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Abstract

Factual knowledge extraction aims to explicitly001
extract knowledge parameterized in pre-trained002
language models for application in downstream003
tasks. Recent work has been investigating the004
impact of fine-tuning on the factuality of large005
language models (LLMs). In this paper, we006
thoroughly study this impact through system-007
atic experiments, with a particular focus on the008
factuality gap caused by unknown and known009
knowledge. We find that this gap is essentially a010
discrepancy between attention patterns, which011
can be influenced by both fine-tuning and in-012
context learning (i.e., few-shot learning and013
Chain of Thought (CoT)). Appropriate prompt014
design during the inference stage can even mit-015
igate the factuality gap caused by fine-tuning.016
Therefore, we argue that both stages play es-017
sential roles in factual knowledge extraction,018
and that they need to be studied in combination.019
Finally, we seek to provide explanations and020
offer novel insights into factual knowledge ex-021
traction through the integration of fine-tuning022
and inference in LLMs.023

1 Introduction024

Pre-trained large language models (LLMs) store025

extensive parameterized knowledge (Meng et al.,026

2022; Petroni et al., 2019a; Allen-Zhu and Li,027

2024), which can be extracted and applied to var-028

ious downstream tasks through different prompt029

designs (Chen et al., 2024; Wang et al., 2024).030

However, querying LLMs with naturally phrased031

questions may increase the likelihood of generat-032

ing incorrect answers, leading to model hallucina-033

tions (Zhang et al., 2024; Huang et al., 2025). Pre-034

vious research has shown that fine-tuning LLMs035

can enhance their factuality (Wei et al., 2022a), yet036

the impact varies significantly depending on the037

dataset. For instance, Gekhman et al. (2024) and038

Ghosal et al. (2024) indicate that fine-tuning on039

well-established or popular knowledge improves040
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Figure 1: Overview: In-context learning (ICL) prompts
can help reduce the factuality gap, as knowledge extrac-
tion is prompt-sensitive. Both fine-tuning and inference
prompts are crucial for accurate knowledge retrieval.

model performance, while fine-tuning on unknown 041

or unpopular data can have the opposite effect. 042

Previous research has extensively explored how 043

different fine-tuning datasets impact the factuality 044

of LLMs. For example, Gekhman et al. (2024); 045

Kazemi et al. (2023) draw empirical conclusions, 046

summarizing and analyzing the factors of data char- 047

acteristics, especially unknown knowledge, in fine- 048

tuning. Joshi et al. (2024) propose a ’Persona’ hy- 049

pothesis to explain how fine-tuning affects factual- 050

ity, while Ghosal et al. (2024) attempts to explain 051

the cause of this factuality gap from the perspective 052

of changes in attention distribution during the fine- 053

tuning process. In this work, however, we find that 054

this factuality gap is highly fragile. Modifying the 055

inference-stage prompt, such as through few-shot 056

examples (Brown et al., 2020) or chain-of-thought 057

(CoT) (Wei et al., 2022b), can significantly reduce 058

or even reverse the gap. Our work suggests that the 059

factuality gap requires further investigation and a 060

deeper understanding. 061

To gain a deeper understanding of the factuality 062

gap caused by fine-tuning data, we pose the fol- 063

lowing three intriguing research questions: RQ1: 064

What is the impact of unknown knowledge on the 065

factuality of large language models? RQ2: Does 066

this factuality gap always exist? RQ3: Can the 067

factuality gap be easily mitigated? To address 068

these questions, we design a series of experiments. 069

We select two types of models, the LLama-3.1-8B 070
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(Dubey et al., 2024) and Mistral-7B-v0.3 (Jiang071

et al., 2023), in both their Base and Instruct ver-072

sions, and conduct experiments on two task cate-073

gories: question answering (QA) and open-ended074

generation. These experiments allow us to answer075

the above questions. After that, we attempt offer076

insights to explain the related phenomena we have077

observed, including some hypotheses and theoret-078

ical derivations. Our main contributions can be079

summarized as follows:080

• Through extensive experiments, we validate the081

factuality gap caused by fine-tuning on unknown082

knowledge and confirm it diminishes as the test083

set’s distribution distance increases084

• We identify an effective method to mitigate the085

factuality gap by carefully designing prompts dur-086

ing the inference stage. Our findings emphasize087

the crucial role of prompt design in the parame-088

terized extraction of factual knowledge.089

• Building on our observations, we conduct an in-090

depth analysis of the factuality gap and offer a091

deeper understanding from the perspective of at-092

tention patterns.093

2 Related Works094

2.1 Factual Knowledge Extraction in LLM095

LLMs store extensive world knowledge within096

their parameters, and ineffective extraction is a ma-097

jor cause of model hallucinations (Kandpal et al.,098

2023; Mallen et al., 2023). Therefore, understand-099

ing knowledge extraction is crucial for improving100

LLM efficiency and performance. Allen-Zhu and101

Li (2024) integrates pretraining and fine-tuning to102

highlight the importance of data augmentation for103

extractable knowledge. Yin et al. (2024) introduces104

the concept of a knowledge boundary, where knowl-105

edge that cannot be correctly accessed under any106

expression is considered outside the model’s bound-107

ary. While prior work focuses on either pretraining108

and fine-tuning phases or extraction during infer-109

ence, our study combines both model fine-tuning110

and inference to offer a more comprehensive analy-111

sis of factual knowledge extraction.112

2.2 Finetuning on Unknown Knowledge113

Encourage Hallucination114

The unknown knowledge refers to information that115

is either unpopular or unfamiliar, indicating that116

the pre-trained model has limited exposure to it or117

struggles to extract it. Recent studies have explored118

the impact of fine-tuning on such knowledge and119

its effect on model factuality. Kang et al. (2024) 120

suggest that unfamiliar examples in the fine-tuning 121

dataset affect how the model handles unfamiliar test 122

instances, but they do not address how these exam- 123

ples influence the overall factuality of the model. 124

Gekhman et al. (2024) empirically demonstrate that 125

fine-tuning on unknown knowledge negatively im- 126

pacts factuality, attributing this to overfitting on 127

such data during training. Ghosal et al. (2024) 128

show that lesser-known facts, poorly stored during 129

pretraining, lead to worse factuality compared to 130

fine-tuning on well-known facts. They also provide 131

a theoretical analysis, linking the effect to changes 132

in entity attention during fine-tuning. Building on 133

these studies, we further examine how inference- 134

stage prompts affect attention and explore the na- 135

ture of the factuality gap from a new perspective. 136

3 Preliminaries 137

3.1 Factual Knowledge 138

Definition of Factual Knowledge. We follow 139

Ghosal et al. (2024); Petroni et al. (2019b) and de- 140

compose a verbalized piece of knowledge into three 141

components: the subject entity, the relation type, 142

and the answer. This structure aligns with the for- 143

mat used in many factual knowledge benchmarks. 144

Thus, a piece of knowledge k can be simplified 145

as a triplet: k = (s, r, a), where s ∈ S, r ∈ R, 146

and a ∈ A, with S,R,A representing the sets of 147

all subject entities, relations, and answers, respec- 148

tively. For LLMs, if a model M has stored the 149

knowledge k, then given s and r, the probability 150

of the model outputting a should be close to 1: 151

PM (a | s, r) ≈ 1. 152

Knowledge Extraction is Prompt-Sensitive. 153

Factual knowledge is typically extracted in the 154

form of QA queries. The knowledge k = (s, r, a) 155

corresponds to a set of question forms Q(s, r) = 156

{f(s, r) | f ∈ F}, where F denotes various 157

prompt combinations. The question set Q is then 158

input into the model to retrieve the answer a. How- 159

ever, experience shows that not all prompt inputs 160

are able to retrieve a, as knowledge extraction is 161

prompt-sensitive. Therefore, we hypothesize that 162

if k = (s, r, a) is stored in the model M , then 163

∀0 < ϵ < 1, ∃q1, q2 ∈ Q(s, r), PM (a | q1) > ϵ

∧PM (a | q2) < ϵ.
(1) 164
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3.2 Fine-tuning and Few-shot Learning165

Given a set of knowledge triples Dk =166

{(s, r, a)Ni }, we use a fine-tuning formatting func-167

tion fft to construct the dataset Dft = {fft(s, r), a |168

(s, r, a) ∈ Dk}. The model Mft is trained on this169

dataset. During inference, the fine-tuning formatted170

query q = fft(s, r) is used to extract knowledge. In171

the case of few-shot learning, the few-shot dataset172

is Dfew = {(q, a)i}, and in the case of few-shot173

CoT, the dataset is Dcot = {(fcot(s, r), a)i}.174

Dai et al. (2023) has already mentioned the sim-175

ilarity between few-shot learning and fine-tuning,176

both of which leverage transformer attention for177

gradient descent. Let x be the input representa-178

tion of a query token t, and WQ,WK ,WV are179

the projection matrices for computing the attention180

queries, keys, and values. We have q = WQx, and181

the form of the attention update after fine-tuning is182

given by:183

ÃFT(q) = (WV +∆WV )XXT (WK +∆WK)T q

= (WV X(WKX)T q +∆WV X(∆WKX)T q

= (WZSL +∆WFT)q.

(2)184

Where X denotes the input representations of185

query tokens, ∆WK and ∆WV represent the pa-186

rameter updates to WK and WV , respectively.187

WZSLq denotes the attention in the zero-shot learn-188

ing scenario.189

Let X ′ denote the input representations of the190

demonstration tokens. The attention update form191

in few-shot learning is:192

ÃFSL(q) = WZSLq +WV X ′(WKX ′)T q

= WZSLq + LinearAttn(WV X ′,WKX ′, q)

= WZSLq +
∑
i

WV xi

(
(WKxi)

T q
)

= WZSLq +
∑
i

((WV xi)⊗ (WKxi)) q

= (WZSL +∆WFSL) q.

(3)193

4 Impact of Unknown Knowledge on the194

Factuality of LLMs. (RQ1)195

4.1 QA tasks196

Settings. We fine-tune both the base and197

instruction-tuned versions of Llama3.1-8B 1 and198

Mistral-7B-v0.32 models on the known and un-199

known datasets constructed from Entity Questions200

1https://huggingface.co/meta-llama/{Llama-3.1-8B,
Llama-3.1-8B-Instruct}

2https://huggingface.co/mistralai/{Mistral-7B-v0.3,
Mistral-7B-Instruct-v0.3}
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Figure 2: Training process of LLaMA Base on Entity
Questions (EQ) and WikiBios.

(Sciavolino et al., 2021), PopQA (Mallen et al., 201

2023), and MMLU (Hendrycks et al., 2020), re- 202

spectively. We use the exact match accuracy metric 203

to evaluate performance. For the MMLU and En- 204

tity Questions datasets, we follow the approach of 205

Gekhman et al. (2024), utilizing few-shot learn- 206

ing to split the dataset into known and unknown 207

subsets. For PopQA, we adopt the methodology 208

of Ghosal et al. (2024), where the dataset is par- 209

titioned into two parts based on the popularity of 210

each data point. Both partitioning strategies ensure 211

that the data distribution across question categories 212

is balanced in both splits. Additionally, we ran- 213

domly sample half of each question category from 214

both splits to form a mixed dataset. More detailed 215

settings can be found in Appendix A.1. 216

Observation. The left subplot of Figure 2 shows 217

the training process of LLaMA Base on the Entity 218

Questions dataset, illustrating the general trend of 219

the QA task training process. Table 1 presents the 220

evaluation results on the evaluation dataset for mod- 221

els that reach early stopping and convergence. We 222

observe that models trained on known knowledge 223

converge more rapidly and exhibit fewer instances 224

of factuality failure compared to those trained on 225

unknown knowledge. Models trained on the mixed 226

dataset converge at a rate between the two extremes, 227

and their performance on the evaluation set is gen- 228

erally intermediate and closer to the known split. 229

The average factuality gap in early stopping set- 230

tings and convergence settings are 6.49 and 8.19 231

respectively, which indicates that the gap becomes 232

more pronounced when the model overfits to bad 233

patterns. Furthermore, comparing the average per- 234

formance gap between the Instruct and Base mod- 235

els reveals that, for both LLaMA (Base: 6.65, In- 236

struct: 5.64) and Mistral (Base: 9.66, Instruct: 237

7.43), the gap for the Instruct models is smaller 238

than that for the Base models. We hypothesize that 239

this is due to the Instruct models having undergone 240
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Benchmark Split
LLaMA LLaMA-Instruct Mistral Mistral-Instruct

ES Con. ES Con. ES Con. ES Con.
Unknow 28.25 24.80 28.75 25.00 21.15 18.00 26.00 20.90

EQ Mixed 40.70 35.85 39.65 34.70 35.90 31.15 36.25 31.20
Known 40.30 38.50 39.20 37.70 36.05 34.45 35.40 34.50

Unknown 32.45 29.55 31.80 28.90 28.15 23.80 27.30 21.85
PopQA Mixed 35.65 34.70 34.75 33.70 32.10 29.45 32.20 27.75

Known 36.05 34.35 35.15 32.60 32.85 29.90 32.60 30.00
Unknown 34.94 33.90 33.64 33.51 28.09 26.52 31.61 25.87

MMLU Mixed 36.32 35.08 34.94 34.03 33.51 31.29 33.57 30.89
Known 37.49 37.10 35.92 34.88 35.60 34.81 33.44 32.14

Table 1: QA tasks evaluation accuracy. ES: Early Stop Con.: Convergence

some fine-tuning on QA tasks, allowing them to241

learn fundamental patterns that partially mitigate242

the gap. More details are in Appendix B.243

Split
LLaMA Mistral

ES Con. ES Con.
Unknown 55.50 46.90 47.30 36.67

Mixed 59.49 48.32 50.59 38.62
Known 58.25 49.69 49.16 39.58

Table 2: FActScore of WikiBios task.

4.2 Open-ended generation task244

Settings. We follow the approach outlined by245

Kang et al. (2024) using the WikiBios(Stranisci246

et al., 2023) dataset. To avoid instruction tuning247

disturbances, we use only the base versions of the248

two model families. The experimental setup is249

similar to that of the QA task, where the dataset250

is divided into three different splits. We use the251

FActScore (Min et al., 2023) metric to evaluate252

performance. For detailed implementation, please253

refer to Appendix A.2.254

Observation. We observe a similar trend in the255

training curves and an increase in factuality failure256

when fine-tuning on unfamiliar data, as shown in257

the right subplot of Figure 2 and Table 2.258

4.3 Toy Example259

Settings. To further eliminate the potential im-260

pact of data filtering, we construct a Toy Example261

using manually created Unknown data that gen-262

uinely extends beyond the knowledge boundary263

of the LLM. We use the Llama3.3-70B-Instruct3264

3https://huggingface.co/meta-llama/Llama-3.
3-70B-Instruct

model to extract data from the EntityQuestions 265

dataset with a single query, without relying on few- 266

shot examples. We then introduce fixed-format 267

perturbations to entity tokens in the known set to 268

create unknown knowledge set, ensuring that the 269

model is unable to handle these perturbed exam- 270

ples. Additionally, we construct a mixed dataset 271

combining known and unknown data in a 1:1 ratio. 272

We fine-tune the models using LoRA, and evaluate 273

their performance on the customized test set, which 274

shares the same data type as the training set, i.e., 275

normal (known) or perturbed (unknown). More ex- 276

perimental details can be found in Appendix A.3. 277

Observation. As shown in Table 6, we observe 278

consistent gaps in factuality across models fine- 279

tuned on known, mixed, and unknown knowledge 280

sets. On the test set, the model fine-tuned on the 281

known set achieves an accuracy of 91.9%, signif- 282

icantly outperforming the mixed set (66.5%) and 283

unknown set (62%). This further confirms that 284

unknown knowledge encourages factuality failure. 285

4.4 Our answer to RQ1 286

Fine-tuning on unknown knowledge encourages 287

factuality failure, which is, in fact, a failure of in- 288

domain generalization. The extraction pattern for 289

unknown knowledge is a poor pattern, leading to 290

poor generalization. Furthermore, the strength of 291

this pattern is influenced by the training data and 292

can be adjusted by the proportion of unknown data. 293

5 Does this Kind of Factuality Gap 294

Always Exist? (RQ2) 295

5.1 Experimental Results 296

Settings. To better understand the impact of un- 297

known data on model factuality, we categorize fac- 298
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Dataset Split
LLaMA LLaMA-Instruct Mistral Mistral-Instruct

ES Con. ES Con. ES Con. ES Con.

ID eq_id
Unknow 28.25 24.80 28.75 25.00 21.15 18.00 26.00 20.90
Known 40.30 38.50 39.20 37.70 36.05 34.45 35.40 34.50

NID
eq_ood

Unknown 30.00 28.93 31.67 30.43 32.17 23.73 30.43 24.13
Known 39.03 36.60 38.17 37.03 34.83 33.00 34.17 32.43

pop_ood
Unknown 28.17 23.79 19.00 19.42 23.13 20.19 25.89 22.74

Known 32.58 32.05 27.54 25.47 28.69 27.40 29.71 28.06

OW mmlu_ood
Unknown 66.11 66.70 69.23 69.30 62.63 62.46 62.25 62.53

Known 67.05 67.09 69.51 69.47 62.98 63.54 60.74 60.70

Table 3: Generalization factuality. ID: in-distribution, NID: near in-distribution, OW: open world

tuality generalization into two types based on the299

distance between the test and training task data pat-300

terns: (1) near in-distribution generalization and301

(2) open-world model factuality. In the following,302

we examine the effects of unknown data on each303

type of factuality. We employ all-MiniLM-L6-v24304

embedding model (Reimers and Gurevych, 2019)305

to extract and process data patterns from both out-306

of-distribution (OOD) and in-distribution (ID) test307

sets. By comparing the cosine similarity between308

these patterns, we are able to measure the distance309

between OOD and ID data.310

We conduct validation experiments using mod-311

els fine-tuned on the Entity Questions dataset from312

Section 4. For near in-distribution tasks, we sam-313

ple non-overlapping data from the Entity Questions314

and PopQA datasets to create near in-distribution315

test sets, eq_ood and pop_ood. For the open-316

world task, we choose MMLU to create a com-317

plete mmlu_ood set, which provides more diverse318

data and significantly different question formats.319

The cosine similarities between eq_ood, pop_ood,320

mmlu_ood and the ID test set are 0.86, 0.82 and321

0.55 respectively. More details can be found in322

Appendix A.4.323

Observation. As shown in Table 3, Llama3.1-8B324

fine-tuned on known data consistently outperforms325

the model fine-tuned on unknown data for both326

eq_ood and pop_ood datasets. The performance327

gap is 9% on eq_ood and 4% on pop_ood with328

early stopping, and 7.5% and 8% at convergence,329

respectively. The factuality gap on mmlu_ood330

nearly disappears across all models. For instance,331

the Llama3.1-8B model fine-tuned on unknown332

data achieves a QA accuracy of 66.11% with early333

stopping, just 1% lower than the 67.05% achieved334

4https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

by the model trained on known data. At conver- 335

gence, the performance gap narrows further to 336

0.4%, with 67.09% of the known data model and 337

66.7% of the unknown data model. These findings 338

are consistent across other models. 339

Split
NID OW

eq_ood pop_ood mmlu_ood
Unknown 55.30 49.23 82.14

Mixed 54.87 49.34 81.72
Known 55.13 48.92 82.21

Table 4: Performance of Toy Example on OOD tasks at
convergence.

However, we observe that this negative impact 340

vanishes in our 70B Toy Examples, which are fine- 341

tuned with limited data. As shown in Table 4, mod- 342

els trained on both known and unknown data per- 343

form similarly on eq_ood, pop_ood and mmlu_ood, 344

with no significant differences. We hypothesize 345

that this is due to the limited training data and 346

the high capacity of the model, which prevents 347

unknown data from substantially influencing the 348

model’s knowledge extraction. 349

5.2 Our answer to RQ2 350

This kind of factuality gap does not always exist. 351

The negative impact of unknown knowledge on 352

generalization decreases as the OOD data pattern 353

becomes more distinct from the ID data. 354

6 Can the Factuality Gap be Easily 355

Mitigated? (RQ3) 356

6.1 Proper prompt at inference stage may 357

mitigate the gap 358

Settings. We select all the models and tasks from 359

Section 4. For the QA tasks, we perform inference 360

using few-shot or few-shot CoT approaches. The 361

5
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Dataset
LLaMA LLaMA-Instruct Mistral Mistral-Instruct

ES Con. ES Con. ES Con. ES Con.

E
Q U 41.55+13.3 38.95+14.2 41.00+12.3 37.40+12.4 35.35+14.2 32.95+15.0 35.25+9.25 30.05+9.15

K 43.45+3.15 42.20+3.70 41.20+2.00 40.70+3.00 38.25+2.20 37.95+3.50 33.15−2.25 32.65−1.85

PQ U 39.45+7.00 39.35+9.80 35.55+3.75 35.30+6.40 33.90+5.75 33.4+9.60 32.80+5.50 32.25+10.4

K 39.50+3.45 39.15+4.80 34.35−0.80 35.80+3.20 35.20+2.35 34.10+4.20 34.20+1.60 32.50+2.50

M
U U 54.80+19.9 54.60+20.7 64.99+31.4 65.32+31.8 55.39+27.3 55.13+28.6 58.00+26.4 60.09+34.2

K 67.60+30.1 67.86+30.8 69.30+33.4 68.84+34.0 58.46+22.9 58.39+23.6 61.07+27.6 60.94+28.8

W
B U 55.20−0.30 48.32+1.42 47.93+0.63 37.99+1.32

K 58.20−0.05 50.85+1.16 50.58+1.42 40.22+0.64

Table 5: Performance of the fine-tuned model with few-shot and few-shot CoT. EQ: Entity Questions, PQ: PopQA,
MU: MMLU, WB: WikiBios. Exact Match Accuracy for QA tasks and FactScore for WikiBios, with underlined
results for few-shot and non-underlined for few-shot CoT. The small number in the bottom right corner represents
the improvement or decline in current performance relative to the performance without using few-shot learning.

Split
Original With CoT

ES Con. ES Con.
Unknown 44.73 41.70 84.08 82.81

Mixed 63.67 59.96 87.21 87.21
Known 83.11 82.81 86.72 87.60

Table 6: Performance of Toy Example.

few-shot examples are selected from the Known362

training data, after which GPT-45 generates an anal-363

ysis of the question entity to construct the CoT for364

the given query. These examples are incorporated365

into the few-shot CoT format for inference. The366

box below is the few-shot CoT example format.367

Question:{} Analysis:{} Answer:{}
368

We selected 3 sets of examples in total and con-369

sidered two few-shot scenarios: one with CoT and370

one without. We ensure that the prompts input into371

the Known and Unknown models under the same372

conditions are exactly the same. The set with the373

best performance on the Unknown split was then374

chosen as the final outcome. For the generation375

task, we use only the few-shot learning approach,376

selecting examples in the same manner as in the377

previous case. Additionally, we also add special378

CoT to the Toy Example for verification. Detailed379

prompt design and Toy Example CoT are presented380

in Appendix C and Appendix A.3.381

Observation. Table 5 presents a comparison of382

the results obtained through few-shot or few-shot383

CoT inference after training different models on384

various datasets. We can observe that, in most385

5https://openai.com/index/gpt-4o-system-card/

cases, after using few-shot learning, the perfor- 386

mance on the Unknown split improves more signif- 387

icantly compared to the Known split. This suggests 388

that the factuality gap can be mitigated or even fully 389

eliminated. Additionally, we observe the following 390

points: 1) The gap in models with early stopping is 391

more easily mitigated. 2) The factuality gap of the 392

Instruct model is easier to mitigate than Base, espe- 393

cially in the case of Convergence. 3) In MMLU and 394

WikiBios, using few-shot learning sometimes even 395

increases the performance gap. This may be due to 396

the particularities of these two tasks compared to 397

regular QA tasks. The former is a comprehensive 398

dataset with complex and varied question formats, 399

while the latter is an open-ended generation task, 400

both of which result in a more complex factuality 401

gap pattern. 402

Results of Toy Example are shown in Table 6. 403

We observe that CoT effectively enhances model 404

testing performance and narrows the factuality gap 405

between the three 70B models. 406

6.2 Ablation study 407

To better understand the essence of how few-shot 408

learning mitigates the factuality gap, we design the 409

following ablation experiment on LLaMA Base 410

model and Entity Questions dataset. Details of 411

abalation studies can be found in Appendix D. 412

Prompt components We conduct an ablation 413

study on the composition of the prompt, separately 414

examining the selection of examples in few-shot 415

prompts and the impact of CoT. We validated the ef- 416

fectiveness of Known examples and CoT, as shown 417

in Figure 3. 418

6
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Figure 3: Ablation study of few-shot examples and CoT.
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Figure 4: Ablation study of prompt formulation.

Prompt formulation We also study the impact419

of changing the prompt format on the factuality420

gap. We use GPT-4o to rephrase these questions421

in three different formats and find that the perfor-422

mance decline in all cases, and the factuality gap423

remains large.424

6.3 Our answer to RQ3425

For parameterized knowledge, both few-shot learn-426

ing and supervised fine-tuning (SFT) are methods427

for extracting knowledge. SFT does not lead to428

the forgetting of prior knowledge, rather, it results429

in a suboptimal method for extracting knowledge.430

Moreover, in the case of unknown knowledge, the431

poor extraction patterns induced by SFT are frag-432

ile and can be adjusted back to a better extraction433

method using an appropriate prompt, such as the434

few-shot CoT approach.435

7 Exploring New Insights into Knowledge436

Extraction in Large Language Models437

7.1 Hypothesis438

Based on the experimental observations and analy-439

sis above, we propose two hypotheses:440

• Hypothesis 1. SFT does not cause forgetting by441

disrupting the knowledge storage of the LLM,442

but rather affects the model’s factuality through443

attention patterns.444

• Hypothesis 2. The attention patterns formed445

during the fine-tuning phase can be readjusted446

during the inference phase.447

7.2 Explaination 448

We selected the LLaMA Base model trained on 449

entity questions and the untrained LLaMA Base 450

model for case studies. We follow the attention 451

visualization method proposed by Ghosal et al. 452

(2024), where the previous token of the generated 453

answer is used as the query to attend to other to- 454

kens, allowing us to construct the attention map 455

for each layer. More examples can be found in 456

Appendix E. 457

Factuality gap. First, we observe the test results 458

of Unknown knowledge and Known knowledge on 459

the pre-trained model in Figure 5. It can be seen 460

that the attention on the subject entity of Known 461

knowledge is more prominent. 462
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<s>
Which

 country
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 Sen
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é

 located
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1 5 9 13 17 21 25 29

<s>
Which

 country
 is
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ay
kö
y

 located
 in

?

Figure 5: Attention maps of base model. Left: Unknown
data, subject entity is "Senorsingué". Right: Known
data, subject entity is "Sarayköy"

Based on Hypothesis 1, the attention pattern 463

determines the model’s factuality. Fine-tuning es- 464

sentially reinforces the attention pattern of the base 465

model, as shown in Figure 6. This hypothesis helps 466

explain many phenomena observed in RQ1 and 467

RQ2. 468

Referring to Equation 4, the instruct model has 469

already undergone a period of fine-tuning, so fur- 470

ther fine-tuning on QA tasks can be viewed as an 471

update to its attention: 472

ÃFT(q) = (WZSL +∆Winstruct +∆WDft)q. (4) 473

where ∆Winstruct represents the updates generated 474

by instruction tuning, while ∆WDft refers to the up- 475

dates generated by SFT on the fine-tuning dataset 476

Dft. Due to the difference in dataset size, the for- 477

mer is generally larger than the latter. Therefore, 478

the factuality gap of the instruct model is less af- 479

fected. Similarly, the gap in the convergence model 480

is larger than that in the early stop model for the 481

same reason. 482

In RQ2, self-attention fundamentally performs 483

semantic relevance computations (Vaswani et al., 484

2017) and does not disrupt the utilization of other 485
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Figure 6: Attention maps of fine-tuned models. Top:
Origin prompt. Middle: With few-shot learning. Bot-
tom: With CoT. Left: Fine-tuned on Unknown data.
Right: Fine-tuned on Known data. Subject entity is
"Soni Razdan".

knowledge. The lower the semantic relevance with486

the training dataset, the less prominent this atten-487

tion pattern becomes.488

Based on the above, we can formalize the fac-489

tuality gap referring to the definition in Section 3.490

Specifically, for a knowledge triple k = (s, r, a),491

the LLM is trained on Unknown and Known data492

to obtain MU and MK , respectively. We can get:493

∆factuality = |PMU (a | q)− PMK (a | q)|
∝ |AttnMU (Q,Ks, V )− AttnMK (Q,Ks, V )|

(5)494

Attention reallocation In RQ3, we confirm that495

knowledge extraction is prompt-sensitive. By us-496

ing carefully designed prompts, such as few-shot497

in-context learning or incorporating CoT, we can498

mitigate the pattern differences caused by the train-499

ing data, as shown in Figure 6. For the Toy Exam-500

ple, using a specialized CoT can also correct the501

attention of the model trained on Unknown data, as502

shown in Figure 7.503

For few-shot learning, its principle has been ex-504

plained in 3 and can be described as:505

ÃFT(q) = (WZSL +∆WDft +∆WDfew)q. (6)506

When ∆WDfew can eliminate the effect of ∆WDft ,507

the factuality gap can be mitigated.508

For CoT, on one hand, the attention becomes509

sparser after adding CoT, where, in the demonstra-510

tion, the answer tends to have stronger associations511

with tokens that are more strongly related, specif-512

ically the tokens corresponding to the subject en-513

tity. On the other hand, the analysis also shows514
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Figure 7: Attention maps of Toy Example. Top: Origin
prompt. Bottom: With CoT. The subject entity without
garbled text is "Ernest Edward Austen".

an increased frequency of occurrence of the sub- 515

ject entity token. This can be explained from both 516

aspects. 517

8 Conclusion 518

In this paper, we conduct an in-depth exploration 519

of the factuality gap caused by fine-tuning. We 520

study the factors that influence the emergence of 521

the factuality gap, the generalization of the factual- 522

ity gap, and methods for mitigating the factuality 523

gap. Based on the analysis of these experimental 524

phenomena, we find that the essence of the fac- 525

tuality gap is an attention pattern. This pattern, 526

formed during the fine-tuning phase, can be modi- 527

fied through in-context learning, thereby influenc- 528

ing the factuality gap. In summary, this paper offers 529

a new understanding of LLM factuality and pro- 530

vides novel insights into model reliability and the 531

application of models in downstream tasks related 532

to factual knowledge. 533

9 Limitations 534

Our work is primarily empirical in nature, with rel- 535

atively underdeveloped theoretical proof aspects. 536

Future work can delve deeper into the factuality 537

gap from a theoretical perspective. Additionally, 538

the explanation of the anomalous phenomena ob- 539

served in the MMLU and WikiBios datasets in this 540

work is somewhat vague, and there is a lack of fur- 541

ther analysis regarding the differences in factuality 542

between these datasets and typical QA tasks. 543
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A Experiment Details715

A.1 QA tasks716

Data processing. For the Entity Questions task,717

we adopt the experimental framework outlined by718

Gekhman et al. (2024). Specifically, we select train719

split and dev split data from the following relation720

subsets: P131, P136, P17, P19, P26, P264, P36,721

P40, P495, P69, P740, and P800 for both training722

and evaluation purposes. The remaining relation723

subsets are reserved for out-of-distribution (OOD)724

testing, as described in Section 5. We employ a few-725

shot learning approach to classify the Unknown and726

Known datasets. Within the dev split, we randomly727

select 10 sets, each containing 4 examples, and728

apply both greedy and random sampling decoding729

methods. For random sampling, the following pa-730

rameters are used: temperature=0.5, top_p=1.0,731

top_k=40, and 16 answers are sampled. The data732

is classified as either Unknown or Known based733

on the accuracy of the greedy search and random734

sample. If at least one correct answer is obtained735

from either the greedy search or random sampling,736

the data is classified as Known.737

We perform this filtering procedure for each re-738

lation subset and subsequently use the filtered Un-739

known and Known splits to balance the data across740

categories. After filtering, the number of Unknown741

and Known samples for each of the four models742

is as follows: LLaMA Base: 28,337, LLaMA In-743

struct: 31,226, Mistral Base: 30,952, and Mistral744

Instruct: 31,335. For evaluation, we randomly se-745

lect 2,000 samples from the development dataset746

corresponding to the relation subsets used in the747

training dataset.748

For PopQA, we follow the approach of Ghosal749

et al. (2024) and divide the dataset into two parts750

based on the popularity value of the subject entity751

in each data point, denoted as "s_pop". Similar752

to Entity Questions, we perform the splitting for753

each question type individually. First, each sub-754

class dataset is randomly divided into a training755

set and an evaluation set in a 4:1 ratio. Then, the756

training set is further split into two halves to ensure757

equal distribution of each type of question. Finally,758

the Unknown and Known datasets contain 5,704759

samples, while the evaluation dataset consists of760

2,858 samples.761

For MMLU, we also adopt a few-shot learning762

approach, but with some simplifications. We di-763

rectly select 5 data points from the MMLU dev764

split as a group of few-shot examples. Apart from765

changing the number of random samples to 4, the 766

other model hyperparameters are set the same as in 767

Entity Questions. We use the test split of MMLU 768

as the training data and the val split as the evalua- 769

tion data. For the training data, we ensure that the 770

Unknown and Known datasets have the same num- 771

ber of samples by taking the smaller size from each 772

class. Finally, the number of Unknown and Known 773

samples for the four models is as follows: LLaMA 774

Base: 2,724, LLaMA Instruct: 2,730, Mistral Base: 775

2,994, Mistral Instruct: 4,128. The length of the 776

evaluation dataset is 1,531. 777

The mixed training datasets for the three models 778

are constructed by randomly selecting half of the 779

data from both the Unknown and Known subsets 780

of each class to form new datasets. 781

Training Details. We divide all the training into 782

12 groups based on the dataset and model, with 783

each group containing training on the Unknown, 784

Known, and Mixed subsets. We ensure that the 785

training parameters are exactly the same within 786

each group. 787

For all the three datasets, the training hyperpa- 788

rameters are set as follows: the batch size is 128, 789

and we use a fixed learning rate. Specifically, the 790

learning rates for LLaMA Base and LLaMA In- 791

struct are set to 1e-5, while for Mistral Base and 792

Mistral Instruct, the learning rate for Entity Ques- 793

tions is 5e-6, and for the other datasets, it is set 794

to 1e-6. No additional regularization methods are 795

used during training. The training for all three 796

datasets used the model with the best accuracy on 797

the evaluation set as the early stop model, and the 798

model whose loss converged after completing all 799

epochs is considered the Convergence model. 800

For the Entity Questions dataset, all models are 801

trained for 20 epochs. For PopQA, the LLaMA 802

models are trained for 15 epochs, and the Mistral 803

Base and Mistral Instruct models are trained for 804

30 and 35 epochs, respectively. For MMLU, the 805

LLaMA models are trained for 15 epochs, and the 806

Mistral models are trained for 30 epochs. 807

Additionally, for the SFT process prompt, the 808

PopQA dataset use the original questions and an- 809

swers, while the question prompt format for the 810

Entity Questions dataset is as follows: 811

Answer the following question.\n Who is
Caitlin Thomas married to?

812

The question prompt format for the MMLU 813

11



dataset is as follows:814

The following is a multiple choice question,
paired with choices. Answer the question
in format: ’Choice:content’.\n\n### Ques-
tion:\nThe cyclic subgroup of Z_24 generated
by 18 has order\n\n### Choices:\nA) 0 B) 4
C) 2 D) 6 \n\n### Answer:\n

815

Evaluation Details. We use Exact Match as the816

metric to measure the model’s evaluation accuracy.817

During testing, the prompt format of the questions818

is the same as during training. The model during819

testing uses the greedy search decoding method820

with a max_token value of 10.821

A.2 Open-ended generation tasks822

Data processing. We utilize the WikiBios (Kang823

et al., 2024) data directly, randomly selecting 2,000824

entries as the training set and 500 entries as the825

evaluation dataset. For the training set partition, we826

also employ a few-shot learning approach. In the827

evaluation set, we select 4 examples and used the828

random sample decoding method to sample two an-829

swers, with max_token=32. The remaining decod-830

ing parameters are the same as in Entity Questions.831

To assess the accuracy of the answers, we employed832

the FActScore metric. The GPT model used for833

this task is gpt-3.5-turbo-0125, with raw scores834

and no penalties applied for the num_fact parame-835

ter. Each data point is evaluated individually, and836

the average of the two sampled answers is taken.837

Based on the resulting FActScore, the training set is838

then divided into two parts: the higher-scoring sub-839

set is classified as Known, while the lower-scoring840

subset is classified as Unknown.841

Training Details. The dataset is trained only on842

LLaMA Base and Mistral Base, with a batch size of843

128 and a fixed learning rate of 1e-5. No additional844

regularization methods are used. Training stops845

when the loss converged to below 0.01, and this846

model is considered the Convergence Model. The847

model with the lowest evaluation loss is selected as848

the early stop model.849

Evaluation Details. We used FActScore as the850

evaluation metric, with the same data processing851

settings as described above.852

A.3 Toy Example 853

For our Toy Example, we utilized the Llama3.3- 854

70B-Instruct6 model, incorporating data sampled 855

from the EntityQuestions dataset. 856

Data processing. We employ the Llama3.3-70B 857

model to construct the Known knowledge set by 858

querying the model with the original questions. To 859

each question, we append the phrase "Answer the 860

following question." before the question itself to 861

form a complete query, without relying on addi- 862

tional few-shot examples. Specifically, we apply 863

a greedy sampling method, limiting the model’s 864

output to a maximum of 10 tokens, and verified 865

whether the ground truth answer is present in the 866

model’s response. If the ground truth answer is 867

included, we identifiy the subject words in the ques- 868

tion. For each subject word longer than two letters, 869

we introduce a fixed perturbation, "$&". For sub- 870

ject words of three letters, the perturbation is in- 871

serted after the first letter. For subject words longer 872

than three letters, the perturbation is applied before 873

the second letter. The modified question is then re- 874

entered into the model to ensure that the resulting 875

response did not contain the answer to the original 876

question, and regarded as the Unknown knowledge. 877

Below is an example of our known and unknown 878

set consturction, using the real question from re- 879

lation P26. The question in this case is “Who is 880

Caitlin Thomas married to?”, and the ground truth 881

answer is “Dylan Thomas”. The subject words in 882

the question is “Caitlin Thomas”. 883

Q: Answer the following question.\n Who is
Caitlin Thomas married to?
A: Caitlin Thomas.
Modified: Answer the following question.\n
Who is C$&aitl$&in T$&hom$&as married
to?
A: Rio de Janeiro.

884

We combine the following relations from the En- 885

tityQuestion dataset: P131, P136, P17, P19, P26, 886

P264, P36, P40, P495, P69, P740, and P800, result- 887

ing in a training set of 2,000 data entries and a test 888

set of 1,000 for the Known, Unknown and Mixed 889

dataset. We ensure that the ratio of known to un- 890

known data in the Mixed dataset is 1:1, with the 891

Unknown data derived from the Known data. No- 892

tably, the data in the Mixed dataset does not overlap 893

6https://huggingface.co/meta-llama/Llama-3.
3-70B-Instruct
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with the Known or Unknown datasets.894

Training Details. During the training of the Toy895

Example, we use a learning rate of 2e-5, a batch896

size of 128, and a weight decay of 0. We apply a897

cosine learning rate scheduler with a warm-up of898

64 steps. We use the training data template detailed899

in Appendix A.1, and trained the model for a total900

of 50 epochs on an 8×6000 Ada 48G setup.901

Toy Example CoT prompt. To mitigate the902

performance gap caused by fine-tuning on differ-903

ent data filters, we employ the following Chain-904

of-Thought (CoT) prompt to guide the model in905

reasoning and answering the questions.906

Ignore all the special characters in the follow-
ing question. Think step by step. First, clean
all special characters in the question. In this
step, you might see some unicode characters
in foreign languages. Next, rethink the cleaned
question. Finally, give the detailed answer of
the cleaned question with short explanation.

907

A.4 Generalization908

For near in-distribution tasks, We follow Gekhman909

et al. (2024) and sample non-overlapping data910

from the remaining relation subsets of the Entity911

Questions with 3000 data points to create near912

in-distribution test set eq_ood.We use the entire913

PopQA evaluation dataset as near in-distribution914

test sets pop_ood. The cosine similarities between915

eq_ood, pop_ood, and the ID test set are 0.86 and916

0.82, respectively. For the open-world task, we917

choose MMLU, which provides more diverse data918

and significantly different question formats. We se-919

lect 50 samples from each of the 57 MMLU tasks920

to create a complete mmlu_ood set. After embed-921

ding, the cosine similarity between mmlu_ood and922

the ID test set is 0.55.923

B Train Acc Curves924

The training accuracy curve for all QA tasks is925

shown in Figure 9, while the training loss curve for926

the generation task is shown in Figure 8.927

C Prompt Design Details928

For few-shot learning, we select examples from the929

Known split. Considering the length and effective-930

ness of the examples, 4 examples were selected931

from PopQA and Entity Questions, while 3 exam-932

ples were selected from MMLU. We used GPT-4 to933
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Figure 8: Training loss of generation task

generate the CoT prompts for each type of task. For 934

each dataset, we input the few-shot learning exam- 935

ples and generate the CoT instructions according to 936

the question type, thus obtaining the corresponding 937

few-shot CoT prompt for each question type. The 938

instructions for each dataset are as follows: 939

Entity Questions, PopQA: Follow the few
shot Chain of Thought example format: Ques-
tion:{} Analysis:{} Answer:{} to modify the
format and generate analysis of the entity in
each question of the QA pairs below. The anal-
ysis should describe the related information of
the entity shortly in the question in order to
lead to the answer:

940

MMLU: ’Follow the few-shot Chain of
Thought example format: Question:{}
Choices:{} Analysis:{} Answer:{} to modify
the format and generate analysis of the critical
entity in each multiple choice question below.
The analysis should describe the related
information of the entity in the question
shortly in order to lead to the answer:\n

941

D Abalation Study Details 942

For the selection of few-shot learning examples, 943

Table 7 shows the test results for all Unknown ex- 944

amples. The testing of Unknown examples is the 945

same as for Known examples, where 3 sets are 946

randomly selected from the corresponding dataset, 947

with each set containing 4 examples. The set with 948

the best performance is then chosen. As for the 949

results using only Known examples in Table 8, it 950

can be observed that for most models, the factuality 951

improves when using Known examples. 952

For the ablation experiment of CoT, the results 953

using only few-shot learning and those with the 954

addition of CoT are shown in Table 8 and Table 955
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Figure 9: Training accuracy of QA tasks

9, respectively. By comparing the results, we can956

observe the differences between the models with957

and without CoT. We find that the factuality of the958

models trained on PopQA and Entity Questions959

improves, while the results on MMLU are more960

unstable and sometimes do not show any improve-961

ment with the addition of CoT. We hypothesize that962

this may be due to CoT causing the text to become963

too long, leading to a performance degradation.964

For the ablation experiment on the variation of965

question formats, we used GPT-4 to rephrase 2,000966

data points from the Entity Questions evaluation967

dataset three times. The instructions for the three968

rephrasings are as follows:969

Please rephrase this question with Minor Dif-
ference. Just return the rephrased question
without additional word.
Please rephrase this question with Moderate
Difference. Just return the rephrased question
without additional word.
Please rephrase this question with Radical Dif-
ference. Just return the rephrased question
without additional word.

970

E Attention Visualization 971

Two additional questions are added to visualize at- 972

tention in three different cases. The two questions 973

are: "Which country is Valea Coacăzei River lo- 974

cated in?" and "Where was Margaret Mwanakatwe 975

born?". The attention maps are shown in Figures 976

10 and 11, respectively. 977
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Benchmark Split
LLaMA LLaMA-Instruct Mistral Mistral-Instruct

ES Con. ES Con. ES Con. ES Con.

EQ
Unknow 36.60 29.60 33.25 26.20 26.55 18.50 30.95 19.20
Known 41.45 39.55 39.45 37.55 33.80 33.75 32.55 32.80

PopQA
Unknown 30.95 29.55 28.85 27.30 31.25 30.55 31.10 30.40

Known 34.50 33.15 32.05 31.80 33.60 33.10 32.75 31.45

MMLU
Unknown 54.02 53.43 64.34 64.14 54.02 53.63 55.26 55.45

Known 66.62 66.69 66.95 66.75 56.89 57.09 59.70 59.96

WikiBios
Unknown 54.18 48.62 48.24 38.18

Known 54.81 50.63 48.54 36.48

Table 7: Few-shot learning with Unknown examples

Benchmark Split
LLaMA LLaMA-Instruct Mistral Mistral-Instruct

ES Con. ES Con. ES Con. ES Con.

EQ
Unknow 39.10 32.10 37.65 34.40 22.85 17.60 32.05 21.25
Known 41.75 39.90 39.80 37.80 31.40 30.15 33.05 33.90

PopQA
Unknown 33.60 32.25 31.80 29.05 33.90 33.25 32.80 31.60

Known 36.10 34.75 32.10 31.80 35.20 34.50 34.20 33.35

MMLU
Unknown 54.80 54.60 64.99 65.32 55.39 55.13 56.24 56.43

Known 67.60 67.86 69.30 68.84 58.46 58.39 60.48 60.74

WikiBios
Unknown 53.72 47.03 47.93 35.53

Known 55.61 50.09 50.58 38.97

Table 8: Few-shot learning with Known examples

Benchmark Split
LLaMA LLaMA-Instruct Mistral Mistral-Instruct

ES Con. ES Con. ES Con. ES Con.

EQ
Unknow 41.55 38.95 41.00 37.40 35.35 32.95 35.25 30.05
Known 43.45 42.20 41.20 40.70 38.25 37.95 33.15 32.65

PopQA
Unknown 39.45 39.35 35.55 35.30 33.05 33.40 32.55 32.25

Known 39.50 39.15 34.35 35.80 34.70 34.10 33.95 32.50

MMLU
Unknown 45.79 47.35 64.34 64.01 53.04 53.49 58.00 60.09

Known 56.56 56.83 65.12 65.45 56.50 58.13 61.07 60.94

Table 9: Few-shot learning with CoT
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Figure 10: Attention maps of fine-tuned models. Top: Origin prompt. Middle: With few-shot learning Bottom:
With CoT. Left: Fine-tuned on Unknown data. Right: Fine-tuned on Known data. Subject entity is "Valea Coacăzei
River".
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Figure 11: Attention maps of fine-tuned models. Top: Origin prompt. Middle: With few-shot learning Bottom:
With CoT. Left: Fine-tuned on Unknown data. Right: Fine-tuned on Known data. Subject entity is "Margaret
Mwanakatwe".
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