∈ [n]. For the loss
function bounded by C > 0, we have:{

|R(Sn,P)−R(S′
n,P)| ≤ C/n,

|R(Sn,P)−R(Sn,P
′)| ≤ C/n.

(28)

From McDiarmid’s inequality (McDiarmid et al., 1989), with probability at least 1− δ, we have:

R(Sn,P) ≤ ESn∈D,P[R(Sn,P)] + C

√
ln(2/δ)

NS
. (29)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

It is observed that:

R(Sn,P) = supES̃n∈D,P̃[ϵ̂(ĥ(Sn); S̃n, P̃)− P̃[ϵ̂(ĥ(Sn);Sn,P)], (30)

where S̃n is another collection drawn from D as well as P̃. Thus, we have

ESn∈D,P[R(Sn,P)] ≤ E
[
sup

[
ϵ̂(ĥ(Sn); S̃n, P̃)− P̃[ϵ̂(ĥ(Sn);Sn,P)

]]
= E

[
sup

1

n

n∑
i=1

[ĥ(X̃i, ỹi, p̃i)− ĥ(Xi, yi, pi)]

]

≤ 2E

[
sup

1

n

n∑
i=1

ϵiĥ(Xi, yi, pi)

]
,

(31)

where ϵi is the Rademacher variable. Combining Eq. 28 29 31, we have:

ϵS(h, ĥS(Xn)) ≤ ϵ̂S(h, ĥS(Sn)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS
. (32)

Finally, we have:

ϵT (h, ĥT (X)) ≤ϵS(h, ĥS(X)) + 2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS(X))− ϵS(h, ĥT (X))|, |ϵT (h, ĥS(X))− ϵT (h, ĥT (X))|

)
≤ϵ̂S(h, ĥS(Sn)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+min
(
|ϵS(h, ĥS(X))− ϵS(h, ĥT (X))|, |ϵT (h, ĥS(X))− ϵT (h, ĥT (X))|

)
+ 2CfCgW1 (PS(G),PT (G)) .

(33)

E GENERALIZATION BOUND WITH PSEUDO-LABEL DISTILLATION MODULE

Theorem 4 Under the assumption of Theorem 3, we further assume that there exists a small amount
of i.i.d. samples with pseudo labels {(Gn, Yn)}

N ′
T

n=1 from the target distribution PT (G, Y) (N ′
T ≪

NS) and bring in the conditional shift assumption that domains have different labeling function

ĥS ̸= ĥT and maxG1,G2

|ĥD(G1)−ĥD(G2)|
η(G1,G2)

= Ch ≤ CfCg(D ∈ {S, T}) for some constant Ch and
distance measure η, and the loss function bounded by C > 0. Let H := {h : G → Y} be the set of
bounded real-valued functions with the pseudo-dimension Pdim(H) = d, and provided the spike
training data set Sn = {(Xi, yi) ∈ X × Y}i∈[n] drawn from Ds, with probability at least 1− δ the
following inequality holds:

ϵT (h, ĥT (X)) ≤ N ′
T

NS +N ′
T

ϵ̂T (h, ĥT (S)) +
NS

NS +N ′
T

(
ϵ̂S(h, ĥS(S)) + 2CfCgW1 (PS(G),PT (G))

+ 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS
+ ω

)
≤Eq. 6,

(34)
where the (empirical) source and target risks are ϵ̂S(h, ĥ) = 1

NS

∑NS

n=1 |h(Gn) − ĥ(Gn)| and

ϵT (h, ĥ) = EPT (G{|h(G) − ĥ(G)|}, respectively, where ĥ : G → Y is the labeling function for

graphs and ω = min
(
|ϵS(h, ĥS(X)))− ϵS(h, ĥT (X)))|, |ϵT (h, ĥS(X)))− ϵT (h, ĥT (X)))|

)
, ϵi

is the Rademacher variable and pi is the ith row of P, which is defined in Theorem 2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof.

As proved in Theorem 2, we have:

ϵT (h, ĥT (X)) ≤ϵ̂S(h, ĥS(Sn)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+min
(
|ϵS(h, ĥS(X))− ϵS(h, ĥT (X))|, |ϵT (h, ĥS(X))− ϵT (h, ĥT (X))|

)
+ 2CfCgW1 (PS(G),PT (G)) .

(35)

Similar with Eq. 32, there exists:

ϵT (h, ĥT (Xn)) ≤ ϵ̂T (h, ĥT (Sn)) + 2E

sup 1

N ′
T

N ′
T∑

i=1

ϵih(Xi, yi, pi)

+ C

√
ln(2/δ)

N ′
T

. (36)

Combining Eq. 35 and 36, we have:

ϵT (h, ĥT (X))
(a)

≤ N ′
T

NS +N ′
T

ϵ̂T (h, ĥT (S)) + 2E

sup 1

N ′
T

N ′
T∑

i=1

ϵih(Xi, yi, pi)

+ C

√
ln(2/δ)

N ′
T


+

NS

NS +N ′
T

ϵ̂S(h, ĥS(S)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS


+

NS

NS +N ′
T

(
2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS(X))− ϵS(h, ĥT (X))|, |ϵT (h, ĥS(X))− ϵT (h, ĥT (X))|

))

≤ N ′
T

NS +N ′
T

ϵ̂T (h, ĥT (S)) +
NS

NS +N ′
T

ϵ̂S(h, ĥS(S))

+
NS

NS +N ′
T

(
2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS(X)− ϵS(h, ĥT ((X))|, |ϵT (h, ĥS((X))− ϵT (h, ĥT ((X))|

))

+
N ′

T

NS +N ′
T

2E

sup 1

N ′
T

N ′
T∑

i=1

ϵih(Xi, yi, pi)

+ C

√
ln(2/δ)

N ′
T


+

NS

NS +N ′
T

2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS


(b).
=

N ′
T

NS +N ′
T

ϵ̂T (h, ĥT (S)) +
NS

NS +N ′
T

ϵ̂S(h, ĥS(S))

+
NS

NS +N ′
T

2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS


19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

+
NS

NS +N ′
T

(
2CfCgW1 (PS(G),PT (G))

+ min
(
|ϵS(h, ĥS(X))− ϵS(h, ĥT (X))|, |ϵT (h, ĥS(X))− ϵT (h, ĥT (X))|

))

=
N ′

T

NS +N ′
T

ϵ̂T (h, ĥT (S)) +
NS

NS +N ′
T

(
ϵ̂S(h, ĥS(S)) + 2CfCgW1 (PS(G),PT (G))

+ 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+min
(
|ϵS(h, ĥS(X)))− ϵS(h, ĥT (X)))|, |ϵT (h, ĥS(X)))− ϵT (h, ĥT (X)))|

))
where (a) is the outcome of applying the union bound with coefficient N ′

T

NS+N ′
T

, NS

NS+N ′
T

respectively;
(b) additionally adopt the assumption N ′

T ≪ NS , following the sleight-of-hand in (Li et al., 2021)
Theorem 3.2.

Due to the sampels are selected with high confidence, thus, we have the following assumption:

ϵ̂T ≤ ϵT ≤ϵ̂S(h, ĥ(X))) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]

+ C

√
ln(2/δ)

NS
+ 2CfCgW1(PS(G),PT (G)) + ω,

(37)

where ω = min
(
|ϵS(h, ĥS(X)))− ϵS(h, ĥT (X)))|, |ϵT (h, ĥS(X)))− ϵT (h, ĥT (X)))|

)
, ϵ̂T is the

empirical risk on the high confidence samples, ϵT is the empirical risk on the target domain. Besides,
we have:

min(|ϵS(h, ĥS(X)))−ϵS(h, ĥT (X)))|, |ϵT (h, ĥS(X)))− ϵT (h, ĥT)|(X))) ≤

min
(
ϵS(h, ĥS(X))) + ϵT (h, ĥS(X)))

) (38)

Then,

ϵT (h, ĥT (X)) ≤ N ′
T

NS +N ′
T

ϵ̂T (h, ĥT (S)) +
NS

NS +N ′
T

(
ϵ̂S(h, ĥS(S)) + 2CfCgW1 (PS(G),PT (G))

+ 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+min
(
|ϵS(h, ĥS(X)))− ϵS(h, ĥT (X)))|, |ϵT (h, ĥS(X)))− ϵT (h, ĥT (X)))|

))

≤ϵ̂S(h, ĥS(S)) + 2E

[
sup

1

NS

NS∑
i=1

ϵih(Xi, yi, pi)

]
+ C

√
ln(2/δ)

NS

+ 2CfCgW1 (PS(G),PT (G)) + ω.
(39)

F ALGORITHM

G COMPLEXITY ANALYSIS

Here we analyze the computational complexity of the proposed DeSGraDA. The computational
complexity primarily relies on Degree-Conscious spiking representations. For a given graph G, ∥A∥0

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 1 Learning Algorithm of DeSGraDA
Input: Source data Ds, Target data Dt

Output: The parameters θ of Degree-Conscious spiking encoder, parameters γ of domain discrimi-
nator, and parameter η of semantic classifier.

1: Initialize model parameters θ, γ, and η
2: while not converged do
3: Sample mini-batches Bs and Bt from Ds and Dt

4: Forward propagate Bs and Bt through the Degree-Conscious spiking encoder
5: Perform pseudo-label distillation
6: Compute the loss function using Eq. 9
7: Update model parameters θ, γ, and η via backpropagation
8: end while

0 30 60 90 120
Number of Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fr
eq

ue
nc

y

×101 Node Distribution
P0
P1
P2
P3

80 160 240 320
Number of Edges

0.0

0.5

1.0

1.5

2.0

2.5

Fr
eq

ue
nc

y

×101 Edge Distribution
P0
P1
P2
P3

Figure 5: Visualization of different distributions on the PROTEINS dataset.

denotes the number of nonzeros in the adjacency matrix of G. d is the feature dimension. L denote
the layer number of spiking encoder. |V | is the number of nodes. T denotes the number of latency
step. The spiking encoder takes O

(
T · L ·

(
∥A∥0 · d+ |V | · d2

))
computational time for each graph.

As a result, the complexity of our DeSGraDA is proportional to both |V | and ∥A∥0.

H DATASET

Table 4: Statistics of the experimental datasets.

Datasets Graphs Avg. Nodes Avg. Edges Classes

SEED 3,818 62.00 125.74 3
BCI 1,440 22.00 119.80 2
PROTEINS 1,113 39.10 72.80 2
DD 1,178 284.32 715.66 2
COX2 467 41.22 43.45 2
COX2 MD 303 26.28 335.12 2
BZR 405 35.75 38.36 2
BZR MD 306 21.30 225.06 2

H.1 DATASET DESCRIPTION

We conduct extensive experiments on different types of datasets. The dataset statistics can be found
in Table 4, and their details are shown as follows:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

150 300 450 600
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

×101 Node Distribution
D0
D1
D2
D3

600 1200 1800 2400
Number of Edges

0

1

2

3

4

5

6

7

8

Fr
eq

ue
nc

y

Edge Distribution
D0
D1
D2
D3

Figure 6: Visualization of different distributions on the DD dataset.

60 120 180 240 300
Number of Edges

0.0

0.6

1.2

1.8

2.4

Fr
eq

ue
nc

y

×101 Edge Distribution
B0
B1
B2

112 120 128 136 144
Number of Edges

0.0

0.4

0.8

1.2

Fr
eq

ue
nc

y

×102 Edge Distribution
S0
S1
S2

Figure 7: Visualization of edge density distributions on the BCI (left) and SEED (right) datasets.

• SEED. The SJTU Emotion EEG Dataset (SEED) (Zheng & Lu, 2015; Duan et al., 2013)
is a widely used Electroencephalography (EEG) benchmark for emotion recognition. It
contains EEG recordings from 15 participants watching emotional movie clips that evoke
positive, neutral, and negative emotions. Each recording consists of 62-channel EEG signals
sampled at 1000 Hz. Based on the edge density, we partition the SEED dataset into three
sub-datasets, namely S0, S1, and S2. The sub-datasets exhibit substantial domain disparities
among them.

• BCI. The Brain-Computer Interface (BCI) Competition IV-2a dataset Brunner et al. (2008) is
a widely used benchmark for motor imagery EEG classification. It includes EEG recordings
from 9 subjects performing four motor imagery tasks: left hand, right hand, feet, and tongue.
Each subject completed two sessions on different days, with signals recorded from 22 EEG
channels at a sampling rate of 250 Hz. Based on the edge density, we partition the dataset
into three parts: B0, B1, and B2.

• PROTEINS and DD. The PROTEINS (Dobson & Doig, 2003) and DD datasets comprise
protein structure graphs commonly used for graph classification tasks. In both datasets, nodes
represent amino acids, forming edges between spatially or sequentially adjacent residues. In
PROTEINS, each graph is labeled to indicate whether the protein is an enzyme, with edges
defined between residues less than 6 Angstroms apart. The DD dataset, derived from the
Protein Data Bank, focuses on classifying proteins by structural class and typically exhibits
denser graph connectivity than PROTEINS. Additionally, we partition the PROTEINS and
DD datasets into four parts based on edge density and node density, P0 to P3 and D0 to D3,
respectively.

• COX2 and COX2 MD. The COX2 dataset Sutherland et al. (2003) consists of 467 molecular
graphs, while COX2 MD contains 303 structurally modified counterparts. In both datasets,
nodes represent atoms and edges correspond to chemical bonds. Specifically, COX2 MD
introduces structural variations to the original COX2 molecules while preserving their
semantic labels.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

• BZR and BZR MD. The BZR dataset Sutherland et al. (2003) comprises 405 molecular
graphs, while BZR MD includes 306 structurally modified graphs derived from BZR. In
both datasets, nodes represent atoms and edges denote chemical bonds. BZR MD introduces
structural variations to simulate domain shifts while preserving the original label semantics.

H.2 DATA PROCESSING

In our implementation, we process the above datasets as follows:

• For datasets from TUDataset 1, including PROTEINS, DD, BZR, BZR MD, COX2, and
COX2 MD, we utilize the TUDataset module from PyTorch Geometric for loading. Self-
loops are added during the preprocessing stage to prevent isolated nodes.

• For the SEED dataset, we utilize the TorchEEG library2 to transform raw EEG signals into
graph-structured data. During graph construction, edges are removed following the approach
described in Klepl et al. (2022).

• For the BCI dataset, we focus on a binary classification subset involving left-hand and right-
hand motor imagery tasks, a widely adopted evaluation setting in BCI research. Following
the construction protocols proposed in Altaheri et al. (2022; 2023), we randomly remove a
portion of edges from each graph during preprocessing.

I BASELINES

In this part, we introduce the details of the compared baselines as follows:

Graph kernel method. We compare DeSGraDA with one graph kernel method:

• WL subtree: Weisfeiler-Lehman (WL) subtree (Shervashidze et al., 2011) is a graph kernel
method, which calculates the graph similarity by a kernel function, where it encodes local
neighborhood structures into subtree patterns, efficiently capturing the topology information
contained in graphs.

Graph-based methods. We compare DeSGraDA with four widely used graph-based methods:

• GCN: GCN (Kipf & Welling, 2017) is a spectral-based neural network that iteratively
updates node representations by aggregating information from neighboring nodes, effectively
capturing both local graph structure and node features.

• GIN: GIN (Xu et al., 2018) is a message-passing neural network designed to distinguish
graph structures using an injective aggregation function, theoretically achieving the expres-
sive power of the Weisfeiler-Lehman test.

• CIN: CIN (Bodnar et al., 2021) extends the Weisfeiler-Lehman framework by integrating cel-
lular complexes into graph neural networks, allowing for the capture of higher-dimensional
topological features.

• GMT: GMT (Baek et al., 2021) utilizes self-attention mechanisms to dynamically adjust
the importance of nodes based on their structural dependencies, thereby enhancing both
adaptability and performance.

Spiking-based graph methods. We compare DeSGraDA with two spiking-based graph methods:

• SpikeGCN: SpikeGCN (Zhu et al., 2022) introduces an end-to-end framework designed to
integrate the fidelity characteristics of SNNs with graph node representations.

• DRSGNN: DRSGNN (Zhao et al., 2024) dynamically adapts to evolving graph structures
and relationships through a novel architecture that updates node representations in real-time.

Domain adaption methods. We compare DeSGraDA with two recent domain adaption methods:

1https://chrsmrrs.github.io/datasets/
2https://torcheeg.readthedocs.io/en/latest/

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 5: GPU memory consumption of different graph domain methods in training stage for each
training epoch (in GB).

DeSGraDA DEAL CoCo SGDA StruRW A2GNN PA-BOTH

PROTEINS 1.0 1.2 1.2 1.0 1.2 22.3 1.7
DD 5.6 6.4 2.5 3.9 4.5 35.1 16.8
SEED 1.1 1.4 1.5 2.6 0.8 16.8 2.8
BCI 0.7 0.8 0.7 0.7 0.7 14.5 1.6

Table 6: Time consumption of different graph domain methods in training stage for each training
epoch (in seconds).

DeSGraDA DEAL CoCo SGDA StruRW A2GNN PA-BOTH

PROTEINS 0.195 0.103 22.123 0.088 0.088 1.313 0.949
DD 0.427 0.400 184.015 0.135 0.140 2.263 0.787
SEED 0.192 0.137 26.187 0.126 0.075 1.414 0.311
BCI 0.224 0.211 35.162 0.103 0.086 0.781 0.123

• CDAN: CDAN (Long et al., 2018) employs a conditional adversarial learning strategy
to reduce domain discrepancy by conditioning adversarial adaptation on discriminative
information from multiple domains.

• ToAlign: ToAlign (Wei et al., 2021b) uses token-level alignment strategies within Trans-
former architectures to enhance cross-lingual transfer, optimizing the alignment of semantic
representations across languages.

• MetaAlign: MetaAlign (Wei et al., 2021a) is a meta-learning framework for domain
adaptation that dynamically aligns feature distributions across domains by learning domain-
invariant representations.

Graph domain adaptation methods. We compare DeSGraDA with six graph domain adaption
methods:

• DEAL: DEAL (Yin et al., 2022) uses domain adversarial learning to align graph representa-
tions across different domains without labeled data, overcoming discrepancies between the
source and target domains.

• CoCo: CoCo (Yin et al., 2023) leverages contrastive learning to align graph representations
between source and target domains, enhancing domain adaptation by promoting intra-domain
cohesion and inter-domain separation in an unsupervised manner.

• SGDA: SGDA (Qiao et al., 2023) utilizes labeled data from the source domain and a
limited amount of labeled data from the target domain to learn domain-invariant graph
representations.

• StruRW: StruRW (Liu et al., 2023) introduces a structural re-weighting mechanism that
dynamically adjusts the importance of nodes and edges based on their domain relevance.
It enhances feature alignment by emphasizing transferable structures while suppressing
domain-specific noise.

• A2GNN: A2GNN (Liu et al., 2024a) introduces a novel propagation mechanism to enhance
feature transferability across domains, improving the alignment of graph structures and node
features in an unsupervised setting.

• PA-BOTH: PA-BOTH (Liu et al., 2024b) aligns node pairs between source and target
graphs, optimizing feature correspondence at a granular level to improve the transferability
of structural and feature information across domains.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

J IMPLEMENTATION DETAILS

DeSGraDA and all baseline models are implemented using PyTorch3 and PyTorch Geometric4. We
conduct experiments for DeSGraDA and all baselines on NVIDIA A100 GPUs for a fair comparison,
where the learning rate of Adam optimizer set to 10−4, hidden embedding dimension 256, weight
decay 10−12, and GNN layers 4. Additionally, DeSGraDA and all baseline models are trained
using all labeled source samples and evaluated on unlabeled target samples (Wu et al., 2020). The
performances of all models are measured and averaged on all samples for five different runs.

K MORE EXPERIMENTAL RESULTS

K.1 MORE PERFORMANCE COMPARISON

In this part, we provide additional results for our proposed method DeSGraDA compared with all
baseline models across various datasets, as illustrated in Table 12-15. These results consistently show
that DeSGraDA outperforms the baselines in most cases, validating the superiority of our proposed
method.

Additionally, we find that different domain shift scenarios exhibit similar results in Table 1. However,
Table 2 shows that the P0→P2 scenario yields significantly inferior results compared to P0→P1
and P0→P3. To further understand this phenomenon, we analyze the relevant quantitative statistics
through the calculation of Wasserstein Distances Panaretos & Zemel (2018) between each pair of
sub-datasets. Then, we find that:

• On the SEED and BCI datasets, the adaptation accuracies across the main domain shift
scenarios are consistently clustered and exhibit close values. Specifically, for SEED, the
accuracies are 58.0%, 57.0%, and 55.9% for S0→S1, S0→S2, and S1→S2, with the
corresponding Wasserstein Distances being 0.0052, 0.0047, and 0.0053, respectively. For
BCI, the accuracies for B0→B1, B0→B2, and B1→B2 are 54.1%, 56.2%, and 55.0%, with
Wasserstein Distances of 0.0044, 0.0053, and 0.0051, respectively. These consistently low
values of distributional shift are reflected in the stable adaptation performance observed
across the various subdomain pairs in both datasets.

• On the PROTEINS dataset, both node shift and edge shift scenarios demonstrate a strong
correspondence between adaptation performance and distributional divergence. For the node
domain shift setting, the accuracies for P0→P1, P0→P2, and P0→P3 are 76.3%, 69.2%,
and 77.5%, respectively, with Wasserstein Distances of 0.0087, 0.0187, and 0.0081. For the
edge domain shift setting, the accuracies are 76.8%, 68.6%, and 76.5% for P0→P1, P0→P2,
and P0→P3, with Wasserstein Distances of 0.0089, 0.0254, and 0.0054, respectively. In
both settings, the P0→P2 scenario consistently exhibits the lowest performance and the
highest distributional divergence, demonstrating that substantial domain shifts, as quantified
by larger Wasserstein Distances, lead to pronounced degradation in adaptation performance.

Furthermore, our theoretical analysis in Appendix D also formalizes the connection between domain
divergence and transferability using the Wasserstein Distance, thereby providing additional support
for our empirical findings.

K.2 TRAINING TIME AND MEMORY COMPARISON

We provide detailed comparisons of GPU memory consumption and training time per epoch for
DeSGraDA and other graph domain adaptation methods under identical experimental settings in this
part, as shown in Tables 5 and 6. It is worth noting that the training phase is typically conducted on
more powerful hardware to achieve optimal performance within a reasonable time frame.

3https://pytorch.org/
4https://www.pyg.org/

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 7: The results of DeSGraDA with different widely used graph neural networks (GIN, GCN and
SAGE) on the PROTEINS and DD dataset. Bold results indicate the best performance.

Methods PROTEINS DD

P0→P1 P1→P0 P0→P2 P2→P0 D0→D1 D1→D0 D0→D2 D2→D0

DeSGraDA w GCN 71.9 76.8 64.8 68.6 58.2 70.2 57.6 64.1
DeSGraDA w SAGE 73.9 79.8 65.5 74.5 57.8 71.6 59.1 66.7
DeSGraDA w GIN 74.1 81.5 66.4 78.7 59.3 73.0 61.1 68.8

DeSGraDA 76.3 84.6 69.2 83.6 60.1 76.1 63.9 71.7

Table 8: The results of DeSGraDA with different widely used graph neural networks (GIN, GCN and
SAGE) on the SEED and BCI dataset. Bold results indicate the best performance.

Methods SEED BCI

S0→S1 S1→S0 S0→S2 S2→S0 B0→B1 B1→B0 B0→B2 B2→B0

DeSGraDA w GCN 55.7 54.5 53.7 54.0 52.8 51.6 52.2 54.2
DeSGraDA w SAGE 55.3 54.5 54.2 54.9 52.7 52.2 52.8 54.7
DeSGraDA w GIN 56.6 57.1 55.8 56.9 53.3 52.9 53.8 55.4

DeSGraDA 58.0 58.2 57.0 58.3 54.1 53.6 54.9 56.2

K.3 MORE ABLATION STUDY

To validate the effectiveness of the different components in DeSGraDA, we conduct more experiments
with four variants on DD, SEED, and BCI datasets, i.e., DeSGraDA w CDAN, DeSGraDA w/o PL,
DeSGraDA w/o CF and DeSGraDA w/o TL. The results are shown in Table 10 and 11. From the
results, we have similar observations as summarized in Section 5.3.

Additionally, we conduct ablation studies to examine the effect of directly replacing the SGNs with
commonly used Graph Neural Networks (GNNs) for generating representations for DeSGraDA:
(1) DeSGraDA w GCN: It replaces SGNs with GCN (Kipf & Welling, 2017); (2) DeSGraDA w
GIN: It replaces SGNs with GIN (Xu et al., 2018); (3) DeSGraDA w SAGE: It replaces SGNs with
GraphSAGE (Hamilton et al., 2017). The experimental results across the PROTEINS, DD, SEED,
and BCI datasets are shown in Table 7 and 8. However, the critical aspect of our work lies in the
specific problem we set up, i.e., low-power and distribution shift environments. In this context,
directly replacing SGNs with commonly used GNNs like GIN or GCN is not feasible, as these models
are unsuitable for deployment on low-energy devices. As demonstrated in Section 5.4, GNN-based
methods have much higher energy consumption than the spike-based methods.

K.4 MORE SENSITIVITY ANALYSIS

In this part, we provide additional sensitivity analysis of the proposed DeSGraDA with respect to the
impact of its hyperparameters: the latency step T and initial threshold value V degree

th in SNNs on the
DD, SEED and BCI datasets. The results are illustrated in Figure 8 and 9, where we observe trends
similar to those discussed in Section 5.5.

P0→P1 P1→P0 P0→P2 P2→P0

λ = 0.1 75.3 84.0 68.2 82.5
λ = 0.3 75.4 83.7 68.0 82.8
λ = 0.5 75.3 84.2 68.3 82.9
λ = 0.7 75.8 84.3 68.8 82.8
λ = 0.9 76.3 84.6 69.2 83.6

Table 9: Hyperparameter sensitivity
analysis of λ on the PROTEINS dataset.

Additionally, we conduct a sensitivity analysis of the hy-
perparameter λ in Eq. 9, which balances the adversarial
alignment loss, on the PROTEINS dataset. We vary λ
within the range {0.1, 0.3, 0.5, 0.7, 0.9}. As shown in Ta-
ble 9, the results demonstrate that DeSGraDA consistently
achieves strong performance across different λ values,
with the best result obtained at λ = 0.9. Model perfor-
mance remains stable for moderate to high values of λ,
indicating that the adversarial alignment loss serves as
an effective regularizer without destabilizing the training
process.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

5 6 7 8 9 10
0.55

0.65

0.75

0.85

A
cc

ur
ac

y

D0 -> D1
D1 -> D0

D0 -> D2
D2 -> D0

(a) DD

5 6 7 8 9 10
0.55

0.58

0.61

A
cc

ur
ac

y

S0 -> S1
S1 -> S0

S0 -> S2
S2 -> S0

(b) SEED

5 6 7 8 9 10
0.50

0.53

0.56

0.59

A
cc

ur
ac

y

B0 -> B1
B1 -> B0

B0 -> B2
B2 -> B0

(c) BCI

Figure 8: Hyperparameter sensitivity analysis of latency step T in SNNs on the DD, SEED and BCI
datasets.

0.05 0.1 0.2 0.5 1.0 2.0 5.0

0.55

0.65

0.75

0.85

A
cc

ur
ac

y

D0 -> D1
D1 -> D0

D0 -> D2
D2 -> D0

(a) DD

0.05 0.1 0.2 0.5 1.0 2.0 5.0
0.50

0.55

0.60

0.65

A
cc

ur
ac

y

S0 -> S1
S1 -> S0

S0 -> S2
S2 -> S0

(b) SEED

0.05 0.1 0.2 0.5 1.0 2.0 5.0
0.50

0.53

0.56

0.59

A
cc

ur
ac

y

B0 -> B1
B1 -> B0

B0 -> B2
B2 -> B0

(c) BCI

Figure 9: Hyperparameter sensitivity analysis of the initial threshold V degree
th in SNNs on the DD,

SEED and BCI datasets.

L LIMITATION

The proposed DeSGraDA framework, while demonstrating significant improvements in spiking
graph domain adaptation, does have some limitations. It assumes a substantial domain shift between
the source and target domains, which may not always be applicable in real-world scenarios where
domain shifts are minimal. Additionally, the computational complexity introduced by adversarial
feature distribution alignment and pseudo-label distillation could become a bottleneck, especially
for large-scale datasets. The framework’s sensitivity to hyperparameters, such as time latency and
threshold values, also requires careful tuning for different datasets, which may hinder its practical
application. Furthermore, while the method provides a generalization bound, its robustness in diverse
real-world settings and its ability to address privacy or fairness concerns in sensitive domains remain
underexplored. These aspects highlight opportunities for further refinement and broader applicability
of DeSGraDA.

M THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were only used to improve the clarity, grammar, and fluency of the
manuscript. They were not involved in the development of research ideas, experimental design, data
analysis, or any other aspect of the scientific content.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 10: The results of ablation studies on the DD dataset (source → target). Bold results indicate
the best performance.

Methods D0→D1 D1→D0 D0→D2 D2→D0 D0→D3 D3→D0 D1→D2 D2→D1 D1→D3 D3→D1 D2→D3 D3→D2

DeSGraDA w CDAN 57.3 72.7 59.9 68.8 57.4 58.1 68.1 60.9 75.9 59.3 80.2 77.9
DeSGraDA w/o PL 58.3 71.8 58.1 69.8 57.9 58.2 67.1 59.3 75.1 60.7 79.1 76.8
DeSGraDA w/o CF 51.0 62.0 57.1 61.8 54.0 51.5 59.0 54.3 62.3 52.9 64.1 69.3
DeSGraDA w/o TL 58.0 72.0 60.4 68.2 58.4 58.8 68.7 60.8 77.6 60.5 76.6 77.4

DeSGraDA 60.1 76.1 63.9 71.7 61.1 62.3 73.6 64.2 80.9 64.7 82.0 80.6

Table 11: The results of ablation studies on the SEED and BCI datasets (source → target). Bold
results indicate the best performance.

Methods SEED BCI

S0→S1 S1→S0 S0→S2 S2→S0 S1→S2 S2→S1 B0→B1 B1→B0 B0→B2 B2→B0 B1→B2 B2→B1

DeSGraDA w CDAN 54.1 55.2 53.5 56.8 53.9 55.7 52.0 52.3 51.5 53.6 52.7 52.4
DeSGraDA w/o PL 55.6 55.7 54.3 56.1 53.7 54.5 53.3 52.9 52.6 52.8 52.1 52.2
DeSGraDA w/o CF 29.7 47.2 45.8 47.5 45.6 32.8 43.0 44.3 44.2 44.7 33.1 34.2
DeSGraDA w/o TL 53.8 54.6 53.2 55.4 52.0 53.4 51.1 50.9 52.2 53.9 50.5 51.3

DeSGraDA 58.0 58.2 57.0 58.3 55.9 58.1 54.1 53.6 54.9 56.2 55.0 54.6

Table 12: The graph classification results (in %) on PROTEINS under node density domain shift
(source→target). P0, P1, P2, and P3 denote the sub-datasets partitioned with node density. Bold
results indicate the best performance.

Methods P0→P1 P1→P0 P0→P2 P2→P0 P0→P3 P3→P0 P1→P2 P2→P1 P1→P3 P3→P1 P2→P3 P3→P2 Avg.

WL subtree 69.1 59.7 61.2 75.9 41.6 83.5 61.5 72.7 24.7 72.7 63.1 62.9 62.4
GCN 73.7±0.3 82.7±0.4 57.6±0.2 84.0±1.3 24.4±0.4 17.3±0.2 57.6±0.1 70.9±0.7 24.4±0.5 26.3±0.1 37.5±0.2 42.5±0.8 49.9
GIN 71.8±2.7 70.2±4.7 58.5±4.3 56.9±4.9 74.2±1.7 78.2±3.3 63.3±2.7 67.1±3.8 35.9±4.2 61.0±2.4 71.9±2.1 65.1±1.0 64.5
GMT 73.7±0.2 82.7±0.1 57.6±0.3 83.1±0.5 75.6±1.4 17.3±0.6 57.6±1.5 73.7±0.6 75.6±0.4 26.3±1.2 75.6±0.7 42.4±0.5 61.8
CIN 74.1±0.6 83.8±1.0 60.1±2.1 78.6±3.1 75.6±0.2 74.8±3.7 63.9±2.7 74.1±0.6 57.0±4.3 58.9±3.3 75.6±0.7 63.6±1.0 70.0
SpikeGCN 71.8±0.9 80.9±1.2 64.9±1.4 79.1±2.2 71.1±1.9 73.8±1.6 62.4±2.0 71.8±2.3 70.1±2.4 66.9±1.9 72.1±1.9 64.5±1.7 70.9
DRSGNN 73.6±1.1 81.3±1.5 64.6±1.2 80.6±1.4 70.2±1.7 76.1±2.3 64.1±1.5 71.9±1.9 70.4±2.0 64.1±3.1 74.7±1.4 64.3±1.1 71.3

CDAN 75.9±1.0 83.1±0.6 60.8±0.6 82.6±0.2 75.8±0.3 70.9±2.4 64.7±0.3 77.7±0.6 73.3±1.8 75.4±0.7 75.8±0.4 67.1±0.8 73.6
ToAlign 73.7±0.4 82.7±0.3 57.6±0.6 82.7±0.8 24.4±0.1 82.7±0.3 57.6±0.4 73.7±0.2 24.4±0.7 73.7±0.3 24.4±0.5 57.6±0.4 59.6
MetaAlign 74.3±0.8 83.3±2.2 60.6±1.7 71.2±2.1 76.3±0.3 77.3±2.4 64.6±1.2 72.0±1.0 76.0±0.5 73.3±1.8 74.4±1.7 56.9±1.4 71.7

DEAL 75.4±1.2 78.0±2.4 68.1±1.9 80.8±2.1 73.8±1.4 80.6±2.3 65.7±1.7 74.7±2.4 74.7±1.6 71.0±2.1 68.1±2.6 70.3±0.4 73.4
CoCo 74.8±0.6 84.1±1.1 65.5±0.4 83.6±1.1 72.4±2.9 83.1±0.4 69.7±0.5 75.8±0.7 71.4±2.3 73.4±1.3 72.5±2.7 66.4±1.7 74.4
SGDA 64.2±0.5 61.0±0.7 66.9±1.2 61.9±0.9 65.4±1.6 66.5±1.0 64.6±1.1 60.1±0.5 66.3±1.3 59.3±0.8 66.0±1.6 66.2±1.3 64.1
StruRW 71.9±2.3 82.6±1.9 66.7±1.8 74.5±2.8 52.8±1.9 57.3±2.0 62.2±2.4 63.3±2.1 59.5±1.6 56.3±2.0 66.6±2.3 52.4±2.0 63.8
A2GNN 65.7±0.6 65.9±0.8 66.3±0.9 65.6±1.1 65.2±1.4 65.6±1.3 65.9±1.7 65.8±1.6 65.0±1.5 66.1±1.2 65.2±1.9 65.9±1.8 65.7
PA-BOTH 61.0±0.8 61.2±1.3 60.3±0.6 66.7±2.1 63.7±1.5 61.9±2.0 66.2±1.4 69.9±2.3 68.0±0.7 69.4±1.8 61.5±0.4 67.6±1.0 64.9

DeSGraDA 76.3±1.9 84.6±2.5 69.2±2.3 83.6±2.6 77.5±2.2 83.7±1.9 69.8±2.4 74.0±1.6 76.2±2.0 73.0±2.1 77.8±2.3 70.5±1.7 76.4

Table 13: The graph classification results (in %) on PROTEINS under edge density domain shift
(source→target). P0, P1, P2, and P3 denote the sub-datasets partitioned with edge density. Bold
results indicate the best performance.

Methods P0→P1 P1→P0 P0→P2 P2→P0 P0→P3 P3→P0 P1→P2 P2→P1 P1→P3 P3→P1 P2→P3 P3→P2 Avg.

WL subtree 68.7 82.3 50.7 82.3 58.1 83.8 64.0 74.1 43.7 70.5 71.3 60.1 67.5
GCN 73.4±0.2 83.5±0.3 57.6±0.2 84.2±1.8 24.0±0.1 16.6±0.4 57.6±0.2 73.7±0.4 24.0±0.1 26.6±0.2 39.9±0.9 42.5±0.1 50.3
GIN 62.5±4.7 74.9±3.7 53.0±4.6 59.6±4.2 73.7±0.8 64.7±3.4 60.6±2.7 69.8±0.6 31.1±2.8 63.1±3.4 72.3±2.7 64.6±1.4 62.5
GMT 73.4±0.3 83.5±0.2 57.6±0.1 83.5±0.3 24.0±0.1 83.5±0.1 57.4±0.2 73.4±0.2 24.1±0.1 73.4±0.3 24.0±0.1 57.6±0.2 59.6
CIN 74.5±0.2 84.1±0.5 57.8±0.2 82.7±0.9 75.6±0.6 79.2±2.2 61.5±2.7 74.0±1.0 75.5±0.8 72.5±2.1 76.0±0.3 60.9±1.2 72.9
SpikeGCN 71.8±0.8 79.5±1.3 63.8±1.0 78.9±1.4 68.6±1.1 76.5±1.8 62.3±2.2 72.1±1.5 68.1±2.1 67.2±1.9 69.2±2.1 64.2±1.8 70.2
DRSGNN 72.6±0.6 80.1±1.6 63.1±1.4 79.5±1.8 70.4±1.9 78.6±2.1 64.1±1.7 70.7±2.3 67.8±1.6 65.6±1.4 71.3±1.3 62.1±1.0 70.5

CDAN 72.2±1.8 82.4±1.6 59.8±2.1 76.8±2.4 69.3±4.1 71.8±3.7 64.4±2.5 74.3±0.4 46.3±2.0 69.8±1.8 74.4±1.7 62.6±2.3 68.7
ToAlign 73.4±0.1 83.5±0.2 57.6±0.1 83.5±0.2 24.0±0.3 83.5±0.4 57.6±0.1 73.4±0.1 24.0±0.2 73.4±0.2 24.0±0.1 57.6±0.3 59.6
MetaAlign 75.5±0.9 84.9±0.6 64.8±1.6 85.9±1.1 69.3±2.7 83.3±0.6 68.7±1.2 74.2±0.7 73.3±3.3 72.2±0.9 69.9±1.8 63.6±2.3 73.8

DEAL 76.5±0.4 83.1±0.4 67.5±1.3 77.6±1.8 76.0±0.2 80.1±2.7 66.1±1.3 75.4±1.5 42.3±4.1 68.1±3.7 73.1±2.2 67.8±1.2 71.1
CoCo 75.5±0.2 84.2±0.4 59.8±0.5 83.4±0.2 73.6±2.3 81.6±2.4 65.8±0.3 76.2±0.2 75.8±0.2 71.1±2.1 76.1±0.2 67.1±0.6 74.2
SGDA 63.8±0.6 65.2±1.3 66.7±1.0 59.1±1.5 60.1±0.8 64.4±1.2 65.2±0.7 63.9±0.9 64.5±0.6 61.1±1.3 58.9±1.4 64.9±1.2 63.2
StruRW 72.6±2.2 84.5±1.7 66.2±2.2 72.5±2.4 48.9±2.0 56.5±2.3 63.1±1.8 64.4±2.4 55.8±2.0 56.6±2.4 67.0±2.6 42.4±2.0 62.5
A2GNN 65.4±1.3 66.3±1.1 68.2±1.4 66.3±1.2 65.4±0.7 65.9±0.9 66.9±1.3 65.4±1.2 65.6±0.9 65.5±1.2 66.1±2.0 66.0±1.8 66.1
PA-BOTH 63.1±0.7 67.2±1.1 64.3±0.5 72.1±1.8 66.3±0.7 64.1±1.2 69.7±2.1 67.5±1.8 61.2±1.4 67.7±2.3 61.2±1.6 65.5±0.6 65.9

DeSGraDA 76.8±1.9 87.0±2.1 68.6±1.8 83.7±2.5 76.5±2.8 83.9±2.3 70.3±1.8 75.4±2.2 76.7±1.9 73.7±2.7 79.9±3.2 67.9±1.3 76.7

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 14: The graph classification results (in %) on DD under node density domain shift
(source→target). D0, D1, D2, and D3 denote the sub-datasets partitioned with node. Bold re-
sults indicate the best performance.

Methods D0→D1 D1→D0 D0→D2 D2→D0 D0→D3 D3→D0 D1→D2 D2→D1 D1→D3 D3→D1 D2→D3 D3→D2 Avg.

WL subtree 49.2 56.8 29.6 20.1 21.0 18.4 59.5 50.5 57.3 48.1 63.9 66.9 49.3
GCN 48.9±2.8 59.0±1.7 20.7±2.0 27.3±2.3 15.1±1.8 26.9±2.2 61.6±1.9 53.6±1.5 68.1±1.6 52.9±2.6 64.9±2.1 69.7±2.3 47.4
GIN 48.8±1.9 24.7±2.1 44.1±1.8 22.4±2.3 57.0±2.1 18.4±2.0 73.0±1.8 52.5±2.3 63.2±1.6 53.6±1.5 70.3±2.6 69.4±1.8 49.6
GMT 49.1±1.9 32.9±2.2 31.8±1.8 27.3±2.3 52.5±1.5 27.6±1.8 75.4±1.9 53.2±2.1 74.1±2.6 57.9±2.4 70.9±1.8 71.1±2.7 52.0
CIN 50.4±1.8 18.4±2.0 21.2±2.1 36.8±1.8 43.0±2.1 22.9±1.9 53.4±1.7 56.5±1.5 62.3±1.6 53.3±1.9 75.0±2.1 69.3±2.0 51.4
SpikeGCN 53.4±1.3 61.5±1.1 28.4±2.1 48.0±1.4 20.8±1.4 51.2±1.4 69.3±2.0 62.4±1.6 77.9±1.1 64.1±1.5 76.8±2.1 71.9±1.8 57.1
DRSGNN 52.1±1.5 69.7±1.8 28.7±1.7 42.4±2.1 18.6±2.0 48.3±2.8 79.5±2.0 59.5±1.5 77.7±1.9 63.1±1.5 76.4±2.1 72.1±2.3 57.4

CDAN 49.6±2.2 69.8±1.6 44.1±1.8 33.9±1.9 43.1±2.4 42.3±2.0 70.5±1.8 60.3±2.2 76.6±2.1 60.1±1.4 75.8±2.5 70.5±2.3 58.1
ToAlign 54.0±2.4 71.0±2.1 34.8±1.8 46.9±1.9 29.6±2.3 45.7±1.8 71.9±2.2 61.6±2.1 76.7±1.9 62.8±2.3 76.4±2.0 71.0±1.3 58.5
MetaAlign 48.1±2.0 70.0±1.9 30.7±1.4 18.4±1.8 24.9±2.3 18.4±1.9 70.1±2.3 51.9±1.5 74.6±2.4 51.9±2.2 75.1±1.8 69.3±1.7 52.7

DEAL 57.9±2.3 71.6±2.0 57.2±1.8 59.3±1.5 62.2±2.2 59.4±1.9 72.1±2.3 63.9±1.7 78.2±2.2 62.6±1.8 78.3±2.1 77.3±1.9 66.5
CoCo 59.5±2.1 70.4±1.7 56.6±2.6 58.3±2.2 59.4±1.9 53.9±2.5 74.7±1.4 62.7±2.0 70.6±1.6 63.1±2.0 77.2±1.7 76.4±2.4 65.2
SGDA 57.7±1.5 63.8±2.1 49.8±2.3 54.1±1.7 42.6±2.3 54.9±1.6 74.1±2.8 63.0±2.3 78.7±2.7 64.5±2.1 76.8±2.2 74.2±1.6 62.9
StruRW 50.0±2.3 53.1±1.9 32.4±2.4 40.6±2.1 26.0±2.4 38.4±2.0 73.3±1.6 61.7±1.8 71.2±1.9 53.6±2.3 75.2±2.1 71.0±2.2 53.9
A2GNN 56.1±2.0 68.5±1.6 48.7±2.1 52.5±1.8 42.9±1.4 48.4±1.8 70.8±1.7 51.9±2.0 76.3±2.2 51.9±1.8 75.1±1.6 69.3±2.4 59.4
PA-BOTH 51.4±1.8 62.7±2.1 31.8±2.0 40.5±2.3 28.5±1.9 45.0±2.2 69.5±1.6 61.0±1.5 68.4±1.7 57.8±2.2 73.0±2.4 73.3±2.5 55.3

DeSGraDA 60.1±2.2 76.1±1.8 63.9±1.9 71.7±2.0 61.1±1.9 62.3±1.6 73.6±2.3 64.2±2.0 80.9±2.2 64.7±1.8 82.0±2.5 80.6±2.1 70.1

Table 15: The graph classification results (in %) on DD under edge density domain shift
(source→target). D0, D1, D2, and D3 denote the sub-datasets partitioned with node. Bold re-
sults indicate the best performance.

Methods D0→D1 D1→D0 D0→D2 D2→D0 D0→D3 D3→D0 D1→D2 D2→D1 D1→D3 D3→D1 D2→D3 D3→D2 Avg.

WL subtree 51.5 59.5 28.6 23.8 23.4 19.4 56.8 51.2 54.9 50.2 61.5 57.3 44.8
GCN 49.6±2.2 62.7±2.3 22.8±2.0 26.9±1.4 13.9±2.0 22.6±1.9 74.6±1.3 58.7±2.4 75.1±1.1 52.2±1.6 76.6±1.3 67.5±2.1 50.3
GIN 48.9±2.8 25.9±1.8 44.6±1.5 23.0±2.0 57.2±1.8 19.4±2.0 71.8±1.2 54.8±2.4 62.2±1.5 52.7±1.9 71.3±1.7 67.5±2.4 50.0
GMT 50.8±2.2 42.7±2.5 34.9±2.7 34.8±1.8 48.2±2.0 29.6±2.5 68.9±1.5 52.6±1.6 71.2±1.5 57.1±2.1 75.9±1.4 67.8±1.6 52.9
CIN 50.4±2.2 29.4±2.0 23.1±1.4 31.6±1.7 42.8±2.0 24.6±1.6 54.2±1.2 57.5±1.6 73.5±2.2 52.7±1.3 75.6±1.6 67.1±2.1 48.6
SpikeGCN 56.4±1.9 70.5±2.1 34.1±2.6 53.2±2.9 20.7±1.6 49.1±1.7 79.7±2.4 66.5±1.2 77.3±2.1 61.7±1.6 78.7±2.0 71.0±1.5 59.9
DRSGNN 55.3±2.4 69.9±2.2 27.4±2.0 47.6±2.7 17.9±1.6 47.4±2.1 70.7±2.0 65.9±1.7 76.9±2.1 62.2±1.4 78.5±1.8 71.4±1.6 57.6

CDAN 49.7±1.9 65.3±2.3 45.4±1.8 43.1±2.1 42.8±1.7 51.8±1.6 71.5±2.0 64.9±1.6 74.5±2.5 59.2±2.2 77.9±2.1 69.0±1.5 59.5
ToAlign 52.3±2.5 66.5±2.0 47.1±1.6 45.6±1.8 41.2±2.2 51.2±1.8 73.9±1.9 65.9±2.3 77.6±2.0 60.8±1.6 78.1±2.4 70.2±2.1 60.9
MetaAlign 48.1±2.0 67.3±1.7 32.8±2.0 19.4±1.8 23.9±2.5 19.4±1.7 70.1±1.8 51.9±2.1 77.3±3.2 51.9±1.6 76.1±1.8 70.5±2.0 50.7

DEAL 58.4±1.5 70.6±2.0 63.9±1.6 54.1±2.1 66.9±2.4 51.8±1.6 75.1±2.5 67.4±1.8 77.8±1.9 60.3±2.1 80.5±1.8 75.0±2.0 66.8
CoCo 60.9±2.3 69.6±1.2 62.2±2.2 66.2±2.0 66.0±1.8 52.5±2.3 71.1±2.4 65.3±1.5 78.9±1.3 60.3±1.4 79.6±2.1 73.5±1.8 67.3
SGDA 57.2±1.5 68.8±1.8 42.3±2.0 61.4±1.7 39.8±2.2 52.0±1.8 66.7±1.9 66.4±2.3 78.1±2.1 63.6±2.6 73.6±1.6 70.8±1.9 61.7
StruRW 52.5±2.5 56.7±1.3 39.0±2.3 40.1±2.0 24.4±2.1 29.7±2.4 75.4±1.7 63.3±2.0 74.8±1.6 53.4±1.5 75.4±1.4 68.7±1.7 54.6
A2GNN 53.1±2.0 65.3±1.7 42.8±1.9 40.5±2.1 33.9±2.5 39.4±1.8 69.8±2.2 61.9±1.9 77.3±2.1 61.9±2.0 76.1±2.3 67.2±1.8 57.4
PA-BOTH 51.9±1.8 50.6±2.0 35.8±1.5 37.7±1.7 27.6±2.3 43.7±1.9 62.1±1.6 61.2±1.9 65.7±2.0 58.2±1.5 73.3±1.8 69.5±2.5 53.1

DeSGraDA 62.1±2.0 72.0±2.4 69.1±1.7 71.7±2.2 68.7±1.6 58.6±2.1 76.1±1.9 66.4±1.7 80.7±2.2 63.6±1.6 81.9±1.5 78.6±2.3 70.8

29

	Introduction
	Related Work
	Preliminaries
	Proposed Methodology
	Degree-Conscious Spiking Representation
	Temporal Distribution Alignment
	Pseudo-label Distillation for Discrimination Learning
	Learning Framework

	Experiment
	Experimental Settings
	Performance Comparison
	Ablation Study
	Energy Efficiency Analysis
	Sensitivity Analysis

	Conclusion
	Ethics Statement
	DA Bound for Graphs
	Spiking Neural Networks
	Proof of Proposition 1
	Proof of Theorem 2
	Generalization Bound with Pseudo-label Distillation Module
	Algorithm
	Complexity Analysis
	Dataset
	Dataset Description
	Data processing

	Baselines
	Implementation Details
	More experimental results
	More performance comparison
	Training time and memory comparison
	More Ablation study
	More Sensitivity Analysis

	Limitation
	The Use of Large Language Models (LLMs)

