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Abstract

Factual knowledge extraction aims to explicitly
extract knowledge parameterized in pre-trained
language models for application in downstream
tasks. Recent work has been investigating the
impact of fine-tuning on the factuality of large
language models (LLMs). In this paper, we
thoroughly study this impact through system-
atic experiments, with a particular focus on the
factuality gap caused by unknown and known
knowledge. We find that this gap is essentially a
discrepancy between attention patterns, which
can be influenced by both fine-tuning and in-
context learning (i.e., few-shot learning and
Chain of Thought (CoT)). Appropriate prompt
design during the inference stage can even mit-
igate the factuality gap caused by fine-tuning.
Therefore, we argue that both stages play es-
sential roles in factual knowledge extraction,
and that they need to be studied in combination.
Finally, we seek to provide explanations and
offer novel insights into factual knowledge ex-
traction through the integration of fine-tuning
and inference in LLMs.

1 Introduction

Pre-trained large language models (LLMs) store
extensive parameterized knowledge (Meng et al.,
2022; Petroni et al., 2019a; Allen-Zhu and Li,
2024), which can be extracted and applied to var-
ious downstream tasks through different prompt
designs (Chen et al., 2024; Wang et al., 2024).
However, querying LLMs with naturally phrased
questions may increase the likelihood of generat-
ing incorrect answers, leading to model hallucina-
tions (Zhang et al., 2024; Huang et al., 2025). Pre-
vious research has shown that fine-tuning LL.Ms
can enhance their factuality (Wei et al., 2022a), yet
the impact varies significantly depending on the
dataset. For instance, Gekhman et al. (2024) and
Ghosal et al. (2024) indicate that fine-tuning on
well-established or popular knowledge improves
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Figure 1: Overview: In-context learning (ICL) prompts
can help reduce the factuality gap, as knowledge extrac-
tion is prompt-sensitive. Both fine-tuning and inference
prompts are crucial for accurate knowledge retrieval.

model performance, while fine-tuning on unknown
or unpopular data can have the opposite effect.

Previous research has extensively explored how
different fine-tuning datasets impact the factuality
of LLMs. For example, Gekhman et al. (2024);
Kazemi et al. (2023) draw empirical conclusions,
summarizing and analyzing the factors of data char-
acteristics, especially unknown knowledge, in fine-
tuning. Joshi et al. (2024) propose a ’Persona’ hy-
pothesis to explain how fine-tuning affects factual-
ity, while Ghosal et al. (2024) attempts to explain
the cause of this factuality gap from the perspective
of changes in attention distribution during the fine-
tuning process. In this work, however, we find that
this factuality gap is highly fragile. Modifying the
inference-stage prompt, such as through few-shot
examples (Brown et al., 2020) or chain-of-thought
(CoT) (Wei et al., 2022b), can significantly reduce
or even reverse the gap. Our work suggests that the
factuality gap requires further investigation and a
deeper understanding.

To gain a deeper understanding of the factuality
gap caused by fine-tuning data, we pose the fol-
lowing three intriguing research questions: RQ1:
What is the impact of unknown knowledge on the
factuality of large language models? RQ2: Does
this factuality gap always exist? RQ3: Can the
factuality gap be easily mitigated? To address
these questions, we design a series of experiments.
We select two types of models, the LLama-3.1-8B



(Dubey et al., 2024) and Mistral-7B-v0.3 (Jiang
et al., 2023), in both their Base and Instruct ver-
sions, and conduct experiments on two task cate-
gories: question answering (QA) and open-ended
generation. These experiments allow us to answer
the above questions. After that, we attempt offer
insights to explain the related phenomena we have
observed, including some hypotheses and theoret-
ical derivations. Our main contributions can be
summarized as follows:

» Through extensive experiments, we validate the
factuality gap caused by fine-tuning on unknown
knowledge and confirm it diminishes as the test
set’s distribution distance increases

* We identify an effective method to mitigate the
factuality gap by carefully designing prompts dur-
ing the inference stage. Our findings emphasize
the crucial role of prompt design in the parame-
terized extraction of factual knowledge.

* Building on our observations, we conduct an in-
depth analysis of the factuality gap and offer a
deeper understanding from the perspective of at-
tention patterns.

2 Related Works

2.1 Factual Knowledge Extraction in LLM

LLMs store extensive world knowledge within
their parameters, and ineffective extraction is a ma-
jor cause of model hallucinations (Kandpal et al.,
2023; Mallen et al., 2023). Therefore, understand-
ing knowledge extraction is crucial for improving
LLM efficiency and performance. Allen-Zhu and
Li (2024) integrates pretraining and fine-tuning to
highlight the importance of data augmentation for
extractable knowledge. Yin et al. (2024) introduces
the concept of a knowledge boundary, where knowl-
edge that cannot be correctly accessed under any
expression is considered outside the model’s bound-
ary. While prior work focuses on either pretraining
and fine-tuning phases or extraction during infer-
ence, our study combines both model fine-tuning
and inference to offer a more comprehensive analy-
sis of factual knowledge extraction.

2.2 Finetuning on Unknown Knowledge
Encourage Hallucination

The unknown knowledge refers to information that
is either unpopular or unfamiliar, indicating that
the pre-trained model has limited exposure to it or
struggles to extract it. Recent studies have explored
the impact of fine-tuning on such knowledge and

its effect on model factuality. Kang et al. (2024)
suggest that unfamiliar examples in the fine-tuning
dataset affect how the model handles unfamiliar test
instances, but they do not address how these exam-
ples influence the overall factuality of the model.
Gekhman et al. (2024) empirically demonstrate that
fine-tuning on unknown knowledge negatively im-
pacts factuality, attributing this to overfitting on
such data during training. Ghosal et al. (2024)
show that lesser-known facts, poorly stored during
pretraining, lead to worse factuality compared to
fine-tuning on well-known facts. They also provide
a theoretical analysis, linking the effect to changes
in entity attention during fine-tuning. Building on
these studies, we further examine how inference-
stage prompts affect attention and explore the na-
ture of the factuality gap from a new perspective.

3 Preliminaries

3.1 Factual Knowledge

Definition of Factual Knowledge. We follow
Ghosal et al. (2024); Petroni et al. (2019b) and de-
compose a verbalized piece of knowledge into three
components: the subject entity, the relation type,
and the answer. This structure aligns with the for-
mat used in many factual knowledge benchmarks.
Thus, a piece of knowledge k can be simplified
as a triplet: k = (s,7,a), where s € S, r € R,
and a € A, with S, R, A representing the sets of
all subject entities, relations, and answers, respec-
tively. For LLMs, if a model M has stored the
knowledge k, then given s and r, the probability
of the model outputting a should be close to 1:
Py(a|s,r)~1.

Knowledge Extraction is Prompt-Sensitive.
Factual knowledge is typically extracted in the
form of QA queries. The knowledge k = (s, 7, a)
corresponds to a set of question forms Q(s,r) =
{f(s,7) | f € F}, where F denotes various
prompt combinations. The question set () is then
input into the model to retrieve the answer a. How-
ever, experience shows that not all prompt inputs
are able to retrieve a, as knowledge extraction is
prompt-sensitive. Therefore, we hypothesize that
if k = (s,r,a) is stored in the model M, then

V0 < e<1,3q1,92 € Q(s,7), Pu(a | g1) > ¢
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3.2 Fine-tuning and Few-shot Learning

Given a set of knowledge triples Dy =
{(s,7,a)N}, we use a fine-tuning formatting func-
tion fg to construct the dataset Dy, = { fr(s,7), a |
(s,r,a) € Dy}. The model My is trained on this
dataset. During inference, the fine-tuning formatted
query ¢ = f(s,r) is used to extract knowledge. In
the case of few-shot learning, the few-shot dataset
is Dfew = {(q,a);}, and in the case of few-shot
CoT, the dataset is Deot = {(feot(s,7), )i}

Dai et al. (2023) has already mentioned the sim-
ilarity between few-shot learning and fine-tuning,
both of which leverage transformer attention for
gradient descent. Let x be the input representa-
tion of a query token ¢, and Wy, Wk, Wy, are
the projection matrices for computing the attention
queries, keys, and values. We have ¢ = Wgx, and
the form of the attention update after fine-tuning is
given by:

Arr(q) = Wy + AWV XXT (Wic + AWK) g
= (Wv X(WkX) g+ AWy X (AWK X) g @
= (WzsL + AWrr)gq.

Where X denotes the input representations of
query tokens, AW and AWy represent the pa-
rameter updates to Wy and Wy, respectively.
Wzst.q denotes the attention in the zero-shot learn-
ing scenario.

Let X’ denote the input representations of the
demonstration tokens. The attention update form
in few-shot learning is:

Apsi(q) = WasLg + Wy X' (W X)Tq
= WzsLq + LinearAttn(Wy X', Wr X', q)

= WzsLg + Z Wy a; ((WKDEi)TQ) 3)

= WzsLg + Z (Wyz:) @ (Wkz:)) g
= (WzsL + AWksL) g.

4 Impact of Unknown Knowledge on the
Factuality of LLMs. (RQ1)

4.1 QA tasks

Settings. We fine-tune both the base and
instruction-tuned versions of Llama3.1-8B ! and
Mistral-7B-v0.3? models on the known and un-
known datasets constructed from Entity Questions

"https://huggingface.co/meta-1lama/{Llama-3.1-8B,
Llama-3.1-8B-Instruct}

“https://huggingface.co/mistralai/{ Mistral-7B-v0.3,
Mistral-7B-Instruct-v0.3}
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Figure 2: Training process of LLaMA Base on Entity
Questions (EQ) and WikiBios.

(Sciavolino et al., 2021), PopQA (Mallen et al.,
2023), and MMLU (Hendrycks et al., 2020), re-
spectively. We use the exact match accuracy metric
to evaluate performance. For the MMLU and En-
tity Questions datasets, we follow the approach of
Gekhman et al. (2024), utilizing few-shot learn-
ing to split the dataset into known and unknown
subsets. For PopQA, we adopt the methodology
of Ghosal et al. (2024), where the dataset is par-
titioned into two parts based on the popularity of
each data point. Both partitioning strategies ensure
that the data distribution across question categories
is balanced in both splits. Additionally, we ran-
domly sample half of each question category from
both splits to form a mixed dataset. More detailed
settings can be found in Appendix A.1.

Observation. The left subplot of Figure 2 shows
the training process of LLaMA Base on the Entity
Questions dataset, illustrating the general trend of
the QA task training process. Table 1 presents the
evaluation results on the evaluation dataset for mod-
els that reach early stopping and convergence. We
observe that models trained on known knowledge
converge more rapidly and exhibit fewer instances
of factuality failure compared to those trained on
unknown knowledge. Models trained on the mixed
dataset converge at a rate between the two extremes,
and their performance on the evaluation set is gen-
erally intermediate and closer to the known split.
The average factuality gap in early stopping set-
tings and convergence settings are 6.49 and 8.19
respectively, which indicates that the gap becomes
more pronounced when the model overfits to bad
patterns. Furthermore, comparing the average per-
formance gap between the Instruct and Base mod-
els reveals that, for both LLaMA (Base: 6.65, In-
struct: 5.64) and Mistral (Base: 9.66, Instruct:
7.43), the gap for the Instruct models is smaller
than that for the Base models. We hypothesize that
this is due to the Instruct models having undergone



Benchmark Split LLaMA LLaMA-Instruct Mistral Mistral-Instruct
ES Con. ES Con. ES Con. ES Con.
Unknow 2825 24.80 28.75 2500 21.15 18.00 26.00 20.90
EQ Mixed 40.70 35.85 39.65 3470 3590 31.15 36.25 31.20
Known 40.30 38.50 39.20 37.70 36.05 3445 3540 3450
Unknown 3245 29.55 31.80 2890 28.15 23.80 27.30 21.85
PopQA Mixed 35.65 3470 3475 3370 32.10 2945 3220 27.75
Known 36.05 3435 35.15 3260 3285 29.90 32.60 30.00
Unknown 3494 3390 33.64 33.51 28.09 26.52 31.61 25.87
MMLU Mixed 36.32 35.08 3494 3403 33,51 31.29 3357 30.89
Known 3749 37.10 3592 3488 3560 3481 3344 3214

Table 1: QA tasks evaluation accuracy. ES: Early Stop Con.: Convergence

some fine-tuning on QA tasks, allowing them to
learn fundamental patterns that partially mitigate
the gap. More details are in Appendix B.

Split LLaMA Mistral
ES Con. ES Con.
Unknown 55.50 46.90 47.30 36.67
Mixed 59.49 48.32 50.59 38.62
Known  58.25 49.69 49.16 39.58

Table 2: FActScore of WikiBios task.

4.2 Open-ended generation task

Settings. We follow the approach outlined by
Kang et al. (2024) using the WikiBios(Stranisci
et al., 2023) dataset. To avoid instruction tuning
disturbances, we use only the base versions of the
two model families. The experimental setup is
similar to that of the QA task, where the dataset
is divided into three different splits. We use the
FActScore (Min et al., 2023) metric to evaluate
performance. For detailed implementation, please
refer to Appendix A.2.

Observation. We observe a similar trend in the
training curves and an increase in factuality failure
when fine-tuning on unfamiliar data, as shown in
the right subplot of Figure 2 and Table 2.

4.3 Toy Example

Settings. To further eliminate the potential im-
pact of data filtering, we construct a Toy Example
using manually created Unknown data that gen-
uinely extends beyond the knowledge boundary
of the LLM. We use the Llama3.3-70B-Instruct?

3https://huggingface.co/meta—llama/Llama—B.
3-70B-Instruct

model to extract data from the EntityQuestions
dataset with a single query, without relying on few-
shot examples. We then introduce fixed-format
perturbations to entity tokens in the known set to
create unknown knowledge set, ensuring that the
model is unable to handle these perturbed exam-
ples. Additionally, we construct a mixed dataset
combining known and unknown data in a 1:1 ratio.
We fine-tune the models using LoRA, and evaluate
their performance on the customized test set, which
shares the same data type as the training set, i.e.,
normal (known) or perturbed (unknown). More ex-
perimental details can be found in Appendix A.3.

Observation. As shown in Table 6, we observe
consistent gaps in factuality across models fine-
tuned on known, mixed, and unknown knowledge
sets. On the test set, the model fine-tuned on the
known set achieves an accuracy of 91.9%, signif-
icantly outperforming the mixed set (66.5%) and
unknown set (62%). This further confirms that
unknown knowledge encourages factuality failure.

4.4 Our answer to RQ1

Fine-tuning on unknown knowledge encourages
factuality failure, which is, in fact, a failure of in-
domain generalization. The extraction pattern for
unknown knowledge is a poor pattern, leading to
poor generalization. Furthermore, the strength of
this pattern is influenced by the training data and
can be adjusted by the proportion of unknown data.

5 Does this Kind of Factuality Gap
Always Exist? (RQ2)
5.1 Experimental Results

Settings. To better understand the impact of un-
known data on model factuality, we categorize fac-


https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct

Dataset Split LLaMA LLaMA-Instruct Mistral Mistral-Instruct

ES Con. ES Con. ES Con. ES Con.

D eq id Unknow 2825 24.80 28.75 2500 21.15 18.00 26.00 20.90
- Known  40.30 38.50 39.20 37.70 36.05 3445 3540 34.50

eq_ood Unknown 30.00 28.93 31.67 3043 32.17 23.73 3043 24.13

NID - Known 39.03 36.60 38.17 37.03 34.83 33.00 34.17 3243
pop._ood Unknown 28.17 23.79 19.00 1942 23,13 20.19 2589 22.74

- Known  32.58 32.05 27.54 2547 28.69 2740 29.71 28.06

OW mmlu ood Unknown 66.11 66.70 69.23 69.30 62.63 6246 6225 62.53
- Known 67.05 67.09 69.51 6947 6298 6354 60.74 60.70

Table 3: Generalization factuality. ID: in-distribution, NID: near in-distribution, OW: open world

tuality generalization into two types based on the
distance between the test and training task data pat-
terns: (1) near in-distribution generalization and
(2) open-world model factuality. In the following,
we examine the effects of unknown data on each
type of factuality. We employ all-MiniLM-L6-v2*
embedding model (Reimers and Gurevych, 2019)
to extract and process data patterns from both out-
of-distribution (OOD) and in-distribution (ID) test
sets. By comparing the cosine similarity between
these patterns, we are able to measure the distance
between OOD and ID data.

We conduct validation experiments using mod-
els fine-tuned on the Entity Questions dataset from
Section 4. For near in-distribution tasks, we sam-
ple non-overlapping data from the Entity Questions
and PopQA datasets to create near in-distribution
test sets, eq_ood and pop_ood. For the open-
world task, we choose MMLU to create a com-
plete mmlu_ood set, which provides more diverse
data and significantly different question formats.
The cosine similarities between eq_ood, pop_ood,
mmlu_ood and the ID test set are 0.86, 0.82 and
0.55 respectively. More details can be found in
Appendix A.4.

Observation. As shown in Table 3, Llama3.1-8B
fine-tuned on known data consistently outperforms
the model fine-tuned on unknown data for both
eq_ood and pop_ood datasets. The performance
gap is 9% on eq_ood and 4% on pop_ood with
early stopping, and 7.5% and 8% at convergence,
respectively. The factuality gap on mmlu_ood
nearly disappears across all models. For instance,
the Llama3.1-8B model fine-tuned on unknown
data achieves a QA accuracy of 66.11% with early
stopping, just 1% lower than the 67.05% achieved

4https://huggingface.co/sentence—transformers/
all-MinilM-L6-v2

by the model trained on known data. At conver-
gence, the performance gap narrows further to
0.4%, with 67.09% of the known data model and
66.7% of the unknown data model. These findings
are consistent across other models.

Split NID ow
eq_ood pop_ood mmlu_ood
Unknown  55.30 49.23 82.14
Mixed 54.87 49.34 81.72
Known 55.13 48.92 82.21

Table 4: Performance of Toy Example on OOD tasks at
convergence.

However, we observe that this negative impact
vanishes in our 70B Toy Examples, which are fine-
tuned with limited data. As shown in Table 4, mod-
els trained on both known and unknown data per-
form similarly on eq_ood, pop_ood and mmlu_ood,
with no significant differences. We hypothesize
that this is due to the limited training data and
the high capacity of the model, which prevents
unknown data from substantially influencing the
model’s knowledge extraction.

5.2  Our answer to RQ2

This kind of factuality gap does not always exist.
The negative impact of unknown knowledge on
generalization decreases as the OOD data pattern
becomes more distinct from the ID data.

6 Can the Factuality Gap be Easily
Mitigated? (RQ3)

6.1 Proper prompt at inference stage may
mitigate the gap
Settings. We select all the models and tasks from

Section 4. For the QA tasks, we perform inference
using few-shot or few-shot CoT approaches. The


https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

Dataset LLaMA

LLaMA-Instruct

Mistral Mistral-Instruct

ES Con. ES

Con.

ES Con. ES Con.

41.55+13.3 38.95+14.2 41.00+12.3 37.40+12.4 35.35+14.2 32.95+15.0 35.25+9.25 30.05+9.15
43.45+3.15 42.20+3.70 41.20+2.00 40.70+3.00 38.25+2.20

37.95+3.50 33.15-2.25 32.65-1.85

39.45+7.00 39.35+9.80 35.55+3.75 35.30+6.40 33.90+5.75
39.50+3.45 39.15+4.80 34.35-0.80 35.80+3.20 35.20+2.35

33.4+9.60 32.80+5.50 32.25+10.4
34.104+4.20 34.20+1.60 32.50+2.50

54.80+19.9 54.60+20.7 64.99+31.4 65.32+31.8 55.39+27.3

55.13+28.6 58.00+26.4 60.09+34.2

67.60+30.1 67.86+30.8 69.30+33.4 68.84+34.0 58.46+22.9

58.39+23.6 61.07+27.6 60.94+28.8

55.20-0.30 48.32+1.42
58.20-0.05 50.85+1.16

N CIRACIRA CIRC

am | nin | Od | O3

47.93+0.63
50.58+1.42

37.99+1.32
40.22+0.64

Table 5: Performance of the fine-tuned model with few-shot and few-shot CoT. EQ: Entity Questions, PQ: PopQA,
MU: MMLU, WB: WikiBios. Exact Match Accuracy for QA tasks and FactScore for WikiBios, with underlined
results for few-shot and non-underlined for few-shot CoT. The small number in the bottom right corner represents
the improvement or decline in current performance relative to the performance without using few-shot learning.

Split Original With CoT
ES Con. ES Con.
Unknown 44.73 41.70 84.08 82.81
Mixed  63.67 59.96 87.21 87.21
Known  83.11 82.81 86.72 87.60

Table 6: Performance of Toy Example.

few-shot examples are selected from the Known
training data, after which GPT-4> generates an anal-
ysis of the question entity to construct the CoT for
the given query. These examples are incorporated
into the few-shot CoT format for inference. The
box below is the few-shot CoT example format.

[ Question:{} Analysis:{} Answer:{} ]

We selected 3 sets of examples in total and con-
sidered two few-shot scenarios: one with CoT and
one without. We ensure that the prompts input into
the Known and Unknown models under the same
conditions are exactly the same. The set with the
best performance on the Unknown split was then
chosen as the final outcome. For the generation
task, we use only the few-shot learning approach,
selecting examples in the same manner as in the
previous case. Additionally, we also add special
CoT to the Toy Example for verification. Detailed
prompt design and Toy Example CoT are presented
in Appendix C and Appendix A.3.

Observation. Table 5 presents a comparison of
the results obtained through few-shot or few-shot
CoT inference after training different models on
various datasets. We can observe that, in most

Shttps://openai.com/index/gpt-4o-system-card/

cases, after using few-shot learning, the perfor-
mance on the Unknown split improves more signif-
icantly compared to the Known split. This suggests
that the factuality gap can be mitigated or even fully
eliminated. Additionally, we observe the following
points: 1) The gap in models with early stopping is
more easily mitigated. 2) The factuality gap of the
Instruct model is easier to mitigate than Base, espe-
cially in the case of Convergence. 3) In MMLU and
WikiBios, using few-shot learning sometimes even
increases the performance gap. This may be due to
the particularities of these two tasks compared to
regular QA tasks. The former is a comprehensive
dataset with complex and varied question formats,
while the latter is an open-ended generation task,
both of which result in a more complex factuality
gap pattern.

Results of Toy Example are shown in Table 6.
We observe that CoT effectively enhances model
testing performance and narrows the factuality gap
between the three 70B models.

6.2 Ablation study

To better understand the essence of how few-shot
learning mitigates the factuality gap, we design the
following ablation experiment on LLaMA Base
model and Entity Questions dataset. Details of
abalation studies can be found in Appendix D.

Prompt components We conduct an ablation
study on the composition of the prompt, separately
examining the selection of examples in few-shot
prompts and the impact of CoT. We validated the ef-
fectiveness of Known examples and CoT, as shown
in Figure 3.
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Figure 4: Ablation study of prompt formulation.

Prompt formulation We also study the impact
of changing the prompt format on the factuality
gap. We use GPT-4o to rephrase these questions
in three different formats and find that the perfor-
mance decline in all cases, and the factuality gap
remains large.

6.3 Our answer to RQ3

For parameterized knowledge, both few-shot learn-
ing and supervised fine-tuning (SFT) are methods
for extracting knowledge. SFT does not lead to
the forgetting of prior knowledge, rather, it results
in a suboptimal method for extracting knowledge.
Moreover, in the case of unknown knowledge, the
poor extraction patterns induced by SFT are frag-
ile and can be adjusted back to a better extraction
method using an appropriate prompt, such as the
few-shot CoT approach.

7 Exploring New Insights into Knowledge
Extraction in Large Language Models

7.1 Hypothesis

Based on the experimental observations and analy-

sis above, we propose two hypotheses:

» Hypothesis 1. SFT does not cause forgetting by
disrupting the knowledge storage of the LLM,
but rather affects the model’s factuality through
attention patterns.

* Hypothesis 2. The attention patterns formed
during the fine-tuning phase can be readjusted
during the inference phase.

7.2 Explaination

We selected the LLaMA Base model trained on
entity questions and the untrained LLaMA Base
model for case studies. We follow the attention
visualization method proposed by Ghosal et al.
(2024), where the previous token of the generated
answer is used as the query to attend to other to-
kens, allowing us to construct the attention map
for each layer. More examples can be found in
Appendix E.

Factuality gap. First, we observe the test results
of Unknown knowledge and Known knowledge on
the pre-trained model in Figure 5. It can be seen
that the attention on the subject entity of Known
knowledge is more prominent.

<s>- <s>-
Which
country
is
sar

located
located - in

7-

in-
'
1 5 9 13 17 21 25 29

' '
1 5 9 13 17 21 25 29

Figure 5: Attention maps of base model. Left: Unknown
data, subject entity is "Senorsingué". Right: Known
data, subject entity is "Saraykoy"

Based on Hypothesis 1, the attention pattern
determines the model’s factuality. Fine-tuning es-
sentially reinforces the attention pattern of the base
model, as shown in Figure 6. This hypothesis helps
explain many phenomena observed in RQ1 and
RQ2.

Referring to Equation 4, the instruct model has
already undergone a period of fine-tuning, so fur-
ther fine-tuning on QA tasks can be viewed as an
update to its attention:

AFT(q) = (WZSL + AVVinstrux:t + AWDﬂ)q' (4)

where AWingruet represents the updates generated
by instruction tuning, while AWp, refers to the up-
dates generated by SFT on the fine-tuning dataset
Dy;. Due to the difference in dataset size, the for-
mer is generally larger than the latter. Therefore,
the factuality gap of the instruct model is less af-
fected. Similarly, the gap in the convergence model
is larger than that in the early stop model for the
same reason.

In RQ2, self-attention fundamentally performs
semantic relevance computations (Vaswani et al.,
2017) and does not disrupt the utilization of other
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Figure 6: Attention maps of fine-tuned models. Top:
Origin prompt. Middle: With few-shot learning. Bot-
tom: With CoT. Left: Fine-tuned on Unknown data.
Right: Fine-tuned on Known data. Subject entity is
"Soni Razdan".

knowledge. The lower the semantic relevance with
the training dataset, the less prominent this atten-
tion pattern becomes.

Based on the above, we can formalize the fac-
tuality gap referring to the definition in Section 3.
Specifically, for a knowledge triple & = (s,7,a),
the LLM is trained on Unknown and Known data
to obtain My and M, respectively. We can get:

Afactuality - ‘PJ\IU (a ‘ q) - PJ\/IK (CL | q)‘

5
o |Attnyy, (Q, Ko, V) — Attnar, (Q, Ko, V)| ®

Attention reallocation In RQ3, we confirm that
knowledge extraction is prompt-sensitive. By us-
ing carefully designed prompts, such as few-shot
in-context learning or incorporating CoT, we can
mitigate the pattern differences caused by the train-
ing data, as shown in Figure 6. For the Toy Exam-
ple, using a specialized CoT can also correct the
attention of the model trained on Unknown data, as
shown in Figure 7.

For few-shot learning, its principle has been ex-
plained in 3 and can be described as:

AFT(Q) = (WzsL + AWp,, + AWp,, )g. (6)

When AWp, , can eliminate the effect of AWp,,
the factuality gap can be mitigated.

For CoT, on one hand, the attention becomes
sparser after adding CoT, where, in the demonstra-
tion, the answer tends to have stronger associations
with tokens that are more strongly related, specif-
ically the tokens corresponding to the subject en-
tity. On the other hand, the analysis also shows
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Figure 7: Attention maps of Toy Example. Top: Origin
prompt. Bottom: With CoT. The subject entity without
garbled text is "Ernest Edward Austen".

an increased frequency of occurrence of the sub-
ject entity token. This can be explained from both
aspects.

8 Conclusion

In this paper, we conduct an in-depth exploration
of the factuality gap caused by fine-tuning. We
study the factors that influence the emergence of
the factuality gap, the generalization of the factual-
ity gap, and methods for mitigating the factuality
gap. Based on the analysis of these experimental
phenomena, we find that the essence of the fac-
tuality gap is an attention pattern. This pattern,
formed during the fine-tuning phase, can be modi-
fied through in-context learning, thereby influenc-
ing the factuality gap. In summary, this paper offers
a new understanding of LLM factuality and pro-
vides novel insights into model reliability and the
application of models in downstream tasks related
to factual knowledge.

9 Limitations

Our work is primarily empirical in nature, with rel-
atively underdeveloped theoretical proof aspects.
Future work can delve deeper into the factuality
gap from a theoretical perspective. Additionally,
the explanation of the anomalous phenomena ob-
served in the MMLU and WikiBios datasets in this
work is somewhat vague, and there is a lack of fur-
ther analysis regarding the differences in factuality
between these datasets and typical QA tasks.
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A Experiment Details

A.1l QA tasks

Data processing. For the Entity Questions task,
we adopt the experimental framework outlined by
Gekhman et al. (2024). Specifically, we select train
split and dev split data from the following relation
subsets: P131, P136, P17, P19, P26, P264, P36,
P40, P495, P69, P740, and P800 for both training
and evaluation purposes. The remaining relation
subsets are reserved for out-of-distribution (OOD)
testing, as described in Section 5. We employ a few-
shot learning approach to classify the Unknown and
Known datasets. Within the dev split, we randomly
select 10 sets, each containing 4 examples, and
apply both greedy and random sampling decoding
methods. For random sampling, the following pa-
rameters are used: temperature=0.5, top_p=1.0,
top_k=40, and 16 answers are sampled. The data
is classified as either Unknown or Known based
on the accuracy of the greedy search and random
sample. If at least one correct answer is obtained
from either the greedy search or random sampling,
the data is classified as Known.

We perform this filtering procedure for each re-
lation subset and subsequently use the filtered Un-
known and Known splits to balance the data across
categories. After filtering, the number of Unknown
and Known samples for each of the four models
is as follows: LLaMA Base: 28,337, LLaMA In-
struct: 31,226, Mistral Base: 30,952, and Mistral
Instruct: 31,335. For evaluation, we randomly se-
lect 2,000 samples from the development dataset
corresponding to the relation subsets used in the
training dataset.

For PopQA, we follow the approach of Ghosal
et al. (2024) and divide the dataset into two parts
based on the popularity value of the subject entity
in each data point, denoted as "s_pop". Similar
to Entity Questions, we perform the splitting for
each question type individually. First, each sub-
class dataset is randomly divided into a training
set and an evaluation set in a 4:1 ratio. Then, the
training set is further split into two halves to ensure
equal distribution of each type of question. Finally,
the Unknown and Known datasets contain 5,704
samples, while the evaluation dataset consists of
2,858 samples.

For MMLU, we also adopt a few-shot learning
approach, but with some simplifications. We di-
rectly select 5 data points from the MMLU dev
split as a group of few-shot examples. Apart from
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changing the number of random samples to 4, the
other model hyperparameters are set the same as in
Entity Questions. We use the test split of MMLU
as the training data and the val split as the evalua-
tion data. For the training data, we ensure that the
Unknown and Known datasets have the same num-
ber of samples by taking the smaller size from each
class. Finally, the number of Unknown and Known
samples for the four models is as follows: LLaMA
Base: 2,724, LLaMA Instruct: 2,730, Mistral Base:
2,994, Mistral Instruct: 4,128. The length of the
evaluation dataset is 1,531.

The mixed training datasets for the three models
are constructed by randomly selecting half of the
data from both the Unknown and Known subsets
of each class to form new datasets.

Training Details. We divide all the training into
12 groups based on the dataset and model, with
each group containing training on the Unknown,
Known, and Mixed subsets. We ensure that the
training parameters are exactly the same within
each group.

For all the three datasets, the training hyperpa-
rameters are set as follows: the batch size is 128,
and we use a fixed learning rate. Specifically, the
learning rates for LLaMA Base and LLaMA In-
struct are set to 1e-5, while for Mistral Base and
Mistral Instruct, the learning rate for Entity Ques-
tions is Se-6, and for the other datasets, it is set
to le-6. No additional regularization methods are
used during training. The training for all three
datasets used the model with the best accuracy on
the evaluation set as the early stop model, and the
model whose loss converged after completing all
epochs is considered the Convergence model.

For the Entity Questions dataset, all models are
trained for 20 epochs. For PopQA, the LLaMA
models are trained for 15 epochs, and the Mistral
Base and Mistral Instruct models are trained for
30 and 35 epochs, respectively. For MMLU, the
LLaMA models are trained for 15 epochs, and the
Mistral models are trained for 30 epochs.

Additionally, for the SFT process prompt, the
PopQA dataset use the original questions and an-
swers, while the question prompt format for the
Entity Questions dataset is as follows:

Answer the following question.\n Who is
Caitlin Thomas married to?

The question prompt format for the MMLU



dataset is as follows:

( )

The following is a multiple choice question,
paired with choices. Answer the question
in format: ’Choice:content’.\n\n### Ques-
tion:\nThe cyclic subgroup of Z_24 generated
by 18 has order\n\n### Choices:\nA) 0 B) 4
C) 2 D) 6 \n\n### Answer:\n

Evaluation Details. We use Exact Match as the
metric to measure the model’s evaluation accuracy.
During testing, the prompt format of the questions
is the same as during training. The model during
testing uses the greedy search decoding method
with a max_token value of 10.

A.2 Open-ended generation tasks

Data processing. We utilize the WikiBios (Kang
et al., 2024) data directly, randomly selecting 2,000
entries as the training set and 500 entries as the
evaluation dataset. For the training set partition, we
also employ a few-shot learning approach. In the
evaluation set, we select 4 examples and used the
random sample decoding method to sample two an-
swers, with max_token=32. The remaining decod-
ing parameters are the same as in Entity Questions.
To assess the accuracy of the answers, we employed
the FActScore metric. The GPT model used for
this task is gpt-3.5-turbo-0125, with raw scores
and no penalties applied for the num_fact parame-
ter. Each data point is evaluated individually, and
the average of the two sampled answers is taken.
Based on the resulting FActScore, the training set is
then divided into two parts: the higher-scoring sub-
set is classified as Known, while the lower-scoring
subset is classified as Unknown.

Training Details. The dataset is trained only on
LLaMA Base and Mistral Base, with a batch size of
128 and a fixed learning rate of le-5. No additional
regularization methods are used. Training stops
when the loss converged to below 0.01, and this
model is considered the Convergence Model. The
model with the lowest evaluation loss is selected as
the early stop model.

Evaluation Details. We used FActScore as the
evaluation metric, with the same data processing
settings as described above.
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A.3 Toy Example

For our Toy Example, we utilized the Llama3.3-
70B-Instruct® model, incorporating data sampled
from the EntityQuestions dataset.

Data processing. We employ the Llama3.3-70B
model to construct the Known knowledge set by
querying the model with the original questions. To
each question, we append the phrase "Answer the
following question." before the question itself to
form a complete query, without relying on addi-
tional few-shot examples. Specifically, we apply
a greedy sampling method, limiting the model’s
output to a maximum of 10 tokens, and verified
whether the ground truth answer is present in the
model’s response. If the ground truth answer is
included, we identifiy the subject words in the ques-
tion. For each subject word longer than two letters,
we introduce a fixed perturbation, "$&". For sub-
ject words of three letters, the perturbation is in-
serted after the first letter. For subject words longer
than three letters, the perturbation is applied before
the second letter. The modified question is then re-
entered into the model to ensure that the resulting
response did not contain the answer to the original
question, and regarded as the Unknown knowledge.

Below is an example of our known and unknown
set consturction, using the real question from re-
lation P26. The question in this case is “Who is
Caitlin Thomas married to?”, and the ground truth
answer is “Dylan Thomas”. The subject words in
the question is “Caitlin Thomas”.

-
Q: Answer the following question.\n Who is

Caitlin Thomas married to?

A: Caitlin Thomas.

Modified: Answer the following question.\n
Who is C$&aitl$&in T$&hom$&as married
to?

A: Rio de Janeiro.

~

L J

We combine the following relations from the En-
tityQuestion dataset: P131, P136, P17, P19, P26,
P264, P36, P40, P495, P69, P740, and P800, result-
ing in a training set of 2,000 data entries and a test
set of 1,000 for the Known, Unknown and Mixed
dataset. We ensure that the ratio of known to un-
known data in the Mixed dataset is 1:1, with the
Unknown data derived from the Known data. No-
tably, the data in the Mixed dataset does not overlap

6https://huggingface.co/meta—llama/Llama—3.
3-70B-Instruct
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with the Known or Unknown datasets.

Training Details. During the training of the Toy
Example, we use a learning rate of 2e-5, a batch
size of 128, and a weight decay of 0. We apply a
cosine learning rate scheduler with a warm-up of
64 steps. We use the training data template detailed
in Appendix A.1, and trained the model for a total
of 50 epochs on an 8 x6000 Ada 48G setup.

Toy Example CoT prompt. To mitigate the
performance gap caused by fine-tuning on differ-
ent data filters, we employ the following Chain-
of-Thought (CoT) prompt to guide the model in
reasoning and answering the questions.

( )

Ignore all the special characters in the follow-
ing question. Think step by step. First, clean
all special characters in the question. In this
step, you might see some unicode characters
in foreign languages. Next, rethink the cleaned
question. Finally, give the detailed answer of
the cleaned question with short explanation.

.

A.4 Generalization

For near in-distribution tasks, We follow Gekhman
et al. (2024) and sample non-overlapping data
from the remaining relation subsets of the Entity
Questions with 3000 data points to create near
in-distribution test set eq_ood.We use the entire
PopQA evaluation dataset as near in-distribution
test sets pop_ood. The cosine similarities between
eg_ood, pop_ood, and the ID test set are 0.86 and
0.82, respectively. For the open-world task, we
choose MMLU, which provides more diverse data
and significantly different question formats. We se-
lect 50 samples from each of the 57 MMLU tasks
to create a complete mmlu_ood set. After embed-
ding, the cosine similarity between mmlu_ood and
the ID test set is 0.55.

B Train Acc Curves

The training accuracy curve for all QA tasks is
shown in Figure 9, while the training loss curve for
the generation task is shown in Figure 8.

C Prompt Design Details

For few-shot learning, we select examples from the
Known split. Considering the length and effective-
ness of the examples, 4 examples were selected
from PopQA and Entity Questions, while 3 exam-
ples were selected from MMLU. We used GPT-4 to
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Figure 8: Training loss of generation task

generate the CoT prompts for each type of task. For
each dataset, we input the few-shot learning exam-
ples and generate the CoT instructions according to
the question type, thus obtaining the corresponding
few-shot CoT prompt for each question type. The
instructions for each dataset are as follows:

( )

Entity Questions, PopQA: Follow the few
shot Chain of Thought example format: Ques-
tion:{ } Analysis:{} Answer:{} to modify the
format and generate analysis of the entity in
each question of the QA pairs below. The anal-
ysis should describe the related information of
the entity shortly in the question in order to
lead to the answer:

MMLU: ’Follow the few-shot Chain of
Thought example format: Question:{ }
Choices:{} Analysis:{} Answer:{} to modify
the format and generate analysis of the critical
entity in each multiple choice question below.
The analysis should describe the related
information of the entity in the question
shortly in order to lead to the answer:\n

.

D Abalation Study Details

For the selection of few-shot learning examples,
Table 7 shows the test results for all Unknown ex-
amples. The testing of Unknown examples is the
same as for Known examples, where 3 sets are
randomly selected from the corresponding dataset,
with each set containing 4 examples. The set with
the best performance is then chosen. As for the
results using only Known examples in Table 8, it
can be observed that for most models, the factuality
improves when using Known examples.

For the ablation experiment of CoT, the results
using only few-shot learning and those with the
addition of CoT are shown in Table 8 and Table
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Figure 9: Training

9, respectively. By comparing the results, we can
observe the differences between the models with
and without CoT. We find that the factuality of the
models trained on PopQA and Entity Questions
improves, while the results on MMLU are more
unstable and sometimes do not show any improve-
ment with the addition of CoT. We hypothesize that
this may be due to CoT causing the text to become
too long, leading to a performance degradation.

For the ablation experiment on the variation of
question formats, we used GPT-4 to rephrase 2,000
data points from the Entity Questions evaluation
dataset three times. The instructions for the three
rephrasings are as follows:

0 4 8 12 16 20 24 28
Epoch

accuracy of QA tasks

0 4 8 12 16 20 24 28
Epoch

Please rephrase this question with Minor Dif-
ference. Just return the rephrased question

without additional word.

Please rephrase this question with Moderate
Difference. Just return the rephrased question

without additional word.

Please rephrase this question with Radical Dif-
ference. Just return the rephrased question

without additional word.

~

E Attention Visualization

Two additional questions are added to visualize at-
tention in three different cases. The two questions
are: "Which country is Valea Coacézei River lo-
cated in?" and "Where was Margaret Mwanakatwe
born?". The attention maps are shown in Figures
10 and 11, respectively.
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Benchmark Split LLaMA LLaMA-Instruct Mistral Mistral-Instruct
ES Con. ES Con. ES Con. ES Con.
EQ Unknow 36.60 29.60 33.25 26.20 26.55 18.50 30.95 19.20
Known  41.45 39.55 3945 37.55 33.80 3375 3255 32.80
PopQA Unknown 30.95 29.55 28.85 27.30 3125 30.55 31.10 3040
Known 3450 33.15 32.05 31.80 33.60 33.10 3275 3145
MMLU Unknown 54.02 5343 6434 64.14 54.02 53.63 5526 5545
Known  66.62 66.69 6695 66.75 56.89 57.09 59.70 59.96
WikiBios Unknown 54.18 48.62 48.24 38.18
Known  54.81 50.63 48.54 36.48
Table 7: Few-shot learning with Unknown examples
Benchmark Split LLaMA LLaMA-Instruct Mistral Mistral-Instruct
ES Con. ES Con. ES Con. ES Con.
EQ Unknow 39.10 32.10 37.65 3440 2285 17.60 32.05 2125
Known  41.75 3990 39.80 37.80 3140 30.15 33.05 33.90
PopQA Unknown 33.60 32.25 31.80 29.05 3390 3325 3280 31.60
Known  36.10 34.75 32.10 31.80 35.20 34.50 3420 33.35
MMLU Unknown 54.80 54.60 64.99 6532 5539 55.13 5624 56.43
Known 67.60 67.86 69.30 68.84 5846 5839 6048 60.74
WikiBios Unknown 53.72 47.03 4793 35.53
Known  55.61 50.09 50.58 38.97
Table 8: Few-shot learning with Known examples
Benchmark Split LLaMA LLaMA-Instruct Mistral Mistral-Instruct
ES Con. ES Con. ES Con. ES Con.
EQ Unknow 41.55 38.95 41.00 37.40 3535 3295 3525 30.05
Known 4345 4220 41.20 40.70 38.25 3795 33.15 32.65
PopQA Unknown 3945 3935 3555 3530 33.05 3340 3255 3225
Known  39.50 39.15 3435 3580 3470 34.10 3395 32.50
MMLU Unknown 45.79 47.35 6434 64.01 53.04 5349 58.00 60.09
Known 56.56 56.83 65.12 6545 56.50 58.13 61.07 60.94

Table 9: Few-shot learning with CoT
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Figure 10: Attention maps of fine-tuned models. Top: Origin prompt. Middle: With few-shot learning Bottom:
With CoT. Left: Fine-tuned on Unknown data. Right: Fine-tuned on Known data. Subject entity is "Valea Coacdzei
River".
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Figure 11: Attention maps of fine-tuned models. Top: Origin prompt. Middle: With few-shot learning Bottom:
With CoT. Left: Fine-tuned on Unknown data. Right: Fine-tuned on Known data. Subject entity is "Margaret
Mwanakatwe".
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