© ® N O o A~ W N =

Learnable Adaptive KV-cache Compression

Anonymous Author(s)
Affiliation
Address

email

Abstract

Efficient inference within Large Language Models (LLMs) commonly assumes
the usage of a key-value (KV) cache. However, while it removes the quadratic
bottleneck of vanilla attention, it trades it for a proportional—and often pro-
hibitive—memory footprint that scales linearly with the sequence length. Modern
approaches to reducing the KV cache memory either use token eviction or de-
terministic dimensionality reduction methods applied with a uniform budget to
each layer. With this inflexibility in mind, we introduce a learnable adaptive
compression method that dynamically retrofits existing KV cache for each layer
with a trainable compression budget and encoding and decoding components. Ex-
periments on LLAMA-3.1-8B across various benchmarks show that our method
allows maintaining original model performance within 1% during x2 and x3 KV
cache compression and 1% — 2% for x4 reduction. Our experiments also show
that this trainable adaptive budgeting allows the model to devote more capacity
to late layers, where semantic abstractions are denser, which offers layer-wise
interpretability of attention sparsity, opening the door to principled analysis and
hardware-aware scheduling during inference.

1 Introduction

Large Language Models (LLMs) exhibit state-of-the-art performance on a variety of language tasks
[32, 3] ranging from generalistic question answering [7} 31} [38] to complex multi-hop reasoning
in math [39} [16], coding [18]] and STEM [36]. Such models usually impose substantial memory
requirements to serve, one of which stems from the quadratic attention memory computation [20],
imposed by the transformer architecture [44]. To circumvent this limitation, the key and value
matrices comprising the attention can be saved in memory for each layer, which is known as KV
caching. Although KV cache allows attention computation to become linear, it also introduces a
memory footprint which scales linearly with the length of the input sequence. It is important to note
that with the introduction of complex reasoning [15} [19] and Agentic [29, 42]] LLM paradigms, such
as Chain-Of-Thought (CoT) [48]], Tool Integrated Reasoning [13'7, 140, 2 135] and others [51}50], along
with the emergence of Large Reasoning Models (LRMs) [17, [13]], the input and output sequence
lengths within the model have grown substantially [[L1]. As the linearly scaling memory directly
prohibits the generation of longer sequences, it becomes increasingly essential to find methods of KV
cache compression that also preserve model performance.

Recent research has proposed several families of methods for reducing the memory of the KV cache.
First, decreasing that memory can be achieved through foken-eviction [55, 12} 9} 56], where the
model removes key-value pairs of some tokens from the cache using heuristics or algorithms on
the assumption that there exists a subset of tokens that are sufficient for solving the task. Instead
of directly evicting, it is also possible to merge the cache components corresponding to several
tokens [47, 154,145, 34]. However, such methods can lead to hallucinations in tasks involving complex
reasoning in a domain or during long context generation [54], as LLMs are sensitive to the criterion

Submitted to NeurIPS 2025 Workshop on Efficient Reasoning. Do not distribute.

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61

62
63
64
65

66
67
68
69

70
71

Attention Heads
At Layer L

=

ﬁL Compressors Decompressors
4 D = —
o yE — K \ "
K
Cache

/'ﬂ\%\»gL/ \‘ ‘L
\

X

Value

0,
T [(K.00). (V601 T]

/ -

Figure 1: The figure depicts the unrolled compression process for any layer using our method. K and
V represent the key-value matrices in the layers cache, while compression and decompression are
completed using #” functions, which can be both linear projectors and parametrised neural networks.
The budget of the compression per layer is learned using the 3%, 8%, while 7y, is a learnable binary
mask representing which 3%, 8% columns to choose in the layer.

of token merging or eviction. Another set of compression techniques proposes novel architectural
[43152] changes, such as Group-Query Attention [1]] or Multi-head Latent Attention [5]. While
these methods are effective, they require substantial resources and should be explicitly trained during
pre- and/or post-training. Lastly, it is possible to reduce the dimensionality of the KV cache by
applying low-rank decompositions [41} 53] or projections into constrained subspaces [22]. Both of
these method families still enforce uniform per-layer budgets for compression. Towards this end,
we propose a novel trainable method for KV cache compression that learns a compression budget
and key-value encoding and decoding modules for each layer. Crucially, our framework allows
to adaptively learn where and how much to compress. A depiction of our method per layer can
be seen in fig.|l] Our method does not require (pre)training parallel to the LLM. The parameters
can be efficiently learned by minimising an ¢-like reconstruction loss on the sampled KV caches
from several hundred articles of wikitext-2 [30], meaning the method does not induce significant
computational costs during calibration. Our results show that the proposed method allows for
compressing the KV cache from x2 to x4 while maintaining the original model performance within
[1%, 4%)]. We further explore the learned per-layer budgets and observe that there is a strong positive
nonlinear correlation between the depth of the layer and how much it can be compressed, which
further shows the need for non-uniform per-layer compression. Our contributions are the following:
(i) we propose a novel adaptive compression method that allows learning a per-layer compression
budget, (ii) we show that this compression can reduce the KV cache memory from x2 to x4 and
maintain the original performance within [1%, 2%)] while not requiring massive resources to train.
(ii1) Our ablations further show a strong non-linear trend that compression budgets converge to after
training, showing the exact dynamic of allowed compression per layer.

2 Related Works

Formally, post-training KV cache compression methods can be divided into techniques that use token
eviction, merging, and low-rank decompositions. An orthogonal line of research that can be used
alongside these techniques is quantisation [26} 16} 23]], which allows for further compression of the
cache by reducing its biwise precision, incurring minor or no expense to overall model performance.

Token-eviction and merging Many heuristics have been used to find tokens closely correlated
with attention without explicitly computing it [12} 25, [10]. Notably, even simply scoring tokens w.r.t.
their L2 norms [8]] is a reliable method for ranking tokens in terms of their importance. It is also
possible, albeit more costly, to use the attention scores directly to retain relevant tokens [S5].

Merging allows for combining KV cache entries instead of outright removing them [34}154,45]]. These
methods, however, incur attention inconsistency before and after merging, thus losing information

72
73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

94

95

96
97
98

99
100
101
102

103
104

105

106
107
108
109

110
111
112
113

114

115
116

117

within the sentence. It is also worth noting that both token eviction and merging methods permanently
lose information, thereby degrading the overall LLM generation.

Low Rank Decompositions Most

attempts at IOW-rank decomPOSition 09 Layer-wise KV Budget: Polynomial Trend with Random Min-Max Windows
for KV cache involve applying ten- © | e busget

sor decomposition methods such as | "

Singular Value Decomposition (SVD)
[24] on the pre-trained weights of
the model [21, 46, 53], sometimes
followed by calibration of that LLM
[33,149]]. Our work is also associated
with Multihead Latent Attention [27,
MLA], as we similarly attempt to com-
press the KV cache, yet do not use as
much compute and data for optimisa-
tion. All of these methods also suffer Fjgure 2: Compression Budget dynamics averaged across
from the fact that the compression rate three trainings.

within each layer is uniform, meaning

that the dimensionality of the latent

space is chosen statically or with minor adaptive heuristics. We address this by reframing the KV
cache compression as a learnable allocation of per-layer compression budgets, subject to a total
compression budget constraint.

Allocated KV Budget (fraction kept)

3 Methodolgy

4 Background: KV-Cache in Decoding

During autoregressive decoding in Transformer-based language models, the key—value (KV) cache
is essential to avoid redundant computation. Let a Transformer have L layers, each with H at-
tention heads and head dimension d. In step ¢, for each new token, the model produces query,
key, and value projections: Q' = Wi, K = Wk, v = W) x4, for layer
¢ =1,...,L. To compute self-attention at layer ¢, one needs to attend over all past keys and
values Attention(f), [KI(Z), ce Kt(z)], [Vl(g), ce V;(Z)]) .. To avoid re-computing K, V for all
past tokens at every step, the model caches these as K(*) = [Kfe), KQ(E)7 e Kt(f)l]v v =

[Vl(e), VQ(Z), ceey Vt(_l)l] Then at step ¢, only the new K, V; are appended, and attention is computed
efficiently over the cached sequence.

4.1 Adaptive Budget Learning with Global Constraint

To mitigate memory and bandwidth bottlenecks, we introduce an adaptive KV-cache compressor that
learns a layer-wise projection budget under a global compression constraint. Unlike fixed uniform
compression, our method allows each layer to allocate its own number of projection dimensions while
ensuring that the average compression rate equals a pre-specified target p.

Linear Projections We construct a linear orthonormal cacher that compresses with an orthonormal
projector and decodes with a linear pseudo-inverse. Per layer /, a full orthonormal basis W, € R**4
(built via QR, subsampled HADAMARD, or random JL) is available, and decoding uses a numerically
stable QR-based pseudo-inverse W,

Layer-wise budget parameters. For each layer ¢ € {1,..., L} we maintain a learnable scalar
b, € R and column scores Ry € R?. The raw scalars (b1,...,by) are transformed by a softmax and
rescaled to enforce a global expected budget:
L
- exp(by ~ 1 ke
bE:L7()7 kZ:dprE> Z E:pv (1)
Zj:l exp(b;) =1

i.e., the average fraction of active columns equals the target compression rate.

118
119
120
121
122
123
124

125

126
127
128
129
130
131
132
133
134

135

136
137
138
139
140
141

142

143
144
145
146
147

Learnability

Method None Decompressor Comp+Decomp Compression
LLama-3.1-8B (Orthonormal) -55.2 -17.1 -12.1

LLama-3.1-8B (MLP) - -16.9 -13.0 X2
LLama-3.1-8B (Adaptive) -11.2 - -0.9

LLama-3.1-8B (Orthonormal) -56.9 -18.3 -13.5

LLama-3.1-8B (MLP) - -19.9 -16.1 X3
LLama-3.1-8B (Adaptive) -14.4 - -1.1

LLama-3.1-8B (Orthonormal) -58.1 -20.3 -14.7

LLama-3.1-8B (MLP) - 214 -17.7 X4
LLama-3.1-8B (Adaptive) -14.8 - -1.9

Baseline 84.5

Table 1: Delta of different KV-cache compression methods compared to original LLaMA-3.1-8B
performance. The table reports performance under three evaluation setups: using no training(None),
training a decompressor only, and training both compressor and decompressor jointly. Results are
shown for compression factors x2, x3, and x4, with the baseline (no compression) included for
reference. We also use both orthonormal matrices for compression and decompression (Orthonormal)
and MLPs. Adaptive refers to our approach.

Compression and Maksing At each layer, a nearly-binary column mask is drawn via the
hard-concrete distribution [28]. Given R, and kg, the mask m, € {0, l}d is sampled as
my = HardConcrete(Ry, k¢, T), with an annealed temperature 7' and a straight-through esti-
mator so that E|[my|lo ~ ke. With the full basis W, € R%*? an input 2 € R is compressed as
zZ =z (Wg ® mg), where © denotes column-wise masking. This adaptively selects a subset of
projection directions per layer while respecting the global budget. Training details and experimental
setup can be seen in section [B]

5 Results

Our results in table [T] show that using random projections without training for either compression
or decompression consistently degrades model performance significantly. To mitigate this, we
demonstrate that training the decompressor only while the projection matrix is initialised and fixed as
orthonormal is also sufficient for adequate performance; however, it remains significantly inferior to
jointly training both. In our experiments, we saw no massive difference between training only linear
matrices vs shallow MLPs, thus signifying that using nonlinearity is not an inherently necessary
component for KV cache compression. Our main results show that our adaptive approach allows
us to achieve = 1% accuracy drop for x2, 3, 4 compression rates, significantly outperforming other
benchmarks.

5.1 Budget Dynamics

To further understand how our method impacts the per-layer budgets, we complete three training runs
from different seeds and record the per-layer compression budgets that the models have converged
to. In fig. 2] we can see a clear, strong correlation between the depth of the layer and the allowed
compression rate. This clear power law indicates that the model has learned to compress earlier layers
significantly less than later layers, thereby avoiding the compounding of errors that would otherwise
propagate towards later processing modules.

6 Conclusion

We introduced a learnable adaptive KV-cache compression method that allocates layer-wise budgets
under a global constraint. Our results show that the approach achieves up to x4 compression with
minimal accuracy loss, while revealing interpretable budget dynamics across layers. Beyond reducing
memory and bandwidth demands, our framework opens the door to principled analysis of attention
sparsity and more efficient inference scheduling in future LLM systems.

148

149
150
151

152
153

154
155
156
157
158
159

161
162
163

164

166

167
168
169

170
171
172
173
174
175

176
177

178
179
180
181

182
183
184

185

187

188
189

190
191
192

193
194
195

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

J. Ainslie, J. Lee-Thorp, M. De Jong, Y. Zemlyanskiy, F. Lebrén, and S. Sanghai. Gqa: Training
generalized multi-query transformer models from multi-head checkpoints. arXiv preprint
arXiv:2305.13245, 2023.

E. Arakelyan, P. Minervini, P. Verga, P. Lewis, and I. Augenstein. Flare: faithful logic-aided
reasoning and exploration. arXiv preprint arXiv:2410.11900, 2024.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Lan-
guage models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,

and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
1877-1901. Curran Associates, Inc., 2020.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,
J. Hilton, R. Nakano, et al. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

A. L. DeepSeek-Al, B. Feng, B. Wang, B. Wang, B. Liu, C. Zhao, C. Dengr, C. Ruan, D. Dai,
D. Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model. arXiv preprint arXiv:2405.04434, 2024.

T. Dettmers, R. Svirschevski, V. Egiazarian, D. Kuznedelev, E. Frantar, S. Ashkboos,
A. Borzunov, T. Hoefler, and D. Alistarh. Spqr: A sparse-quantized representation for near-
lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In J. Burstein, C. Doran, and T. Solorio, editors,
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers), pages 4171-4186, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics.

A. Devoto, Y. Zhao, S. Scardapane, and P. Minervini. A simple and effective /_2 norm-based
strategy for kv cache compression. arXiv preprint arXiv:2406.11430, 2024.

A. Devoto, Y. Zhao, S. Scardapane, and P. Minervini. A simple and effective /_2 norm-based
strategy for KV cache compression. In Y. Al-Onaizan, M. Bansal, and Y.-N. Chen, editors, Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages
18476-18499, Miami, Florida, USA, Nov. 2024. Association for Computational Linguistics.

H. Dong, X. Yang, Z. Zhang, Z. Wang, Y. Chi, and B. Chen. Get more with less: Syn-
thesizing recurrence with kv cache compression for efficient llm inference. arXiv preprint
arXiv:2402.09398, 2024.

X. Feng, Z. Wan, M. Wen, S. M. McAleer, Y. Wen, W. Zhang, and J. Wang. Alphazero-like tree-
search can guide large language model decoding and training. arXiv preprint arXiv:2309.17179,
2023.

S. Ge, Y. Zhang, L. Liu, M. Zhang, J. Han, and J. Gao. Model tells you what to discard:
Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801, 2023.

D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, et al.
Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948, 2025.

D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Stein-
hardt. Measuring mathematical problem solving with the math dataset. arXiv preprint
arXiv:2103.03874, 2021.

196
197
198
199

200
201
202
203

204
205

207

208
209
210

211
212
213

214
215

216
217

218
219

220
221

222
223
224

225
226
227

228
229
230

231
232

233
234
235

236
237

238
239
240

241
242

[15] J. Huang and K. C.-C. Chang. Towards reasoning in large language models: A survey. In
A. Rogers, J. Boyd-Graber, and N. Okazaki, editors, Findings of the Association for Computa-
tional Linguistics: ACL 2023, pages 1049-1065, Toronto, Canada, July 2023. Association for
Computational Linguistics.

[16] S. Imani, L. Du, and H. Shrivastava. MathPrompter: Mathematical reasoning using large
language models. In S. Sitaram, B. Beigman Klebanov, and J. D. Williams, editors, Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry
Track), pages 3742, Toronto, Canada, July 2023. Association for Computational Linguistics.

[17] A. Jaech, A. Kalai, A. Lerer, A. Richardson, A. El-Kishky, A. Low, A. Helyar, A. Madry,
A. Beutel, A. Carney, et al. Openai ol system card. arXiv preprint arXiv:2412.16720, 2024.

[18] C. E. Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press, and K. Narasimhan. Swe-bench:
Can language models resolve real-world github issues? arXiv preprint arXiv:2310.06770, 2023.

[19] Z. Ke, F. Jiao, Y. Ming, X.-P. Nguyen, A. Xu, D. X. Long, M. Li, C. Qin, P. Wang, S. Savarese,
et al. A survey of frontiers in llm reasoning: Inference scaling, learning to reason, and agentic
systems. arXiv preprint arXiv:2504.09037, 2025.

[20] F. D. Keles, P. M. Wijewardena, and C. Hegde. On the computational complexity of self-
attention. In International conference on algorithmic learning theory, pages 597-619. PMLR,
2023.

[21] M. Khodak, N. Tenenholtz, L. Mackey, and N. Fusi. Initialization and regularization of
factorized neural layers. arXiv preprint arXiv:2105.01029, 2021.

[22] J. Kim, J. Park, J. Cho, and D. Papailiopoulos. Lexico: Extreme kv cache compression via
sparse coding over universal dictionaries. arXiv preprint arXiv:2412.08890, 2024.

[23] S. Kim, C. Hooper, A. Gholami, Z. Dong, X. Li, S. Shen, M. W. Mahoney, and K. Keutzer.
Squeezellm: Dense-and-sparse quantization. arXiv preprint arXiv:2306.07629, 2023.

[24] V. Klema and A. Laub. The singular value decomposition: Its computation and some applica-
tions. IEEE Transactions on automatic control, 25(2):164—176, 1980.

[25] Y. Li, Y. Huang, B. Yang, B. Venkitesh, A. Locatelli, H. Ye, T. Cai, P. Lewis, and D. Chen.
Snapkv: LIm knows what you are looking for before generation. Advances in Neural Information
Processing Systems, 37:22947-22970, 2024.

[26] J. Lin, J. Tang, H. Tang, S. Yang, W.-M. Chen, W.-C. Wang, G. Xiao, X. Dang, C. Gan,
and S. Han. Awq: Activation-aware weight quantization for on-device 1lm compression and
acceleration. Proceedings of machine learning and systems, 6:87-100, 2024.

[27] A.Liu, B. Feng, B. Wang, B. Wang, B. Liu, C. Zhao, C. Dengr, C. Ruan, D. Dai, D. Guo, et al.
Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model. arXiv
preprint arXiv:2405.04434, 2024.

[28] C. Louizos, M. Welling, and D. P. Kingma. Learning sparse neural networks through [_0
regularization. arXiv preprint arXiv:1712.01312, 2017.

[29] J. Luo, W. Zhang, Y. Yuan, Y. Zhao, J. Yang, Y. Gu, B. Wu, B. Chen, Z. Qiao, Q. Long, et al.
Large language model agent: A survey on methodology, applications and challenges. arXiv
preprint arXiv:2503.21460, 2025.

[30] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

[31] B. Min, H. Ross, E. Sulem, A. P. B. Veyseh, T. H. Nguyen, O. Sainz, E. Agirre, I. Heintz, and
D. Roth. Recent advances in natural language processing via large pre-trained language models:
A survey. ACM Computing Surveys, 56(2):1-40, 2023.

[32] S. Minaee, T. Mikolov, N. Nikzad, M. A. Chenaghlu, R. Socher, X. Amatriain, and J. Gao.
Large language models: A survey. ArXiv, abs/2402.06196, 2024.

243
244

245
246
247

248
249

251

252
253

254
255

262

263
264

265
266

267

269

270
271
272

273
274
275

276
277

278
279

280
281

282
283
284

286
287

[33] M. Moczulski, M. Denil, J. Appleyard, and N. de Freitas. Acdc: A structured efficient linear
layer. arXiv preprint arXiv:1511.05946, 2015.

[34] P. Nawrot, A. Lanicucki, M. Chochowski, D. Tarjan, and E. M. Ponti. Dynamic memory
compression: Retrofitting llms for accelerated inference. arXiv preprint arXiv:2403.09636,
2024.

[35] L. Pan, A. Albalak, X. Wang, and W. Wang. Logic-LM: Empowering large language models
with symbolic solvers for faithful logical reasoning. In H. Bouamor, J. Pino, and K. Bali, editors,
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 3806-3824,
Singapore, Dec. 2023. Association for Computational Linguistics.

[36] L. Phan, A. Gatti, Z. Han, N. Li, J. Hu, H. Zhang, C. B. C. Zhang, M. Shaaban, J. Ling, S. Shi,
et al. Humanity’s last exam. arXiv preprint arXiv:2501.14249, 2025.

[37] C. Qu, S. Dai, X. Wei, H. Cai, S. Wang, D. Yin, J. Xu, and J.-R. Wen. Tool learning with large
language models: A survey. Frontiers of Computer Science, 19(8):198343, 2025.

[38] A.Rogers, M. Gardner, and 1. Augenstein. Qa dataset explosion: A taxonomy of nlp resources
for question answering and reading comprehension. ACM Computing Surveys, 55(10):1-45,
2023.

[39] B. Romera-Paredes, M. Barekatain, A. Novikov, M. Balog, M. P. Kumar, E. Dupont, F. J. Ruiz,
J. S. Ellenberg, P. Wang, O. Fawzi, et al. Mathematical discoveries from program search with
large language models. Nature, 625(7995):468-475, 2024.

[40] Z. Shen. LIm with tools: A survey. arXiv preprint arXiv:2409.18807, 2024.

[41] P. Singhania, S. Singh, S. He, S. Feizi, and A. Bhatele. Loki: Low-rank keys for efficient sparse
attention. Advances in Neural Information Processing Systems, 37:16692—-16723, 2024.

[42] G. Sun, M. Jin, Z. Wang, C.-L. Wang, S. Ma, Q. Wang, T. Geng, Y. N. Wu, Y. Zhang, and
D. Liu. Visual agents as fast and slow thinkers. arXiv preprint arXiv:2408.08862, 2024.

[43] Y. Sun, L. Dong, Y. Zhu, S. Huang, W. Wang, S. Ma, Q. Zhang, J. Wang, and F. Wei. You
only cache once: Decoder-decoder architectures for language models. Advances in Neural
Information Processing Systems, 37:7339-7361, 2024.

[44] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[45] Z. Wan, X. Wu, Y. Zhang, Y. Xin, C. Tao, Z. Zhu, X. Wang, S. Luo, J. Xiong, and M. Zhang.
D2o: Dynamic discriminative operations for efficient generative inference of large language
models. arXiv preprint arXiv:2406.13035, 2024.

[46] H. Wang, S. Agarwal, and D. Papailiopoulos. Pufferfish: Communication-efficient models at no
extra cost. Proceedings of Machine Learning and Systems, 3:365-386, 2021.

[47] Z. Wang, B. Jin, Z. Yu, and M. Zhang. Model tells you where to merge: Adaptive kv cache
merging for llms on long-context tasks. arXiv preprint arXiv:2407.08454, 2024.

[48] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. H. Chi, F. Xia, Q. Le, and D. Zhou. Chain of
thought prompting elicits reasoning in large language models. ArXiv, abs/2201.11903, 2022.

[49] W. Wen, C. Xu, C. Wu, Y. Wang, Y. Chen, and H. Li. Coordinating filters for faster deep neural
networks. In Proceedings of the IEEE international conference on computer vision, pages
658-666, 2017.

[50] Y. Xie, A. Goyal, W. Zheng, M.-Y. Kan, T. P. Lillicrap, K. Kawaguchi, and M. Shieh.
Monte carlo tree search boosts reasoning via iterative preference learning. arXiv preprint
arXiv:2405.00451, 2024.

288
289
290

291
292

294

295
296
297

298

300

301
302
303

[51] S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and K. Narasimhan. Tree of thoughts:
Deliberate problem solving with large language models. Advances in neural information
processing systems, 36:11809-11822, 2023.

[52] L. Ye, Z. Tao, Y. Huang, and Y. Li. Chunkattention: Efficient self-attention with prefix-aware
kv cache and two-phase partition. arXiv preprint arXiv:2402.15220, 2024.

[53] Z. Yuan, Y. Shang, Y. Song, Q. Wu, Y. Yan, and G. Sun. Asvd: Activation-aware singular value
decomposition for compressing large language models. arXiv preprint arXiv:2312.05821, 2023.

[54] Y. Zhang, Y. Du, G. Luo, Y. Zhong, Z. Zhang, S. Liu, and R. Ji. Cam: Cache merging for
memory-efficient llms inference. In Forty-first international conference on machine learning,
2024,

[55] Z. Zhang, Y. Sheng, T. Zhou, T. Chen, L. Zheng, R. Cai, Z. Song, Y. Tian, C. Ré, C. Barrett,
et al. H2o: Heavy-hitter oracle for efficient generative inference of large language models.
Advances in Neural Information Processing Systems, 36:34661-34710, 2023.

[56] X.Zhou, W. Wang, M. Zeng, J. Guo, X. Liu, L. Shen, M. Zhang, and L. Ding. Dynamickv: Task-
aware adaptive kv cache compression for long context llms. arXiv preprint arXiv:2412.14838,
2024.

304

305
306
307

308
309
310
311

312

313
314

315
316

317
318

A Memory and Bandwidth Bottlenecks

While caching avoids repeated projection cost, it introduces linearly growing memory overhead.
The total size of the KV cache (in bytes) over a generation of length 7', batch size B, and element
precision e is:

KV size=2-L-H-d-B-T -e. 2)
As T or B grows, the cache footprint may dominate the memory budget, even exceeding the model’s
own parameter size. Moreover, each decoding step requires reading from memory the cached K, V

to fuse with the new query; thus, memory bandwidth becomes a limiting factor. In practice, the
decoding latency is often memory-bandwidth bound rather than FLOP bound.

B Training Details and Experimental setup

All parameters are calibrated offline on pre-existing KV-cache samples using only mean-squared
reconstruction:

£=13" (1Ko = Kell3 + Ve = Vell3). Ko = Dece(Ence(Ky)), Vi = Decy(Ence(V2)).

1
3

No language-model loss is required; the softmax-coupled budgets enforce the exact average rate p
during calibration.

L
=

In our setup, we use LLAMA-3.1-8B trained with KV cache samples from WIKITEXT-2-RAW-V 1
and evaluate on GSM8K [4] and Math500 [14]].

	Introduction
	Related Works
	Methodolgy
	Background: KV-Cache in Decoding
	Adaptive Budget Learning with Global Constraint

	Results
	Budget Dynamics

	Conclusion
	Memory and Bandwidth Bottlenecks
	Training Details and Experimental setup

