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Abstract

A major obstacle faced when developing convolutional neural networks (CNNs) for medical
imaging is the acquisition of training labels: most current approaches rely on manually
prescribed labels from physicians, which are time consuming and labor intensive to at-
tain. Clinical biomarkers, often measured alongside medical images and used in diagnostic
workup, may provide a rich set of data that can be collected retrospectively and uti-
lized to train diagnostic models. In this work, we focused on the blood serum biomarkers
BNP and BNPP, indicative of acute heart failure (HF) and cardiogenic pulmonary edema,
paired with the chest X-ray imaging modality. We investigated the potential for infer-
ring BNP and BNPP from chest radiographs. For this purpose, a CNN was trained using
27748 radiographs to automatically infer BNP and BNPP, and achieved strong performance
(AUC = 0.90, SEN = 0.88, SPEC = 0.81, r = 0.79). Since radiographic features of pul-
monary edema may not be visible on low resolution images, we also assessed the impact
of image resolution on model learning and performance, comparing CNNs trained at five
image sizes (64×64 to 1024×1024). With comparable AUC values obtained at different res-
olutions, our experiments using three activation mapping techniques (saliency, Grad-CAM,
XRAI) revealed considerable in-lung attention growth with increased resolution. The high-
est resolution models focus attention on the lungs, necessary for radiographic diagnosis of
pulmonary edema. Our results emphasize the need to utilize radiographs of near-native
resolution for optimal CNN performance, not fully captured by summary metrics like AUC.
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1. Introduction

Pulmonary edema is a condition characterized by excess fluid in the lungs, often caused by
congestive heart failure (HF), among other etiologies (Staub, 1974; Murray, 2011). Due to
its wide availability and ability to provide alternative diagnoses with similar features, chest
radiographs are commonly used to monitor the progression of pulmonary edema (Hammon
et al., 2014; Halperin et al., 1985). However, radiographic assessment of pulmonary edema is
a challenging visual task, especially in mild and moderate cases, even for expert subspecialty
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Figure 1: Relationship of radiographic appearance to BNPP and radiologist grade of sever-
ity of pulmonary edema.

cardiothoracic radiologists. Accurate assessment of pulmonary edema is crucial for guiding
and monitoring response to treatment.

Recently, several groups (Lakhani and Sundaram, 2017; Wang et al., 2020; Hurt et al.,
2020a,b; Hwang et al., 2019; Rajpurkar et al., 2018) have reported the application of deep
convolutional neural networks (CNNs) to classify chest radiographs for various pathologies,
including pneumonia, pulmonary edema, pneumothorax, and many others. While these
early works show the promise of CNNs for radiographic interpretation, most lack the speci-
ficity and granularity in diagnosis at a level that is typically required for diagnostic utility.
One obstacle that impedes the development of CNNs for analysis of medical images is the
need to assemble ground truth data based on expert opinion. This can be labor- and time-
intensive, and for challenging tasks like assessment of pulmonary edema, can be difficult to
ensure reliability of image annotation. Herein, we explored the potential to infer B-type
natriuretic peptide (BNP) and NT-pro B-type natriuretic peptide (BNPP) from chest ra-
diographs (Figure 1), proposing an objective source of ground truth for training CNNs to
perceive variations in severity of pulmonary edema. BNP and BNPP are biomarkers mea-
sured from blood serum and may be included in the diagnostic workup of suspected cardio-
genic pulmonary edema (Ware and Matthay, 2000). Elevated values of BNP and BNPP are
indicative of atrial stretch, observed in acute heart failure and pulmonary edema (Huang
et al., 2016; Ray et al., 2005).

We further observed that in the published literature, many CNN algorithms have been
trained and evaluated on low-resolution images, commonly provided in public databases (Pan
et al., 2019; Jaeger et al., 2014; Seah et al., 2019). However, many of the characteristics of
pulmonary edema lie near the native resolution of chest radiographs, including interstitial
Kerley B lines and peribronchial cuffing. In this work, we investigated the ability of CNNs
to infer BNP/BNPP from pulmonary edema radiographics when trained using different
image sizes (64× 64 – 1024× 1024).

2. Methods

2.1. Dataset

With institutional review board approval and waiver of informed consent, we constructed a
dataset of 27748 frontal chest radiographs with BNP or BNPP laboratory values from 16401
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Table 1: Data Used for Train, Validation, and Test, with no Significant Difference in
BNPP/BNP Value Distributions (P > 0.1, Kolmogorov Smirnov Test).

Dataset Description Train Validation Test
80% 10% 10%

Patients (n = 15409) 12327 1541 1541
Radiographs (n = 26667) 21374 2602 2691

BNPP Radiographs with BNPP > 400 (n = 22021) 17631 2168 2222
Measured BNPP Value (Mean) 4997 4825 4227
Measured BNPP Value (SD) 11443 11369 9914

Patients (n = 1325) 1044 141 140
Radiographs (n = 1423) 1124 148 151

BNP Radiographs with BNP > 100 (n = 640) 512 61 67
Measured BNP Value (Mean) 542 695 672
Measured BNP Value (SD) 944 1619 1205

Figure 2: Flow chart of our approach to CNN training and evaluation.

patients from our institution. We included all radiographs and laboratory measurements
from Nov 4th 2014 to Dec 1st 2020 for patients who underwent either measurement of
BNP or BNPP within 24 hours of a radiograph. Depending on source x-ray device, image
dimension ranges from 1400 to 4700 in height and width. The two datasets (BNPP and
BNP) are described by Table 1. There was little overlap of 342 radiographs with both
BNP and BNPP measurements available. Each dataset was then divided by patient, not by
radiographic image, into training (80%), validation (10%) and test (10%) cohorts. There was
no significant difference in BNPP or BNP value distributions between training, validation,
and testing sets (p > 0.1, Kolmogorov Smirnov Test).

2.2. CNN Training

Two-Stage Training: A two-stage pipeline was used to train a bifurcated CNN to jointly
predict BNP and BNPP, shown in Figure 2. All CNNs were trained using Adam optimizer
with a fixed learning rate of 1e-5 for 50 epochs, and batch size 16. In the first stage of
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training, a ResNet152v2 model (He et al., 2016), pretrained on the ImageNet dataset (Deng
et al., 2009), was modified to infer BNPP from a chest radiograph. For training, a custom
loss function based on mean absolute error (MAE) was used. Given a dataset of n input
radiographs, we defined the loss over the dataset as:

MAEBNPP =
1

n

∑
k∈{1,. . . ,n}

AEk
BNPP , AEk

BNPP = |ln(1 + yk
BNPP

1 + ŷBNPP
k

)| (1)

where yk
BNPP is the lab measured BNPP value and ŷBNPP

k is the inferred BNPP value for
the kth input radiograph in the dataset. The BNPP values range from (0-70,000 pg/mL)
and are exponentially distributed, with a small number of values significantly higher than
the mean. To account for this and prevent overfitting to outliers using MAE loss, we used
log transformation of the measured and inferred BNPP values when calculating AEk

BNPP

(Cano-Espinosa et al., 2018).
In the second stage of training, an additional fully connected layer was incorporated at

the last layer to predict both BNP and BNPP from a radiograph. Weights acquired from
the first stage of training were frozen, except for the last fully connected layers. Both BNP
and BNPP datasets were used to train the model at stage 2. Because the BNP dataset was
significantly smaller than the BNPP dataset (n=1423 vs 26667 respectively), a scheduler
was used to balance the number of BNP labeled radiographs and BNPP labeled radiographs
in each minibatch of training examples. This ensures that for each epoch, the entire BNP
training set was used (n=1124), while an equal number of BNPP labeled images were
randomly sampled without replacement from the BNPP dataset. We further modified our
custom MAE loss function from stage 1 (Equation (1)) to train both tasks simultaneously.
To deal with missing values of BNP or BNPP measurements we ignored the outcome with
missing measurement in the loss function using binary flags, αk and βk:

MAE =
1

n

∑
k∈{1,. . . ,n}

αkAEk
BNPP+βkAEk

BNP αk, βk =


1, 1 if yBNPP , yBNP available

1, 0 if yBNPP available

0, 1 if yBNP available

0, 0 otherwise.

(2)

Training at Multiple Resolutions: To explore the effect of image resolution on model
performance, we trained five CNNs with similar architectures for different input resolutions
with sizes of 64 × 64, 128 × 128, 256 × 256, 512 × 512, and 1024 × 1024. Images were
cropped at their larger dimension to equal height and width and downscaled to the desired
resolution with bilinear interpolation from python OpenCV 4.5.1.48 library. A single Nvidia
V100 GPU was used to train lower resolution models (64× 64 – 512× 512) and 8 NVIDIA
V100 GPUs from an NVIDIA DGX cluster running in an NGC container on the Singularity
runtime environment were used to train the 1024 × 1024 CNN. Synchronous distributed
training was performed using TensorFlow 2.1.0 with mirrored strategy.

2.3. CNN Evaluation

CNNs are evaluated in terms of area under the receiver operating characteristic curve (AU-
ROC or AUC ROC) and Pearson r. ROC curves were computed after binary thresholding of
BNP and BNPP measurements, according to previously established screening thresholds for
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acute heart failure detection (greater than 400 for BNPP, greater than 100 for BNP) (Kim
and Januzzi Jr, 2011).

2.4. CNN Activation Mapping

Figure 3: Proposed metrics to quantify CNN atten-
tion level in the lungs.

To assess the effect of resolution
on CNN activation, we applied
three activation mapping techniques
(Saliency (Simonyan et al., 2014),
grad-CAM (Selvaraju et al., 2017),
and XRAI (Kapishnikov et al., 2019))
to each trained CNN. Activation
maps were generated for each radio-
graph in the BNPP test set (n=2691).

2.5. Quantitative
Analysis of CNN Attention

To measure the degree of CNN atten-
tion within the lungs, we propose two
metrics: lung area attention (AA)
and lung blur sensitivity (BS), both
of which utilize lung masks from separately developed lung segmentation CNN (Figure 3-
a). The lung segmentation CNN was trained using 302 radiographs and their manually-
annotated lung masks, based on U-net implementation (Ronneberger et al., 2015).

Area Attention: We define lung area attention (AA) as the proportion of the highly
activated pixels in the activation map that overlap with the lung segmentation mask (Fig-
ure 3-b):

AA(x) =
heatmap(x) ∩mask(x)

heatmap(x)
(3)

where x is the input chest radiograph, heatmap(x) is the normalized activation map from
inference on x, thresholded at mean pixel value across all activation maps from a single
model and technique, and mask(x) is the lung mask. Intuitively, a CNN with a high
average lung AA value across the test set has focused mostly within the lungs rather than
the rest of the image.

Blur Sensitivity: We define blur sensitivity (BS) as another way to estimate attention
(Figure 3-c). Lung BS measures the sensitivity of the CNN to blurring the region denoted
by a lung mask:

BS(ŷ, b) = AUC(ŷ, y)−AUC(blur(ŷ, b), y) (4)

where ŷ is a vector of the inferred values from a trained CNN for the entire test set,
blur(ŷ, b) is a vector of inferred values from when each image in the test set has lungs
blurred with a gaussian kernel of size b, and AUC(ŷ, y) is the AUC computed for a vector
of inferred values ŷ against ground truth vector y. We increased the Gaussian kernel sizes
with respect to the image size to ensure a similar effect relative to the field of view. A model
that relies on high resolution details within the lungs will have a larger lung BS value.
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Figure 4: Measured vs inferred BNP and BNPP at multiple image resolutions.

3. Results

3.1. CNN Evaluation

Figure 5: AUC vs input resolution.

The relationship between measured labora-
tory values and the respective inferred values
by CNNs are shown in Figure 4, for both BNP
and BNPP test sets at different input image
resolutions. There was relatively stronger cor-
relation in case of BNP than BNPP values at
all image resolutions, though the CNN train-
ing and evaluation sets were much smaller
(r=0.642-0.762 for BNP and r=0.587-0.697
for BNPP). Pearson correlation coefficient be-
tween measured and inferred laboratory values increased with input image resolution, having
the greatest effect at lower image resolutions. For BNP, peak Pearson r was 0.787 at 512
image size and decreased slightly to 0.762 at 1024. For BNPP inference, peak Pearson r
was 0.699 at 256 which plateaued at higher image sizes.

The relationship between input image resolution and AUC obtained for BNP and BNPP
prediction, thresholded at 100 and 400 respectively for acute heart failure detection are
shown in Figure 5. Increasing the image size from 64 to 1024 resulted in continuous incre-
ments in AUC (0.817 to 0.903 for BNP and 0.797 to 0.863 for BNPP) with the greatest
improvement between the lowest resolutions. Using the Youden’s j index on each AUROC
at image sizes (64-1024), we measured the sensitivity for BNP (0.618-0.882) and BNPP
(0.728–0.815) as well as specificity for BNP(0.904–0.810) and BNPP (0.728–0.723).

3.2. CNN Activation Mapping

Averaged Activation Maps: Three strategies of saliency, grad-CAM, and XRAI were
then used on CNNs trained at all image sizes to assess CNN activation maps for consistent
trends. The resulted maps at each resolution were averaged over all test cases for each
strategy, presented as average activation maps in Figure 6-A. Overall, average heatmaps
from all three techniques show increasing attention on the lungs and decreased attention
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outside of the lungs with greater image resolution. For the 64×64 model, saliency and XRAI
show activations throughout the entire image, while grad-CAM activations are focused on
the lower right corner of the image. For the 128 × 128 and 256 × 256 models, all three
techniques show increased activations concentrated in the general lung area. Saliency and
grad-CAM activation maps still focus on a single large region with no distinction between
left and right lungs.For the 512 × 512 and 1024 × 1024 models, all three techniques show
activation in two distinct regions: the left lung and right lung, with minimal activations
outside of the lungs.

3.3. Quantitative Analysis of Model Attention

Area Attention: We calculated the average lung AA over all images in the test set
(n=2691) for five CNNs, trained at different input resolutions, using three activation map-
ping techniques (saliency, grad-CAM, XRAI) ( Figure 6-B). Overall, increasing input resolu-
tion led to increasing average lung AA (0.40 to 0.64 for saliency, 0.26 to 0.80 for grad-CAM,
0.33 to 0.72 for XRAI). The greatest changes in average lung AA were observed when input
resolution was increased from 512 × 512 to 1024 × 1024 (0.46 to 0.64 for Saliency, 0.58
to 0.80 for grad-CAM, and 0.54 to 0.72 for XRAI). At 64 × 64 image size, average lung
AA< 0.5, indicates that the CNN trained at this resolution, focused less than half of its
attention within the lungs. In contrast, all techniques yielded average lung AA > 0.5 for
1024×1024 image size, indicating such model mostly focused inside the lungs. Our analyses
also suggested that average lung AA is independent of BNP or BNPP values (Appendix E).
Lung attention seems to be consistent regardless of BNPP, but varies greatly with input
resolution.

Blur Study: We calculated the lung BS based on AUC obtained from the test set
(n=2691). Figure 6-C plots the average lung BS for five CNNs, trained at different im-
age resolutions. Overall, increasing input resolution resulted in lung BS increasing from
0.01 to 0.13. For the models trained at lower image resolutions (64× 64 – 256× 256), lung
BS < 0.02 indicates that blurring the lungs caused trivial changes in AUC. The higher
resolution models trained at 512× 512 and 1024× 1024 exhibit significantly higher lung BS
values of 0.06 and 0.13 respectively.

4. Discussion

In this work, we demonstrated the feasibility of inferring BNP and BNPP from chest radio-
graphs. A modified Resnet152V2 CNN was developed using staged training to deal with
multiple data sets of different sizes. An optimal performance at larger input image size was
achieved, which highlights the importance of spatial details for inferring BNP and BNPP
values. At 1024 × 1024 image size, thresholding the inferred values at BNP > 100 and
BNPP > 400, AUROCs were 0.903 and 0.863, while Pearson r values were 0.762 and
0.697. By applying three activation mapping techniques (saliency, grad-CAM, XRAI) and
two proposed quantitative metrics (lung AA, lung BS) to our CNNs, we confirmed that
increasing input resolution increased model attention to the lungs, the most clinically rele-
vant region of the radiograph. To have generalized observations, we employed ResNet152v2
model architecture with minimal modifications. We chose this architecture due to its su-
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perior performance in our preliminary experiments (Appendix B). Few prior investigators
have begun to explore the application of CNNs to infer blood serum biomarkers from chest
radiographs. As detecting pulmonary edema on chest radiograph is challenging even for
expert radiologist, assembling a dataset based on expert opinion may be inconsistent, as
well as time- and labor-intensive. This work utilizes serum biomarkers as objective data to
drive neural network training.

(Seah et al., 2019) showed initial feasibility of using BNP for this task at 128 × 128
resolution which resulted in an AUROC of 0.82 on their test set, compared to our result of
0.903 AUC. Unlike our proposed model, their model attention was predominantly outside
of the lungs. Other investigators who also developed other tools for detecting pulmonary
edema from chest radiographs, achieved similar AUROC, ranging from 0.814-0.924 (Ra-
jpurkar et al., 2018; Cicero et al., 2017; Sabottke and Spieler, 2020) with a variety of CNN
architectures.

We thus expanded on these works and show that while some performance (in terms of
AUROC) is maintained at lower image sizes, CNNs require higher resolution to ensure that
their inferences are the result of lung attention. Our results provide more insight into the
effect of image resolution on CNN learning. Future work can focus on developing novel
architectures for this task, or on relating the BNP and BNPP values to radiologist grades
of pulmonary edema.

Figure 6: A) Average heatmaps from 3 visualization techniques applied to models trained
at different resolutions. Image resolution vs CNN attention in the lungs using:
B) lung area attention (LAA), C) lung blur sensitivity (LBS).
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Appendix A. Grad-CAM Visualization:

Grad-CAM activation maps were generated to visually assess the effect of resolution on
CNN activation for each individual radiograph. Exemplar radiographs from two patients
with varying severity of pulmonary edema are shown in Figure 7 and Figure 8. In both
examples, Grad-CAM shows diffuse and inconsistent activation at lower 64 and 128 image
sizes, which increasingly focus on the lungs at higher 512 and 1024 image sizes.

Appendix B. Comparison of Resnet152V2 to other methods:

It must be noted that one of the main focuses of this work was assessing the effect of input
resolution on CNN performance and attention. We wanted to ensure that the results we
observed were generalizable and not the result of a specific architectural modification or
technique. To have generalized observations, we employed ResNet152v2 model architecture
with minimal modifications. We chose ResNet152v2 with MAE loss for its superior perfor-
mance over other architectures for BNPP inference from radiographs ( Figure 9-A). This
figure shows the ROC and AUC results using different methods with a threshold of 300 for
measured BNPP and input image size of 512× 512. Future work may focus on developing
models structurally optimized for this task.

Appendix C. ROC results using various thresholds on measured BNPP:

While in the manuscript we used a previously established screening threshold of 400 to
detect acute heart failure from measured BNPP values, here we provided the ROC curves
and their respective AUC computed for other potential thresholds in Figure 9-B. We also
added confusion matrices calculated based on Youden’s j index applied to AUROC (with
BNPmeasured = 100 and BNPPmeasured = 400) for each model evaluated on the test set.
The optimum thresholds applied to inferred values are listed in Table 2.
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Figure 7: Comparison of grad-CAM heatmaps from models trained at different
input resolutions performing inference on a case of mild pulmonary
edema. The original image was independently annotated by cardiothoracic ra-
diologist for peribronchial cuffing (yellow arrow) and Kerley B lines (red arrow),
findings of mild pulmonary edema. Low resolution models (64, 128) show at-
tention in large, indistinct regions on the chest X-ray. Higher resolution models
(512, 1024) show greater attention in the lung regions identified by radiologist
annotations.

Figure 8: Comparison of grad-CAM heatmaps from CNNs trained at different
training image resolutions performing inference on a case of severe
pulmonary edema. Low resolution models (64, 128, 256) show attention in
large, indistinct regions of the chest X-ray. Higher resolution models (512, 1024)
show attention in the areas of alveolar opacities, the hallmark finding of severe
pulmonary edema 12
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Figure 9: A) Comparison of AUROC on BNPP > 300 inference between different CNN
architectures, weight initialization strategies, and loss functions when using
512 × 512 image size. ResNet152v2 with MAE loss was selected for subsequent
experiments, B) Comparison of CNN AUROC on various BNPP thresholds, when
using ResNet152v2 model and 512× 512 image size.

Figure 10: Confusion matrices for BNP and BNPP inference on the test sets. BNP and
BNPP measured values were thresholded based on clinically established thresh-
olds of 100 and 400 respectively. BNP and BNPP inferred values were thresh-
olded based on Youden’s J index from AUROC as in Table 2.
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Appendix D. Detailed results of BNP and BNPP prediction:

we brought together the results of our proposed method for BNP and BNPP inference from
radiographs on our test set in the form of Pearson r coefficient, AUC, thresholds from AUC
according to Youden’s j index, sensitivity, and specificity values at various input images
sizes in Table 2.

Table 2: Effect of Resolution On Pearson r Coefficient And AUC for BNP and BNPP
Inference.

64 128 256 512 1024

r (BNP) 0.642 0.681 0.734 0.787 0.762
r (BNPP) 0.587 0.650 0.699 0.694 0.697
AUC (BNPmeasured > 100) 0.817 0.851 0.879 0.892 0.903
AUC (BNPPmeasured > 400) 0.797 0.833 0.853 0.859 0.863
Optimum threshold (BNPinferred) 58 56 76 22 48
Optimum threshold (BNPPinferred) 250 300 440 320 460
Sensitivity(BNP) 0.618 0.721 0.852 0.926 0.882
Sensitivity(BNPP) 0.728 0.746 0.790 0.709 0.815
Specificity(BNP) 0.904 0.810 0.810 0.857 0.810
Specificity(BNPP) 0.728 0.780 0.763 0.831 0.723

Appendix E. Attention heatmap evaluation:

Herein, we added additional details about the feature map size used for model attention
evaluation at Table 3. We also provided Table 4 which presents the average lung AA at
different image resolutions. In another experiment we examined whether lung attention
depends on the value of low NT-pro-BNP (Table 5). There were no significant differences
in measured attention in the lungs between samples with high and low BNPP. For example,
for Grad-CAM maps applied to BNPP models, the mean Lung AA for 64, 128, 256, 512 and
1024 resolution input with BNPP greater than 400 was 0.247, 0.589, 0.591, 0.566, 0.810,
and for BNPP less than 400 was 0.262, 0.634, 0.593, 0.585, 0.811. Lung attention seems to
be consistent regardless of BNPP, but varies greatly with input resolution.

Table 3: Effect of Resolution On Pearson r Coefficient And AUC for BNP and BNPP
Inference.

64× 64 128× 128 256× 256 512× 512 1024× 1024

Feature Map Size (2,2,2048) (4,4,2048) (8,8,2048) (16,16,2048) (32,32,2048)

14



Deep Learning Radiographic Assessment of Pulmonary Edema: Training with Serum Biomarkers

Table 4: Effect of Resolution on Lung Area Attention.

64× 64 128× 128 256× 256 512× 512 1024× 1024

Grad-CAM
Lung AA (Mean) 0.259 0.588 0.587 0.576 0.803
Lung AA (SD) 0.129 0.096 0.131 0.172 0.129

Saliency
Lung AA (Mean) 0.404 0.420 0.473 0.461 0.639
Lung AA (SD) 0.081 0.081 0.087 0.078 0.121

XRAI
Lung AA (mean) 0.328 0.372 0.565 0.541 0.721
Lung AA (sd) 0.063 0.073 0.134 0.092 0.119

Table 5: Effect of BNPP level on Lung Area Attention.

64× 64 128× 128 256× 256 512× 512 1024× 1024

Grad-CAM
Lung AA BNPP>400 (Mean) 0.247 0.589 0.591 0.566 0.810
Lung AA BNPP>400 (SD) 0.103 0.121 0.096 0.084 0.142
Lung AABNPP<400 (Mean) 0.262 0.634 0.593 0.585 0.811
Lung AABNPP<400(SD) 0.089 0.081 0.126 0.149 0.097

Appendix F. Choice of Resolution

A potential limitation of our work is that we did not experiment with resolutions higher
than 1024×1024, even though the native resolution of our chest radiographs was as high as
4700×4700. For our experiments, we selected resolutions to encompass the entire gamut of
commonly used input resolutions when training CNNs on chest radiographs. 1024×1024 was
selected as the maximum resolution in our work for two reasons: (1) this is the maximum
resolution of images from the commonly used public NIH ChestX-ray14 dataset (Jaeger
et al., 2014) and RSNA-Pneumonia dataset (Pan et al., 2019). (2) Compute resources
required for training increase two-fold with resolution (Table 6). Training a ResNet152v2
on 1024× 1024 images was pushed the memory limits of our available hardware. Future
work may be directed at studying the performance gains at even higher resolutions.

Table 6: Effect Of Resolution on Computational cost of RESNET152V2 based Model (58M
Params), Measured in Floating Point Operations (FLOPs).

64× 64 128× 128 256× 256 512× 512 1024× 1024

G-FLOPs 0.95 3.62 14.31 57.07 228.12
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