
Learnable Adaptive KV-cache Compression

Anonymous Author(s)
Affiliation
Address
email

Abstract

Efficient inference within Large Language Models (LLMs) commonly assumes1

the usage of a key-value (KV) cache. However, while it removes the quadratic2

bottleneck of vanilla attention, it trades it for a proportional—and often pro-3

hibitive—memory footprint that scales linearly with the sequence length. Modern4

approaches to reducing the KV cache memory either use token eviction or de-5

terministic dimensionality reduction methods applied with a uniform budget to6

each layer. With this inflexibility in mind, we introduce a learnable adaptive7

compression method that dynamically retrofits existing KV cache for each layer8

with a trainable compression budget and encoding and decoding components. Ex-9

periments on LLAMA-3.1-8B across various benchmarks show that our method10

allows maintaining original model performance within 1% during ×2 and ×3 KV11

cache compression and 1% − 2% for ×4 reduction. Our experiments also show12

that this trainable adaptive budgeting allows the model to devote more capacity13

to late layers, where semantic abstractions are denser, which offers layer-wise14

interpretability of attention sparsity, opening the door to principled analysis and15

hardware-aware scheduling during inference.16

1 Introduction17

Large Language Models (LLMs) exhibit state-of-the-art performance on a variety of language tasks18

[32, 3] ranging from generalistic question answering [7, 31, 38] to complex multi-hop reasoning19

in math [39, 16], coding [18] and STEM [36]. Such models usually impose substantial memory20

requirements to serve, one of which stems from the quadratic attention memory computation [20],21

imposed by the transformer architecture [44]. To circumvent this limitation, the key and value22

matrices comprising the attention can be saved in memory for each layer, which is known as KV23

caching. Although KV cache allows attention computation to become linear, it also introduces a24

memory footprint which scales linearly with the length of the input sequence. It is important to note25

that with the introduction of complex reasoning [15, 19] and Agentic [29, 42] LLM paradigms, such26

as Chain-Of-Thought (CoT) [48], Tool Integrated Reasoning [37, 40, 2, 35] and others [51, 50], along27

with the emergence of Large Reasoning Models (LRMs) [17, 13], the input and output sequence28

lengths within the model have grown substantially [11]. As the linearly scaling memory directly29

prohibits the generation of longer sequences, it becomes increasingly essential to find methods of KV30

cache compression that also preserve model performance.31

Recent research has proposed several families of methods for reducing the memory of the KV cache.32

First, decreasing that memory can be achieved through token-eviction [55, 12, 9, 56], where the33

model removes key-value pairs of some tokens from the cache using heuristics or algorithms on34

the assumption that there exists a subset of tokens that are sufficient for solving the task. Instead35

of directly evicting, it is also possible to merge the cache components corresponding to several36

tokens [47, 54, 45, 34]. However, such methods can lead to hallucinations in tasks involving complex37

reasoning in a domain or during long context generation [54], as LLMs are sensitive to the criterion38

Submitted to NeurIPS 2025 Workshop on Efficient Reasoning. Do not distribute.

Attention Heads
At Layer L

Key

Value

X

Query

θL
K

Cache

[⟨K, θL
K⟩, ⟨V, θL

V⟩]

θ′ L
K

Compressors Decompressors

θL
V θ′ L

V

βL
K

γL
K

βL
V

γL
V

Figure 1: The figure depicts the unrolled compression process for any layer using our method. K and
V represent the key-value matrices in the layers cache, while compression and decompression are
completed using θL functions, which can be both linear projectors and parametrised neural networks.
The budget of the compression per layer is learned using the βL

V , β
L
K , while γL is a learnable binary

mask representing which βL
V , β

L
K columns to choose in the layer.

of token merging or eviction. Another set of compression techniques proposes novel architectural39

[43, 52] changes, such as Group-Query Attention [1] or Multi-head Latent Attention [5]. While40

these methods are effective, they require substantial resources and should be explicitly trained during41

pre- and/or post-training. Lastly, it is possible to reduce the dimensionality of the KV cache by42

applying low-rank decompositions [41, 53] or projections into constrained subspaces [22]. Both of43

these method families still enforce uniform per-layer budgets for compression. Towards this end,44

we propose a novel trainable method for KV cache compression that learns a compression budget45

and key-value encoding and decoding modules for each layer. Crucially, our framework allows46

to adaptively learn where and how much to compress. A depiction of our method per layer can47

be seen in fig. 1. Our method does not require (pre)training parallel to the LLM. The parameters48

can be efficiently learned by minimising an ℓ2-like reconstruction loss on the sampled KV caches49

from several hundred articles of wikitext-2 [30], meaning the method does not induce significant50

computational costs during calibration. Our results show that the proposed method allows for51

compressing the KV cache from ×2 to ×4 while maintaining the original model performance within52

[1%, 4%]. We further explore the learned per-layer budgets and observe that there is a strong positive53

nonlinear correlation between the depth of the layer and how much it can be compressed, which54

further shows the need for non-uniform per-layer compression. Our contributions are the following:55

(i) we propose a novel adaptive compression method that allows learning a per-layer compression56

budget, (ii) we show that this compression can reduce the KV cache memory from ×2 to ×4 and57

maintain the original performance within [1%, 2%] while not requiring massive resources to train.58

(iii) Our ablations further show a strong non-linear trend that compression budgets converge to after59

training, showing the exact dynamic of allowed compression per layer.60

2 Related Works61

Formally, post-training KV cache compression methods can be divided into techniques that use token62

eviction, merging, and low-rank decompositions. An orthogonal line of research that can be used63

alongside these techniques is quantisation [26, 6, 23], which allows for further compression of the64

cache by reducing its biwise precision, incurring minor or no expense to overall model performance.65

Token-eviction and merging Many heuristics have been used to find tokens closely correlated66

with attention without explicitly computing it [12, 25, 10]. Notably, even simply scoring tokens w.r.t.67

their L2 norms [8] is a reliable method for ranking tokens in terms of their importance. It is also68

possible, albeit more costly, to use the attention scores directly to retain relevant tokens [55].69

Merging allows for combining KV cache entries instead of outright removing them [34, 54, 45]. These70

methods, however, incur attention inconsistency before and after merging, thus losing information71

2

within the sentence. It is also worth noting that both token eviction and merging methods permanently72

lose information, thereby degrading the overall LLM generation.73

Figure 2: Compression Budget dynamics averaged across
three trainings.

Low Rank Decompositions Most74

attempts at low-rank decomposition75

for KV cache involve applying ten-76

sor decomposition methods such as77

Singular Value Decomposition (SVD)78

[24] on the pre-trained weights of79

the model [21, 46, 53], sometimes80

followed by calibration of that LLM81

[33, 49]. Our work is also associated82

with Multihead Latent Attention [27,83

MLA], as we similarly attempt to com-84

press the KV cache, yet do not use as85

much compute and data for optimisa-86

tion. All of these methods also suffer87

from the fact that the compression rate88

within each layer is uniform, meaning89

that the dimensionality of the latent90

space is chosen statically or with minor adaptive heuristics. We address this by reframing the KV91

cache compression as a learnable allocation of per-layer compression budgets, subject to a total92

compression budget constraint.93

3 Methodolgy94

4 Background: KV-Cache in Decoding95

During autoregressive decoding in Transformer-based language models, the key–value (KV) cache96

is essential to avoid redundant computation. Let a Transformer have L layers, each with H at-97

tention heads and head dimension d. In step t, for each new token, the model produces query,98

key, and value projections: Q
(ℓ)
t = WQ

ℓ xt, K
(ℓ)
t = WK

ℓ xt, V
(ℓ)
t = WV

ℓ xt, for layer99

ℓ = 1, . . . , L. To compute self-attention at layer ℓ, one needs to attend over all past keys and100

values Attention(Q(ℓ)
t , [K

(ℓ)
1 , . . . ,K

(ℓ)
t], [V

(ℓ)
1 , . . . , V

(ℓ)
t]) .. To avoid re-computing K,V for all101

past tokens at every step, the model caches these as K(ℓ) = [K
(ℓ)
1 ,K

(ℓ)
2 , . . . ,K

(ℓ)
t−1], V(ℓ) =102

[V
(ℓ)
1 , V

(ℓ)
2 , . . . , V

(ℓ)
t−1]. Then at step t, only the new Kt, Vt are appended, and attention is computed103

efficiently over the cached sequence.104

4.1 Adaptive Budget Learning with Global Constraint105

To mitigate memory and bandwidth bottlenecks, we introduce an adaptive KV-cache compressor that106

learns a layer-wise projection budget under a global compression constraint. Unlike fixed uniform107

compression, our method allows each layer to allocate its own number of projection dimensions while108

ensuring that the average compression rate equals a pre-specified target ρ.109

Linear Projections We construct a linear orthonormal cacher that compresses with an orthonormal110

projector and decodes with a linear pseudo-inverse. Per layer ℓ, a full orthonormal basis Wℓ∈Rd×d111

(built via QR, subsampled HADAMARD, or random JL) is available, and decoding uses a numerically112

stable QR-based pseudo-inverse W+
ℓ .113

Layer-wise budget parameters. For each layer ℓ ∈ {1, . . . , L} we maintain a learnable scalar114

bℓ ∈ R and column scores Rℓ ∈ Rd. The raw scalars (b1, . . . , bL) are transformed by a softmax and115

rescaled to enforce a global expected budget:116

b̃ℓ =
exp(bℓ)∑L
j=1 exp(bj)

, kℓ = d · ρ · L · b̃ℓ,
1

L

L∑
ℓ=1

kℓ
d

= ρ, (1)

i.e., the average fraction of active columns equals the target compression rate.117

3

Learnability
Method None Decompressor Comp+Decomp Compression

LLama-3.1-8B (Orthonormal) -55.2 -17.1 -12.1
X2LLama-3.1-8B (MLP) - -16.9 -13.0

LLama-3.1-8B (Adaptive) -11.2 - -0.9

LLama-3.1-8B (Orthonormal) -56.9 -18.3 -13.5
X3LLama-3.1-8B (MLP) - -19.9 -16.1

LLama-3.1-8B (Adaptive) -14.4 - -1.1

LLama-3.1-8B (Orthonormal) -58.1 -20.3 -14.7
X4LLama-3.1-8B (MLP) - -21.4 -17.7

LLama-3.1-8B (Adaptive) -14.8 - -1.9
Baseline 84.5

Table 1: Delta of different KV-cache compression methods compared to original LLaMA-3.1-8B
performance. The table reports performance under three evaluation setups: using no training(None),
training a decompressor only, and training both compressor and decompressor jointly. Results are
shown for compression factors ×2, ×3, and ×4, with the baseline (no compression) included for
reference. We also use both orthonormal matrices for compression and decompression (Orthonormal)
and MLPs. Adaptive refers to our approach.

Compression and Maksing At each layer, a nearly-binary column mask is drawn via the118

hard-concrete distribution [28]. Given Rℓ and kℓ, the mask mℓ ∈ {0, 1}d is sampled as119

mℓ = HardConcrete(Rℓ, kℓ, T), with an annealed temperature T and a straight-through esti-120

mator so that E∥mℓ∥0 ≈ kℓ. With the full basis Wℓ ∈ Rd×d an input x ∈ Rd is compressed as121

z = x
(
Wℓ ⊙ mℓ

)
, where ⊙ denotes column-wise masking. This adaptively selects a subset of122

projection directions per layer while respecting the global budget. Training details and experimental123

setup can be seen in section B.124

5 Results125

Our results in table 1 show that using random projections without training for either compression126

or decompression consistently degrades model performance significantly. To mitigate this, we127

demonstrate that training the decompressor only while the projection matrix is initialised and fixed as128

orthonormal is also sufficient for adequate performance; however, it remains significantly inferior to129

jointly training both. In our experiments, we saw no massive difference between training only linear130

matrices vs shallow MLPs, thus signifying that using nonlinearity is not an inherently necessary131

component for KV cache compression. Our main results show that our adaptive approach allows132

us to achieve ≈ 1% accuracy drop for ×2, 3, 4 compression rates, significantly outperforming other133

benchmarks.134

5.1 Budget Dynamics135

To further understand how our method impacts the per-layer budgets, we complete three training runs136

from different seeds and record the per-layer compression budgets that the models have converged137

to. In fig. 2, we can see a clear, strong correlation between the depth of the layer and the allowed138

compression rate. This clear power law indicates that the model has learned to compress earlier layers139

significantly less than later layers, thereby avoiding the compounding of errors that would otherwise140

propagate towards later processing modules.141

6 Conclusion142

We introduced a learnable adaptive KV-cache compression method that allocates layer-wise budgets143

under a global constraint. Our results show that the approach achieves up to ×4 compression with144

minimal accuracy loss, while revealing interpretable budget dynamics across layers. Beyond reducing145

memory and bandwidth demands, our framework opens the door to principled analysis of attention146

sparsity and more efficient inference scheduling in future LLM systems.147

4

References148

[1] J. Ainslie, J. Lee-Thorp, M. De Jong, Y. Zemlyanskiy, F. Lebrón, and S. Sanghai. Gqa: Training149

generalized multi-query transformer models from multi-head checkpoints. arXiv preprint150

arXiv:2305.13245, 2023.151

[2] E. Arakelyan, P. Minervini, P. Verga, P. Lewis, and I. Augenstein. Flare: faithful logic-aided152

reasoning and exploration. arXiv preprint arXiv:2410.11900, 2024.153

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,154

P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,155

A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,156

B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Lan-157

guage models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,158

and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages159

1877–1901. Curran Associates, Inc., 2020.160

[4] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,161

J. Hilton, R. Nakano, et al. Training verifiers to solve math word problems. arXiv preprint162

arXiv:2110.14168, 2021.163

[5] A. L. DeepSeek-AI, B. Feng, B. Wang, B. Wang, B. Liu, C. Zhao, C. Dengr, C. Ruan, D. Dai,164

D. Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language165

model. arXiv preprint arXiv:2405.04434, 2024.166

[6] T. Dettmers, R. Svirschevski, V. Egiazarian, D. Kuznedelev, E. Frantar, S. Ashkboos,167

A. Borzunov, T. Hoefler, and D. Alistarh. Spqr: A sparse-quantized representation for near-168

lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.169

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional170

transformers for language understanding. In J. Burstein, C. Doran, and T. Solorio, editors,171

Proceedings of the 2019 Conference of the North American Chapter of the Association for172

Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-173

pers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational174

Linguistics.175

[8] A. Devoto, Y. Zhao, S. Scardapane, and P. Minervini. A simple and effective l_2 norm-based176

strategy for kv cache compression. arXiv preprint arXiv:2406.11430, 2024.177

[9] A. Devoto, Y. Zhao, S. Scardapane, and P. Minervini. A simple and effective l_2 norm-based178

strategy for KV cache compression. In Y. Al-Onaizan, M. Bansal, and Y.-N. Chen, editors, Pro-179

ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages180

18476–18499, Miami, Florida, USA, Nov. 2024. Association for Computational Linguistics.181

[10] H. Dong, X. Yang, Z. Zhang, Z. Wang, Y. Chi, and B. Chen. Get more with less: Syn-182

thesizing recurrence with kv cache compression for efficient llm inference. arXiv preprint183

arXiv:2402.09398, 2024.184

[11] X. Feng, Z. Wan, M. Wen, S. M. McAleer, Y. Wen, W. Zhang, and J. Wang. Alphazero-like tree-185

search can guide large language model decoding and training. arXiv preprint arXiv:2309.17179,186

2023.187

[12] S. Ge, Y. Zhang, L. Liu, M. Zhang, J. Han, and J. Gao. Model tells you what to discard:188

Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801, 2023.189

[13] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, et al.190

Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv191

preprint arXiv:2501.12948, 2025.192

[14] D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Stein-193

hardt. Measuring mathematical problem solving with the math dataset. arXiv preprint194

arXiv:2103.03874, 2021.195

5

[15] J. Huang and K. C.-C. Chang. Towards reasoning in large language models: A survey. In196

A. Rogers, J. Boyd-Graber, and N. Okazaki, editors, Findings of the Association for Computa-197

tional Linguistics: ACL 2023, pages 1049–1065, Toronto, Canada, July 2023. Association for198

Computational Linguistics.199

[16] S. Imani, L. Du, and H. Shrivastava. MathPrompter: Mathematical reasoning using large200

language models. In S. Sitaram, B. Beigman Klebanov, and J. D. Williams, editors, Proceedings201

of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry202

Track), pages 37–42, Toronto, Canada, July 2023. Association for Computational Linguistics.203

[17] A. Jaech, A. Kalai, A. Lerer, A. Richardson, A. El-Kishky, A. Low, A. Helyar, A. Madry,204

A. Beutel, A. Carney, et al. Openai o1 system card. arXiv preprint arXiv:2412.16720, 2024.205

[18] C. E. Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press, and K. Narasimhan. Swe-bench:206

Can language models resolve real-world github issues? arXiv preprint arXiv:2310.06770, 2023.207

[19] Z. Ke, F. Jiao, Y. Ming, X.-P. Nguyen, A. Xu, D. X. Long, M. Li, C. Qin, P. Wang, S. Savarese,208

et al. A survey of frontiers in llm reasoning: Inference scaling, learning to reason, and agentic209

systems. arXiv preprint arXiv:2504.09037, 2025.210

[20] F. D. Keles, P. M. Wijewardena, and C. Hegde. On the computational complexity of self-211

attention. In International conference on algorithmic learning theory, pages 597–619. PMLR,212

2023.213

[21] M. Khodak, N. Tenenholtz, L. Mackey, and N. Fusi. Initialization and regularization of214

factorized neural layers. arXiv preprint arXiv:2105.01029, 2021.215

[22] J. Kim, J. Park, J. Cho, and D. Papailiopoulos. Lexico: Extreme kv cache compression via216

sparse coding over universal dictionaries. arXiv preprint arXiv:2412.08890, 2024.217

[23] S. Kim, C. Hooper, A. Gholami, Z. Dong, X. Li, S. Shen, M. W. Mahoney, and K. Keutzer.218

Squeezellm: Dense-and-sparse quantization. arXiv preprint arXiv:2306.07629, 2023.219

[24] V. Klema and A. Laub. The singular value decomposition: Its computation and some applica-220

tions. IEEE Transactions on automatic control, 25(2):164–176, 1980.221

[25] Y. Li, Y. Huang, B. Yang, B. Venkitesh, A. Locatelli, H. Ye, T. Cai, P. Lewis, and D. Chen.222

Snapkv: Llm knows what you are looking for before generation. Advances in Neural Information223

Processing Systems, 37:22947–22970, 2024.224

[26] J. Lin, J. Tang, H. Tang, S. Yang, W.-M. Chen, W.-C. Wang, G. Xiao, X. Dang, C. Gan,225

and S. Han. Awq: Activation-aware weight quantization for on-device llm compression and226

acceleration. Proceedings of machine learning and systems, 6:87–100, 2024.227

[27] A. Liu, B. Feng, B. Wang, B. Wang, B. Liu, C. Zhao, C. Dengr, C. Ruan, D. Dai, D. Guo, et al.228

Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model. arXiv229

preprint arXiv:2405.04434, 2024.230

[28] C. Louizos, M. Welling, and D. P. Kingma. Learning sparse neural networks through l_0231

regularization. arXiv preprint arXiv:1712.01312, 2017.232

[29] J. Luo, W. Zhang, Y. Yuan, Y. Zhao, J. Yang, Y. Gu, B. Wu, B. Chen, Z. Qiao, Q. Long, et al.233

Large language model agent: A survey on methodology, applications and challenges. arXiv234

preprint arXiv:2503.21460, 2025.235

[30] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. arXiv preprint236

arXiv:1609.07843, 2016.237

[31] B. Min, H. Ross, E. Sulem, A. P. B. Veyseh, T. H. Nguyen, O. Sainz, E. Agirre, I. Heintz, and238

D. Roth. Recent advances in natural language processing via large pre-trained language models:239

A survey. ACM Computing Surveys, 56(2):1–40, 2023.240

[32] S. Minaee, T. Mikolov, N. Nikzad, M. A. Chenaghlu, R. Socher, X. Amatriain, and J. Gao.241

Large language models: A survey. ArXiv, abs/2402.06196, 2024.242

6

[33] M. Moczulski, M. Denil, J. Appleyard, and N. de Freitas. Acdc: A structured efficient linear243

layer. arXiv preprint arXiv:1511.05946, 2015.244

[34] P. Nawrot, A. Łańcucki, M. Chochowski, D. Tarjan, and E. M. Ponti. Dynamic memory245

compression: Retrofitting llms for accelerated inference. arXiv preprint arXiv:2403.09636,246

2024.247

[35] L. Pan, A. Albalak, X. Wang, and W. Wang. Logic-LM: Empowering large language models248

with symbolic solvers for faithful logical reasoning. In H. Bouamor, J. Pino, and K. Bali, editors,249

Findings of the Association for Computational Linguistics: EMNLP 2023, pages 3806–3824,250

Singapore, Dec. 2023. Association for Computational Linguistics.251

[36] L. Phan, A. Gatti, Z. Han, N. Li, J. Hu, H. Zhang, C. B. C. Zhang, M. Shaaban, J. Ling, S. Shi,252

et al. Humanity’s last exam. arXiv preprint arXiv:2501.14249, 2025.253

[37] C. Qu, S. Dai, X. Wei, H. Cai, S. Wang, D. Yin, J. Xu, and J.-R. Wen. Tool learning with large254

language models: A survey. Frontiers of Computer Science, 19(8):198343, 2025.255

[38] A. Rogers, M. Gardner, and I. Augenstein. Qa dataset explosion: A taxonomy of nlp resources256

for question answering and reading comprehension. ACM Computing Surveys, 55(10):1–45,257

2023.258

[39] B. Romera-Paredes, M. Barekatain, A. Novikov, M. Balog, M. P. Kumar, E. Dupont, F. J. Ruiz,259

J. S. Ellenberg, P. Wang, O. Fawzi, et al. Mathematical discoveries from program search with260

large language models. Nature, 625(7995):468–475, 2024.261

[40] Z. Shen. Llm with tools: A survey. arXiv preprint arXiv:2409.18807, 2024.262

[41] P. Singhania, S. Singh, S. He, S. Feizi, and A. Bhatele. Loki: Low-rank keys for efficient sparse263

attention. Advances in Neural Information Processing Systems, 37:16692–16723, 2024.264

[42] G. Sun, M. Jin, Z. Wang, C.-L. Wang, S. Ma, Q. Wang, T. Geng, Y. N. Wu, Y. Zhang, and265

D. Liu. Visual agents as fast and slow thinkers. arXiv preprint arXiv:2408.08862, 2024.266

[43] Y. Sun, L. Dong, Y. Zhu, S. Huang, W. Wang, S. Ma, Q. Zhang, J. Wang, and F. Wei. You267

only cache once: Decoder-decoder architectures for language models. Advances in Neural268

Information Processing Systems, 37:7339–7361, 2024.269

[44] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and270

I. Polosukhin. Attention is all you need. Advances in neural information processing systems,271

30, 2017.272

[45] Z. Wan, X. Wu, Y. Zhang, Y. Xin, C. Tao, Z. Zhu, X. Wang, S. Luo, J. Xiong, and M. Zhang.273

D2o: Dynamic discriminative operations for efficient generative inference of large language274

models. arXiv preprint arXiv:2406.13035, 2024.275

[46] H. Wang, S. Agarwal, and D. Papailiopoulos. Pufferfish: Communication-efficient models at no276

extra cost. Proceedings of Machine Learning and Systems, 3:365–386, 2021.277

[47] Z. Wang, B. Jin, Z. Yu, and M. Zhang. Model tells you where to merge: Adaptive kv cache278

merging for llms on long-context tasks. arXiv preprint arXiv:2407.08454, 2024.279

[48] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. H. Chi, F. Xia, Q. Le, and D. Zhou. Chain of280

thought prompting elicits reasoning in large language models. ArXiv, abs/2201.11903, 2022.281

[49] W. Wen, C. Xu, C. Wu, Y. Wang, Y. Chen, and H. Li. Coordinating filters for faster deep neural282

networks. In Proceedings of the IEEE international conference on computer vision, pages283

658–666, 2017.284

[50] Y. Xie, A. Goyal, W. Zheng, M.-Y. Kan, T. P. Lillicrap, K. Kawaguchi, and M. Shieh.285

Monte carlo tree search boosts reasoning via iterative preference learning. arXiv preprint286

arXiv:2405.00451, 2024.287

7

[51] S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and K. Narasimhan. Tree of thoughts:288

Deliberate problem solving with large language models. Advances in neural information289

processing systems, 36:11809–11822, 2023.290

[52] L. Ye, Z. Tao, Y. Huang, and Y. Li. Chunkattention: Efficient self-attention with prefix-aware291

kv cache and two-phase partition. arXiv preprint arXiv:2402.15220, 2024.292

[53] Z. Yuan, Y. Shang, Y. Song, Q. Wu, Y. Yan, and G. Sun. Asvd: Activation-aware singular value293

decomposition for compressing large language models. arXiv preprint arXiv:2312.05821, 2023.294

[54] Y. Zhang, Y. Du, G. Luo, Y. Zhong, Z. Zhang, S. Liu, and R. Ji. Cam: Cache merging for295

memory-efficient llms inference. In Forty-first international conference on machine learning,296

2024.297

[55] Z. Zhang, Y. Sheng, T. Zhou, T. Chen, L. Zheng, R. Cai, Z. Song, Y. Tian, C. Ré, C. Barrett,298

et al. H2o: Heavy-hitter oracle for efficient generative inference of large language models.299

Advances in Neural Information Processing Systems, 36:34661–34710, 2023.300

[56] X. Zhou, W. Wang, M. Zeng, J. Guo, X. Liu, L. Shen, M. Zhang, and L. Ding. Dynamickv: Task-301

aware adaptive kv cache compression for long context llms. arXiv preprint arXiv:2412.14838,302

2024.303

8

A Memory and Bandwidth Bottlenecks304

While caching avoids repeated projection cost, it introduces linearly growing memory overhead.305

The total size of the KV cache (in bytes) over a generation of length T , batch size B, and element306

precision e is:307

KV_size = 2 · L ·H · d ·B · T · e. (2)

As T or B grows, the cache footprint may dominate the memory budget, even exceeding the model’s308

own parameter size. Moreover, each decoding step requires reading from memory the cached K,V309

to fuse with the new query; thus, memory bandwidth becomes a limiting factor. In practice, the310

decoding latency is often memory-bandwidth bound rather than FLOP bound.311

B Training Details and Experimental setup312

All parameters are calibrated offline on pre-existing KV-cache samples using only mean-squared313

reconstruction:314

L = 1
L

L∑
ℓ=1

(
∥Kℓ − K̂ℓ∥22 + ∥Vℓ − V̂ℓ∥22

)
, K̂ℓ = Decℓ(Encℓ(Kℓ)), V̂ℓ = Decℓ(Encℓ(Vℓ)).

(3)

No language-model loss is required; the softmax-coupled budgets enforce the exact average rate ρ315

during calibration.316

In our setup, we use LLAMA-3.1-8B trained with KV cache samples from WIKITEXT-2-RAW-V1317

and evaluate on GSM8K [4] and Math500 [14].318

9

	Introduction
	Related Works
	Methodolgy
	Background: KV-Cache in Decoding
	Adaptive Budget Learning with Global Constraint

	Results
	Budget Dynamics

	Conclusion
	Memory and Bandwidth Bottlenecks
	Training Details and Experimental setup

