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ABSTRACT

Spiking Graph Networks (SGNs) have demonstrated significant potential in graph
classification by emulating brain-inspired neural dynamics to achieve energy-
efficient computation. However, existing SGNs are generally constrained to in-
distribution scenarios and struggle with distribution shifts. In this paper, we first
propose the domain adaptation problem in SGNs, and introduce a novel frame-
work named Degree-Consicious Spiking Graph for Cross-Domain Adaptation
(DeSGraDA). DeSGraDA enhances generalization across domains with three key
components. First, we introduce the degree-conscious spiking representation mod-
ule by adapting spike thresholds based on node degrees, enabling more expressive
and structure-aware signal encoding. Then, we perform temporal distribution
alignment by adversarially matching membrane potentials between domains, ensur-
ing effective performance under domain shift while preserving energy efficiency.
Additionally, we extract consistent predictions across two spaces to create reliable
pseudo-labels, effectively leveraging unlabeled data to enhance graph classification
performance. Furthermore, we establish the first generalization bound for SGDA,
providing theoretical insights into its adaptation performance. Extensive experi-
ments on benchmark datasets validate that DeSGraDA consistently outperforms
state-of-the-art methods in both classification accuracy and energy efficiency.

1 INTRODUCTION

Spiking Graph Networks (SGNs) (Zhu et al.l 2022; Xu et al., 2021b) as a specialized neural network
combining Spiking Neural Networks (SNNs) (Gerstner & Kistler, [2002} [Maass| [1997)) with Graph
Neural Networks (GNNs) (Kipf & Wellingl 2017 Scarselli et al., 2009), have emerged as a ground-
breaking paradigm in artificial neural networks, uniquely designed to process graph-structured data
by mimicking the bio-inspired mechanisms of the human brain. SGNs convert graph features into
binary spiking signals, replacing matrix multiplications with simple additions to achieve high energy
efficiency. They further exploit temporal spiking representations, encoding information in spike
timing to enable asynchronous, event-driven processing. It is particularly critical for applications
where energy consumption is a bottleneck, such as real-time brain-computer interfaces (Kumar et al.}
2022; Nason et al., [2020), large-scale sensor networks (Yao et al., [2021; /Wilson et al., 2024)), and
temporal analysis (Yin et al.|[2024; Zhu et al., [2024; Zhou et al., 2021}

Despite their potential for energy-efficient graph representation, existing SGNs are primarily studied
under closed-world assumptions, where source and target data share identical distributions (Yin
et al., |2024; Duan et al} 2024). This assumption is inadequate for many real-world scenarios,
such as brain—computer interfaces (BCIs) (Binnie & Prior, [1994; Biasiucci et al.l 2019) where
distribution shifts degrade performance (Zhao et al., [2020; [2021)). Although recent advancements
in transfer learning for SNNs have shown promise in vision tasks by leveraging neuromorphic
adaptations (Zhan et al.| 2024; |Guo et al.| [2024), they are primarily designed for grid-like inputs
and fail to generalize to graph data. The non-Euclidean nature and inherent irregularity of graphs
introduce fundamental challenges (Bronstein et al.| 2017), as existing methods neglect topological
dependencies and message-passing mechanisms crucial for effective graph learning. Consequently,
directly applying these methods to SGNs results in suboptimal adaptation under domain shifts.

In this paper, we investigate the development of energy-efficient SGNs for scenarios involving
distribution shifts. However, designing an effective domain adaptation framework for SGN’s poses
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several fundamental challenges: (1) How fo adapt spiking representations to account for the structural
diversity of graph-structured data? Traditional SGNs typically assign a fixed firing threshold to all
nodes, ignoring the structural diversity in graphs (Xu et al.,2021a; |Yin et al., 2024). This uniform
treatment leads to under-activation in nodes with fewer connections, where important features are
missed, and over-activation in highly connected nodes, where excessive signals distort the learned
representation. Both cases reduce the model’s representational effectiveness. (2) How to design
domain adaptation strategies that account for the temporal-based representations? Unlike static
neural models, SGNs encode information through temporal spike sequences, making them more
sensitive to domain shifts (Zhou et al., [2023; Zhan et al., |2021). Existing methods fail to address
how these shifts impact the spike sequences, resulting in suboptimal alignment across domains. (3)
How to theoretically characterize and bound the generalization error of SGNs under domain shift?
Despite empirical advances (Zhang et al., 2021; Zhan et al., 2024), the theoretical understanding of
SGN domain adaptation remains limited. Without a principled framework to quantify generalization
under distribution shift, it is difficult to design adaptation methods with guaranteed performance.

To tackle these challenges, we propose a framework called Degree-Conscious Spiking Graph for
Cross-Domain Adaptation (DeSGraDA). This has three components: (1) degree-conscious spiking
representation, which assigns variable firing thresholds to nodes based on their degrees, enabling
adaptive control over spiking sensitivity. This degree-conscious mechanism balances the firing
frequencies of high- and low-degree nodes, preventing information loss in sparsely connected
nodes and avoiding distortion from excessive signals in highly connected ones, thus enhancing the
expressiveness of the spiking representations; (2) temporal distribution alignment, which explicitly
aligns the time-evolving spiking representations between the source and target domains. By leveraging
membrane potential dynamics as evolving signals, the model captures domain-specific patterns,
improving robustness to temporal shifts; and (3) pseudo-label distillation assigns reliable pseudo-
labels by aligning consistent predictions from shallow and deep network layers. We also demonstrate
that this pseudo-label distillation module can effectively reduce a generalization bound tailored for
spiking graph domain adaptation. In summary, DeSGraDA provides a simple yet effective solution to
a novel and underexplored problem, and offers deep insights into the spiking graph domain adaptation.

Our contributions can be summarized as follows: (1) Problem Formulation: We first introduce the
spiking graph domain adaptation for graph classification, highlighting the challenges posed by the
inflexible threshold mechanism of SGNs and theoretical limitations that hinder effective adaptation.
(2) Novel Architecture and Theoretical Analysis: We propose DeSGraDA, a framework combining
degree-conscious spiking representation and temporal distribution alignment. Moreover, we provide
a generalization bound for spiking graph domain adaptation. (3) Extensive Experiments. We
evaluate the proposed DeSGraDA on extensive spiking graph domain adaptation learning datasets,
demonstrating that it can outperform various state-of-the-art methods.

2 RELATED WORK

Domain Adaptation (DA). DA transfers knowledge from a labeled source domain to an unlabeled
target domain by mitigating the distributional shift between the two domains (Redko et al., 2017}
Long et al.,|2018}; [Shen et al.,|2018)). It has been widely applied to vision and language tasks (Wei
et al.} 2021bga; Shi et al., 2024). Recently, DA has been extended to graph data to address the unique
challenges posed by complex relationships, leading to the emergence of Graph Domain Adaptation
(GDA) (You et al., [2023; |L1u et al., 2024a} |Cai et al., [2024). Most existing GDA approaches first
leverage GNNs to generate node and graph representations (Zhu et al., 20215 |Y1in et al., 20225 |Liu et al.|
2024b), followed by adversarial learning to implicitly align feature distributions and reduce domain
discrepancies. They also apply structure-aware strategies to explicitly align graph-level semantics
and topological structures, incorporate spectral contrastive alignment to capture domain-invariant
spectral patterns, and enforce smoothness constraints to promote consistent feature propagation across
domains (Luo et al., [2024; Zhang et al., 2025} |Chen et al., 2025b). However, GDA remains under-
explored in the context of spiking graphs, where energy efficiency becomes a critical requirement for
real-world applications. To bridge this gap, we introduce the novel problem of Spiking Graph Domain
Adaptation (SGDA), extending GDA to spiking graphs for energy-efficient domain adaptation.

Spiking Graph Networks (SGNs). SGNs are a specialized neural network combining SNNs (Ger
stner & Kistler| 2002; Maass, [1997) with GNNs, preserving energy efficiency while achieving
competitive performance on various tasks (Li et al.l 2023} [Yao et al.l |2023; [Duan et al.| [2024).
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Existing research on SGNs focuses on capturing temporal information within graphs and enhancing
scalability. For instance, (Xu et al., 2021a)) utilizes spatial-temporal feature normalization within
SNNss to effectively process dynamic graph data, ensuring robust learning and improved performance.
(Zhao et al. 2024) proposes a method that adapts to evolving graph structures through a novel
architecture that updates node representations in real time. Additionally, (Yin et al.,|2024)) adapts
SNNs to dynamic graph settings and employs implicit differentiation for the node classification task.
However, existing methods still suffer from data distribution shift issues when the training and test
data come from different domains, resulting in degraded performance and generalization. To tackle
these challenges, we propose a novel domain adaptation method for spiking graph networks.

3 PRELIMINARIES

Problem Setup. Given a graph G = (V, E, X) with node set V, edge set F, and node attribute
matrix X. To construct spiking-compatible inputs for SGNs, we sample binary features .S from the
Bernoulli distribution with probability of X (i.e., S ~ Ber(X)) as input of SGNs (Zhao et al., [2024).
In this paper, we focus on the problem of spiking GDA for graph classification. The source domain
D* = {(G%,y$)} Y, is labeled, where N* is the number of source-domain graphs G and y; is the
label of G%. The target domain D = {G*}™*, is unlabeled and contains N'* graphs. Both domains

share the same label space ) but can havej: cfifferent graph topologies or attribute distributions.

Domain Adaptation with Optimal Transport (OT). Following (You et al., 2023), we factorize a
trained model h as g o f, where f : D — R is the feature extractor (Z = f(D))and g : R? s+ Y
is the discriminator (Y = ¢(Z)). For simplicity, we focus on binary classification with ) = [0, 1].
Denote the classifier predicting labels from the feature representation as § : R% — ). The source and
target risks are given by és(g, ) = 7~ S 19(Zn)—§(Zy) | and er(g, §) = Epyp(2)|9(Z) —3(Z))-
DA with OT (Villani et al.| 2008)) addresses covariate shift by optimally transporting masses between
source and target distributions while minimizing cost. Theorem [I|shows that the generalization gap
depends on both domain divergence 2C, W1 (Pg(Z),Pr(Z)) and model discriminability w.

Theorem 1 (Shen et al.||2018) Assume that the discriminator g is Cy-Lipschitz. Let H := {g : Z —
YV} (where Z is the feature space) be the set of bounded real-valued functions with pseudo-dimension
Pdim(H) = d. For any g € H, the following holds with probability at least 1 — §:

. 4d N 1 1
er(9,9) <és(9,9) + 1| —log [ =2 ) + —1log [ = +2C,W1(Ps(2),Pr(2)) + w,
Ng d Ng 1)

where w=min {es(g,9) + er(g,§)} is the discriminative ability to capture source and target

llgllip<Cy
data, and W1 (P, Q) is the distribution divergence defined in (Redko et al. 2017, |Shen et al.| 2018).

Applying OT-based DA methods to graph data introduces challenges due to the non-Euclidean nature
of graphs and intricate dependencies between nodes. [You et al.|(2023)) extends the OT-based DA
framework to graphs and provides a generalization bound for GDA. Details are in Appendix [A]

Spiking Graph Networks (SGNs). Spiking Neural Networks (SNNs)(Maass), |1997; (Gerstner &
Kistler, 2002; [Bohte et al.,[2000) are brain-inspired models offering notable advantages in temporal
information processing and energy efficiency. More details are in Appendix[B] SGNs are a specialized
form of SNNs tailored for graph data (Xu et al.,|2021a; |Zhu et al.,2022), where each node is modeled
as a spiking neuron. The membrane of each node evolves based on both the temporal spiking
dynamics and the graph’s structural connectivity. Let u, ; be the membrane potential of node 7 at
latency step 7. SGNs first updates the membrane potentials via input aggregation:

Urg1,i = MUr; — Vinsri) + Zj wij A(A, s75) + b, (D

where s ; is the spiking representation, A € (0, 1) is the leak factor, Vyy, is the firing threshold, b; is
the bias, w;; is the synaptic weight from node j to node ¢, A is the adjacency matrix, and A is the
graph-based aggregation operation. Next, spikes are triggered through thresholding:

Sty = H(urg1,0 — Van)y  Urg1,i = (1= S741,0)Urg1,i + Sri1,i Vieset (2)
where Viese: is the reset potential, and H(z) is the Heaviside step function, which serves as the
non-differentiable spiking function. Finally, the neuron is reset upon firing.
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Figure 1: Overview of the proposed DeSGraDA. Degree-Conscious Spiking Representation generates
source and target domain spiking representations by adapting neuron firing threshold based on
node degrees. To align domain distributions, Temporal Distribution Alignment leverages adversarial
training on temporal membrane potential to counter domain discrimination. Furthermore, Pseudo-labe
Distillation is employed to identify reliable target samples and reinforce overall model performance.

4 PROPOSED METHODOLOGY

This paper proposes a novel framework DeSGraDA for the problem of spiking graph domain adapta-
tion. DeSGraDA consists of three parts: Degree-Conscious Spiking Representation (Section[4.T)),
which assigns adaptive firing thresholds based on node degrees to address the limitations of rigid,
fixed-threshold architectures; Temporal Distribution Alignment (Section @, which employs
adversarial training on temporal membrane potentials against a domain discriminator to align spiking
dynamics across domains; and Pseudo-label Distillation (Section[#.3) further applies the pseudo-
label to enhance model performance. We also provide a theoretical generalization bound to support
the effectiveness of DeSGraDA. An overview of the framework is in Figure[T}

4.1 DEGREE-CONSCIOUS SPIKING REPRESENTATION

First, we study the disadvantages of . PROTEINS bD
directly applying SNNs to graphs and S Susresion Weighs
then propose the degree-conscious [ (e Thrstiokiy
spiking representation module. Ex-

isting SGNs (L1 et al.l [2023; |Duan
et al.| [2024) usually employ a fixed
global threshold (Vy, in Eq.[T]and [2) T
for firing. Assume that the membrane
potential of node w, ; follows the nor-
mal distribution N '(p,0%) (Kipf &
Welling, [2016). The following Proposition shows that the high-degree nodes are more likely to
trigger spikes than the low-degree ones. Proof is in Appendix [C|
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Figure 2: Correlation between spiking frequency and aggre-
gation weights under fixed thresholds on different datasets.

Proposition 1 With aggregation operation in SGNs (i.e., A in Eq.[I), the expectation of the updated

2
node membrane potential is: E(u,q1;) ~ N ((1 + ZjeN(i) ww> i, (1 + Z]EN(Z») wij) 02>,
where N (i) is the set of node i’s neighbors, and w;j is the weight between nodes i and j.

From Proposition [I} we observe that node 4 follows a normal distribution with a mean of (1 +
> JENG) w;;) . determined by the aggregated weights of its neighboring nodes We conduct an
experiment to investigate the relationship between the aggregated weight (> JEN(D) w;;) and spiking
frequency (i.e., count of ur > V) for a fixed threshold V;;,. As shown in Figure |z[, the spiking
frequency and aggregation weights under fixed thresholds exhibit a relatively high correlation
coefficient, indicating that nodes with higher degrees tend to accumulate more features from neighbors,
making it easier to trigger spikes than those with fewer neighbors. Fixed thresholds inherently bias
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spiking activation toward high-degree nodes, leading to under-representation of structurally important
yet sparsely connected nodes and undermining both expressiveness and generalization in SGNs.

To alleviate this problem, we propose the use of degree-conscious thresholds. Specifically, let B;’ be
the set of degrees for the nodes in graph G?. We collect all unique node degrees across the source
domain graphs with B* = set(B; U - - - U BS _), where set(-) operation is an unordered sequence of
distinct elements. With the observatlon frorn Proposmon [[] we propose setting higher thresholds for
high-degree nodes and lower for low-degree nodes. For node v with degree d;, we have:

ds dS 7ds
s = Hlury = Vi), Vil = (L= Ve, +ash,

x5 a )
Ur4ilw = A(U-,-,U - V;‘/hST,U + ZjEN(U) wmA (A, 87—71;) + bu

where V. h” is the threshold for nodes with degree d} € B?, initially set to V4, and « is a hyper-
parameter. sﬁl- is the average of splklng representat10n si W1th degree d; on latency step 7. In Eq.|3 l
we dynamlcally update the threshold Vt h“q, 4 With (1 - )Vt h” + asf-“,, based on the average sp1k1ng

frequency sm) of nodes with degree dS Consequently, high-degree nodes typically exhibit higher 5 sm,,

resulting in increased thresholds Vt h”T 1 to suppress over-activation, while low-degree nodes yield
lower thresholds to enhance activation, enabling adaptive spiking control across structurally diverse
nodes. For each node v in graph G, we calculate the membrane potential u; ,, and summarize all
the node representations with a readout function (Xu et al.,|2018)) into the graph level representation:

sg: = READOUT ({s? }ver) : @)

where 7' is the total number of latency steps. Finally, we output the prediction §¢,. = H (sg:) with a
classifier H () by minimizing the source classification loss Ls = Eg:epsl(y¢:, Y- ), where [(+) is
the loss function and y; is the ground truth of graph G7 in the source domain.

4.2 TEMPORAL DISTRIBUTION ALIGNMENT

Unlike GNNgs, spiking models rely on membrane potential dynamics to generate sparse spike trains,
making their spike representations highly dynamic and non-differentiable. Existing GDA (Yin et al.|
2023; |Chen et al., 2025a)) methods assume continuous, static embeddings and thus fail to align the
time-dependent neural dynamics in SGNs. To address this, we propose a temporal-based alignment
framework that captures and matches the evolution of spiking patterns across domains.

First, we introduce a temporal attention mechanism that adaptively aggregates time-dependent
neuronal states. Specifically, given the temporal membrane potential of graphs on each latency
step, we have [u1 g,,...,Urq,, - ,urq,], where u, ¢, = READOUT({UT,U}UGGi) and G; €
{D*,D!}. We stack the T steps membrane potential into Ug, € RT*? where d is the hidden
dimension. The goal is to learn an importance-weighted o to summarize of temporal membrane
potential representation, which is formulated as follows:

. T
a, = Atten(Ug,), Ug, = Z _, UG (5)

where Atten(-) is the self-attention operation (Vaswani et al.,2017). Then, we propose the adversarial

distribution alignment module to eliminate the discrepancy between the source and target domains.
Specifically, for each source graph G and target graph G, we denote the semantic classifier as H (-)
to produce predicted labels, and a domain discriminator Q(-) to distinguish features from the source
and target domains. The temporal-based distribution alignment module is adversarially trained to
align the feature spaces of the source and target domains, which is formulated as:

Lap = Eg:eps log Q (H(ﬁé)m%fs) +Egiept qatgpe log (1 -Q (H( &)IVin Vin )) ;

where B! = {d!|d! € B',d! ¢ B*®}. We iteratively update V;?" with Eq. 3| on each latency.
Furthermore, we present an upper bound for temporal-based distribution alignment.

Theorem 2 Assume that the learned discriminator is Cgy-Lipschitz continuous, the feature extractor

[1f(G1)=F(Ga)ll2

fis Cy-Lipschitz that || f||Lip = maxa, .G, TCEIweR)

= CY for some graph distance measure
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1 and the loss function bounded by C > 0. Let H := {h : G — Y} be the set of bounded functions
with the pseudo-dimension Pdim(H) = d that h = g o f € H, and provided the spike training data
set Sp = {(Xi,yi) € X X V}icln) drawn from D?, with probability at least 1 — 0 the inequality :

. . 1 & In(2/9)
<€ 3 - . . . . ! 7
er(h, hr(X)) <és(h, hs(S)) +2E |sup Ne ;:1 eih(Xi, yipi) | +C Ne ©)

+w + QCngW1 (PS(G)a ]P)T(G)) )

where the (empirical) source and target risks are és(h, h(S)) = NLS 27]7\51 |h(S,) — h(Sy)| and
er(h, (X)) = Ep, c{|h(G) — WG)|}, respectively, where h : G — Y is the labeling func-
tion for graphs and w = min (|es(h, hs(X)) — es(h, b (X)), ler (b hs(X)) — er(h, hr(X)) )

¢; is the Rademacher variable and p; is the i row of P, which is the probability matrix with:

(1) — Vi . p
Py = exp (U(uzt((tt)),u:i”)) 5 Zf up < 71’<t) < Vin,
0, Z’f Upeset < Uk(w < ug.

The proof is proposed in Appendix [D] Theorem [2]justifies that the generalization gap of spiking GDA
relies on the domain divergence 2C';Cy W1 (Ps(G), Pr(G)) and model discriminability w, as well as

the model’s ability to avoid overfitting to the training data, which is quantified by the Rademacher

complexity term 2E [sup NLS ZZN:Sl eih(Xi, yis p,)} . In the application of spiking GDA, this term

captures how the model’s sensitivity to random fluctuations in the node feature aggregation (especially
for higher-degree nodes) can lead to overfitting, thus affecting the model’s ability to generalize to the
target domain. This overfitting risk is particularly relevant when the model is too flexible in fitting
the training data, exacerbating the generalization gap, especially under domain shifts.

4.3 PSEUDO-LABEL DISTILLATION FOR DISCRIMINATION LEARNING

To further tiny the generalization gap between the target and source domains, we incorporate the
pseudo-label distillation module into the DeSGraDA framework. The goal of the module is to

ensure consistent prediction between the shallow and deep layers. Specifically, let s’ tTG be the
shallow spiking graph representation of G; on the latency step 7 (7 < T') in the target domain, and
Ui, = H(sg;) be the prediction of graph ;. Then, to enhance consistency between the shallow and
deep feature spaces and facilitate the generation of more accurate predictions, we cluster the shallow
graphs features in the target domain into C' clusters, and each cluster £; includes graphs {G; }. After

that, we find the dominating labels e,. in the cluster, i.e., max, [{&, : e, = th], }|, and remove other
samples with the same prediction but in different clusters. Formally, the pseudo-labels are signed as:

P={(e30) = {5 0=t )

Finally, we utilize the distilled pseudo-labels to guide the update of source degree thresholds on the
target domain with Eq. [3] and to direct classification in the target domain:

L1 =Egepl (Hisg:), 3 ) ®)

where Sth is the spiking graph representation of G;- in the target domain. {(-) is the loss function, and

we implement it with cross-entropy loss. We further analyze the generalization bound by applying the
pseudo-label distillation module, and the proof is detailed in Appendix [E] From the proof, we observe
that the bound is lower than simply aligning the distributions by incorporating the highly reliable
pseudo-labels, demonstrating the effectiveness of pseudo-labels for spiking graph domain adaptation.

4.4 LEARNING FRAMEWORK

Overall, the training objective of DeSGraDA integrates classification loss Lg, temporal-based distri-
bution alignment loss £ 4 p, and pseudo-label distillation loss £, which is formulated as:

L=Ls~+Lr—ALlap, ©)

where ) is a hyper-parameter to balance the distribution alignment loss and classification loss. The
learning procedure is illustrated in Algorithm[F] and the complexity is shown in Appendix
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Table 1: The graph classification results (in %) on SEED and BCI under edge density domain shift
(source—target). SO, S1, S2, B0, B1, and B2 denote the sub-datasets of SEED and BCI partitioned
with edge density, respectively. Bold results indicate the best performance.

M. | SEED | BCI
ethods

| S0—S1 | SIS0 | S0—S2 | S2—S0 | S1-S2 | S2—S1 | BO—BI | BI—B0 | BO—B2 | B2—»B0 | B1»B2 | B2—BI
‘WL subtree 40.7 36.8 42.6 35.0 35.6 383 479 47.7 46.0 46.7 47.7 475
GCN 46.5+06 | 47.4x09 | 46.6+12 | 47.7+14 | 45.8+12 | 47.1+16 | 49.6+25 | 48.7+28 | 51.1+10 | 51.5+20 | 49.6+24 | 49.1+17
GIN 47.4+17 | 48.0x16 | 47.3+14 | 47.5+18 | 41.6+20 | 46.1+13 | 494425 | 48.4+21 | 51.8+14 | 51.2+25 | 50.0+1.7 | 48.7+2.1
GMT 46.5+05 | 47.8+13 | 47.2+07 | 47.2+13 | 46.4+09 | 46.4+12 | 48.8+13 | 47.8+11 | 49.4+10 | 48.5+15 | 50.7+09 | 51.5+15
CIN 46.9+05 | 48.4x11 | 47.0+£15 | 47.3+07 | 47.0+16 | 47.0£09 | 50.3+16 | 48.8+15 | 50.4+13 | 50.4+12 | 50.1+15 | 50.9+17

SpikeGCN | 46.3+10 | 47.4+08 | 45.8+12 | 47.7+11 | 458415 | 46.4+12 | 52.5+16 | 52.8+13 | 54.1+19 | 52.1+10 | 51.7+18 | 50.5+23
DRSGNN 47.1x10 | 48.5x09 | 46.5+12 | 48.1+13 | 46.9+08 | 47.6+14 | 52.7+13 | 52.8+19 | 53.8x15 | 52.7+16 | 53.0+21 | 51.3+18

CDAN 52.6+12 | 54.5+07 | 53.9+07 | 55.9+13 | 51.6+11 | 53.6+08 | 51.9+13 | 52.6+14 | 51.8+11 | 55.4+18 | 52.5+15 | 53.1+14
ToAlign 51.2+13 | 52.3208 | 51.5+09 | 49.7+15 | 49.6+1.1 | 49.4+13 | 52.5+17 | 53.7+15 | 52.2+14 | 54.4+12 | 52.7+10 | 51.8+13
MetaAlign | 51.2+14 | 53.7+09 | 52.2+11 | 53.8+08 | 51.2+14 | 52.0+12 | S1.1+1s | 51.8+12 | 504+17 | 52.5+15 | 51.7+15 | 51.3+11

DEAL 574x11 | 57.5+14 | 56.6+07 | 58.1+12 | 53.9+07 | 57.8+13 | 53.7+14 | 52.5+22 | 52.6+16 | 54.5+14 | 52.7+17 | 52.8+12
CoCo 555415 | 56.7+07 | 56.3+13 | 58.8+08 | 54.2+12 | 57.5+13 | 54.0+13 | 55.2+25 | 52.7+21 | 52.7+19 | 51.7+28 | 51.0+24
SGDA 47.1+06 | 41.6+14 | 43.8+07 | 45.9+12 | 49.4+11 | 50.1+15 | 49.7+16 | 48.4+15 | 50.6+10 | 50.4+13 | 50.5+12 | 50.7+14

StruRW 47.1+09 | 459+07 | 46.5+13 | 48.2+12 | 46.9+12 | 47.3+14 | 48.7+11 | 47.3+17 | 495411 | 49.7+15 | 50.0+18 | 50.2+16
A2GNN 47.6+12 | 47.6x09 | 46.2+08 | 48.3+11 | 46.2+10 | 47.9+06 | 52.0+17 | 53.0+14 | 52.0+10 | 53.7+11 | 52.2+13 | 51.8+17
PA-BOTH | 48.2+14 | 48.2+08 | 47.3+12 | 48.3+10 | 48.5+12 | 452+06 | 49.2+16 | 50.0+12 | 51.1+13 | 51.3+15 | 50.5+16 | 48.8+14

DeSGraDA | 58.0+15 | 58.2+14 | 57.0+18 | 58.3+16 | 55.9+21 | 58.1+16 | 54.1%15 | 53.6+16 | 54.9+11 | 56.2+18 | 55.0+13 | 54.6+12

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Dataset. To evaluate the effectiveness of DeSGraDA, we conduct extensive experiments across two
types of domain shifts: (1) structure-based domain shifts, where the discrepancy between domains
arises primarily from differences in graph topology, such as variations in node and edge densities.
This category includes datasets DD, PROTEINS (Dobson & Doig, [2003), SEED [Zheng & Lu| (2015);
Duan et al.| (2013)), and BCI (Brunner et al., 2008)); (2) feature-based domain shifts, where domains
differ mainly in semantic information. This setting includes DD, PROTEINS, BZR, BZR_MD, COX2,
and COX2_MD (Dobson & Doig, 2003} |Sutherland et al., 2003). The specific statistics, distribution
visualization, and detailed introduction of experimental datasets are presented in Appendix [H]

Baselines. We compare DeSGraDA with competitive baselines on above datasets, including one
graph kernel method: WL subtree (Shervashidze et al.,|2011); four graph-based methods: GCN (Kipf
& Welling, [2017), GIN (Xu et al.,2018)), CIN (Bodnar et al.,[2021) and GMT (Baek et al.| [2021); two
spiking-based graph methods: SpikeGCN (Zhu et al.,|2022)) and DRSGNN (Zhao et al., |2024); three
domain adaptation methods: CDAN (Long et al., [2018), ToAlign (Wei et al., 2021b), and MetaAlign
(Wei et al., 2021a); and six graph domain adaptation methods: DEAL (Yin et al., 2022, CoCo (Yin
et al.} |2023), SGDA (Qiao et al., [2023)), StruRW (Liu et al., [2023), A2GNN (Liu et al.| 2024a) and
PA-BOTH (Liu et al., 2024b). More settings about baselines are introduced in Appendix [|and[J}

5.2 PERFORMANCE COMPARISON

We present the results of the proposed .. PROTEINS DD
DeSGraDA with all baselines under \ [ Y
two types of domain shifts on differ-
ent datasets in Tables and
From these tables, we observe that:
(1) GDA methods outperform tradi- .
tional graph-based and spiking-based T e T F R
graph methods in most cases, high-

lighting the adverse impact of domain

Spiking Frequency

Aggregation Weights

Figure 3: Correlation comparisons of spiking frequency
distribution shifts on conventional ap- and aggregation weights under adaptive thresholds on PRO-

proaches and underscoring the impor- 1EINS and DD datasets.

tance of advancing research in spiking graph domain adaptation. (2) The spiking-based graph
methods (i.e., SpikeGCN and DRSGNN) outperform the models specific for node classification (i.e.,
SGDA, StruRW, A2GNN, and PA-BOTH) but fall short compared to models for graph classification
(i.e., DEAL and CoCo). This performance gap is primarily due to the limited exploration of graph
classification under domain shift. Although spiking-based methods exhibit advantages over adapted
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Table 2: Graph classification results (in %) under node and edge density domain shifts on the
PROTEINS dataset, and feature domain shifts on DD, PROTEINS, BZR, BZR_MD, COX2, and
COX2_MD. For convenience, PROTEINS, DD, COX2, COX2_MD, BZR, and BZR_MD are abbrevi-
ated as P, D, C, CM, B, and BM, respectively. Bold results indicate the best performance.

Methods | Node Shift | Edge Shift | Feature Shift

| PO—P1 | PO=P2 | PO=P3 | PO=PI | PO—»P2 | PO=P3 | P=D | D—P | C»CM | CM—C | B»BM | BM—B
WL subtree 69.1 61.2 41.6 68.7 50.7 58.1 43.0 422 53.1 58.2 513 44.0
GCN 73.7+03 | 57.64+02 | 24.4404 | 73.4+02 | 57.6+02 | 24.0+0.1 | 489420 | 60.9423 | 51.2+18 | 66.9+18 | 48.7+20 | 78.8+1.7
GIN 71.8+27 | 58.54+43 | 74.2+1.7 | 62.5+47 | 53.0+4.6 | 73.7+08 | 57.3+22 | 61.9+19 | 53.8+25 | 55.6+20 | 49.9+24 | 79.2+28
GMT 73.7+02 | 57.6+03 | 75.6+14 | 73.4+03 | 57.6+0.1 | 24.0+01 | 59.5+25 | 50.7+22 | 49.3+18 | 58.2+20 | 50.2+23 | 74.4+18
CIN 74.1+06 | 60.142.1 | 75.6402 | 74.5+02 | 57.8+02 | 75.6+06 | 59.1+26 | 58.042.7 | 51.242.0 | 55.6+15 | 49.2+14 | 742419

SpikeGCN | 71.8+£09 | 64.9+14 | 71.1+19 | 71.8+08 | 63.8+1.0 | 68.6+£1.1 | 59.6+£22 | 63.3+18 | 52.6+25 | 68.6+1.8 | 53.3£1.7 | 76.1£2.0
DRSGNN 73.6+1.1 | 64.6+12 | 70.2+1.7 | 72.6+06 | 63.1+£14 | 70.4+19 | 60.9+24 | 654419 | 52.9+18 | 66.9+23 | 52.8+1.7 | 76.442.7

CDAN 75.9+1.0 | 60.84+06 | 75.8403 | 72.2+18 | 59.8+2.1 | 69.3+4.1 | 59.4+20 | 63.14+27 | 51.2+23 | 682418 | 50.7+1.6 | 75.241.9
ToAlign 73.7+04 | 57.6406 | 24.4+01 | 73.4+01 | 57.6+0.1 | 24.0+03 | 62.1+21 | 66.54+23 | 53.2+2.6 | 55.8423 | 56.243.0 | 78.8+24
MetaAlign 743+08 | 60.6+1.7 | 76.3£03 | 75.5+£09 | 64.8+1.6 | 69.3+27 | 63.3+2.1 | 66.2+1.9 | 51.2+£20 | 69.5+£23 | 48.7+1.8 | 76.84+2.7
DEAL 754+12 | 68.1+£19 | 73.8+14 | 76.5+04 | 67.5+13 | 76.0+02 | 70.6+19 | 66.8+25 | 50.9+24 | 67.8+19 | 51.1+23 | 79.4+22
CoCo 74.8+06 | 655404 | 724429 | 75.5+02 | 59.84+05 | 73.6+23 | 66.0+27 | 61.2423 | 53.6+1.8 | 78.2+20 | 57.8+1.6 | 79.8+18
SGDA 64.2+05 | 66.9+12 | 65.4+1.6 | 63.8+£06 | 66.7+1.0 | 60.1+08 | 48.3+20 | 558426 | 49.8+1.8 | 66.9+23 | 50.3+2.1 | 78.8+2.6
A2GNN 65.7+£06 | 66.3£09 | 65.2+14 | 65.4+13 | 682+14 | 65.4+07 | 57.8+21 | 60.3+15 | 51.5+18 | 67.7+21 | 51.6+23 | 77.5+1.9
StruRW 71.9+23 | 66.7+18 | 52.8+1.9 | 72.6+22 | 66.2+22 | 489420 | 59.1+23 | 58.8+28 | 51.2+2.0 | 54.8429 | 49.2+14 | 74.7+2.1

PA-BOTH 61.0+08 | 60.3+06 | 63.7+1.5 | 63.1+£07 | 64.3+05 | 66.3+07 | 54.2+32 | 56.7+2.6 | 52.9+28 | 61.8+20 | 47.5+3.0 | 78.8+1.9
DeSGraDA | 76.3+19 | 69.2+23 | 77.5+22 | 76.8+19 | 68.6:18 | 76.5£28 | 73.6:£19 | 71.2+16 | 54.7+18 | 78.6+22 | 56.3x15 | 80.3x19

node classification models, they remain less effective than specialized graph domain adaptation
methods explicitly designed for graph-level tasks. (3) DeSGraDA outperforms all baselines in most
cases, demonstrating its advantage over other methods. The superior performance can be attributed to
two key factors. First, the degree-conscious spiking representations dynamically adjust node-specific
firing thresholds in SNNs, enabling the model to capture more expressive and discriminative graph
features. Second, the temporal-based distribution alignment aligns source and target domain repre-
sentations by matching spiking membrane dynamics over time, effectively mitigating distributional
discrepancies. Moreover, the pseudo-label distillation helps refine degree thresholds in the target
domain, further enhancing generalization. More results can be found in Appendix [K.1]

We further conduct experiments to examine the correlation between spiking frequency and aggre-
gation weights under adaptive thresholds across different node degrees. As shown in Figure 3] the
correlation coefficient under adaptive thresholds is significantly lower than that under fixed thresholds,
demonstrating that DeSGraDA effectively smooths spiking frequency across node degrees, mitigates
over-activation in high-degree nodes, and promotes balanced information aggregation.

Table 3: The results of ablation studies on the PROTEINS dataset (source — target).

Methods | PO—P1 | P1—PO | PO—P2 | P25P0 | PO—P3 | P33P0 | PI—P2 | P2—PI | PI—P3 | P3Pl | P2P3 | P3—P2
DeSGraDA w/ CDAN 733 82.4 67.8 765 744 | 187 665 713 737 70.2 74.1 68.8
DeSGraDA wio PL 737 81.2 67.1 81.2 75.9 79.6 678 719 747 69.0 | 754 68.3
DeSGraDA wio CF 65.0 67.4 535 645 66.6 68.8 567 63.4 66.1 60.9 53.9 56.6
DeSGraDA wio TL 73.6 80.6 65.6 80.6 73.1 78.4 63.9 69.3 69.6 68.7 729 645
DeSGraDA w/ CDAN & wio PL 72.8 81.0 663 763 727 776 65.8 69.6 710 68.8 73.6 67.8
DeSGraDA w/ CDAN & w/o TL 73.1 803 65.2 75.9 725 78.0 63.9 69.0 69.5 68.2 733 64.9
DeSGraDA w/ CDAN, w/o PL& TL | 71.4 78.7 63.5 742 712 | 762 623 68.0 68.4 673 705 63.0
DeSGraDA wio PL & TL 722 79.9 65.4 78.6 73.1 717 63.0 69.9 69.0 680 | 724 63.7
DeSGraDA | 763 | 846 | 692 | 836 | 775 | 87 | 698 | 740 | 762 | 730 | 778 | 705

5.3 ABLATION STUDY

We conduct comprehensive ablation studies to assess the contribution of each component: (1)
DeSGraDA w/ CDAN: replaces the temporal-based alignment module with static distribution align-
ment; (2) DeSGraDA w/o PL: removes the pseudo-label distillation module; (3) DeSGraDA w/o CF:
discards the classification loss Lg; (4) DeSGraDA w/o TL: applies fixed global thresholds to all nodes;
(5) DeSGraDA w/ CDAN & w/o PL: employs static distribution alignment and removes pseudo-label
distillation; (6) DeSGraDA w/ CDAN & w/o TL: adopts static alignment while using fixed global
thresholds; (7) DeSGraDA w/ CDAN, w/o PL & TL: eliminates all three modules, retaining only the
backbone with fixed thresholds; and (8) DeSGraDA w/o PL & TL: removes pseudo-label distillation
and applies fixed thresholds.

Experimental results are shown in Table 3] From the table, we observe that: (1) The degree-conscious
thresholding mechanism substantially improves representational capacity. When replaced with fixed
global thresholds (DeSGraDA w/o TL), performance declines, showing that dynamically adjusting
thresholds by node degree helps the model capture structural heterogeneity and encode informative
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Figure 4: (a) Energy efficiency analysis and (b), (c) hyperparameter sensitivity analysis of latency
step T and initial threshold V49" on the PROTEINS dataset.

spiking representations. (2) The temporal-based distribution alignment and pseudo-label distillation
modules are crucial for domain adaptation. Removing the temporal alignment module (DeSGraDA
w/ CDAN) yields consistent drops across tasks, underscoring its role in mitigating domain shifts
by aligning membrane dynamics. Similarly, eliminating pseudo-label distillation (DeSGraDA w/o
PL) degrades performance, highlighting the importance of leveraging confident target predictions to
refine threshold adaptation and support generalization. (3) When multiple components are removed
simultaneously, performance drops more substantially across all transfer tasks, suggesting that
each module contributes both independently and cooperatively to the overall effectiveness of the
framework. This finding highlights that the degree-conscious representation, temporal alignment,
and pseudo-label distillation modules function complementarily to strengthen the robustness of
domain adaptation. (4) DeSGraDA outperforms all ablated variants across domain shifts, confirming
the complementary strengths of its core components. Notably, removing the classification loss
(DeSGraDA w/o CF) causes the largest degradation, underscoring the necessity of source supervision
for learning discriminative features. We also provide ablation studies replacing SGNs with standard
GNNs in Tables[8] [ with results in Appendix

5.4 ENERGY EFFICIENCY ANALYSIS

To assess the energy efficiency of DeSGraDA, we use the metric from (Zhu et al., [2022) and quantify
the energy consumption for graph classification in the inference stage. Specifically, the graph domain
adaptation methods are evaluated on GPUs (NVIDIA A100), and the spiking-based methods are
evaluated on neuromorphic chips (ROLLS (Indiver1 et al., 2015)) following (Zhu et al., [2022]).
The results are shown in Figure fa| where we find that compared with traditional graph domain
adaptation methods, the spike-based methods (DeSGraDA and DRSGNN) have significantly lower
energy consumption, demonstrating the superior energy efficiency of SGNs. Moreover, although the
energy consumption of DeSGraDA is slightly higher than DRSGNN due to additional computations
required for domain adaptation, the performance improvement justifies deploying DeSGraDA in
low-power devices. Additionally, we present a comparison of training time and memory usage
between DeSGraDA and other GDA methods, and the results are detailed in Tables[6]and

5.5 SENSITIVITY ANALYSIS

We conduct the sensitivity analysis of DeSGraDA to investigate the impact of key hyperparameters:
latency step 7" and degree threshold V;4°9"°“ in SGNs. Specifically, T’ controls the number of SGNs

propagation steps, and V;;fg "¢ determines the firing threshold of each neuron based on node degree.

Figure [4b| and 4c| illustrates how 7" and V59" affects the performance of DeSGraDA on the
PROTEINS dataset. More results on other datasets are shown in Appendix We vary T in
{5,6,7,8,9,10} and Vt‘,ifgree in {0.05,0.1,0.2,0.5,1.0,2.0,5.0}. From the results, we observe
that: (1) The performance of DeSGraDA in Figure [4b| generally exhibits an increasing trend at the
beginning and then stabilizes when T° > 9. We attribute this to smaller values of 71" potentially
losing important information for representation, while larger values significantly increase model
complexity. To balance effectiveness and efficiency, we set ' = 9 as default. (2) Figure
indicates an initial increase followed by a decreasing trend in performance as Vt’ffg "¢ increases. This
trend arises because a lower threshold may cause excessive spiking for high-degree nodes, leading
to unstable representation, while a higher threshold may suppress spiking for low-degree nodes,

reducing information flow. Accordingly, we set Vt‘ffg "¢ t0 0.2 as default.
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Table 4: Wasserstein distance (11/1) between source and target domains before and after adaptation
under node/edge density shifts (PROTEINS) and structure-based shifts (SEED, BCI).

Method | Node Density (PROTEINS) | Edge Density (PROTEINS) | SEED | BCI
‘P()*)Pl PO—P2 PO0—P3 ‘ PO—P1 PO0—P2 PO—P3 ‘ S0—S1 S0—S2 S1-—S2 ‘ B0O—Bl B0—B2 BIl—B2

Before 0.0087  0.0187  0.0081 | 0.0089 0.0254 0.0054 | 0.0052 0.0047 0.0053 | 0.0044  0.0053  0.0053
After 0.0082  0.0172  0.0077 | 0.0086  0.0242  0.0053 | 0.0050 0.0045 0.0049 | 0.0043  0.0051 0.0050

5.6 EMPIRICAL VALIDATION OF THEORETICAL ANALYSIS

Theorem 2] provides a generalization bound for SGDA, which describes the target-domain risk ey as:

er(h,h) < és(h, h) +20;C,Wi (Ps(G), Pr(G) + w_ +o( lngég‘”>+7z<h>7 (10)

L model N—— i
domain divergence term discriminability sample bound Contlel:)rl;lmty

where W1 (Ps, Pr) denotes the distance between graph domain distributions, w measures discrimina-
tor alignment, and R (h) represents model complexity related to the spiking activation dynamics.

However, directly computing this bound is infeasible because both W1 (Pg, Pr) and R(h) depend
on the underlying spiking feature distributions and unknown Lipschitz constants. This makes the
bound unobservable in practice, as is common in theoretical domain adaptation and SNN analyses.
Following prior works (Shen et al., 2018} Redko et al., 2017; [Maass| |1997; |[Zhu et al.| 2022), we
validate our theory through the empirical consistency of trends predicted by Eq. (I0) rather than
through direct numerical computation from the follow parts:

Domain Divergence Term. To validate the theoretical domain divergence term, we computed the
Wasserstein distance between source and target domains before and after applying our alignment.
As shown in Table[d] the distance decreases after adaptation, indicating that the temporal alignment
module effectively narrows the distributional gap. This trend aligns with Theorem 2} where a smaller
W1 implies a smaller generalization gap. These results provide empirical evidence that DeSGraDA
achieves the theoretically predicted domain alignment.

Rademacher Complexity and Model Capacity. The Rademacher complexity term reflects over-
fitting risk from degree-induced activation bias. Figures [2]and [3|empirically verify that the Degree-
Conscious mechanism reduces spiking over-activation. The correlation between node degree and
spike frequency is strong before adaptation but notably weaker afterward, showing that the model
avoids overfitting to structural patterns. This observation supports the theoretical claim that controlling
model complexity (via reduced Rademacher complexity) enhances generalization stability.

Target Risk ¢, and Domain Shift. Tables[T)and[2] show that DeSGraDA consistently outperforms all
baselines under both structure and feature domain shifts. These results empirically support Theorem [2}
as the domain discrepancy decreases through alignment, the target risk e also decreases. Conversely,
when the shift intensifies, baselines show a larger rise in e, whereas DeSGraDA remains stable,
confirming the bound’s monotonic relationship between divergence and target error.

Overall, the empirical results provide comprehensive validation of the theoretical framework from
multiple perspectives, including distributional alignment, complexity control, and generalization
behavior. The consistent trends across datasets and experimental settings confirm that the theoretical
analysis of DeSGraDA is mathematically rigorous and well supported by experimental evidence.

6 CONCLUSION

In this paper, we propose the problem of spiking graph domain adaptation and introduce a novel
framework DeSGraDA for graph classification. DeSGraDA enhances the adaptability and per-
formance of SGNs through three key aspects: degree-conscious spiking representation, temporal
distribution alignment, and pseudo-label distillation. DeSGraDA captures expressive information
via degree-dependent spiking thresholds, aligns feature distributions through temporal dynamics,
and effectively exploits unlabeled target data via pseudo-label refinement. Extensive experiments
on benchmark datasets demonstrate that DeSGraDA surpasses existing methods in accuracy while
maintaining energy efficiency, showcasing its potential as a strong solution for DA in SGNs. In the
future, we plan to extend DeSGraDA to source-free and domain-generalization scenarios.

10
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APPENDICES

A DA BOUND FOR GRAPHS

DA Bound for Graphs. Due to the DA theory is agnostic to data structures and encoders, |You et al.
(2023)) directly rewrite it for graph-structured data (G) accompanied with graph feature extractors (f)
as follows, and the covariate shift assumption is reframed as Ps(Y|G) = Pr(Y|G).

Theorem 3 (You et al.| [2023) Assume that the learned discriminator is Cy-Lipschitz continu-
ous as in (Redko et al.l|2017), and the graph feature extractor f is Cy-Lipschitz that ||f||Lip =

W = Cy for some graph distance measure . Let H := {h : G — YV} be

the set of bounded real-valued functions with pseudo-dimension Pdim(H) = dthath =go f € H,
with probability at least 1 — 0 the following inequality holds:

maxag, G,

. . 4d N, 1 1

er(hh) < éshh) +y[ 5= log (757 ) + 5 log (5 ) + 205G Wi (Bs(G), Pr(G)) + e,
Ng d Ng 5

where ep(h,h) = Ep,c{|h(G) — WMG)|} is the (empirical) target risk, ég(h,h) =

Niszgil |W(Gy) — h(Gy)| is the (empirical) source risk, h : G — Y is the labeling func-

tion for graphs and w = ming|,. <c,.||f|lL,<c;1€s(h, R) + er(h,h)}, and W1(P,Q) =

SUD||g[|,p<1 {Epy(2)9(Z) — By (2)9(Z)} is the first Wasserstein distance (Villani et al.| 2008).

B SPIKING NEURAL NETWORKS

Spiking Neural Networks (SNNs) are brain-inspired models that communicate through discrete spike
events rather than continuous-valued activations Maass| (1997)); \Gerstner & Kistler| (2002); |Bohte
et al. (2000). This design provides significant advantages in temporal information processing and
energy efficiency. Different from traditional neural networks, SNNs emulate biological mechanisms
such as membrane potential integration, threshold-triggered firing, and post-spike resetting |Cao et al.
(2015); Zhu et al.{(2022). To capture these biological dynamics, SNNs employ neuron models that
mathematically describe the temporal evolution of membrane potentials and the conditions for spike
generation |Lagani et al.|(2023). A widely used neuron model in SNNs is the Leaky Integrate-and-Fire
(LIF) model Tal & Schwartz| (1997); ILansky & Ditlevsen| (2008), which operates through three
fundamental stages:

(1) Integrate: At each lantency step ¢, the membrane potential V'[t] is updated by integrating the input
current [[t] and applying a decay to the previous potential V[t — 1]:

V[t] = AV[t — 1)(1 — S[t — 1)) + I[{] (11)

where A € (0, 1) is the decay factor that controls the leakage rate, and S[t — 1] is the binary spike
indicator from the previous time step.

(2) Fire: A spike is emitted when the membrane potential exceeds the threshold V;,:

Slt] = H(V[l] = Vin), (12)
where H (-) denotes the Heaviside step function, a non-differentiable function defined as:
1, >0
H(z)=4" — 13
() {O, otherwise. (13)
(3) Reset: After a spike is emitted, the membrane potential is reset according to the following rule:
Vit] = (1= SEDVE + S[t]Vreser, (14)

where V,..s.: denotes the resting potential, typically set to zero.

Due to the non-differentiability of H(-), surrogate gradient methods are commonly employed to
approximate its derivative during backpropagation, enabling gradient-based optimization in deep
SNN architectures |Bohte et al.|(2000); [Sun et al.| (2024).
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C PROOF OF PROPOSITION

Assuming that the node feature h; follows a normal distribution A/(11, o2), then for each node in the
graph, we follow the message-passing mechanism and have the information aggregation as:

JEN(D)

where N (i) is the neighbor set of node i. Therefore, we have the expectation:

E(hi) =E(h:) + »_ wiE(hy). (16)
JEN(i)

Since E(h;) ~ N (u,0?), we have:

E(h) ~ N |1+ D w1+ > wy)?e? | (17)

JEN () JEN (i)

From the results, we observe that node ¢ follows a normal distribution with a mean of (1 +
> JENG) w;;)?u, determined by the aggregated weights of its neighboring nodes. To provide a
more intuitive understanding, we visualize the aggregated neighbor weights of GCN (Kipf & Welling|
2017) and GIN (Xu et al., [2018) in Figure 2| The results show that as the degree increases, the
aggregated weights also increase progressively. Consequently, high-degree nodes tend to follow a
normal distribution with a higher mean and variance. In other words, nodes with higher degrees
accumulate greater signals, making them more likely to trigger spiking. Based on this, we propose
assigning higher thresholds to high-degree nodes and lower thresholds to low-degree nodes.

D PROOF OF THEOREM [2]

Theorem 2| Assuming that the learned discriminator is Cy-Lipschitz continuous as described in
Theorem 3| the graph feature extractor f (also referred to as GNN) is Cy-Lipschitz that || f||ip =

maxga, G, W = Cjy for some graph distance measure 1 and the loss function bounded

by C > 0. Let H := {h : G — Y} be the set of bounded real-valued functions with the pseudo-

dimension Pdim(H) = d that h = g o f € H, and provided the spike training data set S,, =
{(X4,9i) € X X V}icpn) drawn from D?, with probability at least 1 — ¢ the following inequality:

Ns
1
sup s Z eih(Xi, yi, pi)
i=1

n(2/0)
N,

S

er(h, hp(X)) <és(h, hg(S)) + 2E +C +w+2C;C, Wy (Ps(G), Pr(G)),

18
where the (empirical) source and target risks are és(h, h(S)) = NLS Zgil Ih(S,) — h(S,)] Emcg
er(h, (X)) = Ep,.(c{|M(G) — h(G)|}, respectively, where h : G — ) is the labeling function for
graphs and w = min (|es(h, hs(X)) — es(h, hr (X)), ler(hy hs(X)) — ep(h, hT(X))\), ¢i is the
Rademacher variable and p; is the it" row of P, which is the probability matrix with:

uk(t)—=Vin :
Py, = { exp (o<uk(t)—umet)) » o if up S u(t) < Vi, (19)

0, if  Ureset < Uk(t) < ug.

Proof.

Before showing the designated lemma, we first introduce the following inequality to be used that:

les(h, hs) — er(h, hr)| = |es(h, hs) — es(h, hr) + es(h, hy) — er(h, hr)|
< les(h, hg) — es(h, hp)| + |es(h, hr) — er(h, hr)| (20)

(@) . .
< les(h, hs) — es(h, hr)| +2C;C, W1 (Ps(G), Pr(G))
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where (a) results frqm (Shen et al, [2018) Theorem with the assumption
max(||h||Lip, maxa, .G, W) < CyCy, D € {S,T}. Similarly, we obtain:
les(h,hs) = ex(h,hr)| < ler(h,hs) — er(h, hr)| +2C;C Wi (s (G), Pr(G)). @1
‘We therefore combine them into:
les(h, hs) — er(h, hr)| <2C;CyWi(Ps(G), Pr(G)) ) .

+ min (|es (h, hs) — es(h, hr)l, er (b, hs) = er(h, hr)|
i.e. the following holds to bound the target risk er(h, hr):
er(h, hr) <es(h, hs) + 2C:C, Wy (Ps(G), Pr(G))
+ min (\es(h,ﬁs) — es(h, hr)l, ler(h, hs) — ep(h, ﬁT)\) .

We next link the bound with the empirical risk and labeled sample size by showing, with probability
at least 1 — ¢ that:

er(h, hr) <es(h, hs) + 2C;C,Wy (Ps(G), Pr(G))
+ min (\es(h,ﬁs) —es(h, hr)l, ler(h, hs) — er(h, ET)\) .

(23)

(24)

The h above is the abbreviation of iz(as), which means the input is the continuous feature. Provided
the spike training data set S,, = {(X;,9;) € X X V};c[n drawn from D, and motivated by (Yin
et al., [2024), we have:

lim P (B(Sn)m- > h(X,) + e) < e /2o +iie/3) (25)

T—r00

where w; = maz{w;1,--- ,wiq} and h(x;;) = 2?21 w;jx;;. From Equation we observe that
as 7 — oo, the difference between spike and real-valued features will be with the probability of
p = e~¢/2(0+0i¢/3) (o exceed the upper and lower bounds.

Furthermore, motivated by the techniques given by (Bartlett & Mendelson, [2002), we have:
es(h, hs(Sn)) < és(h, his(Sn)) + suples(h, hs(Sn)) — és(h, hs(Sn))),

R(S,,P)

(26)

where P is the probability matrix with:
uk (t)=Vin :
Pkt — €xXp (U(Uk(t)*ureset)) ) Zf Ug S u(t) S ‘/tlu (27)
0; Zf Ureset S uk:(t) S Ug,

where k indicates the k — th spiking neuron and the membrane threshold ¢4 1S relative to the
excitation probability threshold py € (0, 1]. Let py, is the k — th row vector of P. Thus, we have the

probability at least 1 — e=< /2(0+bi€/3) 1o hold:

es(h, hg(X,)) < ég(h, hg(Sy)) + suples(h, hs(Sn)) — és(h, hs(Sn))], (28)

R(S,,P)

Let S/, denote the sample set that the i*" sample (X, y;) is replaced by (X/, y!), and correspondingly
P’ is the possibility matrix that the i** row vector p; is replaced by p!, for i € [n]. For the loss
function bounded by C' > 0, we have:

[R(S,,P) = R(S;,.P)| < C/n, 29)
[R(S,, P) — R(S,, P)| < C/n.
From McDiarmid’s inequality (McDiarmid et al.,|1989), with probability at least 1 — §, we have:
n(2/6
R(S:.P) < Es, ep p[R(S,. P)] + O | ™A, (30)
S
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It is observed that:

R(Sm P) = sup ]ES,,LGD,P[é(iL(Sn)§ Shns 15) - P[é(iL(Sn), Shns P)], 3D

where Sn is another collection drawn from D as well as P. Thus, we have

Es,cp.p[R(S,,P)] <E [sup [e(ﬁ(sn); S, P) — P[e(h(S0): S, P)H

I~ o . . -
=K sup E i:1 [h(Xm yhpi) - h(Xi7 y'mpzﬂ (32)
< 9F [sup Zn: h(X )
up — €5 iy Yis P )
= p n & Yi, P
where ¢; is the Rademacher variable. Combining Eq. 29|30|[32] we have:
Ns
. A . 1 In(2/6
es(ho s (X)) < s hs(S0)) + 28 sup =D~ esh(XKospiop) | + €122 3y
i=1

Finally, we have:
er(h, hr(X)) <es(h, hs(X)) +2C;CW1 (Ps(G), Pr(G))
+min (Jes(h, s (X)) = es (b, i (X))], lex (b, hs (X)) = ex(h, hr(X))])
Ns

1
sup N Z €ih(Xi, vi, i)
i=1

Lo In(2/96)

<ég(h, hs(Sn)) + 2E N
s

+min (Jes(h, hs(X)) = es (b, ir(X))], ex (b, hs (X)) = ex(h, hr(X))])

+2C;C Wy (Ps(G),Pr(G)) .
(34)

E GENERALIZATION BOUND WITH PSEUDO-LABEL DISTILLATION MODULE

Theorem 4 Under the assumption of Theorem[3| we further assume that there exists a small amount

of i.i.d. samples with pseudo labels {(G,,, Yy) ,]j:Tl Sfrom the target distribution Pr(G,Y) (N} <«

Ng) and bring in the conditional shift assumption that domains have different labeling function

hs # hr and maxg, a, W = C), < C;Cy(D € {S,T?}) for some constant Cy, and

distance measure 1), and the loss function bounded by C > 0. Let H := {h : G — YV} be the set of
bounded real-valued functions with the pseudo-dimension Pdim(H) = d, and provided the spike
training data set S, = {(X;,y;) € X X V}ig[n) drawn from D?, with probability at least 1 — ¢ the
following inequality holds:

. N/ . Ng .
<——T ¢ ) — (e
er(h,hr(X)) < =Erer(huhe(8)) + =20 (és(hhis(9)) +207C, Wi (B (G), Fr(@))
Ns
1 n(2/9)
+ 2E |sup Ng ;zl €zh(szyz7pz) +C Ng + w)

SEq.@
(35)

where the (empirical) source and target risks are és(h,h) = NLS 22[21 |WG,) — h(G)| and
er(h.h) = Ep, {IN(G) — M(G)
graphs and w = min (|es(h,fzs(X))) —es(h, hp(X)))], ler(h, hs(X))) — er(h, hr(X)))
is the Rademacher variable and p; is the i'" row of P, which is defined in Theorem

}, respectively, where h:G — Y is the labeling function for

>, €
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Proof.

As proved in Theorem 2] we have:

Ns
1 In(2/6
SUPNSZGz‘h(XuyuPi)} +C n(2/0)
i=1

er(h, hy(X)) <és(h, hs(Sn)) + 2E

+min (Jes(h, hs(X)) = s (b, i (X))], lex (b, s (X)) = ex(h, hr(X))])
+2C;C, Wy (Ps(G),Pr(G)).

(36)
Similar with Eq.[33] there exists:
N/
. . . 1 = In(2/6
ET(h, hT(Xn)) < ET(h7 hT(Sn)) + 2IE [Sllp W Z Gih(Xi, yi,pi) + C ](\/vil/) (37)
T i T

Combining Eq.[36and 37] we have:

j @ _ N N In(2/5)
< T
er(h, hp(X)) < Ny + N, (GT(h,hT(S)) +2E {sup ZEZ X, yi,pi)| +C A
_ Ns [, - In(2/9)
+ No+ NI (es(h,hS(S)) +2E sup ~-— Zez X, yi,pi)| +C N
Ng
m 2C;C, Wy (Ps(G),Pr(G))

+min (Jes(h, s (X)) = es (b, hr(X))], ler (b, s (X)) = ex(h, hr(X))]) )

N}, . Ng X

m r(h, hr(S)) + mﬁs(% hs(S))

- <chc Wi (Ps(G). Pr(G))

+N3+N/

N/ n(2/9
PN (2E w5y ZE% | + 0y ))
- N
Ng In(2/6)
TN+ NI (211*3 sup - Zez (Kisgisp) | + Oy =5
(b) N’ X . Ng X .
P ér(h,hr(S)) + Ng—s—N’TeS(h’hS(S))
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Ns

t Nt <chc W1 (Ps(G),Pr(G))

+min (Jes(h, s (X)) = es (b, hr (X)), lex (b, s (X)) = ex(h, hr(X))]) )

Nt i N. e (hh
=N g r b (8) + (65(}“ GG OB
Ns
1 In(2/90)
+ 2E supr ig_lezh(xz»y“pl) +C Ng

+min (Jes (b, his(X))) = es(h, hr (X)) ler (b, his(X))) = ex (b, hr (X)) ) )
where (a) is the outcome of applying the union bound with coefficient JZ_TN, , Ns]Yi- NT. respectively;
(b) additionally adopt the assumption N/, < Ng, following the sleight-of-hand in (L1 et al.,2021)
Theorem 3.2.
Due to the sampels are selected with high confidence, thus, we have the following assumption:
1
sup Ns Z eih(Xi, Y, pi)

=1

ér < ep <és(h, H(X))) +2E

(38)
In(2/6)

+C Ng

+2C;C, W1 (Ps(G), Pr(G)) + w,

where w = min (|eg(h7 hs(X))) — es(h, hr (X)), ler (b hs(X))) — er(h, ET(X)))|), ér is the
empirical risk on the high confidence samples, e7 is the empirical risk on the target domain. Besides,
we have:

min(Jes (h, hs(X)))—es(h, hr(X))|, ler(h, hs(X))) — er(h, hr)|(X))) <

. . (39
min (es(h, hs(X))) + er(h, hS(X)))>
Then,
~ N/, N Ng . R
er(h, hr(X)) <m ér(h, hr(5)) + m <€S(ha hs(S)) +2C;CoW1 (Ps(G), Pr(G))
+2E buP Zez zvyupz +C %

+ min (Ies(h, hs(X))) — es(h, hr (X)), ler(h, hs(X))) — er(h, BT(X)))D )

Ng
. 1 In(2/6
Ses(h,hs(8) + 28 [sup - D (Koo | + 0112
=1

+2CCyWy (Ps(G),Pr(G)) + w.
(40)

F ALGORITHM

G COMPLEXITY ANALYSIS

Here we analyze the computational complexity of the proposed DeSGraDA. The computational
complexity primarily relies on Degree-Conscious spiking representations.
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Algorithm 1 Learning Algorithm of DeSGraDA

Input: Source data D?, Target data Dt
Output: The parameters 6 of Degree-Conscious spiking encoder, parameters v of domain discrimi-

nator, and parameter 7 of semantic classifier.
1: Initialize model parameters 6, v, and n

2: while not converged do
3: Sample mini-batches 3% and B! from D* and D!

AN A

end while

Forward propagate B° and B¢ through the Degree-Conscious spiking encoder
Perform pseudo-label distillation
Compute the loss function using Eq.[9]

Update model parameters 6, -y, and 7 via backpropagation
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Figure 5: Visualization of different distributions on the PROTEINS dataset.

denotes the number of nonzeros in the adjacency matrix of G. d is the feature dimension. L denote
the layer number of spiking encoder. |V is the number of nodes. T denotes the number of latency
step. The spiking encoder takes O (T - L - (||Allo - d + |V| - d%)) computational time for each graph.
As a result, the complexity of our DeSGraDA is proportional to both [V'| and || Al|o.

H DATASET

Table 5: Statistics of the experimental datasets.

Datasets Graphs

Avg. Nodes Avg. Edges Classes

SEED 3,818
BCI 1,440
PROTEINS 1,113
DD 1,178
COX2 467
COX2_MD 303
BZR 405

BZR_MD 306

62.00 125.74 3
22.00 119.80 2
39.10 72.80 2
284.32 715.66 2
41.22 43.45 2
26.28 335.12 2
35.75 38.36 2
21.30 225.06 2

H.1 DATASET DESCRIPTION

We conduct extensive experiments on different types of datasets. The dataset statistics can be found
in Table 5] and their details are shown as follows:
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e SEED. The SJITU Emotion EEG Dataset (SEED) (Zheng & Lul 2015 Duan et al., [2013)
is a widely used Electroencephalography (EEG) benchmark for emotion recognition. It
contains EEG recordings from 15 participants watching emotional movie clips that evoke
positive, neutral, and negative emotions. Each recording consists of 62-channel EEG signals
sampled at 1000 Hz. Based on the edge density, we partition the SEED dataset into three
sub-datasets, namely SO, S1, and S2. The sub-datasets exhibit substantial domain disparities
among them.

* BCI. The Brain-Computer Interface (BCI) Competition IV-2a dataset Brunner et al.|(2008)) is
a widely used benchmark for motor imagery EEG classification. It includes EEG recordings
from 9 subjects performing four motor imagery tasks: left hand, right hand, feet, and tongue.
Each subject completed two sessions on different days, with signals recorded from 22 EEG
channels at a sampling rate of 250 Hz. Based on the edge density, we partition the dataset
into three parts: BO, B1, and B2.

¢ PROTEINS and DD. The PROTEINS (Dobson & Doig), 2003 and DD datasets comprise
protein structure graphs commonly used for graph classification tasks. In both datasets, nodes
represent amino acids, forming edges between spatially or sequentially adjacent residues. In
PROTEINS, each graph is labeled to indicate whether the protein is an enzyme, with edges
defined between residues less than 6 Angstroms apart. The DD dataset, derived from the
Protein Data Bank, focuses on classifying proteins by structural class and typically exhibits
denser graph connectivity than PROTEINS. Additionally, we partition the PROTEINS and
DD datasets into four parts based on edge density and node density, PO to P3 and DO to D3,
respectively.

e COX2 and COX2_MD. The COX2 dataset|Sutherland et al.|(2003) consists of 467 molecular
graphs, while COX2_MD contains 303 structurally modified counterparts. In both datasets,
nodes represent atoms and edges correspond to chemical bonds. Specifically, COX2_MD
introduces structural variations to the original COX2 molecules while preserving their
semantic labels.
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* BZR and BZR _MD. The BZR dataset|Sutherland et al.| (2003)) comprises 405 molecular
graphs, while BZR_MD includes 306 structurally modified graphs derived from BZR. In
both datasets, nodes represent atoms and edges denote chemical bonds. BZR_MD introduces
structural variations to simulate domain shifts while preserving the original label semantics.

H.2 DATA PROCESSING

In our implementation, we process the above datasets as follows:

¢ For datasets from TUDataset including PROTEINS, DD, BZR, BZR_MD, COX2, and
COX2_MD, we utilize the TUDataset module from PyTorch Geometric for loading. Self-
loops are added during the preprocessing stage to prevent isolated nodes.

e For the SEED dataset, we utilize the TorchEEG librar to transform raw EEG signals into
graph-structured data. During graph construction, edges are removed following the approach
described in Klepl et al.|(2022).

* For the BCI dataset, we focus on a binary classification subset involving left-hand and right-
hand motor imagery tasks, a widely adopted evaluation setting in BCI research. Following
the construction protocols proposed in |Altaheri et al.| (2022; 2023)), we randomly remove a
portion of edges from each graph during preprocessing.

I BASELINES

In this part, we introduce the details of the compared baselines as follows:

Graph kernel method. We compare DeSGraDA with one graph kernel method:

* WL subtree: Weisfeiler-Lehman (WL) subtree (Shervashidze et al.|[2011)) is a graph kernel
method, which calculates the graph similarity by a kernel function, where it encodes local
neighborhood structures into subtree patterns, efficiently capturing the topology information
contained in graphs.

Graph-based methods. We compare DeSGraDA with four widely used graph-based methods:

* GCN: GCN (Kipf & Welling| 2017) is a spectral-based neural network that iteratively
updates node representations by aggregating information from neighboring nodes, effectively
capturing both local graph structure and node features.

* GIN: GIN (Xu et al., 2018)) is a message-passing neural network designed to distinguish
graph structures using an injective aggregation function, theoretically achieving the expres-
sive power of the Weisfeiler-Lehman test.

* CIN: CIN (Bodnar et al., 2021) extends the Weisfeiler-Lehman framework by integrating cel-
lular complexes into graph neural networks, allowing for the capture of higher-dimensional
topological features.

* GMT: GMT (Back et al.l 2021) utilizes self-attention mechanisms to dynamically adjust
the importance of nodes based on their structural dependencies, thereby enhancing both
adaptability and performance.

Spiking-based graph methods. We compare DeSGraDA with two spiking-based graph methods:

* SpikeGCN: SpikeGCN (Zhu et al., 2022) introduces an end-to-end framework designed to
integrate the fidelity characteristics of SNNs with graph node representations.

* DRSGNN: DRSGNN (Zhao et al.|[2024) dynamically adapts to evolving graph structures
and relationships through a novel architecture that updates node representations in real-time.

Domain adaption methods. We compare DeSGraDA with two recent domain adaption methods:

"https://chrsmrrs. github.io/datasets/
“https://torcheeg.readthedocs.io/en/latest/
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Table 6: GPU memory consumption of different graph domain methods in training stage for each
training epoch (in GB).

DeSGraDA DEAL CoCo SGDA StuRW A2GNN PA-BOTH

PROTEINS 1.0 1.2 1.2 1.0 1.2 22.3 1.7
DD 5.6 6.4 2.5 39 4.5 35.1 16.8
SEED 1.1 1.4 1.5 2.6 0.8 16.8 2.8
BCI 0.7 0.8 0.7 0.7 0.7 14.5 1.6

Table 7: Time consumption of different graph domain methods in training stage for each training
epoch (in seconds).

DeSGraDA DEAL  CoCo SGDA StruRW A2GNN PA-BOTH

PROTEINS 0.195 0.103  22.123  0.088 0.088 1.313 0.949
DD 0.427 0.400 184.015 0.135 0.140 2.263 0.787
SEED 0.192 0.137  26.187  0.126 0.075 1.414 0.311
BCI 0.224 0.211 35162  0.103 0.086 0.781 0.123

* CDAN: CDAN (Long et al.l 2018) employs a conditional adversarial learning strategy
to reduce domain discrepancy by conditioning adversarial adaptation on discriminative
information from multiple domains.

» ToAlign: ToAlign (Wei et al., 2021b)) uses token-level alignment strategies within Trans-
former architectures to enhance cross-lingual transfer, optimizing the alignment of semantic
representations across languages.

* MetaAlign: MetaAlign (Wei et al., 2021a)) is a meta-learning framework for domain
adaptation that dynamically aligns feature distributions across domains by learning domain-
invariant representations.

Graph domain adaptation methods. We compare DeSGraDA with six graph domain adaption
methods:

* DEAL: DEAL (Yin et al.,2022) uses domain adversarial learning to align graph representa-
tions across different domains without labeled data, overcoming discrepancies between the
source and target domains.

* CoCo: CoCo (Yin et al.l [2023)) leverages contrastive learning to align graph representations
between source and target domains, enhancing domain adaptation by promoting intra-domain
cohesion and inter-domain separation in an unsupervised manner.

¢ SGDA: SGDA (Qiao et al.| [2023)) utilizes labeled data from the source domain and a
limited amount of labeled data from the target domain to learn domain-invariant graph
representations.

e StruRW: StruRW (Liu et al.,[2023) introduces a structural re-weighting mechanism that
dynamically adjusts the importance of nodes and edges based on their domain relevance.
It enhances feature alignment by emphasizing transferable structures while suppressing
domain-specific noise.

* A2GNN: A2GNN (Liu et al.,2024a) introduces a novel propagation mechanism to enhance
feature transferability across domains, improving the alignment of graph structures and node
features in an unsupervised setting.

* PA-BOTH: PA-BOTH (Liu et al, [2024b) aligns node pairs between source and target
graphs, optimizing feature correspondence at a granular level to improve the transferability
of structural and feature information across domains.
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J  IMPLEMENTATION DETAILS

DeSGraDA and all baseline models are implemented using PyTorclﬂ and PyTorch Geometricﬂ We
conduct experiments for DeSGraDA and all baselines on NVIDIA A100 GPUs for a fair comparison,
where the learning rate of Adam optimizer set to 10~#, hidden embedding dimension 256, weight
decay 10~ '2, and GNN layers 4. Additionally, DeSGraDA and all baseline models are trained
using all labeled source samples and evaluated on unlabeled target samples (Wu et al., |2020). The
performances of all models are measured and averaged on all samples for five different runs.

K MORE EXPERIMENTAL RESULTS

K.1 MORE PERFORMANCE COMPARISON

In this part, we provide additional results for our proposed method DeSGraDA compared with all
baseline models across various datasets, as illustrated in Table|[13H16] These results consistently show
that DeSGraDA outperforms the baselines in most cases, validating the superiority of our proposed
method.

Additionally, we find that different domain shift scenarios exhibit similar results in Table[l| However,
Table [2] shows that the PO—P2 scenario yields significantly inferior results compared to PO—P1
and PO—P3. To further understand this phenomenon, we analyze the relevant quantitative statistics
through the calculation of Wasserstein Distances Panaretos & Zemel| (2018) between each pair of
sub-datasets. Then, we find that:

* On the SEED and BCI datasets, the adaptation accuracies across the main domain shift
scenarios are consistently clustered and exhibit close values. Specifically, for SEED, the
accuracies are 58.0%, 57.0%, and 55.9% for SO—S1, S0O—S2, and S1—S2, with the
corresponding Wasserstein Distances being 0.0052, 0.0047, and 0.0053, respectively. For
BCI, the accuracies for BO—B1, BO—B2, and B1—B2 are 54.1%, 56.2%, and 55.0%, with
Wasserstein Distances of 0.0044, 0.0053, and 0.0051, respectively. These consistently low
values of distributional shift are reflected in the stable adaptation performance observed
across the various subdomain pairs in both datasets.

* On the PROTEINS dataset, both node shift and edge shift scenarios demonstrate a strong
correspondence between adaptation performance and distributional divergence. For the node
domain shift setting, the accuracies for PO—P1, PO—P2, and PO—P3 are 76.3%, 69.2%,
and 77.5%, respectively, with Wasserstein Distances of 0.0087, 0.0187, and 0.0081. For the
edge domain shift setting, the accuracies are 76.8%, 68.6%, and 76.5% for PO—P1, PO—P2,
and PO—P3, with Wasserstein Distances of 0.0089, 0.0254, and 0.0054, respectively. In
both settings, the PO—P2 scenario consistently exhibits the lowest performance and the
highest distributional divergence, demonstrating that substantial domain shifts, as quantified
by larger Wasserstein Distances, lead to pronounced degradation in adaptation performance.

Furthermore, our theoretical analysis in Appendix |D|also formalizes the connection between domain
divergence and transferability using the Wasserstein Distance, thereby providing additional support
for our empirical findings.

K.2 TRAINING TIME AND MEMORY COMPARISON

We provide detailed comparisons of GPU memory consumption and training time per epoch for
DeSGraDA and other graph domain adaptation methods under identical experimental settings in this
part, as shown in Tables[6]and [7] It is worth noting that the training phase is typically conducted on
more powerful hardware to achieve optimal performance within a reasonable time frame.

3https://pytorch.org/
*https://www.pyg.org/
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Table 8: The results of DeSGraDA with different widely used graph neural networks (GIN, GCN and
SAGE) on the PROTEINS and DD dataset. Bold results indicate the best performance.

| PROTEINS | DD
Methods
| PO—P1 | PI=PO | PO—»P2 | P2—P0 | DO—DI1 | DI=D0 | D0—D2 | D2—D0
DeSGraDA w GCN 71.9 76.8 64.8 68.6 58.2 70.2 57.6 64.1
DeSGraDA w SAGE 73.9 79.8 65.5 74.5 57.8 71.6 59.1 66.7
DeSGraDA w GIN 74.1 81.5 66.4 78.7 59.3 73.0 61.1 68.8
DeSGraDA | 763 | 846 | 692 | 836 | 601 | 761 | 639 | 717

Table 9: The results of DeSGraDA with different widely used graph neural networks (GIN, GCN and
SAGE) on the SEED and BCI dataset. Bold results indicate the best performance.

\ SEED \ BCI
Methods
\ S0—S1 \ S1—S0 \ S0—S2 \ S2—S0 \ B0—BI1 \ B1—B0 \ B0—B2 \ B2—B0
DeSGraDA w GCN 55.7 54.5 53.7 54.0 52.8 51.6 522 54.2
DeSGraDA w SAGE 553 54.5 542 549 52.7 522 52.8 54.7
DeSGraDA w GIN 56.6 57.1 55.8 56.9 53.3 52.9 53.8 55.4
DeSGraDA \ 58.0 \ 58.2 \ 57.0 \ 58.3 \ 54.1 \ 53.6 \ 54.9 \ 56.2

K.3 MORE ABLATION STUDY

To validate the effectiveness of the different components in DeSGraDA, we conduct more experiments
with four variants on DD, SEED, and BCI datasets, i.e., DeSGraDA w CDAN, DeSGraDA w/o PL,
DeSGraDA w/o CF and DeSGraDA w/o TL. The results are shown in Table[ITTland[12] From the
results, we have similar observations as summarized in Section 5.3}

Additionally, we conduct ablation studies to examine the effect of directly replacing the SGNs with
commonly used Graph Neural Networks (GNNs) for generating representations for DeSGraDA:
(1) DeSGraDA w GCN: It replaces SGNs with GCN (Kipf & Welling, 2017); (2) DeSGraDA w
GIN: It replaces SGNs with GIN (Xu et al., 2018); (3) DeSGraDA w SAGE: It replaces SGNs with
GraphSAGE (Hamilton et al., 2017)). The experimental results across the PROTEINS, DD, SEED,
and BCI datasets are shown in Table B] and E} However, the critical aspect of our work lies in the
specific problem we set up, i.e., low-power and distribution shift environments. In this context,
directly replacing SGNs with commonly used GNNs like GIN or GCN is not feasible, as these models
are unsuitable for deployment on low-energy devices. As demonstrated in Section[5.4, GNN-based
methods have much higher energy consumption than the spike-based methods.

K.4 MORE SENSITIVITY ANALYSIS

In this part, we provide additional sensitivity analysis of the proposed DeSGraDA with respect to the
impact of its hyperparameters: the latency step 7" and initial threshold value Vt‘ffgree in SNNs on the
DD, SEED and BCI datasets. The results are illustrated in Figure[§]and [9} where we observe trends
similar to those discussed in Section

Additionally, we conduct a sensitivity analysis of the hy- POSPI PISPO POSPZ PIFO
perparameter A in Eq.[9] which balances the adversarial ol 753 910 e s
alignment loss, on the PROTEINS dataset. We vary A A=03 754 83.7 68.0 8.8
within the range {0.1,0.3,0.5,0.7,0.9}. As shown in =05 753 84.2 68.3 82.9
Table [T0} the results demonstrate that DeSGraDA con-  y=04 203 sie o5 sae
sistently achieves strong performance across different \
values, with the best result obtained at A = 0.9. Model Table 10: Hyperparameter sensitivity
performance remains stable for moderate to high values of  analysis of A on the PROTEINS dataset.
A, indicating that the adversarial alignment loss serves as

an effective regularizer without destabilizing the training

process.
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Figure 8: Hyperparameter sensitivity analysis of latency step 7' in SNNs on the DD, SEED and BCI
datasets.
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Figure 9: Hyperparameter sensitivity analysis of the initial threshold Vt'}lfg "“ in SNNs on the DD,
SEED and BCI datasets.

L LIMITATION

The proposed DeSGraDA framework, while demonstrating significant improvements in spiking
graph domain adaptation, does have some limitations. It assumes a substantial domain shift between
the source and target domains, which may not always be applicable in real-world scenarios where
domain shifts are minimal. Additionally, the computational complexity introduced by adversarial
feature distribution alignment and pseudo-label distillation could become a bottleneck, especially
for large-scale datasets. The framework’s sensitivity to hyperparameters, such as time latency and
threshold values, also requires careful tuning for different datasets, which may hinder its practical
application. Furthermore, while the method provides a generalization bound, its robustness in diverse
real-world settings and its ability to address privacy or fairness concerns in sensitive domains remain
underexplored. These aspects highlight opportunities for further refinement and broader applicability
of DeSGraDA.

M THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were only used to improve the clarity, grammar, and fluency of the
manuscript. They were not involved in the development of research ideas, experimental design, data
analysis, or any other aspect of the scientific content.
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Table 11: The results of ablation studies on the DD dataset (source — target). Bold results indicate
the best performance.

Methods | D0—DI1 | D1-D0 | D0—D2 | D2-D0 | D0—D3 | D3—D0 | D1—D2 | D2—D1 | D1-D3 | D3—D1 | D2—D3 | D3—D2
DeSGraDA w CDAN | 57.3 727 59.9 68.8 57.4 58.1 68.1 60.9 75.9 593 802 779
DeSGraDA wio PL 583 718 58.1 69.8 57.9 5822 67.1 593 75.1 60.7 79.1 76.8
DeSGraDA w/o CF 51.0 620 57.1 618 54.0 515 59.0 543 623 529 64.1 693
DeSGraDA wio TL 58.0 72.0 60.4 682 58.4 58.8 68.7 60.8 77.6 60.5 76.6 774
DeSGraDA | 601 | 761 | 639 | 7.7 | 6LL | 623 | 736 | 642 | 809 | 647 | 820 | 806

Table 12: The results of ablation studies on the SEED and BCI datasets (source — target). Bold
results indicate the best performance.

| SEED | BCI
Methods
| S0—S1 | SIS0 | S0—S2 | S2—80 | S1—S2 | S2—S1 | BO—»B1 | BI—B0 | B0O—»B2 | B2—B0 | B1-»B2 | B2—BI

DeSGraDA w CDAN | 54.1 55.2 535 56.8 53.9 55.7 52.0 523 515 53.6 527 524
DeSGraDA w/o PL 55.6 55.7 54.3 56.1 53.7 54.5 533 52.9 52.6 52.8 52.1 52.2
DeSGraDA w/o CF 29.7 47.2 45.8 4715 45.6 328 43.0 443 44.2 447 33.1 342
DeSGraDA w/o TL 53.8 54.6 53.2 55.4 52.0 53.4 51.1 50.9 522 53.9 50.5 513
DeSGraDA | 580 | 582 | 570 | 583 | 559 | 581 | 541 | 536 | 549 | 562 | 550 | 546

Table 13: The graph classification results (in %) on PROTEINS under node density domain shift

(source—rtarget). PO, P1, P2, and P3 denote the sub-datasets partitioned with node density. Bold
results indicate the best performance.
Methods ‘ PO—P1 ‘ P1—=PO ‘ PO—P2 ‘ P2—P0 ‘ PO—P3 ‘ P3—P0O ‘ P1—=P2 ‘ P2—P1 ‘ P1—P3 ‘ P3—P1 ‘ P2—P3 ‘ P3—P2 ‘ Avg.
WL subtree 69.1 59.7 61.2 75.9 41.6 835 61.5 72.7 24.7 2.1 63.1 62.9 62.4
GCN 73.7+03 | 82.7x04 | 57.6x02 | 84.0+13 | 24.4204 | 17.3x02 | 57.620.1 | 70.9+07 | 24.4+05 | 26.3+01 | 37.5+02 | 42.5+08 | 49.9
GIN 71.8+27 | 70.2+47 | 58.5+43 | 56.94+49 | 742417 | 782433 | 63.3+27 | 67.1+38 | 359442 | 61.0+24 | 71.9421 | 65.1+10 | 64.5
GMT 73.7+02 | 82.7x01 | 57.6+03 | 83.1x05 | 75.6+14 | 173206 | 57.6x15 | 73.7x06 | 75.6+04 | 26.3+12 | 75.6+07 | 42.4+05 | 61.8
CIN 74.1+06 | 83.8+10 | 60.1+21 | 78.6431 | 75.6+02 | 74.8+37 | 63.9+27 | 74.1x06 | 57.0+43 | 58.9+33 | 75.6+07 | 63.6+10 | 70.0
SpikeGCN | 71.8+09 | 80.9+12 | 64.9+14 | 79.1+22 | T1.1+19 | 73.8+16 | 62.4x20 | 71.8+23 | 70.1+24 | 66.9+19 | 72.1+19 | 64.5+17 | 70.9
DRSGNN 73.6+1.1 | 81.3x15 | 64.6+12 | 80.6+14 | 70.2+17 | 76.1+23 | 64.1+15 | 71.9+19 | 70.4+20 | 64.1+31 | 74.7+14 | 64.3+11 | 71.3
CDAN 759410 | 83.1x06 | 60.8+06 | 82.6+02 | 75.8+03 | 70.9+24 | 64.7x+03 | 77.7x06 | 73.3£18 | 75.4+07 | 75.8+04 | 67.1x08 | 73.6
ToAlign 73.7+04 | 82.7+03 | 57.6+06 | 82.7+08 | 24.4x01 | 82.7+03 | 57.6+04 | 73.7x02 | 24.4+07 | 73.7+03 | 244405 | 57.6+04 | 59.6
MetaAlign | 74.3+08 | 83.3+22 | 60.6+1.7 | 71.2+21 | 76.3+03 | 77.3+24 | 64.6x12 | 72.0+10 | 76.0+05 | 73.3+18 | 74.4+17 | 56.9+14 | 71.7
DEAL 754+12 | 78.0+24 | 68.1+19 | 80.8+21 | 73.8+14 | 80.6+23 | 65.7+17 | 7T4.7+24 | T4 T+16 | 71.0+21 | 68.1+26 | 70.3+04 | 73.4
CoCo 74.8+06 | 84.1x11 | 65.5+04 | 83.6+11 | 72.4+29 | 83.1+04 | 69.7x05 | 75.8+07 | 71.4+23 | 73.4+13 | 725427 | 66.4+17 | 74.4
SGDA 64.2+05 | 61.0+£07 | 66.9+12 | 61.9+09 | 65.4+16 | 66.5+1.0 | 64.6+1.1 | 60.1x05 | 66.3+13 | 59.3+08 | 66.0+16 | 66.2+13 | 64.1
StruRW 71.9+23 | 82.6+19 | 66.7+18 | 74.5+28 | 52.8+19 | 573420 | 62.2+24 | 63.3+21 | 59.5+16 | 56.3+20 | 66.6+23 | 52.4+20 | 63.8
A2GNN 65.7+06 | 65.9+08 | 66.3+09 | 65.6+1.1 | 65.2+14 | 65.6+13 | 65.9+17 | 65.8+16 | 65.0+1.5 | 66.1+12 | 652+19 | 65.9+18 | 65.7
PA-BOTH | 61.0+0s | 61.2+13 | 60.3x06 | 66.7+2.1 | 63.7+15 | 61.9+20 | 66.2+14 | 69.9+23 | 68.0+07 | 69.4+18 | 61.5+04 | 67.6+10 | 64.9
DeSGraDA | 76.3+19 | 84.6=25 | 69.2+23 | 83.6+26 | 77.5+22 | 83.7+19 | 69.8+24 | 74.0+16 | 76.2+20 | 73.0+21 | 77.8+23 | 70.5+17 | 76.4

Table 14: The graph classification results (in %) on PROTEINS under edge density domain shift

(source—target). PO, P1, P2, and P3 denote the sub-datasets partitioned with edge density. Bold
results indicate the best performance.
Methods | PO—P1 | PI—P0 | PO—P2 | P2—P0 | PO—P3 | P3P0 | P1—P2 | P2—P1 | P1—P3 | P3Pl | P2—P3 | P3P2 | Avg.
WL subtree 68.7 823 50.7 823 58.1 83.8 64.0 74.1 43.7 70.5 713 60.1 67.5
GCN 73.4+02 | 83.5+03 | 57.6+02 | 84.2+18 | 24.0+01 | 16.6+04 | 57.6+02 | 73.7x04 | 24.0+0.1 | 26.6+02 | 39.9+09 | 42.5+0.1 | 50.3
GIN 62.5+47 | 74.9+37 | 53.0+46 | 59.64+42 | 73.7+08 | 64.7+34 | 60.6+27 | 69.8+06 | 31.1+28 | 63.1434 | 723427 | 64.6+14 | 62.5
GMT 73.4+03 | 83.5+02 | 57.6+0.1 | 83.5+03 | 24.0x0.1 | 83.5+0.1 | 57.4x02 | 73.4x02 | 24.1x01 | 73.4x03 | 24.0+0.1 | 57.6x02 | 59.6
CIN 74.5+02 | 84.1x05 | 57.8+02 | 82.7+09 | 75.6+06 | 79.2+22 | 61.5+27 | 74.0+10 | 75.5+08 | 72.5+21 | 76.0+03 | 60.9+12 | 72.9
SpikeGCN | 71.8+08 | 79.5+13 | 63.8+10 | 789414 | 68.6£1.1 | 76.5+18 | 62.3+22 | 72.1+15 | 68.1+21 | 67.2+19 | 69.2+2.1 | 64.2+18 | 70.2
DRSGNN 72.6+06 | 80.1x16 | 63.1x14 | 79.5+18 | 70.4+19 | 78.6+21 | 64.1+17 | 70.7+23 | 67.8+16 | 65.6+14 | 71.3+13 | 62.1+10 | 70.5
CDAN 722418 | 82.4+16 | 59.8+21 | 76.8424 | 693441 | 71.8437 | 64.4+25 | 7T4.3+04 | 46.3+20 | 69.8+18 | 744417 | 62.6+23 | 68.7
ToAlign 73.4+0.1 | 83.5+02 | 57.6+0.1 | 83.5+02 | 24.0+03 | 83.5+04 | 57.6x01 | 73.4x01 | 24.0+02 | 73.4x02 | 24.0+0.1 | 57.6+03 | 59.6
MetaAlign | 75.5+09 | 84.9+06 | 64.8+16 | 85.9+11 | 69.3+27 | 83.3+06 | 68.7+12 | 74.2+07 | 73.34£33 | 72.24+09 | 69.9+18 | 63.6+23 | 73.8
DEAL 76.5+04 | 83.1+04 | 67.5+13 | 77.6+18 | 76.0+02 | 80.1+27 | 66.1+13 | 75.4+15 | 42.3+41 | 68.14+37 | 73.1+22 | 67.8+12 | 71.1
CoCo 75.5+02 | 84.2+04 | 59.8+05 | 83.4+02 | 73.6+23 | 81.6+24 | 65.8+03 | 76.2+02 | 75.8+02 | Tl.1x21 | 76.1+02 | 67.1+06 | 74.2
SGDA 63.8+06 | 65.2+13 | 66.7+10 | 59.1+15 | 60.1+08 | 64.4+12 | 65.2+07 | 63.9+09 | 64.5+06 | 61.1+13 | 58.9+14 | 64.9+12 | 63.2
StruRW 72.6+22 | 84.5+17 | 66.2+22 | 72.5+24 | 489420 | 56.5+23 | 63.1+18 | 64.4+24 | 55.8+20 | 56.6+24 | 67.0+26 | 42.4+20 | 62.5
A2GNN 65.4+13 | 66.3x1.1 | 68.2+14 | 66.3+12 | 65.4+07 | 65.9+09 | 66.9+13 | 65.4x12 | 65.6+09 | 65.5+12 | 66.1+20 | 66.0+18 | 66.1
PA-BOTH | 63.1+07 | 67.2+11 | 64.3+05 | 72.1+18 | 66.3+£07 | 64.1+12 | 69.7+21 | 67.5+18 | 61.2+14 | 67.7+23 | 61.2+16 | 65.5+06 | 65.9
DeSGraDA | 76.8+19 | 87.0+21 | 68.6+18 | 83.7+25 | 76.5+28 | 83.9+23 | 70.3+18 | 75422 | 76.7+19 | 73.7+27 | 79.9+32 | 67.9+13 | 76.7
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Table 15: The graph classification results (in %) on DD under node density domain shift
(source—target). DO, D1, D2, and D3 denote the sub-datasets partitioned with node. Bold re-
sults indicate the best performance.

Methods | DO—DI | DI-DO | DO—D2 | D2D0 | DO—D3 | D3—D0 | D1—+D2 | D2-DI1 | D1—+D3 | D3—Dl

D2-D3 | D3—D2 | Avg.

WL subtree 49.2 56.8 29.6 20.1 21.0 18.4 59.5 50.5 573 48.1 63.9 66.9 49.3
GCN 489428 | 59.0+17 | 20.7+20 | 27.3x23 | 15.1+18 | 26.9+22 | 61.6+19 | 53.6x15 | 68.1x16 | 52.9+26 | 64.9+21 | 69.7+23 | 47.4
GIN 48.8+19 | 24.7x21 | 44.1+18 | 224223 | 57.0+21 | 18.4x20 | 73.0+18 | 52.5+23 | 63.2+16 | 53.6+15 | 70.3x26 | 69.4+18 | 49.6
GMT 49.1+19 | 32.9+22 | 31.8+18 | 27.3+23 | 525415 | 27.6+18 | 75.4+19 | 53.2+21 | 74.1+26 | 57.9+24 | 70.9+18 | 71.1x27 | 52.0
CIN 50.4+18 | 18.4x20 | 21.2+21 | 36.8+18 | 43.0+£21 | 22.9+19 | 53.4+17 | 56.5+15 | 62.3+16 | 53.3x19 | 75.0x21 | 69.3x20 | 51.4

SpikeGCN | 53.4+13 | 61.5+11 | 284421 | 48.0+14 | 20.8+14 | 51.2+14 | 69.3+20 | 624416 | 77.9+11 | 64.1+15 | 76.8+21 | 71.9+18 | 57.1
DRSGNN 52.1+15 | 69.7x18 | 28.7+17 | 42421 | 18.6+20 | 48.3x28 | 79.5+20 | 59.5+15 | 77.7+19 | 63.1x15 | 76.4+21 | 72.1x23 | 57.4

CDAN 49.6+22 | 69.8+16 | 44.1+18 | 33.9+19 | 43.1+24 | 423120 | 70.5+18 | 60.3+22 | 76.6+2.1 | 60.1+14 | 75.8+25 | 70.5+23 | 58.1
ToAlign 54.0+24 | 71.0+2.1 | 34.8+18 | 46.9+19 | 29.6+23 | 45.7+18 | 71.9+22 | 61.6x21 | 76.7+19 | 62.8+23 | 76.4+20 | 71.0+13 | 58.5
MetaAlign | 48.1+20 | 70.0+19 | 30.7+14 | 18.4+18 | 249423 | 18.4+19 | 70.1+23 | 51.9+15 | 74.6+24 | 51.9+22 | 75.1+18 | 69.3+17 | 52.7
DEAL 57.9+23 | 71.6+20 | 57.2+18 | 59.3+15 | 62.2+22 | 59.4+19 | 72123 | 63.9+17 | 782+22 | 62.6+18 | 78.3x21 | 77.3+19 | 66.5
CoCo 59.5+21 | 70.4+17 | 56.6+26 | 58.3+22 | 59.4+19 | 53.9+25 | T4T+14 | 627420 | 70.6+16 | 63.1+20 | 77.2+17 | 76.4+24 | 65.2
SGDA 57.7+15 | 63.8421 | 49.8+23 | S54.1x17 | 42.6+23 | 54.9+16 | 74.1x28 | 63.0+23 | 78.7+27 | 64.5+21 | 76.8+22 | 74.2+16 | 62.9
StruRW 50.0£23 | 53.1+19 | 324424 | 40.6+21 | 26.0+24 | 38.4x20 | 733+16 | 61.7+18 | 71.2+19 | 53.6+23 | 75.2+21 | 71.0+22 | 539

A2GNN 56.1+£20 | 68.5+16 | 48.7+21 | 52.5+18 | 42.9+14 | 48418 | 70.8+17 | 51.9+20 | 76.3+22 | 51.9+18 | 75.1+16 | 69.3+24 | 59.4
PA-BOTH S14+1s | 62.7x21 | 31.8+20 | 40.5+23 | 28.5+19 | 45.0+22 | 69.5+16 | 61.0+15 | 68.4+17 | 57.8+22 | 73.0+24 | 73.3+25 | 55.3

DeSGraDA | 60.1+22 | 76.1+18 | 63.9+19 | 717420 | 61.1x19 | 62.3%+16 | 73.6+25 | 64.2+20 | 80.9+22 | 64.7+18 | 82.0+25 | 80.6+21 | 70.1

Table 16: The graph classification results (in %) on DD under edge density domain shift
(source—target). DO, D1, D2, and D3 denote the sub-datasets partitioned with node. Bold re-
sults indicate the best performance.

Methods | DO—DI | DI-DO0 | D0—D2 | D2—D0 | D0—D3 | D3—D0 | DI—D2 | D2D1 | D1-D3 | D3—DI

D2-D3 | D3D2 | Avg.

WL subtree 515 59.5 28.6 23.8 234 19.4 56.8 51.2 54.9 50.2 61.5 573 44.8
GCN 49.6+22 | 62.7+23 | 22.8+20 | 26.9+14 | 139420 | 22.6+19 | 74.6+13 | 58.7+24 | 75.1+11 | 52.2+16 | 76.6+13 | 67.5+21 | 50.3
GIN 489428 | 25.9+18 | 44.6+15 | 23.0+20 | 572418 | 194420 | 71.8+12 | 54.8+24 | 622415 | 52.7+19 | 71.3+17 | 67.5+24 | 50.0
GMT 50.8+22 | 42.7+25 | 349427 | 34.8+18 | 482420 | 29.6x25 | 68.9+15 | 52.6x16 | 71.2+15 | 57.1x21 | 759+14 | 67.8x16 | 52.9
CIN 50.4+22 | 294420 | 23.01+14 | 31.6+17 | 42.8+20 | 24.6+16 | 54.2+12 | 575416 | 73.5+22 | 527413 | 75.6+16 | 67.1+21 | 48.6

SpikeGCN | 56.4+19 | 70.5+21 | 34.1+26 | 53.2+29 | 20.7+16 | 49.1+1.7 | 79.7+24 | 66.5+12 | 77.3+21 | 61.7+16 | 78.7+20 | 71.0+15 | 59.9
DRSGNN 553424 | 69.9+22 | 274420 | 47.6227 | 17.9+16 | 47.4x21 | 70.7+20 | 659+17 | 76.9+21 | 622+14 | 78.5+18 | 7T1.4+16 | 57.6

CDAN 49.7+19 | 65.3x23 | 45.4+18 | 43.1x21 | 42.8+17 | 51.8+16 | 71.5+20 | 64.9+16 | 74525 | 59.2+22 | 77.9+21 | 69.0+15 | 59.5
ToAlign 523425 | 66.5£20 | 47.1+16 | 45.6+18 | 41.2+22 | 51.2+18 | 73.9+19 | 65.9+23 | 77.6+20 | 60.8+16 | 78.1+24 | 70.2+21 | 60.9
MetaAlign | 48.1+20 | 67.3+17 | 32.8+20 | 19.4+18 | 239425 | 19.4+17 | 70.1+18 | 51.9421 | 77.3+32 | 519416 | 76.1+18 | 70.5+20 | 50.7
DEAL 58.4+15 | 70.6+20 | 63.9+16 | 54.1+21 | 66.9+24 | 51.8+16 | 75.1+25 | 67.4+18 | 77.8+19 | 60.3+21 | 80.5+18 | 75.0+20 | 66.8
CoCo 60.9+£23 | 69.6x12 | 622422 | 66.2+20 | 66.0x18 | 52.5+23 | 71.1+24 | 65.3+15 | 789£13 | 60.3+14 | 79.6+21 | 73.5+18 | 67.3
SGDA 572415 | 68.8+18 | 42.3+20 | 61.4+17 | 39.8+22 | 52.0+18 | 66.7+19 | 66.4+23 | 78.1+21 | 63.6x26 | 73.6+16 | 70.8+19 | 61.7
StruRW 525425 | 56.7+13 | 39.0+23 | 40.1x20 | 244421 | 29.7+24 | 754417 | 63.3+20 | 74.8+16 | 53.4x15 | 754+14 | 68.7x17 | 54.6

A2GNN 53.01+20 | 65.3x17 | 42.8+19 | 40.5+21 | 33.9+25 | 39.4x18 | 69.8+22 | 61.9+19 | 77.3£21 | 61.9+20 | 76.1x23 | 67.2+18 | 57.4
PA-BOTH 51.9+18 | 50.6+20 | 35.8+15 | 37.7+17 | 27.6+23 | 43.7+19 | 62.1+16 | 612419 | 65.7+20 | 582415 | 73.3x18 | 69.5+25 | 53.1

DeSGraDA | 62.1+20 | 72.0:24 | 69.1+17 | 717422 | 68.7+16 | 58.6+21 | 76.1+19 | 66.4+17 | 80.7+22 | 63.6:16 | 81.9+1s | 78.6+23 | 70.8
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