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Abstract
Large Vision-Language Models (LVLMs)001
demonstrate strong visual question answer-002
ing (VQA) capabilities but are shown to hal-003
lucinate. A reliable model should perceive004
its knowledge boundaries—knowing what it005
knows and what it does not. This paper inves-006
tigates LVLMs’ perception of their knowledge007
boundaries by evaluating three types of con-008
fidence signals: probabilistic confidence, an-009
swer consistency-based confidence, and verbal-010
ized confidence. Experiments on three LVLMs011
across three VQA datasets show that, although012
LVLMs possess a reasonable perception level,013
there is substantial room for improvement.014
Among the three confidence, probabilistic and015
consistency-based signals are more reliable016
indicators, while verbalized confidence often017
leads to overconfidence. To enhance LVLMs’018
perception, we adapt several established con-019
fidence calibration methods from Large Lan-020
guage Models (LLMs) and propose three ef-021
fective methods. Additionally, we compare022
LVLMs with their LLM counterparts, finding023
that jointly processing visual and textual inputs024
decreases question-answering performance but025
reduces confidence, resulting in improved per-026
ception level compared to LLMs.027

1 Introduction028

Large Vision-Language Models (LVLMs) are capa-029

ble of processing both textual and visual informa-030

tion simultaneously, demonstrating strong perfor-031

mance on visual question-answering (VQA) task032

(Bai et al., 2025a; Wu et al., 2024; OpenAI et al.,033

2024). However, when faced with questions be-034

yond their knowledge boundaries, LVLMs often035

hallucinate—generating seemingly plausible but036

factually incorrect responses (Liu et al., 2024a;037

Bai et al., 2025b). This is unacceptable in safety-038

critical domains such as healthcare. Knowing when039

an LVLM can answer correctly not only helps us040

determine when to trust the model but also enables041

adaptive retrieval-augmented generation (RAG),042

triggering RAG only when the model does not 043

know the answer, which improves both the effi- 044

ciency and effectiveness of RAG (Ni et al., 2024). 045

A trustworthy model should have a clear percep- 046

tion of its knowledge boundaries—knowing what it 047

knows and what it does not. While this ability has 048

been extensively studied in Large Language Mod- 049

els (LLMs) (Xiong et al., 2024; Tian et al., 2023; 050

Moskvoretskii et al., 2025), it remains underex- 051

plored in LVLMs. A model’s perception level is as- 052

sessed by the alignment between its confidence and 053

actual performance, with correctness of the answer 054

serving as a proxy for performance. Therefore, the 055

emphasis is on whether LVLMs can provide con- 056

fidence that matches their performance. We focus 057

on binary confidence because it directly helps us 058

decide whether to trust the model. 059

In this work, we explore this question by examin- 060

ing three representative types of confidence signals 061

that are widely used in LLMs: 1) Probabilistic 062

confidence (Desai and Durrett, 2020; Guo et al., 063

2017a). The confidence is measured by the genera- 064

tion probability of tokens in the output. 2) Answer 065

consistency-based confidence (Zhang et al., 2024; 066

Manakul et al., 2023b). Some studies argue that 067

token-level probabilities poorly reflect a model’s 068

semantic confidence and are not suitable for black- 069

box models. Instead, they suggest using semantic 070

consistency across multiple responses as a confi- 071

dence indicator. 3) Verbalized confidence (Lin 072

et al., 2022; Yang et al., 2024b). The natural lan- 073

guage confidence expressed by the model, offering 074

an intuitive and model-agnostic signal without re- 075

quiring repeated sampling. 076

We conduct experiments using three represen- 077

tative models—-Qwen2.5-VL (Bai et al., 2025a), 078

DeepSeek-VL2 (Wu et al., 2024), and LLaVA-v1.5 079

(Liu et al., 2024b)—on three datasets: Dyn-VQA 080

(Li et al., 2025b), MMMU Pro (Yue et al., 2024), 081

and Visual7W (Zhu et al., 2016). Results show that 082

LVLMs are able to perceive their knowledge bound- 083
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aries to some extent, but there remains considerable084

room for improvement. Among the three types of085

confidence, probabilistic and answer consistency-086

based confidences are more aligned with LVLMs’087

performance but rely on in-domain data for bina-088

rization, while verbalized confidence have weaker089

alignment and tends to be overconfident.090

To enhance LVLMs’ perception capabilities, we091

adopt several representative confidence calibration092

methods originally designed for LLMs and propose093

three new approaches tailored for LVLMs: Img-094

CoT, Prob-Thr, and Cross Model. Our results show095

that methods which engage the model’s reasoning096

abilities can enhance both answer accuracy and097

verbalized confidence perception-level, whereas098

existing consistency-based methods have limited099

effectiveness and do not generalize well to LVLMs.100

Our proposed three methods are effective on differ-101

ent datasets and models.102

Compared to LLMs, LVLMs need to process an103

additional visual modality and integrate informa-104

tion across different modalities. This raises a ques-105

tion: how does the perception ability of LVLMs dif-106

fer from that of LLMs? To investigate this, We com-107

pare LVLMs with their corresponding LLMs on108

the Dyn-VQA dataset (Li et al., 2025b; Tian et al.,109

2023). This dataset provides parallel visual-textual110

and pure textual queries, ensuring fair comparison111

between LLMs and LVLMs. We focus on verbal-112

ized confidence because it can reflect the model’s113

language capabilities. Experimental results show114

that: 1) LVLMs exhibit lower VQA performance115

but higher perception accuracy compared to their116

LLM counterparts. 2) Certain prompting methods117

are ineffective for LVLMs, showing that LVLMs118

have weaker instruction-following capabilities.119

We hypothesize these phenomena may be caused120

by the following two reasons: 1) Compared to pro-121

cessing single-modality information, handling vi-122

sual information and integrating two modalities123

pose challenges for LVLMs, which leads to low124

VQA performance. However, this also leads to125

more conservative confidence expression, resulting126

in lower overconfidence and a more accurate per-127

ception level. 2) Training LLMs without enough ca-128

pacity to handle additional visual information may129

lead to a loss of their language abilities, thereby im-130

pairing their instruction following ability. Through131

controlled experiments on different model scales132

and different input modalities, our results supported133

these hypotheses.134

2 Related Work 135

LLM Knowledge Boundary Perception. Prior re- 136

search has primarily focused on knowledge bound- 137

ary perception in LLMs, with various method- 138

ologies proposed to elicit confidence: verbalized 139

confidence, where models directly articulate their 140

confidence (Yang et al., 2024b; Yin et al., 2023; 141

Zhang et al., 2023); consistency based confidence 142

that derive confidence from answer consistency 143

across multiple samples (Manakul et al., 2023a; 144

Agrawal et al., 2024); probabilistic confidence, 145

leveraging generated token likelihoods (Guo et al., 146

2017b; Ma et al., 2025); and internal state probing 147

confidence, examining hidden states (Azaria and 148

Mitchell, 2023; Ni et al., 2025). Differently, our 149

work investigates knowledge boundary perception 150

in LVLMs and provides the first systematic com- 151

parison of these methods in the multimodal setting. 152

LVLMs. Previous studies have established the 153

widespread adoption of LVLMs in safety-critical 154

domains such as healthcare (Li et al., 2023; Hu 155

et al., 2024) and autonomous driving (Cui et al., 156

2024; Jiang et al., 2024). While these applications 157

demonstrates LVLMs’ functional capabilities, stud- 158

ies show LVLMs frequently produce hallucinations 159

(Bai et al., 2025b; Sahoo et al., 2024). The cur- 160

rent body of work investigates this limitation on 161

different aspects. Some work surveys hallucination 162

types and their causes (Liu et al., 2024a; Zhou et al., 163

2024; Lan et al., 2024), while others focus on miti- 164

gating hallucinations (Li et al., 2025a; Wang et al., 165

2024a; Xiao et al., 2025). A distinct but less ex- 166

plored research thread investigates LVLMs’ knowl- 167

edge boundary as a potential framework for en- 168

hancing model reliability (Chen et al., 2025; Wang 169

et al., 2024b; Leng et al., 2024). We take this line of 170

work a step further by introducing a novel compar- 171

ative paradigm that compares perception between 172

LVLMs with their LLM counterparts. 173

3 Preliminaries 174

In this section, we provide an overview of our task. 175

3.1 Task Formulation 176

Visual Question Answering. The goal of visual 177

question answering (VQA) can be described as 178

follows. For a given question q and an image i, the 179

model is asked to provide an answer a based on the 180

question q and image i, that is, a = fmodel(q, i). 181
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LVLM Knowledge Boundary Perception. We as-182

sess the perception of LVLM’s knowledge bound-183

ary with the alignment between confidence and its184

actual performance. Here, we use the model’s vi-185

sual question answering correctness to serve as a186

proxy for performance, and elicit different kinds of187

model confidence estimates.188

Confidence Estimation. In this paper, we con-189

duct experiments on the following three kinds of190

model confidence estimates. As widely adopted191

and training-free, they can be elicited without192

changing the internal knowledge of models.193

Probabilistic confidence is elicited through the194

aggregation of token probabilities for scoring, fol-195

lowed by applying a threshold to binarize the score196

into confidence. It is efficient but only captures197

lexical-level confidence and requires threshold tun-198

ing on a held-out set, which leads to poor gener-199

alizability. Some studies also argue that it is not200

applicable to black-box models (Kuhn et al., 2023).201

Answer consistency-based confidence is elicited202

by calculating the consistency of multiple gener-203

ated responses. The core idea is that if the model204

knows the correct answer, multiple sampled an-205

swers should be semantically consistent. It better206

captures semantics than probabilistic confidence,207

but is computationally expensive and still requires208

fitting a threshold (Manakul et al., 2023a).209

Verbalized confidence is elicited by directly ask-210

ing the model to express confidence (Yang et al.,211

2024b). Compared to the other two confidences,212

this confidence reflects models’ self-awareness of213

their knowledge boundaries. Moreover, it elimi-214

nates the need for threshold fitting and multiple215

sampling. Therefore, this kind of confidence re-216

ceives our primary focus.217

4 Knowledge Boundary Perception in218

LVLMs219

This section introduces experimental setup to evalu-220

ate LVLMs knowledge boundary perception ability.221

Along with the elicited confidence and confidence222

calibration methods evaluated by us.223

4.1 Existing Methods224

Here, we systematically introduce three basic con-225

fidence estimates in Section 3, along with several226

confidence calibration methods originally designed227

for LLMs. We also propose new methods. Detailed228

prompts are in Appendix A.1. Basic confidence229

estimates are in underline, and others are existing230

confidence calibration methods. 231

4.1.1 Vanilla Confidence Estimation Methods 232

Probabilistic confidence is elicited through token 233

probabilities. Here, we focus on the output perplex- 234

ity of models. 235

• Perplexity Threshold (PPL-Thr): Perplexity 236

quantifies a model’s uncertainty in content gener- 237

ation (Cooper and Scholak, 2024). We binarize 238

this metric into confidence by applying a thresh- 239

old decided on a held-out set. 240

Answer consistency-based confidence requires 241

models to generate multiple responses, compute 242

their consistency, and apply a threshold to the con- 243

sistency scores for confidence elicitation. 244

• Random Sample (Random): Simply sample re- 245

sponses without modifying input. 246

We evaluate two types of verbalized confidence: 247

(1) Single-step verbalized confidence, which is gen- 248

erated simultaneously with the answer, and (2) 249

Double-step verbalized confidence, which is gener- 250

ated by asking the model for an answer in the initial 251

round of dialogue, then providing its confidence in 252

the second round. The distinction between them 253

lies in cognitive focus allocation: single-step confi- 254

dence elicitation demands concurrent attention to 255

both answer and confidence generation, whereas 256

double-step confidence elicitation enables sequen- 257

tial processing. 258

• Single-step Vanilla (Vanilla) : Simply ask the 259

model to generate both the answer and confi- 260

dence in a single interaction. 261

• Double-step Self Judging (Self-Jud): First, ac- 262

quiring the model to provide an answer to the 263

question, then asking it to generate confidence. 264

4.1.2 Calibrating Verbalized Confidence 265

The four methods below aim to calibrate single- 266

step verbalized confidence: 267

• Chain-of-Thought (CoT): Zero-shot Chain-of- 268

Thought prompting, Applying “Analyze step by 269

step” to the query (Kojima et al., 2023). 270

• Punish: Penalizing overconfidence via the in- 271

struction “You will be punished if the answer is 272

not right but you say certain”. 273

• Explain: Requesting models to provide answer 274

explanations before generating their confidence. 275

The four methods below aim to calibrate double- 276

step verbalized confidence: 277

• Chain of Thought (CoT): Applying the Chain- 278

of-Thought prompt in the confidence elicitation 279

round of dialogue. 280
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• Challenge: We prepend the critical prompt “I281

don’t think your answer is right” to the query in282

the confidence elicitation round in order to guide283

the model to be less overconfident.284

• Punish: Applying the Punish prompt in the con-285

fidence elicitation round of dialogue.286

4.1.3 Calibrating Answer Consistency-Based287

Confidence288

• Rephrasing (Rephr): To address persistent289

errors caused by a specific question phrase,290

rephrase the original question into semantically291

equivalent variants with different phrases (Yang292

et al., 2024a).293

• Noised Image (Noised-Img): Reducing persis-294

tent errors caused by a specific image by creating295

semantically equivalent variants through the ad-296

dition of subtle noise to the original image.297

• Rephrasing and Noised Image (Reph+Nois):298

A combination of the Rephrasing and the Noised299

Image methods.300

4.2 Newly Proposed Methods301

• Image Chain of Thought (Img-CoT): Prompt-302

ing models to generate textual image descrip-303

tions before reasoning in order to convert visual304

modality information to textual modality.305

• Probability Threshold (Prob-Thr): Prompting306

models to generate continuous probabilities of307

answers (0–1), then applies a threshold to them308

to generate binary confidences. The threshold is309

decided on a held-out set.310

• Cross Model: Utilizing generated responses311

from different models to calculate the consis-312

tency score, this method can be viewed as using313

other models’ answers to evaluate whether the314

answer generated by a given model is reliable.315

4.3 Experimental Setup316

Datasets. We conduct experiments on three VQA317

benchmark datasets. They emphasize on LVLM’s318

different abilities. Visual7W (Zhu et al., 2016) em-319

phasizes abilities in vision comprehension, it con-320

tains 70K image-QA pairs for basic visual under-321

standing. Dyn-VQA (Li et al., 2025b) emphasizes322

language reasoning, it contains 1.5K questions test-323

ing multi-modal knowledge and multi-hop reason-324

ing.; MMMU Pro (Yue et al., 2024) emphasizes325

both vision and language capability, it contains 12K326

expert-curated multimodal questions. For evalua-327

tion, we respectively sample 550 questions from328

Dyn-VQA and MMMU Pro datasets, and sample 329

500 questions from the Visual7W dataset. 330

Models. We conduct experiments on three rep- 331

resentative LVLMs: Qwen2.5-VL-7B (Bai et al., 332

2025a), DeepSeek-VL2-16B (Wu et al., 2024), and 333

LLaVA-v1.5-7B (Liu et al., 2024b). 334

Figure 1: Count of samples for various matches be-
tween answer correctness and model confidence. We
use Total = FN + FP + TN + TP to represent the
total number of samples.

Metrics. We mainly utilize the evaluation met- 335

rics proposed by Ni et al. (2024): (1) Uncertain- 336

Rate (Unc-R.): FN+TN
Total represents the proportion 337

where the judgement of the answer is unconfident. 338

(2) Accuracy (Acc.): TP+FN
Total indicates the ratio of 339

correct answers generated by the model. (3) Align- 340

ment (Align.): TP+TN
Total represents the proportion 341

of samples where confidence matches the result, 342

we mainly use this metric to assess the model’s 343

knowledge boundary perception ability. (4) Over- 344

confidence (Overco.): FP
Total is the ratio of model- 345

generated answer is incorrect, but the judgement is 346

confident. (5) Conservativeness (Conser.): FN
Total 347

is the ratio of model-generated answer is correct 348

but the judgement is unconfident. 349

4.4 Results and Analysis 350

Table 1 presents the results of alignment perfor- 351

mance across different datasets and models. Please 352

refer to Appendix A.2 for implementation details 353

and detailed results. 354

4.4.1 Performance of Different Types of 355

Confidence 356

Here, we analyze three basic elicited confidence’s 357

performance. Our findings are as follows: 358

1) Compared to verbalized and probabilis- 359

tic confidence, answer consistency-based confi- 360

dence often shows higher alignment. As shown 361

in Table 1, the basic answer-consistency based con- 362

fidence (Random) achieves higher alignment com- 363

pared to verbalized (Vanilla, Self-Jud) and proba- 364

bilistic confidences (PPL Thr) on both LLaVA-1.5 365

and Deepseek-VL2. This may be because, unlike 366

probabilistic confidence that operates at the lexical 367

level, answer consistency-based confidence better 368
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method
Qwen2.5-VL LLaVA-1.5 DeepSeek-VL2

Dyn-VQA Visual7W MMMU Pro Dyn-VQA Visual7W MMMU Pro Dyn-VQA Visual7W MMMU Pro

Vanilla 0.7623 0.5840 0.4909 0.5338 0.4140 0.2509 0.6527 0.2820 0.2727

CoT 0.7824 0.6080 0.6818 0.5375 0.3940 0.2418 0.6362 0.5540 0.3836
Punish 0.7112 0.5520 0.5000 0.4899 0.4180 0.3745 0.7093 0.3500 0.3145
Explain 0.8117 0.6180 0.5782 0.4534 0.3900 0.2109 0.6984 0.5700 0.3491

Img-CoT 0.7276 0.6060 0.7182 0.5484 0.4140 0.2964 0.6344 0.5360 0.5236

Self-Jud 0.3272 0.5500 0.5609 0.2468 0.4220 0.3327 0.1993 0.4780 0.4236

CoT 0.6435 0.5700 0.5255 0.1463 0.4200 0.3218 0.2029 0.4760 0.4255
Challenge 0.8080 0.5280 0.4891 0.8995 0.5800 0.6782 0.8007 0.5240 0.5709

Punish 0.3272 0.5300 0.5164 0.1298 0.4200 0.3218 0.4936 0.5300 0.4345
Prob-Thr 0.5960 0.5820 0.5855 0.7971 0.6140 0.6091 0.6910 0.6060 0.5218

Random 0.5448 0.5700 0.5327 0.8976 0.7080 0.6709 0.8026 0.6460 0.6000

Noised Img 0.7313 0.6000 0.5400 0.8958 0.6740 0.6655 0.8062 0.6300 0.5818

Rephr 0.8026 0.5660 0.5364 0.8976 0.6920 0.6672 0.8080 0.6260 0.5764

Reph+Nois 0.7733 0.5500 0.5509 0.9013 0.6780 0.6655 0.8099 0.6120 0.5618

Cross Model 0.8208 0.6320 0.5800 0.8976 0.6520 0.6618 0.8062 0.6740 0.5964

PPL Thr 0.7916 0.6020 0.6073 0.8519 0.7060 0.6800 0.7934 0.6280 0.5345

Table 1: Performance of alignment on three datasets and three LVLMs. Best results of each kind of confidence in
bold and second best in underline. Experimental observations show that LLaVA demonstrates a pattern of complete
answer denial when being challenged. We therefore omitted these data from our results.

captures semantics by evaluating answer consis-369

tency (Kuhn et al., 2023), achieving higher align-370

ment. Additionally, while verbalized confidence371

is uncalibrated, eliciting answer consistency-based372

confidence calibrating a threshold on a held-out set,373

further improves alignment.374

Despite answer consistency-based confidence ex-375

hibiting high alignment, it comes at a cost: eliciting376

this kind of confidence requires generating multi-377

ple responses, incurring high computational costs.378

And its reliance on a held-out set for threshold cali-379

bration limits its generalizability.380

2) Probabilistic confidence surpasses verbal-381

ized confidence in alignment performance. As382

shown in Table 1, probabilistic confidence’s align-383

ment performance consistently surpasses verbal-384

ized confidence, and it outperforms answer consiste-385

ncy-based confidence on Qwen2.5-VL. Though386

it falls behind consistency-based confidence on387

LLAVA-1.5 and DeepSeek-VL2, the alignment dif-388

ferences are small. Additionally, it functions more389

efficiently without the high computational cost of390

generating multiple responses.391

However, probabilistic confidence, like answer392

consistency-based confidence, still requires thresh-393

old calibration on a held-out set, which affects its394

generalizability.395

3) Verbalized confidence demonstrates lower396

alignment compared to probabilistic and answer397

consistency-based confidences, and judges an-398

method

Dyn-VQA Visual7W MMMU Pro

Conser. Overco. Conser. Overco. Conser. Overco.

Vanilla 0.1024 0.1353 0.0900 0.3260 0.1327 0.3764
CoT 0.0786 0.1389 0.1340 0.2580 0.1127 0.2055

Punish 0.0804 0.2084 0.0820 0.3660 0.1127 0.3873

Self-Jud 0.0018 0.6709 0.0180 0.4320 0.0701 0.3692
CoT 0.0329 0.3236 0.0280 0.4020 0.1000 0.3745

Punish 0.0018 0.6709 0.0120 0.4580 0.0200 0.4636

Table 2: The performance of verbalized confidence on
Qwen2.5-VL, single-step confidences are in blue and
souble-step confidences are in orange .

swers overconfidently. Compared to probabilistic 399

and answer consistency-based confidences, elicit- 400

ing verbalized confidence is computationally ef- 401

ficient and generalizable. However, as shown in 402

Table 1, both single-step (Vanilla) and double-step 403

(Self-Jud) verbalized confidences’ alignment are 404

lower than the other two confidences. To inves- 405

tigate the cause of it, we calculate the conserva- 406

tiveness and overconfidence on verbalized confi- 407

dence, as shown in Table 2, we find that the ratio of 408

overconfident responses is substantially higher than 409

conservative responses. This pattern suggests that 410

LVLMs, like LLMs, are intrinsically biased toward 411

affirming their own output (Groot and Valdenegro- 412

Toro, 2024; Sun et al., 2025). 413

Table 2 also shows that double-step verbalized 414

confidence exhibits more severe overconfidence 415

than its single-step counterpart. This may be be- 416

cause the model’s self-generated answers in the first 417

round of dialogue serve as false positive signals of 418
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method

Dyn-VQA Visual7W MMMU Pro

Acc. Align. Overco. Acc. Align. Overco. Acc. Align. Overco.

Vanilla 0.1846 0.7623 0.1353 0.4380 0.5840 0.3260 0.4564 0.4909 0.3764
CoT 0.2121 0.7824 0.1389 0.4920 0.6080 0.2580 0.6436 0.6818 0.2055

Img-CoT 0.2048 0.7276 0.2066 0.5020 0.6060 0.3080 0.6636 0.7182 0.1691

Explain 0.1956 0.8117 0.0823 0.4740 0.6180 0.2720 0.5309 0.5782 0.2982

Table 3: The performance of single-step reasoning elicitation methods on Qwen2.5-VL.

its capability, reinforcing overconfident behavior419

through misleading model to self-affirmation.420

4.4.2 Confidence Calibration in LVLMs421

In this section, we evaluate the effectiveness of422

existing confidence calibration methods developed423

for LLMs in the context of LVLMs, as well as our424

proposed methods.425

For existing confidence calibration methods, our426

observations are as follows:427

1) Single-step reasoning elicitation methods ef-428

fectively enhance the accuracy and alignment of429

LVLMs. As shown in Table 1, we found reasoning430

elicitation methods (Explain, CoT, and Img-CoT)431

exhibit high alignment. To further investigate them,432

we calculate other metrics about them. Table 3433

shows that different reasoning elicitation methods434

excel on specific datasets: CoT method improves435

alignment and accuracy across all datasets and436

causes overconfidence on Dyn-VQA. The Explain437

method outperforms CoT in alignment on Visual7W438

and Dyn-VQA datasets. This observed difference439

may stem from the Explain method’s design: while440

the CoT method enforces step-by-step reasoning,441

the Explain method prioritizes direct justification,442

thus reducing redundant context for simple ques-443

tions and improving the calibration of LVLMs’ con-444

fidence outputs.445

2) Answer consistency-based confidence cali-446

bration methods improve alignment on Qwen2.5-447

VL, but show limited effectiveness on other mod-448

els. We observed that, even when sampling re-449

sponses at the same temperature of 1.0, models450

differ in their output diversity. As shown in Ta-451

ble 1, when random sampling Qwen2.5-VL’s re-452

sponses, it tends to generate consistent yet incorrect453

responses, resulting in low alignment. However,454

both the rephrasing and the noised image methods455

show effectiveness in mitigating this tendency, con-456

sequently achieving higher alignment. In contrast,457

LLaVA-1.5 and DeepSeek-VL2 generate more di-458

verse outputs when the response is incorrect, al- 459

lowing the Random Sampling method to perform 460

well and making Noised Image and Rephrasing 461

methods less effective in enhancing alignment by 462

comparison. 463

We propose Image Chain of Thought, Probabil- 464

ity Threshold, Cross Model Consistency methods 465

in Section 4.1, their performances are as follows: 466

1) Image Chain of Thought method effectively 467

enhances alignment and accuracy on MMMU 468

Pro. As shown in Table 3, Img-CoT demonstrates 469

remarkable performance on the MMMU Pro dataset, 470

which requires both strong visual perception and 471

reasoning capabilities. It improves accuracy and 472

alignment, outperforming CoT method. This indi- 473

cates its converting visual modality into language 474

modality mechanism can effectively enhance mod- 475

els’ comprehension of the content in the image, 476

thereby achieving this superior performance. 477

2) Probability Threshold method shows higher 478

alignment than other double-step verbalizated 479

confidence calibration methods. As shown in 480

Table 1, the Probability Threshold method outper- 481

forms alternative double-step methods. Despite 482

the need to calibrate the threshold, it effectively 483

enhances alignment. 484

3) Cross Model method outperforms other an- 485

swer consistency based methods on LLaVA-1.5 486

and Qwen2.5-VL. Table 1 demonstrates that the 487

Cross Model method performs superior alignment 488

on both LLaVA-1.5 and Qwen2.5-VL compared 489

to other answer consistency-based confidence cali- 490

bration methods. This improved performance vali- 491

dates the method’s effectiveness, as it establishes 492

a robust mechanism for evaluating answer correct- 493

ness by leveraging responses from diverse models. 494

4955 Perception Comparison Between 496

LVLMs and LLMs 497

Compared to LLMs, LVLMs need to process ad- 498

ditional visual modality and integrate information 499
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method Model

Qwen2.5 DeepSeek-VL2 LLaVA-1.5

Unc-R. Acc Align. Conser. Overco. Unc-R. Acc Align. Conser. Overco. Unc-R. Acc Align. Conser. Overco.

Vanilla
LVLM 0.782 0.185 0.762 0.102 0.135 0.788 0.146 0.653 0.141 0.207 0.490 0.088 0.534 0.022 0.444
LLM 0.788 0.285 0.729 0.172 0.099 0.161 0.225 0.338 0.024 0.638 0.011 0.141 0.152 0.001 0.848

CoT
LVLM 0.728 0.212 0.782 0.079 0.139 0.638 0.170 0.636 0.086 0.278 0.512 0.084 0.538 0.031 0.431
LLM 0.448 0.294 0.651 0.046 0.304 0.095 0.296 0.362 0.015 0.623 0.117 0.199 0.302 0.007 0.691

Punish
LVLM 0.711 0.168 0.711 0.080 0.208 0.848 0.161 0.709 0.150 0.141 0.450 0.095 0.490 0.027 0.483
LLM 0.956 0.294 0.713 0.269 0.018 0.266 0.229 0.455 0.020 0.525 0.057 0.152 0.201 0.004 0.795

Explain LVLM 0.828 0.196 0.812 0.106 0.082 0.786 0.168 0.698 0.128 0.174 0.421 0.084 0.453 0.027 0.519
LLM 0.536 0.298 0.673 0.080 0.247 0.079 0.252 0.320 0.006 0.675 0.159 0.219 0.364 0.007 0.629

Table 4: LLMs and LVLMs comparison for single-step verbalization based methods on Dyn-VQA.

Figure 2: Comparative analysis of instruction following ability across model scales.

across different modalities. This raises a question:500

how does the perception of LVLMs differ from that501

of LLMs? Knowing these distinctions is valuable502

for developing trustworthy LVLMs.503

In this section, we investigate the difference of504

knowledge boundary perception between LVLMs505

and their LLM counterparts. Focusing on ver-506

balized confidence cause it directly reflects mod-507

els’ self-awareness of their knowledge boundaries.508

We further propose several hypotheses about these509

differences’ underlying causes and validate them510

through the comparison between different model511

scales and input modalities.512

5.1 Experimantal Setup513

Datasets. In this section, we mainly focus on Dyn-514

VQA dataset. Dyn-VQA provides both VQA ques-515

tion image pairs and their semantically equivalent516

QA questions (e.g., QA: “How many humans have517

landed on Mars?” vs. VQA: “How many humans518

have landed on this planet?” with an image of519

Mars). This enables fair model performance com-520

parison across text-only modality and vision-text521

modality inputs.522

Models. In this section, we compare LVLMs with523

their base LLM counterparts to ensure fair compar-524

ison: Qwen2.5-VL, DeepSeek-VL2, LLaVA-v1.5525

vs Qwen2.5, DeepSeek-MoE, Vicuna-v1.5.526

5.2 Results and Analysis527

Here, we apply VQA queries on LVLMs, and their528

semantic equivalent QA queries on LLMs to fairly529

compare them. And focus on single-step verbalized 530

confidence. We defer results about other kinds of 531

confidence to Appendix A.3. Here are our findings: 532

1) Compared to LLMs, LVLMs struggle to 533

follow certain methods’ instructions, leading 534

to performance deviating from expected. As 535

shown in Table 4, Qwen2.5-VL cannot effectively 536

follow the Punish instruction. As a result, this 537

method not only fails to reduce overconfidence but 538

actually exacerbates it, leading to lower alignment 539

than Vanilla. Similarly, LLaVA-1.5 disregards CoT 540

and Explain instructions, persistently generating 541

responses without proper reasoning or explanation, 542

which results in lower accuracy. This stands in 543

contrast to LLMs, where the Punish method effec- 544

tively reduces Qwen2.5’s overconfidence; CoT and 545

Explain instructions reliably ignite reasoning re- 546

sponses in Vicuna-1.5, thus improving its accuracy. 547

2) For single-step verbalized confidence, LVL- 548

Ms tend to have lower accuracy compared to 549

LLMs. Along with higher alignment due to re- 550

duced overconfidence. As shown in Table 4, under 551

all single-step verbalized confidence for the three 552

series of models, the answer accuracy of LVLMs 553

is lower than that of LLMs. Meanwhile, LVLMs 554

exhibit a higher uncertain-rate compared to LLMs. 555

Specifically, LLaVA exhibits an average accuracy 556

reduction of 0.09 with a concurrent 0.382 increase 557

in uncertain-rate than its counterpart LLM. And 558

in DeepSeek-VL2, we observe an 0.089 accuracy 559

decrement paired with a 0.615 surge in uncertainty 560
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than LLM. Compared to LLMs, LVLMs’ accuracy561

drop is relatively smaller than their uncertain-rate562

increase, thus they demonstrate less severe over-563

confidence than LLMs, leading to relatively higher564

alignment in their responses.565

5.3 Analysis Across Model Scales and566

Modalities567

Building upon the findings discussed in the previ-568

ous subsection, we observe notable performance569

distinctions between LLMs and LVLMs, which570

motivate us to propose the following hypothesis571

regarding their potential underlying causes:572

1) Model capacity bottleneck: We hypothesize573

that the inferior instruction-following abilities of574

LVLMs stems from their internal capacity limita-575

tions, where visual modality integration competes576

for models’ internal parameter resources that would577

otherwise support language processing capabilities.578

2) Cross-modal limitation awareness: While the579

LVLMs demonstrate lower accuracy than LLMs,580

their verbalized confidence shows better alignment581

with performance. We hypothesize this stems from582

two factors: (1) LVLMs’ constrained cross-modal583

processing ability leads to degraded multimodal584

VQA accuracy, and (2) LVLMs’ awareness of this585

limitation results in higher alignment.586

To validate our capacity hypothesis of instruc-587

tion following ability, we conduct a comparative588

analysis on different scale models and find that:589

As LVLMs scale up, they generally exhibit590

stronger instruction following capabilities. As591

shown in Figure 2. For Qwen2.5-VL and DeepSeek-592

VL2, the Punish method effectively reduces over-593

confidence in larger models (Qwen2.5-VL-72B,594

DeepSeek-Vl2-16B) but shows limited impact on595

smaller ones ( < 32B Qwen2.5-VL, DeepSeek-596

VL2-3B). For LLaVA-1.5, the 13B model follows597

Explain instruction which 7B model not follows,598

thus Explain improves accuracy in the 13B model.599

These phenomena supports our hypothesis: the600

parameter constraints of small scale LVLMs create601

a dilemma between visual processing and linguis-602

tic comprehension, resulting in degraded language603

understanding and consequently weaker instruc-604

tion following ability. In contrast, larger LVLMs605

allocate more parameters to language processing,606

maintaining strong language ability while handling607

multimodal inputs, thus demonstrating stronger in-608

struction following ability.609

To validate our accuracy and alignment hypothe-610

Model Task

Dyn-VQA

Unc-R. Acc Align. Conser. Overco.

Qwen2.5-VL
“V”QA 0.461 0.223 0.578 0.053 0.369
VQA 0.782 0.185 0.762 0.102 0.135
QA 0.766 0.252 0.700 0.159 0.141

DeepSeek-VL2
“V”QA 0.227 0.208 0.435 0.000 0.565
VQA 0.788 0.146 0.653 0.141 0.207
QA 0.545 0.256 0.559 0.121 0.320

Table 5: The performance of LVLMs under different
query modalities, we add text question at the bottom of
the image to generate pure image “V”QA query.

sis, we conduct comparative analysis on text-only 611

QA, vision-text VQA, and vision-only "V"QA mod- 612

ality of queries on LVLMs, our results reveal that: 613

LVLMs exhibit lower accuracy but higher 614

alignment when responding to multimodal VQA 615

queries. As shown in Table 5, both models demon- 616

strate lower accuracy when answering VQA queries 617

that demand cross-modal understanding ability com- 618

pared to pure text QA and pure image “V”QA 619

queries. Concurrently, they demonstrate increased 620

uncertain-rate and improved confidence performan- 621

ce alignment for these multimodal queries. 622

These observations support our hypothesis: 623

1. Limited cross-modal ability: LVLMs struggle 624

to effectively synthesize information across modal- 625

ities, leading to reduced answering accuracy on 626

multimodal queries compared to unimodal queries. 627

2. Capability awareness: When encountering 628

challenging multimodal queries, LVLMs exhibit 629

self-awareness of their limited ability through gen- 630

erating more uncertainty responses. This decreases 631

overconfidence and thus improve alignment. 632

6 Conclusion 633

In this paper, we present a systematic investigation 634

of knowledge boundary perception in LVLMs, as- 635

sessing this ability through alignment. First, we 636

evaluate three kinds of confidence, and observe that 637

answer consistency-based confidence reaches the 638

highest alignment, whereas verbalized confidence 639

induces overconfidence. We also evaluate several 640

confidence calibration methods, with our results 641

revealing that reasoning elicitation methods im- 642

prove accuracy and alignment, while our proposed 643

methods show effectiveness. Second, we compare 644

LVLMs with LLMs, and reveal that while LVLMs 645

exhibit lower QA accuracy, they achieve higher 646

alignment, which is attributable to LVLMs’ aware- 647

ness of their multimodal integration ability limita- 648

tion. We also observe that LVLMs have weaker 649

instruction following ability than LLMs. 650
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Limitations651

First, due to dataset constraints, we only compared652

LVLMs and LLMs on Dyn-VQA; broader bench-653

marks are needed for future validation. Second,654

our analysis did not examine internal model states,655

leaving internal mechanistic differences in knowl-656

edge boundary perception underexplored. Third,657

we focused on binary confidence measures; extend-658

ing this to continuous confidence scales could yield659

finer-grained insights. These limitations highlight660

directions for future work on LVLM evaluation and661

interpretability.662

Ethics Statement663

In this paper, all the datasets we use are open-664

source, and the models we employ are either open-665

source or widely used. Furthermore, the methods666

we propose do not induce the model to output any667

harmful information.668
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A Appendix 873

A.1 Prompts 874

A.1.1 Single Step Verbalization Based 875

Prompts 876

Vanilla. Answer the question based on your inter- 877

nal knowledge and the image. If you are sure the 878

answer is accurate and correct, please say “certain” 879

after the answer. If you are not confident with the 880

answer, please say “uncertain”. 881

Question: [Question] 882

Answer: 883

CoT. Answer the question based on your internal 884

knowledge and the image. Analyse step by step. If 885

you are sure the answer is accurate and correct, 886

please say “certain” after the answer. If you are 887

not confident with the answer, please say “uncer- 888

tain”. 889

Question: [Question] 890

Answer: 891

Img-CoT. Answer the question based on your in- 892

ternal knowledge and the image. First, describe the 893

image, then analyse step by step. If you are sure 894

the answer is accurate and correct, please say “cer- 895

tain” after the answer. If you are not confident with 896

the answer, please say “uncertain”. 897

Question: [Question] 898

Answer: 899

Punish. Answer the question based on your inter- 900

nal knowledge and the image. If you are sure the 901

answer is accurate and correct, please say “certain” 902

after the answer. If you are not confident with the 903

answer, please say “uncertain”. You will be punish- 904

ed if the answer is not right but you say “certain”. 905

Question: [Question] 906

Answer: 907

Explain. Answer the question based on your inter- 908

nal knowledge and the image, explain why you give 909

this answer. If you are sure the answer is accurate 910

and correct, please say “certain” after the answer. 911

If you are not confident with the answer, please say 912

“uncertain”. 913

Question: [Question] 914

Answer: 915

A.1.2 Double Step Verbalization Based 916

Prompts 917

For the double step verbalization based methods, 918

we first prompt the model to generate answer, then 919
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prompt the model to give its confidence in the sec-920

ond round chat.921

First Round Answer Generation. Answer the922

question based on your internal knowledge and the923

image.924

Question: [Question]925

Answer:926

Self-Judging. If you are sure your previous an-927

swer is accurate and correct, please say “certain”,928

If you are not confident with the answer, please say929

“uncertain”.930

CoT. If you are sure your previous answer is ac-931

curate and correct, please say “certain”, If you932

are not confident with the answer, please say “un-933

certain”. Analyse step by step, then provide Your934

judgement.935

Challenge. I don’t think your answer is right, if936

you still think your answer is right, please say “cer-937

atin”. Otherwise, say “uncertain”.938

Punish. If you are sure your previous answer is ac-939

curate and correct, please say “certain”, If you are940

not confident with the answer, please say “uncer-941

tain”. You will be punished if the answer is not942

right but you say “certain”.943

Probability+Threshold. Provide the probability944

that your answer is correct (0.0 to 1.0). Give ONLY945

the probability, no other words or explanation.946

A.1.3 Answer Consistency Based Prompts947

Rephrasing. Based on the Following question,948

generate [number of semantical equivalent ques-949

tions] semantically equivalent questions. your out-950

put should be a list of strings and add a sequnce951

number with a dot at the start of each output ques-952

tion, like [1.“question1”,2.“question2”,...].953

Question: [The original question]954

Semantically equivalent questions:955

A.2 LVLMs’ Knowledge Boundary 956

Perception Ability 957

A.2.1 Implementation Details 958

In this section, we provide a detailed introduction 959

to our implementation details. 960

For content generation, we mainly utilize APIs 961

to generate answers. 962

For verbalization based methods, we set the model 963

temperature to 0 and set a fixed seed to obtain high- 964

quality and relatively consistent responses. No- 965

tably, Probability Threshold method is exclusively 966

employed in a double round form because we find 967

some of the models struggle to generate both con- 968

tinuous probabilities and answers in a single round. 969

For the consistency based methods, we imple- 970

mente a two-phase generation protocol: First, gen- 971

erating a reference answer with temperature = 0; 972

Then sampling 10 variant answers with tempera- 973

ture = 1.0, with semantic equivalence between the 974

basic answer and sampled answers evaluated by 975

Qwen2.5-0.5B. With this process, we can get a 976

consistency score between 0 to 10. 977

Specifically, for question rephrasing method, we 978

leveraged Qwen2.5-7B to produce semantically 979

equivalent question paraphrases. For the noised 980

image method, we progressively added zero-mean 981

Gaussian noise to the images during sampling, with 982

the standard deviation incrementally increased from 983

0 in steps of 0.05. And for the cross model con- 984

sistency method, we computed consistency scores 985

using a combination of four responses generated by 986

the primary model and three responses each from 987

two other reference models. 988

A.2.2 Complete Results 989

Table 6, Table 7 and Table 8 present the comprehen- 990

sive performance evaluation of all methods across 991

the three benchmark datasets and three LVLMs 992

employed in our study. 993

A.2.3 Observations and Analysis 994

We proposed our mainly findings about LVLMs’ 995

knowledge boundary perception methods in Sec- 996

tion 4.4. Here, we discuss more detailed observa- 997

tions about them. 998

1) The Explain method improves alignment for 999

both Deepseek-VL2 and Qwen2.5 when tested on 1000

the Dyn-VQA and Visual7W datasets. This demon- 1001

strates its effectiveness in enhancing LVLMs’ knowl- 1002

edge boundary perception when processing rela- 1003

tively simple input questions. 1004
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2) The single-step Chain of Thought method1005

effectively enhances alignment, whereas its double-1006

step counterpart often leads to overconfidence and1007

only marginally improves alignment for Qwen2.5-1008

VL.1009

3) Both single-step and double-step Punish meth-1010

ods demonstrate limited effectiveness in mitigating1011

overconfidence for Qwen2.5-VL and LLaVA-v1.5,1012

as they fail to properly follow Punish Instructions.1013

4) Challenge method induces very high uncertain-1014

rate in both three models, indicating that LVLMs1015

are easily swayed by the output judgements.1016

5) For Qwen2.5-VL, rephrasing methods im-1017

prove alignment on the Dyn-VQA dataset (language-1018

focused), while the noise image method enhances1019

performance on Visual7W (vision-focused). The1020

combination of these two methods boosts align-1021

ment on the MMMU Pro dataset, which requires1022

both language and vision comprehension. This1023

reveals an interesting relationship between pertur-1024

bation modalities and input query types.1025

A.3 Comparing Perception between LVLMs1026

and LLMs1027

While the main body presents a comparative anal-1028

ysis of single-step verbalization based confidence1029

elicitation methods between LLMs and LVLMs,1030

this section provides an extensive evaluation of: (i)1031

double step verbalization based methods, (ii) an-1032

swer consistency based methods, and (iii) token1033

probability based method. The results can be found1034

in Table 9. The main observations are as follows.1035

A.3.1 Double Step Verbalization Based1036

Methods1037

For double step verbalization based methods, the1038

difference in performance between LLM and LVLM1039

varies with the method.1040

1) For the Self-Judging method, Qwen2.5 ex-1041

hibits higher alignment than Qwen2.5-VL. In con-1042

trast, the LLM counterparts of DeepSeek-VL2 and1043

LLaVA tend to respond with “certain” to nearly1044

all answers, resulting in extremely low consistency.1045

This indicates a severe bias toward overconfident1046

responses in these two LLMs.1047

2) For the Challenge method, LVLMs demon-1048

strate higher uncertain-rates than LLMs, often ap-1049

proaching to near 1.0. This suggests that LVLMs1050

are more likely to trust external judgments and con-1051

sequently undermine their own decisions.1052

3) Under the Double-step Punish method, LLMs1053

outperform LVLMs due to their stronger instruction1054

following ability, achieving higher consistency and 1055

lower overconfidence. 1056

A.3.2 Answer Consistency Based Methods 1057

For answer consistency based methods, our obser- 1058

vations are as follows: 1059

1) Answer consistency based methods demon- 1060

strate superior alignment performance in LVLMs 1061

compared to LLMs. 1062

2) DeepSeek-MoE exhibits strong consistency in 1063

its generated answers, maintaining high answer uni- 1064

formity even when the outputs are incorrect. This 1065

behavior persists across both random sampling and 1066

rephrasing methods, leading to sustained overcon- 1067

fidence and suboptimal alignment performance. 1068

3) The rephrasing strategy shows limited effec- 1069

tiveness in improving alignment metrics across all 1070

evaluated models, with the notable exception of 1071

Qwen2.5-VL. This observation holds true for both 1072

LVLMs and LLMs in our results. 1073

A.3.3 Token Probability Based Methods 1074

For the token probability based approach, as shown 1075

in Table 9, our results reveal that LLMs exhibit 1076

relatively weaker confidence-accuracy alignment 1077

compared to LVLMs. 1078
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method

Dyn-VQA Visual7W MMMU Pro

Unc-R. Acc Align. Conser. Overco. Unc-R. Acc Align. Conser. Overco. Unc-R. Acc Align. Conser. Overco.

Vanilla 0.7824 0.1846 0.7623 0.1024 0.1353 0.3260 0.4380 0.5840 0.0900 0.3260 0.3000 0.4564 0.4909 0.1327 0.3764
CoT 0.7276 0.2121 0.7824 0.0786 0.1389 0.3840 0.4920 0.6080 0.1340 0.2580 0.2636 0.6436 0.6818 0.1127 0.2055

Img-CoT 0.6545 0.2048 0.7276 0.0658 0.2066 0.2760 0.5020 0.6060 0.0860 0.3080 0.2800 0.6636 0.7182 0.1127 0.1691

Punish 0.7112 0.1682 0.7112 0.0804 0.2084 0.2880 0.4280 0.5520 0.0820 0.3660 0.2691 0.4564 0.5000 0.1127 0.3873
Explain 0.8282 0.1956 0.8117 0.1060 0.0823 0.3640 0.4740 0.6180 0.1100 0.2720 0.2945 0.5309 0.5782 0.1236 0.2982

Self-Judging 0.1426 0.1883 0.3272 0.0018 0.6709 0.1100 0.4760 0.5500 0.0180 0.4320 0.1882 0.5127 0.5609 0.0701 0.3692

CoT 0.5210 0.1883 0.6435 0.0329 0.3236 0.1500 0.4760 0.5700 0.0280 0.4020 0.2127 0.5127 0.5255 0.1000 0.3745
Challenge 0.9671 0.1883 0.8080 0.1737 0.0183 0.9800 0.4760 0.5280 0.4640 0.0080 0.9873 0.5127 0.4891 0.5055 0.0055

Punish 0.1426 0.1883 0.3272 0.0018 0.6709 0.0780 0.4760 0.5300 0.0120 0.4580 0.0436 0.5127 0.5164 0.0200 0.4636
Prob-Thr 0.4991 0.1883 0.5960 0.0457 0.3583 0.2140 0.4760 0.5820 0.0540 0.3640 0.4764 0.5127 0.5855 0.2018 0.2127

Random 0.4625 0.1883 0.5448 0.0530 0.4022 0.3020 0.4760 0.5700 0.1040 0.3260 0.4309 0.5127 0.5327 0.2055 0.2618
Noised Img 0.7733 0.1883 0.7313 0.1152 0.1536 0.4920 0.4760 0.6000 0.1840 0.2160 0.3873 0.5127 0.5400 0.1800 0.2800

Rephr 0.9543 0.1883 0.8026 0.1700 0.0274 0.4340 0.4760 0.5660 0.1720 0.2620 0.5655 0.5127 0.5364 0.2709 0.1927

Reph+Nois 0.8958 0.1883 0.7733 0.1554 0.0713 0.4940 0.4760 0.5500 0.2100 0.2400 0.4418 0.5127 0.5509 0.2018 0.2473

Cross Model 0.9469 0.1883 0.8208 0.1572 0.0219 0.5720 0.4760 0.6320 0.2080 0.1600 0.5036 0.5127 0.5800 0.2182 0.2018

PPL Thr 0.8885 0.1993 0.7916 0.1481 0.0603 0.8060 0.4760 0.6020 0.3400 0.0580 0.9436 0.4091 0.6073 0.3727 0.0200

Table 6: The performance of different methods on Qwen2.5-VL-7B-Instruct.

method

Dyn-VQA Visual7W MMMU Pro

Unc-R. Acc Align. Conser. Overco. Unc-R. Acc Align. Conser. Overco. Unc-R. Acc Align. Conser. Overco.

Vanilla 0.4899 0.0878 0.5338 0.0219 0.4442 0.0260 0.3920 0.4140 0.0020 0.5840 0.0855 0.2018 0.2509 0.0182 0.7309
CoT 0.5119 0.0841 0.5375 0.0311 0.4314 0.0220 0.3840 0.3940 0.0060 0.6000 0.1418 0.1545 0.2418 0.0273 0.7309

Img-CoT 0.5265 0.0914 0.5484 0.0347 0.4168 0.0180 0.4000 0.4140 0.0020 0.5840 0.1527 0.2527 0.2964 0.0545 0.6491

Punish 0.4497 0.0951 0.4899 0.0274 0.4826 0.0260 0.3960 0.4180 0.0020 0.5800 0.2291 0.2727 0.3745 0.0636 0.5618
Explain 0.4205 0.0841 0.4534 0.0274 0.5192 0.0100 0.3840 0.3900 0.0020 0.6080 0.0727 0.1709 0.2109 0.0164 0.7727

Self-Judging 0.1718 0.1005 0.2468 0.0128 0.7404 0.0020 0.4200 0.4220 0.0000 0.5780 0.0109 0.3218 0.3327 0.0000 0.6673

CoT 0.0494 0.1005 0.1463 0.0018 0.8519 0.0000 0.4200 0.4200 0.0000 0.5800 0.0000 0.3218 0.3218 0.0000 0.6782
Challenge 1.0000 0.1005 0.8995 0.1005 0.0000 1.0000 0.4200 0.5800 0.4200 0.0000 1.0000 0.3218 0.6782 0.3218 0.0000

Punish 0.0293 0.1005 0.1298 0.0000 0.8702 0.0000 0.4200 0.4200 0.0000 0.5800 0.0000 0.3218 0.3218 0.0000 0.6782
Prob-Thr 0.8464 0.1005 0.7971 0.0750 0.1280 0.6780 0.4200 0.6140 0.2420 0.1440 0.7964 0.3218 0.6091 0.2545 0.1364

Random 0.9872 0.1005 0.8976 0.0951 0.0073 0.6680 0.4200 0.7080 0.1900 0.1020 0.9745 0.3218 0.6709 0.3127 0.0164
Noised Img 0.9963 0.1005 0.8958 0.1005 0.0037 0.5660 0.4200 0.6740 0.1560 0.1700 0.9836 0.3218 0.6655 0.3200 0.0145

Rephr 0.9981 0.1005 0.8976 0.1005 0.0018 0.6560 0.4200 0.6920 0.1920 0.1160 0.9345 0.3218 0.6672 0.2945 0.0382
Reph+Nois 0.9982 0.1005 0.9013 0.0987 0.0000 0.7020 0.4200 0.6780 0.2220 0.1000 0.9655 0.3218 0.6655 0.3109 0.0236

Cross Model 0.9982 0.1005 0.8976 0.1005 0.0018 0.5320 0.4200 0.6520 0.1500 0.1980 0.9727 0.3218 0.6618 0.3164 0.0218

PPL Thr 0.8903 0.1005 0.8519 0.0695 0.0786 0.5860 0.4200 0.7060 0.1460 0.1380 0.9727 0.3218 0.6800 0.3073 0.0127

Table 7: The performance of different methods on LLaVA-v1.5-7B.

method

Dyn-VQA Visual7W MMMU Pro

Unc-R. Acc Align. Conser. Overco. Unc-R. Acc Align. Conser. Overco. Unc-R. Acc Align. Conser. Overco.

Vanilla 0.7879 0.1463 0.6527 0.1408 0.2066 0.4120 0.1840 0.2820 0.1580 0.5600 0.4091 0.2673 0.2727 0.2018 0.5255
CoT 0.6380 0.1700 0.6362 0.0859 0.2779 0.1780 0.4600 0.5540 0.0420 0.4040 0.0873 0.3509 0.3836 0.0273 0.5891

Img-CoT 0.5356 0.2011 0.6344 0.0512 0.3144 0.0640 0.4960 0.5360 0.0120 0.4520 0.1055 0.4582 0.5236 0.0200 0.4564

Punish 0.8483 0.1609 0.7093 0.1499 0.1407 0.4580 0.2680 0.3500 0.1880 0.4620 0.4782 0.3054 0.3145 0.2345 0.4509
Explain 0.7861 0.1682 0.6984 0.1280 0.1737 0.2780 0.4640 0.5700 0.0860 0.3440 0.2073 0.3382 0.3491 0.0982 0.5527

Self-Judging 0.0018 0.1974 0.1993 0.0000 0.8007 0.0020 0.4760 0.4780 0.0000 0.5220 0.0018 0.4255 0.4236 0.0018 0.5745
CoT 0.0055 0.1974 0.2029 0.0000 0.7971 0.0000 0.4760 0.4760 0.0000 0.5240 0.0073 0.4255 0.4255 0.0036 0.5709

Challenge 0.9945 0.1974 0.8007 0.1956 0.0037 0.9960 0.4760 0.5240 0.4740 0.0020 0.9309 0.4255 0.5709 0.3927 0.0364

Punish 0.3144 0.1974 0.4936 0.0091 0.4973 0.0620 0.4760 0.5300 0.0040 0.4660 0.0273 0.4255 0.4345 0.0091 0.5564
Prob-Thr 0.7239 0.1974 0.6910 0.1152 0.1938 0.7280 0.4760 0.6060 0.2980 0.0960 0.7473 0.4255 0.5218 0.3127 0.1655

Random 0.9963 0.1974 0.8026 0.1956 0.0018 0.5800 0.4740 0.6460 0.2040 0.1500 0.8509 0.4180 0.6000 0.3345 0.0655
Noised Img 0.9927 0.1974 0.8062 0.1920 0.0018 0.5480 0.4740 0.6300 0.1960 0.1740 0.7418 0.4180 0.5818 0.2891 0.1291

Rephr 0.9689 0.1974 0.8080 0.1792 0.0127 0.4480 0.4740 0.6260 0.1480 0.2260 0.7982 0.4180 0.5764 0.3200 0.1036

Reph+Nois 0.9670 0.1974 0.8099 0.1773 0.0128 0.5140 0.4740 0.6120 0.1880 0.2000 0.7945 0.4180 0.5618 0.3255 0.1127

Cross Model 0.9963 0.1974 0.8062 0.1938 0.0000 0.6080 0.4740 0.6740 0.2040 0.1220 0.8327 0.4180 0.5964 0.3273 0.0764

PPL Thr 0.8958 0.1974 0.7934 0.1499 0.0567 0.5500 0.4780 0.6280 0.2000 0.1720 0.9418 0.4436 0.5345 0.4255 0.0400

Table 8: The performance of different methods on DeepSeek-VL2-16B.
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method Model Type

Qwen2.5 LLaVA1.5 DeepSeek-VL2

Unc-R. Acc Align. Conser. Overco. Unc-R. Acc Align. Conser. Overco. Unc-R. Acc Align. Conser. Overco.

Self-Judging LVLM 0.1426 0.1883 0.3272 0.0018 0.6709 0.0018 0.1974 0.1993 0.0000 0.8007 0.1718 0.1005 0.2468 0.0128 0.7404
LLM 0.2943 0.2998 0.5649 0.0146 0.4205 0.0000 0.2962 0.2962 0.0000 0.7038 0.0000 0.2139 0.2139 0.0000 0.7861

CoT
LVLM 0.5210 0.1883 0.6435 0.0329 0.3236 0.0055 0.1974 0.2029 0.0000 0.7971 0.0494 0.1005 0.1463 0.0018 0.8519
LLM 0.2925 0.2998 0.5411 0.0256 0.4333 0.2888 0.2962 0.5192 0.0329 0.4479 0.2761 0.2139 0.4680 0.0110 0.5210

Challenge LVLM 0.9671 0.1883 0.8080 0.1737 0.0183 0.9945 0.1974 0.8007 0.1956 0.0037 1.0000 0.1005 0.8995 0.1005 0.0000
LLM 0.7148 0.2998 0.7514 0.1316 0.1170 0.8684 0.2962 0.6563 0.2541 0.0896 0.9853 0.2139 0.7898 0.2048 0.0055

Punish
LVLM 0.1426 0.1883 0.3272 0.0018 0.6709 0.3144 0.1974 0.4936 0.0091 0.4973 0.0293 0.1005 0.1298 0.0000 0.8702
LLM 0.5448 0.2998 0.6910 0.0768 0.2322 0.2852 0.2962 0.5302 0.0256 0.4442 0.1974 0.2139 0.4113 0.0000 0.5887

Prob-Thr
LVLM 0.4991 0.1883 0.5960 0.0457 0.3583 0.7239 0.1974 0.6910 0.1152 0.1938 0.8464 0.1005 0.7971 0.0750 0.1280
LLM 0.5941 0.2998 0.6709 0.1115 0.2175 0.1773 0.2962 0.4333 0.0201 0.5466 0.9963 0.2139 0.7824 0.2139 0.0037

Random
LVLM 0.4625 0.1883 0.5448 0.0530 0.4022 0.9963 0.1974 0.8026 0.1956 0.0018 0.9872 0.1005 0.8976 0.0951 0.0073
LLM 0.9287 0.2998 0.7203 0.2541 0.0256 0.4863 0.2962 0.5448 0.1188 0.3364 0.8921 0.2139 0.7806 0.1627 0.0567

Rephr LVLM 0.9543 0.1883 0.8026 0.1700 0.0274 0.9689 0.1974 0.8080 0.1792 0.0127 0.9981 0.1005 0.8976 0.1005 0.0018
LLM 0.9068 0.2998 0.7203 0.2431 0.0366 0.4991 0.2962 0.5539 0.1207 0.3254 0.8757 0.2139 0.7751 0.1572 0.0676

PPL Thr
LVLM 0.8885 0.1993 0.7916 0.1481 0.0603 0.8903 0.1005 0.8519 0.0695 0.0786 0.8958 0.1974 0.7934 0.1499 0.0567
LLM 0.8519 0.3217 0.7313 0.2212 0.0475 0.7587 0.2980 0.6837 0.1865 0.1298 0.7458 0.2121 0.7422 0.1079 0.1499

Table 9: Performance comparison of double step verbaliztion based methods, consistency based methods and answer
consistency based methods on the Dyn-VQA dataset: LVLMs vs. LLMs
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