
An Adaptive Drop-In Solution for Real-Time Speculative Decoding in
Large Language Models

Anonymous ACL submission

Abstract

Large Language Models (LLMs) are cutting-001
edge generative AI models built on transformer002
architecture, which tend to be highly memory-003
intensive when performing real-time inference.004
Various strategies have been developed to en-005
hance the end-to-end inference speed for LLMs,006
one of which is speculative decoding. This tech-007
nique involves running a smaller LLM (draft008
model) for inference over a defined window009
size, denoted as γ, while simultaneously be-010
ing validated by the larger LLM (target model).011
Choosing the optimal γ value and the draft012
model is essential for unlocking the potential013
of speculative decoding. But it is difficult to014
do due to the complicated influence from var-015
ious factors, including the nature of the task,016
the hardware in use, and the combination of the017
large and small models. This paper introduces018
on-the-fly adaption of speculative decoding, a019
solution that dynamically adapts the choices to020
maximize the efficiency of speculative decod-021
ing for LLM inferences. As a drop-in solution,022
it needs no offline benchmarking or training.023
Experiments show that the solution can lead024
to 3.55-16.48% speed improvement over the025
standard speculative decoding, and 1.2-3.4×026
over the default LLMs.027

1 Introduction028

Large Language Models (LLMs) are state-of-the-029

art generative AI models built on transformer-based030

blocks (Brown et al., 2020; Ouyang et al., 2022).031

LLMs have an enormous number of parameters,032

and recent research not only focuses on training033

them efficiently but also explores how to optimize034

inference performance. In fact, there is evidence035

indicating that even small improvement in LLM in-036

ference speeds can result in significant cost savings.037

For instance, Google’s infrastructure optimizations038

have demonstrated that improving inference effi-039

ciency can lead to substantial reductions in opera-040

tional expenses. In large-scale deployments, a 1%041

increase in speed can indeed translate into millions 042

of dollars saved (AI, 2023; Cloud, 2023). 043

Due to the autoregressive and memory-intensive 044

nature of LLMs, it is challenging to optimize its 045

inference throughput. Sampling for a new token 046

depends on the previously generated tokens. Re- 047

searchers are exploring mainly two approaches to 048

circumvent this sequential dependence for more 049

efficient parallel executions. One is to change the 050

model architecture thus sampling granularity to par- 051

allelize the decoding process. Medusa (Cai et al., 052

2024), for example, introduces multiple decoding 053

heads to generate tokens in parallel; Lookahead 054

Decoding (Jacobi Decoding) (Fu et al., 2024) gen- 055

erates multiple tokens in parallel using nonlinear 056

systems. This approach changes the neural archi- 057

tecture and hence requires new training, the high 058

costs of which makes them difficult to adopt in 059

practice. The other approach is speculative decod- 060

ing (Leviathan et al., 2023; Chen et al., 2023). This 061

approach first runs inference with a smaller LLM 062

Mq, called the draft model, to generate the next γ 063

tokens (γ is called speculation window size). After 064

generating one window of tokens (called a specula- 065

tion step), a verification step uses the Large LLM 066

Mp, called the target model, to validate those to- 067

kens in parallel. Upon finding the first incorrect 068

token, the execution throws away the rest of the to- 069

kens speculated by the draft model in that window 070

and corrects the first rejected token (or appends 071

a new token when all of the tokens are accepted). 072

From there, it continues the speculation-validation 073

process. This approach allows direct use of the 074

pretrained LLMs, making it easier for adoption. 075

What is crucial for unlocking the potential of 076

speculative decoding is to choose the best specu- 077

lation window length, γ, and the best draft model 078

to use. The best choices depend on the nature of 079

the inference task, target model, software stack, 080

hardware, and resource availability or workload 081

changes (if running in a cloud). Suboptimal choices 082

1

may not only substantially throttle the benefits but083

sometimes cause slowdowns to the inference (see084

Section 6). The standard approach (Leviathan et al.,085

2023; Chen et al., 2023) relies on offline trial-and-086

error-based search, which not only takes long time,087

but more importantly, cannot adapt to the changes088

in the tasks, target models, software stacks, hard-089

ware or other runtime changes. A recent study,090

SpecDec++ (Huang et al., 2024), attempts to im-091

prove it through a machine learning model. It trains092

a ResNet with many samples in offline data collec-093

tion, and uses it to predict, at each generated token094

in actual inferences, whether the execution should095

stop speculation, so as to adapt the speculation win-096

dow. Although the work shows some improvement097

in experiments, it requires hundreds or thousands of098

GPU-hours (Section 6.2) to train the model for one099

target-draft pair on one kind of task and one soft-100

ware and hardware configuration. Modern LLM101

servers often host many LLMs and their variants102

(e.g., different quantizations, with Lora or other103

fine-tuning models) and have various software and104

hardware configurations and task types, making the105

solution difficult to adopt in production systems.106

This paper describes the first-known exploration107

of on-the-fly adaptive speculation, a drop-in so-108

lution that adapts speculative decoding at run-109

time without ahead-of-time training. Our explo-110

ration covers both speculation window size γ and111

the choice of draft models. It experiments with112

several agile online methods for the adaptation,113

including a state machine-based mechanism, a114

cache-enabled state machine-based method, a re-115

inforcement learning-based approach, and a token116

accuracy-based online window size optimization117

method. It analyzes these methods and evaluates118

them on four LLMs across three GPU models and119

four types of inference tasks. The results show that120

on-the-fly adaptive speculation, especially the on-121

line window size optimization, can deliver similar122

or even better improvements than the prior method123

that uses extensive ahead-of-time trainings, lead-124

ing to 3.55-16.48% speed improvement over the125

standard speculative decoding, and 1.2-3.4× over126

the default LLMs. As a drop-in solution, this new127

approach needs no model changes, ahead-of-time128

preparation, lengthy training, or extensive bench-129

marking. It automatically adapts the optimal win-130

dow size and directs the requests to the appropriate131

draft models for speculation, especially suitable for132

large LLM service providers.133

It is worth mentioning that besides adapting the134

speculation process, there are some other methods 135

explored in recent studies to improve speculative 136

decoding (Li et al., 2024; Yan et al., 2024; Spector 137

and Re, 2023; Hooper et al., 2023). Online Spec- 138

ulative Decoding (Liu et al., 2023), for instance, 139

uses knowledge distillation to continuously train 140

the smaller draft model during inference, enhanc- 141

ing performance. SpecInfer (Miao et al., 2023) 142

introduces a tree-based decoding algorithm that 143

uses the draft model to speculate multiple possi- 144

ble token sequences in parallel and then validates 145

each of these sequences by the target model to keep 146

the longest validated one. The on-the-fly adaptive 147

speculation proposed in this current paper is from a 148

different angle. It is hence complementary to those 149

studies in the sense that it can be integrated into 150

the speculation process in those solutions to further 151

improve their effectiveness. 152

2 Guess-and-Verify in LLMs 153

In LLM inference, the tokens generated later are 154

dependent on the tokens generated earlier. This 155

sequential dependency of autoregressive decoding 156

in LLMs has led to the development of new tech- 157

niques aimed at parallelizing the decoding process. 158

Given that text is tokenized, some tokens can be 159

easier or harder to predict by a lower-parameter 160

LLM. This has sparked a new area of research 161

known as “guess-and-verify" optimization (Li et al., 162

2024; Yan et al., 2024; Spector and Re, 2023; 163

Hooper et al., 2023). In this approach, smaller 164

draft models efficiently guess a number of tokens, 165

which are then verified in parallel by a larger target 166

model. It is a lossless optimization, maintaining 167

the accuracy of the results. 168

Speculative decoding is one typical “guess-and- 169

verify” approach in LLM optimization. In this tech- 170

nique, when an LLM samples logits, it essentially 171

predicts the probabilities of the next token. Specu- 172

lative decoding takes advantage of this by allowing 173

a smaller model to guess the easier tokens based on 174

its own sampling of the distribution. These tokens 175

are then verified by a larger, more accurate model. 176

In speculative decoding, the process involves 177

guessing a set of tokens using the smaller model 178

Mq within a fixed window size, γ, and then ver- 179

ifying these γ tokens using the larger model Mp 180

by sampling γ + 1 tokens in parallel. If all tokens 181

are accepted, the γ + 1 tokens are appended to 182

the generated sequence, and the process continues. 183

If one token (say (i + 1)th) is rejected, the algo- 184

2

rithm accepts the i correct tokens, resample the185

(i + 1)th from an adjusted distribution in the val-186

idation, and continues the next round of guessing.187

The speculation and verification process is detailed188

in Algorithm 1.189

Algorithm 1 Speculative Decoding (Leviathan
et al., 2023)
1: function speculativeDecoding(Mp, Mq , prefix)
2: ▷ Sample y guesses x1,··· ,y from Mq autoregressively.
3: for i = 1 to y do
4: qi(x) ∼Mq(prefix+ [x1, · · · , xi−1])
5: xi ∼ qi(x)

6: ▷ Run Mp in parallel.
7: (p1(x), · · · , py+1(x))←
8: Mp(prefix), · · · ,Mp(prefix+ [x1, · · · , xy])
9: ▷ Determine the number of accepted guesses n.

10: r1 ∼ U(0, 1), · · · , ry ∼ U(0, 1)

11: n← min({i− 1|1 ≤ i ≤ y, ri >
pi(x)
qi(x)
} ∪ {y})

12: ▷ Adjust the distribution from Mp if needed.
13: p′(x)← pn+1(x)
14: if n < y then
15: p′(x)← norm(max(0, pn+1(x)− qn+1(x)))

16: ▷ Return one token from Mp and n tokens from Mq .
17: t ∼ p′(x)
18: return prefix+ [x1, · · · , xn, t]

3 Overview190

Our goal is to enable real-time adjustments in spec-191

ulative decoding to achieve higher throughput with-192

out requiring extensive pre-training, making it a193

practical solution for large-scale LLM deployments.194

Figure 1 gives an overview of our solution. The195

workflow goes as follows. At the beginning, it196

sets up the target model and different draft model197

options. For each prompt, our solution as in Fig-198

ure 1 involves two steps. First, it finds a proper199

draft model for the given prompt. This is done by200

extracting features of the prompt to estimate the201

single token accuracy. From there, the method ap-202

proximates the acceptance rate and ultimately the203

throughput so it can choose a proper draft model.204

Second, it runs speculations, where γ is adapted205

on the fly with the given model pairing. In the206

following content, we will first introduce the adap-207

tive window size selection (Section 4) followed by208

adaptive draft model selection (Section 5).209

4 Adaptive Window Size Selection210

In this section, we focus on how to determine the211

best window size for a given target-draft model pair.212

We first introduce the analytic model for capturing213

the relationship between the speculation setting and214

speculation benefits. With that, we present an an-215

alytical model-guided adaption (Section 4.1) and 216

three other agile algorithms for adaptively chang- 217

ing γ during speculative decoding (Section 4.2). 218

The agility of these algorithms is essential for min- 219

imizing the runtime overhead. 220

4.1 Method 1: Analytical Model-Guided 221

Adaption 222

A speculation window size that is too large risks 223

high overhead if verification fails early, while a 224

size that is too small misses out on the full benefits. 225

The optimal size varies depending on the language 226

model, contexts, and speculation accuracy. We 227

translate this trade-off into an objective function 228

to adaptively determine the optimal window size 229

across various configurations. For each prompt, we 230

want to minimize the end-to-end latency in gen- 231

erating a response with a fixed number of tokens. 232

We define our objective function as the expected 233

number of tokens verified as correct per unit time, 234

aiming to maximize this function by optimizing the 235

window size γ: 236

Definition 1 (formulating objective). Let aq repre- 237

sent the latency of generating one token by the draft 238

model, and bp(γ) represent the latency of a verifi- 239

cation step with window size γ. For t = 1, 2, · · · , 240

let Acc(xt|X<t) be the accuracy of the specula- 241

tion of a single token given the current context 242

X<t = {x1, · · · , xt−1}. The window size γ for 243

the current speculation step can be determined by 244

optimizing the objective 245

G = max
γ

1−Acc(xt|X<t)
γ+1

(1−Acc(xt|X<t))(γaq + bp(γ))
.

(1) 246

Given the single token accuracy β = 247

Acc(xt|X<t) ∈ [0, 1], the expected accepted num- 248

ber of tokens in a γ-long speculation window fol- 249

lows truncated geometric distribution, and is given 250

as 1−βγ+1

1−β (see Appendix B.1). The total latency 251

of one speculation step and verification step is cal- 252

culated as γaq + bp(γ). Therefore, the expected 253

number of tokens verified as correct per unit time 254

given a window size γ is given by 1−βγ+1

(1−β)(γaq+bp(γ))
, 255

and thus objective (1). 256

Algorithm. To adaptively determine the opti- 257

mal γ, we need to figure out the unknown terms 258

aq, bp(γ), Acc(xt|X<t) in Equation 1. Using esti- 259

mation for them, the algorithm goes as follows. At 260

the start of each speculation step, it conducts the 261

following two operations before it can solve the ob- 262

jective (1). First, it estimates a and b. These values 263

3

GEMM validation
γ=5

On-the-fly γAdaptation

Reinforcement Learning Online Model

Finite State Machine History Cache

Green : Accepted tokens Blue : Resampled tokens Red : Rejected tokens Grey : Pending validation

γ=6 γ=5 γ=4 γ=3 γ=4 γ=9 γ=3
[START] japan ’ s benchmark in late morning trading .bond nikkei 22 , 5 index rose 22.6 orpoints69. , , 01. 5percent , to 10 , 98 5 9 . 79. [END]

Draft Model Selector

Extract features

Check
conditions

Input
prompt

!"

Draft Model with
adaptive speculation

!#

Figure 1: Our on-the-fly adaptive speculation framework. When a prompt arrives, our scheduler directs it to the
draft model Mq . During speculation, our framework automatically adapts the right speculation window size γ. The
speculation is then validated by the target model Mp.

are derived by observing the most recent steps. Sec-264

ond, it estimates Acc(xt|X<t) based on the recent265

history. We use maximum likelihood estimation266

over the last h speculations, ensuring the estimate267

Âcc reflects both locality and reduced variance (de-268

tails in Appendix B.2). In our algorithm, we let269

γ(j) be the speculation window size during the j-270

th most recent verification step, and V (γ(j), X<tj)271

the number of accepted tokens in this speculation272

window. We estimate Acc(xt|X<t) as273 ∑
j V (γ(j), X<tj)∑

j V (γ(j), X<tj) +
∑

j 1(V (γ(j), X<tj) < γ(j))
(2)274

where 1(·) is the indicator function. To avoid275

overly optimistic estimates and potential division-276

by-zero error when Âcc gets close to 1, we set a277

fixed upper limit, Accmax (e.g., 0.98), and cap Âcc278

at this value.279

Analysis. Theorem 1 gives a direct comparison280

of the error bound of the analytical model-guided281

adaption and that of the fixed window size specu-282

lation, where the gamma value is determined from283

offline profiling data before real deployment, show-284

ing the superior theoretical results of our method285

in estimating the single token accuracy. The proofs286

are detailed in Section A.1.287

Theorem 1. Let β be the true acceptance probabil-288

ity of speculative decoding steps, and let β̂adaptive289

and β̂fixed be the estimators obtained from the an-290

alytical model-guided adaption and fixed window291

selection methods, respectively. Then the variance292

of the adaptive estimator satisfies:293

Var(β̂adaptive) ≤ Var(β̂fixed).294

Moreover, the expected absolute estimation error295

obeys:296

E
[
|β̂adaptive − β|

]
≤ E

[
|β̂fixed − β|

]
.297

4.2 Other Drop-in Speculation Methods 298

Besides the analytic model-guided adaption, we 299

have explored three other methods for on-the-fly γ 300

adaption. 301

Method 2: Finite State Machine (FSM)-Based 302

Speculation. A finite state machine-based predic- 303

tor (Hennessy and Patterson, 2017) is similar to 304

an n-bit saturating counter used in branch predic- 305

tion. The mechanism works by decreasing γ by 306

1 if a token from the draft model is rejected, and 307

increasing γ by 1 if all tokens are accepted. During 308

benchmarking, we still select a value for γ, but it is 309

considered an upper limit, γmax. If the draft and tar- 310

get models’ distributions significantly differ, γ will 311

remain low, potentially even at 0. Conversely, if the 312

models align closely, γ should increase, approach- 313

ing γmax. We consider this approach particularly 314

effective for natural language processing because 315

certain parts of a sentence—like common phrases 316

or syntactically predictable structures—are easier 317

for a smaller draft model to predict. In contrast, 318

more unique or complex sub-sequences generated 319

by the LLM might be harder to guess. By adap- 320

tively changing γ based on the previous token val- 321

idations, we create a reward system that exploits 322

patterns and predictable structures in autoregres- 323

sive generation. 324

Method 3: Cache-Enabled FSM-Based Spec- 325

ulation. We adjust γ based on the context provided 326

by the prompt and the history of generated tokens. 327

In settings like question-answering, an LLM often 328

reiterates or directly responds based on the con- 329

text given by the user. Therefore, the user’s input 330

can inform predictions about the type of response 331

the LLM will generate. Specifically, this approach 332

includes a token cache that updates after every sam- 333

4

pling step. Initially, the cache is populated with334

tokens in the prompt, set up before the prefill stage.335

As new tokens are sampled and validated during336

speculation, the cache is updated with any previ-337

ously unseen tokens. γ is then adjusted dynam-338

ically: It increases by one if a validated token is339

already in the cache, and by an additional one when340

all speculated tokens are accepted. Conversely, if341

none of the accepted tokens are in the cache, it de-342

creases by one. We see that this approach is partic-343

ularly effective for structured tasks like QA chatbot344

interactions or code completion, where context and345

history play a significant role. However, it may be346

less effective for short prompts expecting broad and347

diverse content, such as tasks that require informa-348

tive or creative responses. In such cases, the lack349

of initial context or history means the cache is less350

informative, making γ adjustments less effective,351

potentially leading to performance similar to the352

more simplistic state-based adaptation.353

Method 4: Reinforcement Learning-Based354

Speculation. We in addition explored a rein-355

forcement learning-based approach. We use a Q-356

learning agent to choose γ. The modification to357

the algorithm is detailed in Algorithm 2 in Ap-358

pendix B.4. The agent takes the previous states of359

γ as inputs and applies an action after each valida-360

tion step.361

5 Adaptive Draft Model Selection362

Besides the speculation window size, the selec-363

tion of the draft model also makes a difference:364

A smaller draft model can make faster inferences365

but at the risk of a low acceptance rate, while a366

larger draft model renders a longer latency. To367

dive deeper into the problem, we analyze the re-368

lationship between the throughput of the adaptive369

speculation and the acceptance rate in Theorem 2.370

Proofs are detailed in Appendix A.2.371

Theorem 2. Let L be the length of the answer372

to a prompt and is fixed, n be the total number373

of speculation steps. Let acceptance rate ρq be374

the number of accepted tokens divided by the total375

number of tokens sampled by Mq. The throughput376

(R) can be formulated as377

R =
L

bp(γ)n+ aq
L
ρq

. (3)378

As answer length L in Equation 3 is consid-379

ered constant in our setting, the main influence380

for choosing a draft model comes from draft model381

latency a, target model latency b(γ), the acceptance 382

rate ρ, and the number of speculation steps n. 383

Influence of selecting a larger draft model. 384

Let c represent the inference latency ratio between 385

the draft model and the target model. Choosing a 386

larger draft model increases the single token accu- 387

racy, α = E(Acc(xt|X<t)), and the draft latency 388

a. We estimate d = E(γ) by finding the numeri- 389

cal integer solution in objective 1. With α and the 390

corresponding d, the acceptance rate ρ = 1−αγ+1

(1−α)d 391

can be determined, as shown by scattered dots in 392

Figure 2. 393

0.4 0.6 0.8
 value

2.5

5.0

7.5

10.0

D
en

om
in

at
or

c = 0.5
c = 0.2
c = 0.1

0.0

0.2

0.4

0.6

0.8

A
cc

ep
ta

nc
e

R
at

e
(

)

Figure 2: Results for the acceptance rate and the denom-
inator in n = L

d·ρ across different single-token accuracy
(α) and draft-to-target model size ratios (c).

We now analyze the influence on the number of 394

speculation steps n = L
d·ρ . The lines in Figure 2 395

illustrate how the denominator of n changes as α 396

varies, reflecting the product of d and ρ. 397

Theorem 3. Let ∆n represent the reduction in 398

speculation steps due to a larger draft model, ∆c 399

the increase in latency ratio, and ∆ρ the improve- 400

ment in acceptance rate. As long as the following 401

condition holds: 402

∆n >
∆c

∆ρ
L, (4) 403

the larger draft model would lead to a higher over- 404

all throughput than the smaller draft model. 405

A deeper look into formula 4 gives us that, when 406

comparing two draft models, ∆c can be easily de- 407

termined using sample profiling results. If we are 408

able to approximate the increase in α, ∆ρ and 409

∆n(α, d) can also be determined because their re- 410

lation to d, α, and c is deterministic. Therefore, to 411

select a suitable draft model when a new prompt 412

arrives, we need to approximate α and inspect 413

whether condition 4 holds in order to determine 414

whether to use a larger draft model. 415

Typically a prompt can be represented as a vector. 416

We represent a prompt as a vector u ∈ Rr with 417

5

r > 0 being the vector length. We model our goal418

αu
c of prompt u for a certain ratio c as419

αu
c = u⊤Zc + ϵuc (5)420

where Zc is the parameter vector to determine and421

the random noise variable ϵuc is independent of Zc.422

For each u ∈ Rr, the random variables {ϵuc } are423

identically distributed with E(ϵuc) = 0 for all u.424

The vector embedding is constructed as a concate-425

nation of the prompt length, prompt perplexity and426

its TF-IDF score.427

Algorithm. Based on the analysis, we devise428

the following algorithm to select draft model. Sup-429

pose there exist r linearly independent prompts430

b1, · · · ,br ∈ Rr. In the beginning, for each ra-431

tio c and these r prompts, the algorithm runs the432

speculative decoding and observes the single to-433

ken accuracy α
bp
c and computes the ordinary least434

square estimate for Zc, given by435

Ẑc =

 r∑
p=1

bpb
⊤
p

−1
r∑

p=1

bpα
bp .436

For each newly arrived prompt u, it computes the437

estimated α̂u
c for potential draft-target model pairs438

and check Equation 4 to select the optimal draft439

model. In an LLM server center setting that has440

many machines hosting many LLMs, the selection441

of draft models can be implemented by redirect-442

ing requests to the appropriate nodes in the center443

equipped with the desired draft model and target444

model pair.445

6 Evaluation446

In this section, we present and analyze the experi-447

mental results gathered from testing our proposed448

algorithms and hypotheses.449

6.1 Experimental Setups450

This part outlines the configurations and setups451

used to collect the performance data.452

Datasets and Models. we used three datasets453

to evaluate model performance and benchmark454

various implementations. These datasets were455

selected to reflect common tasks found in chat-456

bot settings and other LLM applications. We457

employed system prompts to guide the LLMs458

for higher-quality outputs, particularly for tasks459

like coding and text summarization. See Ap-460

pendix C.1 for more details. The datasets include461

OpenAI’s HumanEval (Chen et al., 2021a) (CC- 462

BY 4.0) for coding tasks, XSum for extreme text 463

summarization (Chen et al., 2021b) (Apache 2.0), 464

GSM8K (Cobbe et al., 2021) (MIT License) for 465

mathematical reasoning, and Alpaca (Taori et al., 466

2023) (CC BY-NC 4.0) for complex advice queries. 467

We include llama-2-chat 70B (Meta’s Llama 2 468

Community License), Meta OPT 13B (MIT Li- 469

cense), BigScience BLOOM 7B (RAIL License), 470

and Dolly 12B (Databricks Open License) for tar- 471

get models. More details about the models we 472

benchmarked are in Appendix C.1. Each dataset 473

was sampled with 25 prompts in online predictive 474

model construction, and evaluated with all remain- 475

ing prompts across various settings. Note that when 476

using speculative decoding, the draft model and 477

the target model should have been trained on the 478

same datasets to achieve good prediction accura- 479

cies, which limits the possible combinations in our 480

experiments. 481

Platform. Table 4 in Appendix C.1 details the 482

GPUs used, including memory bandwidth, capac- 483

ity, and supported data types. For LLaMA 70B-7B 484

and 70B-13B pairs, we use two NVIDIA A100 485

GPUs with 80GB memory each, distributing the 486

70B model across both GPUs. For other model 487

pairs, we conduct our study using a single GPU, 488

loading both the target and draft models on the 489

same device. 490

6.2 Performance 491

We list in Table 1 the throughput results of adaptive 492

window size selection for different model pairs on 493

different hardware. The results of the online win- 494

dow optimization method are reported. We have the 495

following observations. First, our method achieves 496

a 2.07× speedup over autoregressive decoding and 497

a 7.69% improvement over speculative baselines. 498

Given that even a 1% speedup can save millions 499

in large-scale LLM deployments (AI, 2023; Cloud, 500

2023), this improvement underscores the substan- 501

tial impact of our approach. Second, our method 502

achieves different speedups when benchmarking 503

on different datasets. For the HumanEval dataset, 504

speculative decoding has the potential to signif- 505

icantly accelerate performance due to the struc- 506

tured nature of programming languages, which fol- 507

low stricter grammar and syntax compared to nat- 508

ural language. Repetitive patterns, such as for 509

loops or if-else statements, are easier for the 510

draft model to predict accurately. With adaptive 511

speculation, the algorithm can adjust the parame- 512

6

ter γ dynamically to suit different sub-sequences.513

For instance, γ can be increased for predictable514

loops, whereas for more complex or less frequent515

constructs like API calls or high-level program-516

ming, γ can be reduced to improve the alignment517

between the draft and target models, minimizing518

token waste. Notably, conventional speculative519

decoding experiences a significant slowdown on520

the XSum dataset, highlighting a key limitation521

of speculative methods. In contrast, our approach522

dynamically adjusts the window size—sometimes523

reducing it to zero—effectively preventing slow-524

downs. As a result, we achieve a 70% throughput525

improvement on XSum, even though it provides no526

speedup over default LLMs without speculative de-527

coding. Third, the ratio of model size matters when528

it comes to model pairing. Larger ratios generally529

lead to higher speedups while smaller target-draft530

parameter ratios such as BLOOM 7B-1B1 leave531

less room for improvement.532

Table 1: Evaluation of adaptive window size selection.
SPS denotes the throughput improvement our method
achieves over the original speculative decoding. ARS
denotes improvements over the default LLMs without
speculative decoding. (“-" for not-runnable cases due to
memory limit)

Model Pairing Dataset
A100 V100 4090

SPS ARS SPS ARS SPS ARS

LLaMA 70B/7B finance-alpaca 6.43% 2.11× - - - -
LLaMA 70B/13B finance-alpaca 4.89% 1.90× - - - -
BLOOM 7B/560M finance-alpaca 4.28% 1.05× 7.69% 1.15× 3.70% 1.22×
BLOOM 7B/1B1 finance-alpaca 4.36% 1.04× 3.20% 1.15× 3.29% 1.17×
OPT 13B/125M finance-alpaca 4.82% 2.32× 3.41% 3.4× - -
Dolly 12B/3B finance-alpaca 9.11% 1.03× - - - -

LLaMA 70B/7B humaneval 10.35% 2.41× - - - -
LLaMA 70B/13B humaneval 8.53% 2.23× - - - -
BLOOM 7B/560M humaneval 8.14% 1.04× 2.51% 1.09× 3.09% 1.25×
BLOOM 7B/1B1 humaneval 4.03% 1.1× 3.57% 1.16× 3.51% 1.3×
OPT 13B/125M humaneval 11.40% 2.29× 2.15% 3.34× - -
Dolly 12B/3B humaneval 15.20% 1.07× - - - -

LLaMA 70B/7B gsm8k 7.13% 2.28× - - - -
LLaMA 70B/13B gsm8k 9.66% 2.08× - - - -
BLOOM 7B/560M gsm8k 15.03% 1.× 2.52% 1.01× 4.84% 1.18×
BLOOM 7B/1B1 gsm8k 10.70% 1.× 0.77% 1.02× 1.97% 1.19×
OPT 13B/125M gsm8k 5.95% 2.24× 10.52% 3.36× - -
Dolly 12B/3B gsm8k 16.92% 1.06× - - - -

LLaMA 70B/7B xsum 2.94% 1.73× - - - -
LLaMA 70B/13B xsum 0.14% 1.5× - - - -
BLOOM 7B/560M xsum 77.50% 1.× 49.30% 1.× 54.63% 1.×
BLOOM 7B/1B1 xsum 70.91% 1.× 42.94% 1.× 54.17% 1.×
OPT 13B/125M xsum 10.64% 1.02× 7.91% 2.43× - -

Next, we show the results of the draft model533

selection. This decision is made online for each534

prompt. Table 2 compares the speedups over the535

speculative decoding with and without draft model536

selection. For LLaMA 70B, the draft model cur-537

rently includes LLaMA 7B and LLama 13B. For538

BLOOM 7B, the draft model includes BLOOM539

560M, 1B1, and 1B7. The overall throughput540

speedups range from 3.55% to 16.48% using adap-541

tive draft model selection.542

We compare our online adaptive window size543

Table 2: Throughput performance improvement over
speculative decoding.

Target Model
finance-alpaca humaneval gsm8k

A100 V100 4090 A100 V100 4090 A100 V100 4090

LLaMA 70B (w/o draft selection) 6.43% - - 10.35% - - 9.66% - -
LLaMA 70B (w/ draft selection) 6.46% - - 11.11% - - 9.66% - -
BLOOM 7B (w/o draft selection) 4.36% 7.69% 3.70% 8.14% 3.57% 3.51% 9.76% 2.52% 4.84%
BLOOM 7B (w draft selection) 4.94% 16.48% 8.15% 8.57% 4.96% 4.17% 9.76% 3.55% 6.83%

selection with SpecDec++ (Huang et al., 2024) in 544

Table 3. SpecDec++ uses a ResNet to determine 545

whether to stop speculation during speculative sam- 546

pling at the current word predicted from the draft 547

model. It employs this method based on its pre- 548

diction of whether the next draft token will be ac- 549

cepted. Training this ResNet model requires con- 550

ducting offline profiling runs and collecting data on 551

the hardware (for example, 500 hours on A100- 552

80G GPUs for training dataset generation, 400 553

hours for training, and 500 hours for evaluation 554

set). To ensure a fair comparison, we employ the 555

same setup from its original paper, using LLaMA- 556

2-chat models (Touvron et al., 2023b). Specifically, 557

we select the 7B version as the draft model and 558

the 70B version as the target model for the A100 559

platform and BigScience BLOOM 560m version 560

as the draft model and the 7B version as the target 561

model for GTX 4090. To optimize memory usage, 562

the models are implemented in the bfloat16 format. 563

The tok/s speedups comparison is as follows on 564

both the A100 and 4090 devices. We find that al- 565

though our method uses no ahead-of-time training 566

while SpecDec++ uses hundreds of GPU-hours to 567

do that, our method outperforms SpecDec++ con- 568

sistently, with an average of 5.7% improvement in 569

latency. Part of the time savings come from select- 570

ing the γ value before each speculation instead of 571

running a neural network each time the draft model 572

produces a new token. Our approach further shows 573

advancement by adaptively choosing γ on the fly 574

without arduous data collecting and training. 575

Table 3: Comparison of Tok/s speedups (v.s. autoregres-
sive) and productivity of SpecDec++ and our method
(without draft model selection).

Dataset
A100 (LLaMA 70B/7B) 4090 (BLOOM 7B/560m)

SpecDec++ Ours SpecDec++ Ours

Alpaca 2.04× 2.11× 1.21× 1.26×
HumanEval 2.23× 2.41× 1.22× 1.23×
GSM8K 2.26× 2.28× 1.17× 1.18×

Profile & Prepare 1000h
0

100h
0

Offline Training 400h 400h

6.3 Detailed Analysis 576

We compare the throughput and acceptance rate for 577

different adaptive speculation methods in Figure 3. 578

7

2 4 6 8
Gamma Max (max)

50

100

150

Th
ro

ug
hp

ut
 (T

ok
/s

) Dataset: gsm8k

2 4 6 8
Gamma Max (max)

50

75

100

Dataset: finance-alpaca

2 4 6 8
Gamma Max (max)

100

150

200

Dataset: humaneval

2 4 6 8
Gamma Max (max)

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

e

2 4 6 8
Gamma Max (max)

0.6

0.8

1.0

2 4 6 8
Gamma Max (max)

0.6

0.8

1.0

autoregressive
speculative

upper-bound speculation
state-based speculation

cache-based speculation
RL-based speculation

online window size optimization

Figure 3: Detailed experimental results of different adaptive methods.

γ denotes the speculation window size for the orig-579

inal speculative decoding method and upper-bound580

speculation (simply by skipping the validation pro-581

cess); we set a maximum γmax value for adaptive582

speculation methods, ensuring that γ will not ex-583

ceed this value. All experiments are conducted584

on the A100 machine with OPT 13B-125M model585

pair. From the figure, we find that (i) the analyti-586

cal model-guided online window size optimization587

method gives the best overall performance. (ii)588

Even though RL-based speculation gives better ac-589

ceptance rates than the other methods, it shows590

lower throughput. This is because a higher accep-591

tance rate is not directly linked to a higher through-592

put as in Equation 3. In our case, RL-based specula-593

tion remains at a low γ value to keep the acceptance594

rate high while also losing the potential for more595

speedups. (iii) cache-based and state-based specu-596

lation perform better when prompts are longer (e.g.,597

the humaneval dataset). This can be attributed to598

a more stable γ prediction as more information is599

involved in the long prompt.600

6.4 Results for Scalability601

Comprehensive Chat Dataset. We include602

evaluations for a comprehensive chat dataset603

ShareGPT (Community, 2023) in Appendix C.3.604

Results show that our method achieves an average605

of 1.71× speedups compared to original autore-606

gressive decoding, and an additional 4.9% improve-607

ment over speculative decoding baselines.608

Adaptive Speculation for Tree-based Decod-609

ing Method. Current speculative decoding uses610

tree-based methods (Cai et al., 2024; Li et al.). On- 611

the-fly adaptation of speculative decoding is com- 612

plementary to the tree-based decoding. By adap- 613

tively changing the draft tree depth, our drop-in 614

method optimizes the draft token sequence length 615

in real time, enhancing decoding performance. We 616

apply our method to the state-of-the-art EAGLE- 617

2 (Li et al., 2024) and report the results in Ap- 618

pendix C.4. On the MT-Bench (Zheng et al., 2023), 619

we achieve up to 3.56× speedups compared to 620

original autoregressive decoding, and an additional 621

4.2% improvement over SOTA. 622

7 Conclusion 623

In this paper, we propose on-the-fly adaptation for 624

speculative decoding to accelerate LLM inferences. 625

As a pure software approach, it introduces a two- 626

level adaptation for draft model adaptation and on- 627

line window size adaptation with no ahead-of-time 628

profiling or training, providing a drop-in optimiza- 629

tion for existing LLMs. We experimentally demon- 630

strate the effectiveness of this method and show 631

3.55% to 16.48% speedups compared to the specu- 632

lative decoding, and 1.2× to 3.4× over the default 633

LLMs without speculative decoding. Among the 634

several online adaptive methods, we found that the 635

token accuracy-based online window size optimiza- 636

tion method works the best, consistently outper- 637

forming other methods in terms of the overall LLM 638

throughput. 639

8

8 Limitation640

This section discusses the limitations of the current641

work. The drop-in nature of our solution assumes642

compatibility with existing inference pipelines, but643

integration challenges may arise in specialized644

LLM deployments, such as those using custom645

hardware accelerators or distributed inference sys-646

tems. Future work should explore more adaptive647

and model-agnostic strategies to further enhance648

the robustness and applicability of our approach.649

References650

Google AI. 2023. Llm inference api - google ai medi-651
apipe solutions. Accessed: 2024-09-15.652

Tom Brown, Benjamin Mann, Nick Ryder, Melanie653
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind654
Neelakantan, Pranav Shyam, Girish Sastry, Amanda655
Askell, Sandhini Agarwal, Ariel Herbert-Voss,656
Gretchen Krueger, Tom Henighan, Rewon Child,657
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens658
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-659
teusz Litwin, Scott Gray, Benjamin Chess, Jack660
Clark, Christopher Berner, Sam McCandlish, Alec661
Radford, Ilya Sutskever, and Dario Amodei. 2020.662
Language models are few-shot learners. In Ad-663
vances in Neural Information Processing Systems,664
volume 33, pages 1877–1901. Curran Associates,665
Inc.666

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,667
Jason D Lee, Deming Chen, and Tri Dao. 2024.668
Medusa: Simple llm inference acceleration frame-669
work with multiple decoding heads. arXiv preprint670
arXiv:2401.10774.671

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,672
Jean-Baptiste Lespiau, Laurent Sifre, and John673
Jumper. 2023. Accelerating large language model674
decoding with speculative sampling. arXiv preprint675
arXiv:2302.01318.676

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,677
Henrique Ponde De Oliveira Pinto, Jared Kaplan,678
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg679
Brockman, et al. 2021a. Evaluating large lan-680
guage models trained on code. arXiv preprint681
arXiv:2107.03374.682

Yulong Chen, Yang Liu, Liang Chen, and Yue683
Zhang. 2021b. Dialogsum: A real-life scenario684
dialogue summarization dataset. arXiv preprint685
arXiv:2105.06762.686

Google Cloud. 2023. Accelerating ai inference with687
google cloud tpus and gpus. Accessed: 2024-09-15.688

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,689
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias690
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro691

Nakano, et al. 2021. Training verifiers to solve math 692
word problems. arXiv preprint arXiv:2110.14168. 693

ShareGPT Community. 2023. Sharegpt: A platform 694
for sharing gpt conversations. https://sharegpt. 695
com/. Accessed: 2024-11-16. 696

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, 697
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell, 698
Matei Zaharia, and Reynold Xin. 2023. Free dolly: 699
Introducing the world’s first truly open instruction- 700
tuned llm. Company Blog of Databricks. 701

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. 702
2024. Break the sequential dependency of llm in- 703
ference using lookahead decoding. arXiv preprint 704
arXiv:2402.02057. 705

John L. Hennessy and David A. Patterson. 2017. Com- 706
puter Architecture, Sixth Edition: A Quantitative Ap- 707
proach, 6th edition. Morgan Kaufmann Publishers 708
Inc., San Francisco, CA, USA. 709

Geoffrey Hinton. 2015. Distilling the knowledge in a 710
neural network. arXiv preprint arXiv:1503.02531. 711

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, 712
Hasan Genc, Kurt Keutzer, Amir Gholami, and 713
Sophia Shao. 2023. Speed: Speculative pipelined 714
execution for efficient decoding. arXiv preprint 715
arXiv:2310.12072. 716

Kaixuan Huang, Xudong Guo, and Mengdi Wang. 717
2024. Specdec++: Boosting speculative decod- 718
ing via adaptive candidate lengths. arXiv preprint 719
arXiv:2405.19715. 720

Daniel A Jiménez and Calvin Lin. 2001. Dynamic 721
branch prediction with perceptrons. In Proceedings 722
HPCA Seventh International Symposium on High- 723
Performance Computer Architecture, pages 197–206. 724
IEEE. 725

Chih-Chieh Lee, I-CK Chen, and Trevor N Mudge. 726
1997. The bi-mode branch predictor. In Proceedings 727
of 30th Annual International Symposium on Microar- 728
chitecture, pages 4–13. IEEE. 729

Yaniv Leviathan, Matan Kalman, and Yossi Matias. 730
2023. Fast inference from transformers via spec- 731
ulative decoding. In International Conference on 732
Machine Learning, pages 19274–19286. PMLR. 733

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang 734
Zhang. Eagle: Speculative sampling requires rethink- 735
ing feature uncertainty. In Forty-first International 736
Conference on Machine Learning. 737

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang 738
Zhang. 2024. Eagle: Speculative sampling re- 739
quires rethinking feature uncertainty. arXiv preprint 740
arXiv:2401.15077. 741

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Sto- 742
ica, Zhijie Deng, Alvin Cheung, and Hao Zhang. 743
2023. Online speculative decoding. arXiv preprint 744
arXiv:2310.07177. 745

9

https://ai.google.dev/edge/mediapipe/solutions/genai/llm_inference
https://ai.google.dev/edge/mediapipe/solutions/genai/llm_inference
https://ai.google.dev/edge/mediapipe/solutions/genai/llm_inference
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://cloud.google.com/blog/products/compute/accelerating-ai-inference-with-google-cloud-tpus-and-gpus
https://cloud.google.com/blog/products/compute/accelerating-ai-inference-with-google-cloud-tpus-and-gpus
https://cloud.google.com/blog/products/compute/accelerating-ai-inference-with-google-cloud-tpus-and-gpus
https://sharegpt.com/
https://sharegpt.com/
https://sharegpt.com/

Xupeng Miao, G Oliaro, Z Zhang, X Cheng, Z Wang,746
RYY Wong, A Zhu, L Yang, X Shi, C Shi, et al. 2023.747
Specinfer: Accelerating generative large language748
model serving with speculative inference and token749
tree verification. arXiv preprint arXiv:2305.09781.750

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,751
Carroll Wainwright, Pamela Mishkin, Chong Zhang,752
Sandhini Agarwal, Katarina Slama, Alex Ray, John753
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,754
Maddie Simens, Amanda Askell, Peter Welinder,755
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.756
Training language models to follow instructions with757
human feedback. In Advances in Neural Information758
Processing Systems, volume 35, pages 27730–27744.759
Curran Associates, Inc.760

Mike Schuster and Kaisuke Nakajima. 2012. Japanese761
and korean voice search. In 2012 IEEE international762
conference on acoustics, speech and signal process-763
ing (ICASSP), pages 5149–5152. IEEE.764

Rico Sennrich. 2015. Neural machine translation of765
rare words with subword units. arXiv preprint766
arXiv:1508.07909.767

James E Smith. 1998. A study of branch prediction768
strategies. In 25 years of the international symposia769
on Computer architecture (selected papers), pages770
202–215.771

Benjamin Spector and Chris Re. 2023. Accelerating llm772
inference with staged speculative decoding. arXiv773
preprint arXiv:2308.04623.774

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann775
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,776
and Tatsunori B Hashimoto. 2023. Stanford alpaca:777
An instruction-following llama model.778

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier779
Martinet, Marie-Anne Lachaux, Timothée Lacroix,780
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal781
Azhar, et al. 2023a. Llama: Open and effi-782
cient foundation language models. arXiv preprint783
arXiv:2302.13971.784

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-785
bert, Amjad Almahairi, Yasmine Babaei, Nikolay786
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti787
Bhosale, et al. 2023b. Llama 2: Open founda-788
tion and fine-tuned chat models. arXiv preprint789
arXiv:2307.09288.790

Minghao Yan, Saurabh Agarwal, and Shivaram791
Venkataraman. 2024. Decoding speculative decod-792
ing. arXiv preprint arXiv:2402.01528.793

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan794
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,795
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.796
Judging llm-as-a-judge with mt-bench and chatbot797
arena. Advances in Neural Information Processing798
Systems, 36:46595–46623.799

A Proof 800

A.1 Proof of Theorem 1. 801

Proof. Since speculative decoding terminates upon 802

the first failure in a verification window, the number 803

of accepted tokens V (γ,X<t) follows a truncated 804

geometric distribution: 805

P (V = k) = (1− p)kp, k ∈ {0, 1, . . . , γ − 1}. 806

Thus, for a fixed window size γ, the failure proba- 807

bility at each step is: 808

q = 1− (1− p)γ . 809

The number of failures F in N verification steps 810

follows a binomial distribution: 811

F ∼ Binomial (N, q) . 812

For small p, we approximate: 813

q ≈ γp. 814

By the Poisson limit theorem, for large N , the 815

failure count can be approximated by: 816

F ∼ Poisson(Nγp). 817

Now, both adaptive and fixed methods estimate 818

p using the maximum likelihood estimator: 819

p̂ =
F

S + F
. 820

Applying the delta method, we approximate the 821

variance of p̂: 822

Var(p̂) ≈ p(1− p)

(S + F)2
. 823

In the fixed case, the total number of observed 824

tokens is: 825

Sfixed + Ffixed = Nγ. 826

For the adaptive method, where γ(j) is adjusted 827

dynamically, we have: 828

Sadaptive + Fadaptive ≥ Nγ. 829

Thus, 830

Var(p̂adaptive) ≤ Var(p̂fixed). 831

Using Hoeffding’s inequality, 832

P (|p̂− p| ≥ ϵ) ≤ 2 exp
(
−2ϵ2(S + F)

)
, 833

we conclude that the adaptive method has a tighter 834

error bound: 835

P
(
|p̂adaptive − p| ≥ ϵ

)
≤ P (|p̂fixed − p| ≥ ϵ) . 836

Thus, the expected absolute error is also smaller: 837

E
[
|p̂adaptive − p|

]
≤ E [|p̂fixed − p|] . 838

This completes the proof. 839

10

https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf

A.2 Proof of Theorem 2.840

Proof. Let {γiq}ni=1 denote the history of the win-841

dow sizes during the adaptive speculation and842

dq = Ei=1,··· ,n(γ
i
q) be the average window size843

during speculation. In the following formulations,844

we omit p and q as the formulations are about a845

given p and q pair. The throughput R is computed846

by dividing the length of the answer by the latency847

t:848

R =
L

t
. (6)849

The total latency of generating outputs for one850

prompt is computed as851

t =
n∑

i=1

aγi + b(γ) = b(γ)n+ a
n∑

i=1

γi852

= n(b(γ) + a · E(γi)). (7)853

Inspecting the relations among d, n, ρ and L854

gives us855

L = d · n · ρ. (8)856

Solving for Equations 6, 7 and 8 gives us the857

expression for throughput.858

B Method Details859

B.1 Formulation of Objective 1860

This section discusses details on formulating objec-861

tive 1.862

Expected Accepted Token Length. Given the863

single token accuracy β = Acc(xt|X<t) ∈ [0, 1],864

the expected accepted number of tokens is com-865

puted as:866

E(# of accepted tokens|X<t)

= 1 +

γ−1∑
i=1

iβi(1− β) + γβγ

= 1 +

γ−1∑
i=1

iβi −
γ∑

i=2

(i− 1)βi + γβγ

=

γ∑
i=0

βi

=
1− βγ+1

1− β
.

(9)867

Formulation of objective. The expected num-
ber of verified tokens as correct in a γ-long spec-
ulation window is 1−Acc(xt|X<t)γ+1

1−Acc(xt|X<t)
. The total la-

tency of one speculation step and verification step
is calculated as γaq + bp. Therefore, the expected

number of tokens verified as correct per unit time
given a window size γ is

1−Acc(xt|X<t)
γ+1

(1−Acc(xt|X<t))(γaq + bp)
.

B.2 Estimation of Acc(xt|X<t) 868

Let β = Acc(xt|X<t). Let Y be a random variable 869

of the number of accepted tokens truncated at γ+1. 870

The probability function of Y is 871

f(y) =


(1− β)βy−1

1− βγ+1
, y = 1, 2, 3, · · · , γ + 1

0, otherwise.
(10) 872

Maximum Likelihood Estimation. For a ran-
dom sample of size n, the likelihood function is

L = (1− βγ+1)−n(1− β)nβ
∑n

i=1 y−n.

The following equation 11, a (γ+2)th-degree poly- 873

nomial in β̂, provides the maximum likelihood es- 874

timator for β. 875

(
n∑

i=1

yi − n(γ + 2) + n

)
β̂γ+2 +

(
n(γ + 2)−

n∑
i=1

yi

)
β̂γ+1

−

(
n∑

i=1

yi

)
β̂ +

n∑
i=1

yi − n = 0

(11)

876

Given values of γ, n, and
∑n

i=1 yi = ny, one 877

can compute the value of β̂ using an iterative tech- 878

nique such as the Newton-Rhapson method to solve 879

equation 11. It can be shown that there is only one 880

root in the range 0 < β̂ < 1. 881

To eliminate the need for an iterative solution to 882

equation 11, we maintain a table to provide approx- 883

imate solutions. From equation 11, 884

y = {γβ̂γ+2− (γ+2)β̂γ+1 +1}/(β̂γ+2− β̂γ+1− β̂+1).
(12) 885

Further observation gives us that the rate of change 886

of y concerning β̂ appears to be sufficiently con- 887

stant, making linear interpolation feasible and en- 888

abling our approximation in equation 2. 889

B.3 Optimal Gamma 890

Given the single token accuracy and inference la- 891

tency ratio of the draft model to the target model c, 892

the optimal γ value to optimize objective 1 can be 893

determined as in Figure 4. 894

11

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
 Values

2

4

6

8
B

es
t G

am
m

a

c = 0.5
c = 0.25
c = 0.2
c = 0.1

Figure 4: The optimal γ for different α and c values.

Algorithm 2 Reinforcement Learning-Based Spec-
ulative
1: function reinforcementLearningSpeculation(Mp, Mq ,

prefix, Agent)
2: ▷ Sample y guesses x1, · · · , xy from Mq autoregres-

sively.
3: for i = 1 to y do
4: qi(x) ∼Mq(prefix+ [x1, · · · , xi−1])
5: xi ∼ qi(x)

6: ▷ Run Mp in parallel.
7: (p1(x), · · · , py+1(x))←
8: Mp(prefix), · · · ,Mp(prefix+ [x1, · · · , xy])
9: ▷ Determine the number of accepted guesses n.

10: r1 ∼ U(0, 1), · · · , ry ∼ U(0, 1)

11: n← min({i− 1|1 ≤ i ≤ y, ri >
pi(x)
qi(x)
} ∪ {y})

12: ▷ Adjust the distribution from Mp if needed.
13: p′(x)← pn+1(x)
14: if n < y then
15: p′(x)← N (max(0, pn+1(x)− qn+1(x)))

16: action← GetAction(Agent, y)
17: y = action
18: Reward = the percentage of the accepted speculated

tokens
19: ▷ Return one token from Mp and n tokens from Mq .
20: t ∼ p′(x)
21: return prefix+ [x1, · · · , xn, t]

B.4 Psudo-code for Reinforcement895

learning-based speculation896

Algorithm 2 detailed the reinforcement learning-897

based speculation.898

C Additional Experiments899

This section includes additional experimental re-900

sults.901

C.1 Additional Experimental setups902

Software. We primarily use the HuggingFace903

Transformers library with PyTorch implementa-904

tions. The flexibility of Python and the availability905

of pre-trained weights on HuggingFace allow us to906

experiment with various methods and conduct de-907

tailed analyses. The GPU implementations utilize908

NVIDIA’s cuDNN library, which is optimized for909

large language models (LLMs) and transformers.910

To ensure the best performance and compatibil-911

ity with the latest models, we use the most recent 912

versions of Transformers (v4.38.2) and PyTorch 913

(v2.2.1). 914

Hardware. LLMs demand significant GPU com- 915

puting power and memory, particularly during in- 916

ference, where memory bandwidth is critical in 917

achieving high throughput on GPUs. Table 4 lists 918

the GPUs we used, their memory bandwidth, ca- 919

pacity, and the datatypes employed. 920
Table 4: GPU Hardware

GPU HBM (GB) Mem Bandwidth (GB/s) Datatype

NVIDIA V100 32 900 FP16
NVIDIA A100 80 1555 BF16
NVIDIA RTX4090 24 1008 BF16

We use two NVIDIA A100 GPUs with 80G 921

memory for the LLaMA 70B-7B pair and 70B- 922

13B pair. We distribute the 70B model across two 923

GPUs, which leads to communication overhead 924

during inference with LLaMA 70B. However, for 925

speculative decoding, the 7B (13B) draft model is 926

only loaded on a single GPU, reducing this over- 927

head. For other model pairs, we limit our study to 928

one GPU, loading both the target and draft mod- 929

els on a single device. This approach serves two 930

purposes. First, it allows us to explore the effects 931

of resource constraints on a single GPU, which is 932

relevant for future work on speculative decoding 933

for personal devices. Second, it maximizes effi- 934

ciency, as splitting a small LLM onto one GPU and 935

a large LLM onto another would underutilize the 936

resources; it is more effective to run both models 937

on a single GPU. 938

Prompt Dataset. Table 5 consolidates informa- 939

tion on the datasets, tasks, and additional details 940

we used to benchmark and compare performance. 941

Table 5: Prompt Dataset

Dataset Task System Prompt

OpenAI HumanEval Code completion
You are an expert programmer that helps to complete
Python code. Given the code from the user, please
complete the rest of the code to the best of your ability.

XSum Summarization
You write two sentence summaries of new articles. Do
not write any more. Keep it brief and to the point.

GSM8K Math Word Problem
You are given a math question, and your task is to
answer it. Then provide a step-by-step walkthrough
on how you got the answer to the question.

Finance-Alpaca Finance QA
You are a finance expert. Answer the following ques-
tions to the best of your knowledge, and explain as
much as possible.

Models. When implementing speculative decod- 942

ing, selecting appropriate model pairs presents chal- 943

lenges. The parameter ratio is crucial, as a low ratio 944

can negate speed gains if the draft model isn’t sig- 945

nificantly faster than the target model. Additionally, 946

both models must share the same tokenizer to avoid 947

conversion overhead from differing tokenization 948

12

schemes (Schuster and Nakajima, 2012; Sennrich,949

2015). Speculative decoding is more effective with950

models trained on similar datasets, as seen with951

Meta’s LLaMA models (Touvron et al., 2023b,a)952

or DeepMind’s Chinchilla. Mixed precision (FP16953

or BF16) is preferred, avoiding quantization due to954

slowdowns, and using deterministic decoding with955

a temperature of 0 for consistency (Hinton, 2015).956

Dolly is an open-source model from Databricks957

aimed at democratizing LLMs by offering open-958

source weights and the datasets needed for instruc-959

tion fine-tuning (Conover et al., 2023). The follow-960

ing table 6 details the model pairs.961

Table 6: Model Card

Target Model Draft Model Same Vendor? Ratio

Meta LLaMA 70B Meta LLaMA 13B Yes 5.4x
Meta LLaMA 70B Meta LLaMA 7B Yes 10x

BigScience BLOOM 7B BigScience BLOOM 560M Yes 12.5x
BigScience BLOOM 7B BigScience BLOOM 1.1B Yes 7x

Meta OPT 13B Meta OPT 125M Yes 96.3x
DataBricks Dolly 12B DataBricks Dolly 3B Yes 4.0x

Implementation Details. The FSM-based962

method and cache-enabled FSM-based method are963

inspired by branch prediction in computer architec-964

ture (Lee et al., 1997; Smith, 1998; Jiménez and965

Lin, 2001). The reinforcement learning-based spec-966

ulation involves online learning, so we conducted967

25 warmup trials before recording benchmarks. To968

minimize overhead, the RL algorithm runs on the969

CPU rather than the GPU, ensuring both inference970

and training are completed in under 1 millisecond.971

This makes the overhead negligible when consider-972

ing the end-to-end latencies compared to standard973

speculative decoding. AI assistants are used for974

refining the writing.975

C.2 Additional Experiment Results976

We include more experiment results. Figure 5 and977

Figure 6 compare the throughput and acceptance978

rate for different adaptive speculation methods on979

the A100 machine with the BLOOM BigScience980

7B-560M model pair and LLaMA 70B-7B.981

C.3 Comprehensive chat dataset982

Table 7 shows the throughput results of adaptive983

window size selection for different model pairs on984

different hardware on the shareGPT dataset. The985

results of the online window optimization methods986

are reported. The experimental setups are the same987

as in Section 6.1.988

Table 7: Evaluation for the comprehensive chat dataset.
SPS denotes the throughput improvement our method
achieves over the original speculative decoding. ARS
denotes improvements over the default LLMs without
speculative decoding.

Hardware Model Pairing Dataset Throughput

SPS ARS

A100
LLaMA 70B/7B shareGPT 7.89% 2.20×
LLaMA 70B/13B shareGPT 3.69% 1.92×
OPT 13B/125M shareGPT 4.81% 2.10×

4090
BLOOM 7B/560M shareGPT 4.58% 1.18×
BLOOM 7B/1B1 shareGPT 3.50% 1.18×

C.4 Adaptive Speculation for Tree-based 989

Decoding 990

We implemented our on-the-fly adaption of specu- 991

lative decoding on top of EAGLE-2, dynamically 992

adjusting the draft tree depth (γ) during decod- 993

ing. For different γ, sequence lengths for different 994

branches of the draft tree are determined using the 995

same expansion and rerank decision process as in 996

the original EAGLE-2. Specifically, the tree depth 997

dynamically changes for each speculation step; For 998

a certain γ in one speculation step, the algorithm 999

first enters the expansion phase: At each layer of 1000

the tree, we select the top k nodes with the highest 1001

probabilities and expand draft sequences based on 1002

these nodes. The longest draft sequence in the tree 1003

corresponds to the dynamically determined depth 1004

γ. Once the expansion is complete up to the dy- 1005

namically determined the γ-th layer, we apply a 1006

rerank step to select the same number of tokens 1007

from the draft tree as in EAGLE-2 and validate the 1008

corresponding draft sequences. 1009

Table 8 shows the results of adaptive tree depth 1010

selection on EAGLE-2 for different model pairs 1011

on different hardware for MT-Bench. The experi- 1012

mental setups are the same as in Section 6.1. We 1013

achieve up to 3.56× speedups compared to original 1014

autoregressive decoding, and an additional 4.2% 1015

improvement over EAGLE-2. We also achieve 1016

speedups of up to 4.25×, 3.75×, and 3.85× com- 1017

pared to original autoregressive decoding on the 1018

A100 machine for HumanEval, GSM8K, and Al- 1019

paca, respectively, with improvements of 4.27%, 1020

5.65%, and 3.83% over EAGLE-2. On the 4090 1021

machine, for HumanEval, GSM8K, and Alpaca, 1022

we achieve speedups of up to 2.72×, 3.27×, and 1023

2.52× compared to original autoregressive decod- 1024

ing, respectively, with improvements of 6.23%, 1025

2.55%, and 2.92% over EAGLE-2. 1026

13

2 4 6 8
Gamma Max (max)

50

60

70

80
Th

ro
ug

hp
ut

 (T
ok

/s
) Dataset: gsm8k

2 4 6 8
Gamma Max (max)

50

60

Dataset: finance-alpaca

2 4 6 8
Gamma Max (max)

80

100

Dataset: humaneval

2 4 6 8
Gamma Max (max)

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

e

2 4 6 8
Gamma Max (max)

0.6

0.8

1.0

2 4 6 8
Gamma Max (max)

0.6

0.8

1.0

autoregressive
speculative

upper-bound speculation
state-based speculation

history-based speculation
RL-based speculation

online model-based speculation

Figure 5: Detailed experimental results for BLOOM 7B-560M.

4 6 8
Gamma Max (max)

20

30

40

Th
ro

ug
hp

ut
 (T

ok
/s

) Dataset: gsm8k

4 6 8
Gamma Max (max)

10

20

30

Dataset: finance-alpaca

4 6 8
Gamma Max (max)

20

40

60

Dataset: humaneval

4 6 8
Gamma Max (max)

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

e

4 6 8
Gamma Max (max)

0.6

0.8

1.0

4 6 8
Gamma Max (max)

0.6

0.8

1.0

autoregressive
speculative

upper-bound speculation
state-based speculation

history-based speculation
RL-based speculation

online model-based speculation

Figure 6: Detailed experimental results for LLaMA 70B-7B.

In addition, Table 9 provides a detailed analysis1027

of serving latency, speculation latency, verification1028

latency, and speculation accuracy. Speculation la-1029

tency is measured as the number of tokens selected1030

from the draft tree per second. Our method shows1031

lower speculation latency compared to EAGLE-2.1032

This is because, while we dynamically adapt the1033

tree depth, we keep the number of tokens selected1034

from the draft tree the same as in EAGLE-2. How-1035

ever, with a larger tree depth, more tokens might1036

sampled due to the increased number of layers. Ver-1037

ification latency is similar for both EAGLE-2 and1038

our method, as they utilize the same target model.1039

Notably, our method improves the acceptance rate 1040

by dynamically adjusting the tree depth, which ef- 1041

fectively changes the speculation window size. 1042

C.5 Sensitivity Study 1043

Effects of different history length. Table 10 1044

shows a sensitivity study for the effects of different 1045

history lengths when adjusting the window size. 1046

The results are collected on the A100 machine for 1047

the BLOOM 7B-560M pair. 1048

Effects of vector length. Table shows the sensi- 1049

tivity study for the effects of different vector dimen- 1050

sions for model selection. The results are collected 1051

14

Table 8: Evaluation for adaptive speculation in improv-
ing EAGLE-2, a method for tree-based speculative de-
coding. SPS denotes the throughput improvement our
method achieves over EAGLE-2. ARS denotes improve-
ments over the default LLMs without speculative decod-
ing. (“-": model is out of memory)

Target Model Dataset
A100 4090

SPS ARS SPS ARS

Vicuna-7B-v1.3 MTBench 7.07% 3.21× 6.22% 2.28×
LLaMA2-Chat 7B MTBench 3.37% 3.29× 6.23% 2.72×
LLaMA2-Chat 13B MTBench 2.55% 4.01× - -
LLaMA2-Chat 70B MTBench 1.46% 3.56× - -
LLaMA3-Inst 70B MTBench 1.14% 2.68× - -

Table 9: Detailed analysis for adaptive speculation in
improving EAGLE-2. Data are collected on the MT-
Bench. “Speculation" and “Verification" denote spec-
ulation throughput and verification throughput, respec-
tively. (Unit for throughput: Toks/sec)

Hardware Target Model Method Serving Speculation Verification Acceptance Rate

A100

Vicuna-7B-v1.3
EAGLE-2 82.44 472.58 708.31 0.67
Ours 85.27 446.71 666.01 0.72

LLaMA2-Chat 7B
EAGLE-2 97.81 569.05 4491.42 0.62
Ours 100.41 299.85 4591.73 0.66

LLaMA2-Chat 13B
EAGLE-2 79.74 558.02 4535.35 0.61
Ours 81.51 491.37 4530.73 0.62

LLaMA2-Chat 70B
EAGLE-2 27.50 389.38 4532.27 0.51
Ours 27.90 192.02 4491.19 0.65

LLaMA3-Inst 70B
EAGLE-2 24.33 266.33 3392.65 0.53
Ours 24.61 132.08 3300.60 0.65

4090
Vicuna-7B-v1.3

EAGLE-2 117.95 665.97 1041.83 0.56
Ours 125.28 579.34 1164.03 0.56

LLaMA2-Chat 7B
EAGLE-2 142.15 712.72 8278.28 0.67
Ours 151.00 643.91 8137.47 0.72

Table 10: Sensitivity study for different history length
values when adjusting window size. The best throughput
is highlighted for each γmax.

Dataset History Length
γmax

5 6 7 8

Alpaca
5 52.28 52.49 52.05 52.37
6 54.18 53.46 52.71 53.00
7 53.03 53.01 54.32 53.36

Humaneval
5 93.98 94.48 94.21 94.21
6 94.84 95.18 93.39 93.39
7 94.54 94.30 93.41 93.41

gsm8k
5 62.69 62.15 63.42 64.03
6 61.48 61.78 63.72 61.84
7 64.77 61.38 62.74 64.27

on the 4090 machine for the BLOOM 7B-560M1052

pair.1053

Table 11: Sensitivity study for different dimensions for
model selection.

Dimension 4 8 10 12 16

Throughput 74.29 75.23 74.00 75.46 75.55

15

	Introduction
	Guess-and-Verify in LLMs
	Overview
	Adaptive Window Size Selection
	Method 1: Analytical Model-Guided Adaption
	Other Drop-in Speculation Methods

	Adaptive Draft Model Selection
	Evaluation
	Experimental Setups
	Performance
	Detailed Analysis
	Results for Scalability

	Conclusion
	Limitation
	Proof
	Proof of Theorem 1.
	Proof of Theorem 2.

	Method Details
	Formulation of Objective 1
	Estimation of Acc(xt | X<t)
	Optimal Gamma
	Psudo-code for Reinforcement learning-based speculation

	Additional Experiments
	Additional Experimental setups
	Additional Experiment Results
	Comprehensive chat dataset
	Adaptive Speculation for Tree-based Decoding
	Sensitivity Study

