

000 001 002 003 004 005 LEVERAGING PRE-TRAINED TACIT MODEL FOR 006 EFFICIENT MULTI-AGENT COORDINATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

011 Exploration inefficiency caused by large policy spaces is a common challenge in
012 multi-agent reinforcement learning. Although incorporating prior knowledge has
013 been demonstrated to improve exploration efficiency, existing methods typically
014 model it as intrinsic rewards, which may violate potential-based conditions, lead-
015 ing to policy deviation and hindering optimal policy learning. To address this, we
016 propose a novel two-phase multi-agent learning framework, **PTMC** (Pre-training
017 Tacit Model for efficient Coordination), comprising pre-training and coordinated
018 training phases. In the pre-training phase, PTMC conducts decentralized agent
019 training by integrating general prior knowledge through tacit rewards, while en-
020 hancing model scalability by masking opponent information. During the coor-
021 dinated training phase, coordinated policy is initialized as the pre-trained tacit
022 model, and a tacit constraint term is incorporated into the optimization objective
023 to preserve advantageous tacit behaviors while enabling task-specific adaptation.
024 It is worth emphasizing that the pre-training phase of PTMC is highly efficient,
025 constituting only a minor fraction of the total training time compared to the coor-
026 dinated training. Experimental results demonstrate that our approach significantly
027 outperforms state-of-the-art baselines in terms of both coordinated performance
028 and exploration efficiency.

029 1 INTRODUCTION 030

031 Multi-agent reinforcement learning (MARL) has drawn increasing attention for addressing multi-
032 agent coordination tasks (Cacciamani et al., 2021; Yuan et al., 2023). In contrast to single-agent
033 settings, the presence of multiple agents leads to exponential growth of the joint state-action space,
034 thus vastly expanding the policy space (Zhang et al., 2024; Chai et al., 2024). This makes efficient
035 exploration a critical issue for policy optimization in MARL.

036 A common strategy to mitigate exploration inefficiency is to regularize the learning process by
037 incorporating prior knowledge. For instance, existing studies introduce appropriate handcrafted
038 rewards to supplement the environment reward (Jo et al., 2024; Hou et al., 2025; Li et al., 2024).
039 By forming such a composite reward function, agents are guided toward exploring more meaningful
040 policy spaces, which reduces the search space and improves training efficiency. To preserve the
041 optimal policy when applying reward shaping, a necessary condition is that the shaping reward be
042 expressible as the difference in potential function values between consecutive states (i.e., potential-
043 based reward shaping). Other transformations of the reward function may alter the relative values of
044 state-action pairs and lead to suboptimal policies (Ng et al., 1999; Mannion et al., 2017).

045 However, in most tasks we possess form of common-sense prior knowledge rather than domain-
046 specific prior knowledge. Such common-sense knowledge typically cannot be directly applied
047 to complete the task but instead serves to facilitate task completion. Consequently, incorporating
048 general prior knowledge—whether common-sense or domain-specific—into training as a potential-
049 based shaped reward remains highly challenging. This raises a critical question: *How can we effec-
050 tively integrate such general prior knowledge into the learning process while preserving the pursuit
051 of an optimal policy, thereby enhancing exploration efficiency?*

052 To address the challenge of inefficient exploration in MARL, we introduce **Pre-training Tacit Model**
053 for efficient **Coordination (PTMC)**, a novel framework that provides a method for incorporating
general prior knowledge into the learning process. Inspired by spontaneous tacit coordination in

teamwork (Reber, 1989; Tee & Karney, 2010), we refer to the general prior knowledge as *tacit consensus* among agents and construct the corresponding tacit reward function accordingly. In the pre-training phase, agents are trained in a decentralized manner under the guidance of tacit reward, efficiently yielding a tacit model with minimal computational cost. During the subsequent coordinated training phase, the pre-trained tacit model is used both to initialize the coordinated policy and to incorporate a tacit constraint term into the optimization objective. Collectively, the two-phase framework facilitates efficient policy discovery and promotes stable cooperation among agents.

Our main contributions are three-fold: (1) We formalize the notion of “tacit consensus” and construct a corresponding tacit reward with semantic interpretation and formal definition, enabling the incorporation of general prior knowledge into learning process. (2) We propose a tacit pre-training mechanism for MARL, where single-agent training is guided by the tacit reward to produce tacit behavior, with model scalability enhanced by masking opponents information. (3) Within the centralized coordinated training phase, we integrate a tacit constraint term into the optimization objective, allowing the policy to selectively retain beneficial tacit behaviors.

Empirically, we evaluate PTMC on challenging StarCraft II micromanagement tasks (Samvelyan et al., 2019; Ellis et al., 2024) and Predator–Prey scenarios. PTMC outperforms baseline methods in both coordinated performance and training efficiency. Ablation studies validate the contribution of each component, and visualizations reveal that PTMC exhibits improved exploration efficiency.

2 RELATED WORK

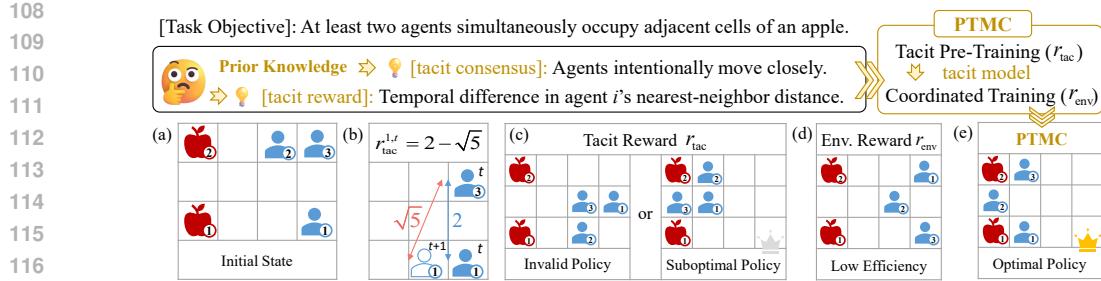
In MARL, the expansive joint state-action space leads to a vast policy space, resulting in inefficient exploration. In single-agent reinforcement learning, this issue is often mitigated through warm-starting or regularizing the learning process using prior knowledge (Taiga et al., 2023; Schwarzer et al., 2021; Nair et al., 2020; Ramrakhya et al., 2023; Bruce et al., 2023; Zhou et al., 2023). Recent works extend this idea to MARL by introducing intrinsic motivation to augment environment rewards during training (Zheng et al., 2021; Li et al., 2024; Jeon et al., 2022). For example, FoX (Jo et al., 2024) introduces formation-based rewards to guide exploration towards meaningful states under specific formations. E2M (Hou et al., 2025) employs intrinsic motivation to encourage exploration while avoiding overly conservative policies. However, such handcrafted rewards may violate potential-based reward conditions, undermining convergence guarantees and impeding optimal policy learning (Ng et al., 1999; Mannion et al., 2017). To this end, we propose a pre-training mechanism that introduces general prior knowledge to avoid convergence risks.

Existing pre-training approaches in MARL primarily focus on acquiring shared knowledge to facilitate online fine-tuning across multiple downstream tasks (Meng et al., 2023b; Wang et al., 2025). For example, M3 (Meng et al., 2023a) learns transferable high-level policy representations and integrates them into subsequent training, while recent work extends this idea by leveraging diverse reward-level data to pre-train policies with broader applicability (Meng et al., 2024). However, these paradigms typically depend on similar data sources and environment rewards, limiting the incorporation of diverse information such as common-sense prior knowledge. To address this, we introduce tacit reward functions to encode prior knowledge for decentralized pre-training, followed by centralized coordinated training to learn efficient policies. In contrast to conventional pre-training methods that rely on large-scale data (Baker et al., 2022; Pertsch et al., 2021; Fan et al., 2022), our approach focuses on simpler single-agent tasks and requires significantly fewer training steps.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

The multi-agent coordinated task can be formalized as a Decentralized Partially Observable Markov Decision Process (Dec-POMDP) (Oliehoek et al., 2016), defined by the tuple $G = \langle N, \mathbb{S}, \mathbb{O}, \mathbb{A}, P, \mathbb{R}, \gamma \rangle$. Here, N denotes the set of agents with $n = |N|$, \mathbb{S} is the global state space. $\mathbb{O} = \{o_i\}_{i=1}^n$ is the joint observation space, where o_i is the local observation of agent i . The joint action space is $\mathbb{A} = \{a_i\}_{i=1}^n$, comprising individual actions of each agent. In most multi-agent benchmarks, agents share a common environment reward $r^t = \mathbb{R}(s^t, \mathbf{a}^t)$. The environment reward is determined by the transition function $P(s^{t+1}|s^t, \mathbf{a}^t)$ based on the change in global state and joint



118 Figure 1: A toy example illustrating of tacit consensus formation and tacit reward design in multi-
119 agent coordination tasks. (a) Initial positions of agents and apples, and the environment reward is
120 provided for the successful capture of an apple. (b) Using agent 1 as an example, its tacit reward $r_{\text{tac}}^{1,t}$
121 is computed as the temporal difference in distance between agent 1 and agent 3. (c) Training solely
122 with tacit reward may yield invalid or suboptimal policies. (d) Training solely with environment
123 reward results in inefficient policy learning. (e) By leveraging the tacit model, PTMC integrates
124 both rewards and accelerates convergence toward the optimal policy.

125 action \mathbf{a}^t . The discount factor $\gamma \in [0, 1)$ determines the weight of future rewards. In MARL, each
126 agent learns a policy $\pi_\theta(a_i|o_i)$ that maps its local observation o_i to an action a_i , aiming to maximize
127 the expected cumulative discounted reward:

$$J(\theta) = \mathbb{E}_{\pi_\theta} \left[\sum_{t=0}^{\infty} \gamma^t \cdot R(s^t, \mathbf{a}^t) \right]. \quad (1)$$

3.2 KEY CONCEPTS AND DEFINITIONS

132 In multi-agent coordinated tasks, agents can improve efficiency by leveraging shared prior knowl-
133 edge toward collective objectives. We term the shared understanding of prior knowledge among
134 multi agents as *tacit consensus*. Building on this concept, we construct the corresponding *tacit re-
135 ward* function and provide a method for deriving tacit rewards from tacit consensus. Specifically,
136 tacit consensus typically entails an *advantageous configuration* C_{adv} , representing a specific agent
137 formation that yields a cooperative advantage. Depending on tasks, the *configuration* C can mani-
138 fest as either a particular spatial arrangement, a temporal sequence of actions among agents, or both.
139 During training, the configuration of agent i at time t is denoted by C_i^t . The distance between C_i^t
140 and C_{adv} is quantified as configuration distance. The tacit reward r_{tac} for each agent is then con-
141 structed from the temporal change in configuration distance, quantifying the extent to which agent's
142 behavior converges toward C_{adv} . Formally, the tacit reward is defined as:

$$r_{\text{tac}}^{i,t} = \|C_i^t - C_{\text{adv}}\| - \|C_i^{t+1} - C_{\text{adv}}\|, \quad (2)$$

143 where $\|\cdot\|$ represents a general configuration distance metric.

144 The behaviors learned under the guidance of this tacit reward are defined as *tacit behaviors*. Al-
145 though agents make decisions independently, their tacit behaviors collectively foster coordinated
146 team behavior—precisely the outcome that tacit consensus is intended to achieve. Importantly, tacit
147 consensus can be derived from either domain-specific prior knowledge or common-sense priors.
148 Moreover, the approach we describe is not the only method for deriving tacit rewards from tacit
149 consensus; alternative methods can also be integrated into the overall framework.

3.3 A TOY EXAMPLE

150 To further clarify the concept of tacit consensus and illustrate how it is formed, we provide a con-
151 crete example, as shown in Figure 1. In this task, the evident prior knowledge is that agents can
152 accomplish the objective more efficiently by moving closer to each other. Building on this insight,
153 we derive the tacit consensus and corresponding tacit reward for this task, as illustrated in Figure 1.
154 Moreover, tacit rewards can also be constructed by defining the task's advantageous configura-
155 tion C_{adv} . At time t , the distance between agent i and its nearest teammate is defined as C_i^t .
156 Consequently, the tacit reward $r_{\text{tac}}^{i,t}$ is formulated as the temporal reduction in the distance to C_{adv} .

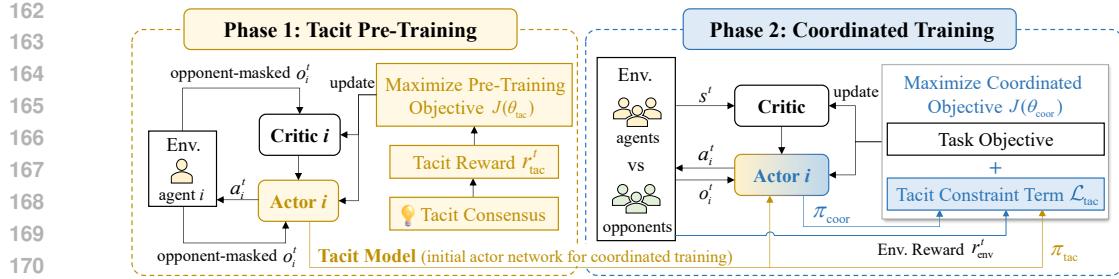


Figure 2: The overall PTMC framework. The colored arrows and blocks depict processes and modules unique to PTMC.

It is important to emphasize that the objective of tacit consensus is not fully aligned with original task objective. For example, reducing pairwise distances among agents is a necessary but insufficient condition for task completion. Relying solely on tacit rewards may cause deviation from the task objective, leading to invalid or suboptimal policy (Figure 1(c)), whereas relying only on environment rewards causes inefficient exploration (Figure 1(d)). Our method combines both, using tacit reward as auxiliary guidance to accelerate convergence toward the optimal policy (Figure 1(e)).

4 METHOD

This section presents the proposed method, PTMC, a learning framework that enhances coordination efficiency in multi-agent settings by leveraging prior knowledge. As shown in Figure 2, PTMC comprises two training phases. In the decentralized tacit pre-training phase, agents are trained individually while masking opponent-related information, yielding tacit behaviors that generalize across diverse coordinated scenarios. In the centralized coordinated training phase, we introduce a tacit constraint term into the optimization objective, defined as the product of a binary gating function and a deviation regularization term. This constraint is incorporated to selectively leverage the beneficial coordination encoded in the pre-trained tacit model, promoting efficient learning of high-return coordinated policies.

4.1 TACIT PRE-TRAINING

Under the decentralized training paradigm, the tacit reward guides agent toward efficient tacit behaviors, facilitating the integration of prior knowledge. A simple yet effective masking strategy is employed to train the tacit policy independently of specific opponent settings. Additionally, a “tacit metric” is introduced to quantify the degree of tacit behavior acquisition, enabling adaptive termination of the pre-training phase.

4.1.1 MASK OPPONENTS INFORMATION.

To facilitate the learning of tacit behavior among agents and ensure that the resulting tacit policy is opponent-agnostic, we define the policy of agent i during the tacit pre-training phase as:

$$\pi_i^{\text{tac}} \triangleq \pi_i^{\text{tac}}(a_i \mid f_{\text{mask}}(o_i), h_{\text{mask}}(\tilde{\mathcal{A}}_i); \theta_{\text{tac}}). \quad (3)$$

Here, the opponent-related components are masked in agent i 's observation space o_i and executable action space \mathcal{A}_i . The masking functions f_{mask} and h_{mask} are given by:

$$f_{\text{mask}}(o_i) \equiv f_{\text{mask}}([o_i^{\text{ag}}, o_i^{\text{op}}]) \equiv [o_i^{\text{ag}}, 0], \quad (4)$$

$$h_{\text{mask}}(\tilde{\mathcal{A}}_i) = h_{\text{mask}}\left(\left[\tilde{\mathcal{A}}_i^{\text{ag}}, \tilde{\mathcal{A}}_i^{\text{op}}\right]\right) = \left[\tilde{\mathcal{A}}_i^{\text{ag}}, 0\right], \quad (5)$$

where o_i is partitioned into two subsets: $o_i = o_i^{\text{ag}} \cup o_i^{\text{op}}$. o_i^{ag} denotes agent i 's own state and its local observations of allied agents, and o_i^{op} contains local observations of opponents. Similarly, \mathcal{A}_i is divided as $\mathcal{A}_i = \mathcal{A}_i^{\text{ag}} \cup \mathcal{A}_i^{\text{op}}$. $\mathcal{A}_i^{\text{ag}}$ represents executable actions related to the agent i and its allies (e.g., movement), and $\mathcal{A}_i^{\text{op}}$ includes executable actions that interact with opponents (e.g., attack).

216 By masking opponent-related components during pre-training, the resulting tacit policy acquires
 217 opponent-agnostic coordination skills, improving adaptability during subsequent coordinated train-
 218 ing. For instance, in the task presented in “A Toy Example” section, the tacit behavior learned during
 219 pre-training remains effective despite variations in the number or positions of apples.
 220

221 4.1.2 TACIT PRE-TRAINING OBJECTIVE.

223 During the tacit pre-training phase, each agent’s tacit policy model is trained under the decentralized
 224 training paradigm (e.g., IPPO or IQL), where agents rely only on local observations and thus struggle
 225 to learn global coordinated behaviors. To address this, we design a tacit reward function r_{tac} to
 226 incorporate global state information, allow agents to access information beyond their observation
 227 ranges, and thereby promote effective tacit coordination. Specifically, $r_{\text{tac}}^{i,t}(s^t, s_i^{t+1})$ is defined
 228 using a counterfactual global state s_i^{t+1} , where agent i ’s state is updated while all allied agents’ state
 229 remain as in s^t . This design ensures that the reward captures only the impact of agent i ’s action,
 230 isolated from the influence of other agents.
 231

232 For environments with homogeneous teammates, we adopt parameter sharing and optimize a single
 233 policy parameterized by θ_{tac} . In tacit pre-training, the optimization objective is to maximize:

$$234 J(\theta_{\text{tac}}) = \mathbb{E}_{\pi_{\text{tac}}} \left[\frac{1}{n} \sum_{t=0}^{\infty} \sum_{i=1}^n \gamma^t r_{\text{tac}}^{i,t}(s^t, s_i^{t+1}) \right]. \quad (6)$$

235 Although both phases employ multi-agent algorithms, tacit pre-training is essentially single-agent
 236 learning, without opponent-induced variability, whereas coordinated training involves multi-agent
 237 interactions. Due to these factors, the tacit pre-training phase exhibits lower learning complexity,
 238 requiring fewer training steps than coordinated training.
 239

240 4.1.3 TERMINATION CRITERIA.

241 To quantitatively evaluate the real-time effectiveness of tacit pre-training and determine its termina-
 242 tion point, we introduce the *tacit metric* M_{tac} . In each training episode, a batch of test trajectories
 243 is sampled, and M_{tac} is computed by accumulating over the samples in the batch as follows:
 244

$$245 M_{\text{tac}} = \frac{1}{N} \sum_{t=0}^{N-1} H(r_{\text{tac}}^t), \quad (7)$$

246 where $H(\cdot)$ denotes the Heaviside step function, r_{tac}^t is the tacit reward obtained under policy π_{tac}^t ,
 247 and N represents the total number of samples in the test batch.
 248

249 Throughout tacit pre-training phase, M_{tac} is monitored to evaluate the degree of tacit behavior
 250 acquisition. Once it exceeds a predefined threshold M_{tac}^* , the tacit pre-training process is terminated,
 251 indicating that agents have acquired the coordination capability required for tacit behaviors.
 252

253 4.2 COORDINATED TRAINING

254 During the centralized coordinated phase, the pre-trained tacit policy initializes coordinated policy
 255 learning, enabling agents to develop coordination skills efficiently. To facilitate this process, we
 256 incorporate a tacit constraint term into the optimization objective, guiding policy updates to selec-
 257 tively preserve beneficial tacit behaviors. Within this module, a binary gating function activates the
 258 deviation regularization term only when harmful drift from tacit coordination is detected, ensuring
 259 that corrections are applied adaptively while maintaining useful tacit behaviors.
 260

261 4.2.1 COORDINATED TRAINING PROCESS.

262 During the coordinated training phase, agent i ’s policy is denoted as π_i^{coor} and initialized from the
 263 pre-trained tacit policy π_i^{tac} by setting $\theta_{\text{coor}} \leftarrow \theta_{\text{tac}}$. Unlike the critic used in tacit pre-training,
 264 which is trained on individual observations, the critic network in coordinated training is based on
 265 the global state. Coordinated training follows the Centralized Training with Decentralized Execution
 266 (CTDE) paradigm and is guided by the environment reward r_{env} , computed from joint actions.
 267

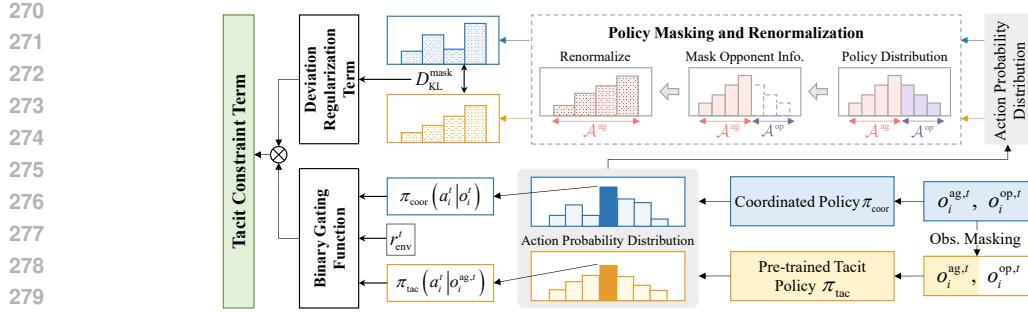


Figure 3: Detailed structure of the tacit constraint term, expressed as the product of a binary gating function and a deviation regularization term.

Although initialization with the pre-trained model incorporates tacit coordination potential, iterative policy updates may compromise the retention of its benefits. To mitigate this, we introduce a tacit regularization term \mathcal{L}_{tac} (structure shown in Figure 3) that dynamically constrains deviations between π_{coor} and π_{tac} during training. The coordinated objective is formulated as follows:

$$J(\theta_{\text{coor}}) = \mathbb{E}_{\pi_{\text{coor}}} \left[\sum_{t=0}^{\infty} \gamma^t \cdot r_{\text{env}}^t - \alpha_{\text{tac}} \cdot \mathcal{L}_{\text{tac}} \right], \quad (8)$$

$$\mathcal{L}_{\text{tac}} = G(\rho_t, \varepsilon, r_{\text{env}}^t) \cdot D_{\text{KL}}^{\text{mask}}(\pi_{\text{tac}} \| \pi_{\text{coor}}), \quad (9)$$

where α_{tac} is a hyperparameter that balances the return and the tacit constraint term, and $G(\cdot)$ is a binary gating function (taking values 0 or 1).

4.2.2 BINARY GATING FUNCTION.

To enable selective activation and adaptive adjustment during training, we introduce a binary gating function $G(\cdot)$. This function takes as input the deviation term ρ_t between the action probability distributions of π_{coor} and π_{tac} , a threshold parameter ε , and the environment reward r_{env}^t . The definition of $G(\cdot)$ is given as:

$$G(\rho_t, \varepsilon, r_{\text{env}}^t) = \begin{cases} 0, & r_{\text{env}}^t \geq 0, \\ 0, & r_{\text{env}}^t < 0 \text{ and } |\rho_t - 1| \leq \varepsilon, \\ 1, & r_{\text{env}}^t < 0 \text{ and } |\rho_t - 1| > \varepsilon, \end{cases} \quad (10)$$

A positive environment reward r_{env}^t indicates effective agent behavior, negating the need for alignment with the pre-trained tacit policy. In contrast, a negative reward reflects suboptimal actions, and we evaluate whether the suboptimal performance results from the current policy deviating from pre-trained tacit policy, by measuring the deviation of ρ_t from 1.

4.2.3 DEVIATION REGULARIZATION TERM.

The deviation regularization term $D_{\text{KL}}^{\text{mask}}(\cdot)$ quantifies the divergence between current policy π_{coor} and pre-trained tacit policy π_{tac} . During coordinated policy learning, it guides the agent toward actions that promote task completion while also encouraging behavioral alignment with the pre-trained tacit policy. It is formally defined as:

$$D_{\text{KL}}^{\text{mask}} \triangleq D_{\text{KL}}(g_{\text{mask}}(\pi_{\text{tac}}(\cdot | f_{\text{mask}}(o_i^t))) \| g_{\text{mask}}(\pi_{\text{coor}}(\cdot | o_i^t))), \quad (11)$$

where $f_{\text{mask}}(\cdot)$ masks opponent-related information as defined in Eq. (4).

Moreover, for the action probability distributions under π_{tac} and π_{coor} , actions involving opponent interactions are excluded, ensuring fair alignment since π_{tac} is not trained on such actions. The masking and renormalization function for policy, denoted as $g_{\text{mask}}(\cdot)$, is given by:

$$g_{\text{mask}}(\pi(o_i^t)) = \frac{m_i[a_i] \odot \pi(a_i | o_i^t)}{\sum_{a_i \in \mathcal{A}_i^{\text{ag}}} \pi(a_i | o_i^t)}, \quad m_i[a_i] = \begin{cases} 1, & a_i \in \mathcal{A}_i^{\text{ag}}, \\ 0, & a_i \in \mathcal{A}_i^{\text{op}}, \end{cases} \quad (12)$$

where \odot denotes element-wise multiplication, \mathcal{A}_i denotes the full action space, distinct from the executable subset $\tilde{\mathcal{A}}_i$ used in pre-training. The action space \mathcal{A}_i is divided into: $\mathcal{A}_i = \mathcal{A}_i^{\text{ag}} \cup \mathcal{A}_i^{\text{op}}$.

324 **5 EXPERIMENTS**
 325

326 We evaluate PTMC on the StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019),
 327 SMACv2 (Ellis et al., 2024) and the Predator-Prey environment (Lowe et al., 2017), comparing it
 328 against five advanced MARL algorithms. The results demonstrate that PTMC achieves improved
 329 learning efficiency, enhanced coordinated performance and scalability. We further conduct ablation
 330 study to validate the contributions of key components within PTMC. Additionally, visualizations are
 331 provided to illustrate the advantage of PTMC in high-return state exploration.

332 **5.1 COMPARATIVE EVALUATION**
 333

334 **5.1.1 BASELINE.**
 335

336 We compare PTMC against five well-established baselines, encompassing both value-based and
 337 policy-gradient methods. Several of these baselines are specifically designed to enhance exploration
 338 efficiency from different perspectives:

- 340 • **AIR** (Zhou et al., 2025) improves exploration through identity recognition and adaptive
 341 modulation of exploration mode and intensity.
- 342 • **GoMARL** (Zang et al., 2024) promotes exploration via automatic agent grouping.
- 343 • **MAT** (Wen et al., 2022) reformulates joint policy optimization as a sequential advantage-
 344 guided process to enhance exploration and convergence.
- 345 • **QMIX** (Rashid et al., 2018) factorizes the joint action-value via a mixing network under
 346 CTDE, enabling decentralized greedy policies trained with a global reward.
- 347 • **MAPPO** (Yu et al., 2022) applies PPO in a CTDE setting with a centralized critic and
 348 decentralized actors, providing a strong and stable baseline.

349 All algorithms are open-source, with finetuned hyperparameters for optimal performance. Among
 350 them, AIR and GoMARL are QMIX-based variants, while MAT is based on MAPPO.

351 **5.1.2 ENVIRONMENT.**
 352

353 We evaluate our approach on SMAC, SMACv2 and Predator-Prey environments. SMAC and
 354 SMACv2 are cooperative multi-agent benchmarks, where two opposing teams engage in combat:
 355 one controlled by built-in game bots and the other by MARL algorithms. *Notably, we randomize the*
 356 *initial positions of agents in SMAC maps to increase the difficulty of the scenarios.* Predator-Prey
 357 focuses on coordination, requiring agents (predators) to capture stags and hares in a 25×25 grid.
 358 Stags must be captured cooperatively by two agents (reward: 10), whereas hares can be captured by
 359 a single agent (reward: 2). All environments employ global rewards to reflect overall system per-
 360 formance. Appendix B.1 and B.2 details the environment-specific definitions of the tacit consensus
 361 and the corresponding tacit reward employed in PTMC. Appendix C provides a detailed description
 362 of the environment settings. Appendix D presents the results of tacit pre-training, along with the
 363 scenario-specific settings for the predefined threshold of the tacit metric.

364 **5.1.3 PERFORMANCE.**
 365

366 Since our method is compatible with both QMIX-based and MAPPO-based algorithms, we imple-
 367 ment PTMC on each framework and conduct comparative evaluations. Figure 4 presents the learning
 368 curves for three SMAC and three SMACv2 scenarios. Although MAPPO-based and QMIX-based
 369 algorithms exhibit distinct performance in SMACv2, both PTMC-MAPPO and PTMC-QMIX con-
 370 sistently outperform their respective baselines. While MAPPO and QMIX show stable learning,
 371 they exhibit lower efficiency and suboptimal final performance. AIR displays training instability, as
 372 reflected by large confidence intervals. MAT shows limited effectiveness across all scenarios. Al-
 373 though GoMARL performs competitively in SMACv2, it demonstrates limited learning efficiency
 374 and low win rates in SMAC. In contrast, PTMC-MAPPO and PTMC-QMIX achieve higher learning
 375 efficiency, improved final win rates, and enhanced training stability across all tasks.

376 Figure 5 shows the total training steps to reach equivalent mean return in four Predator-Prey tasks.
 377 Notably, PTMC employs the same pre-trained tacit model across all experiments to facilitate coordi-
 378 nation among ten agents. Across scenarios varying in prey numbers (more or fewer than predators)

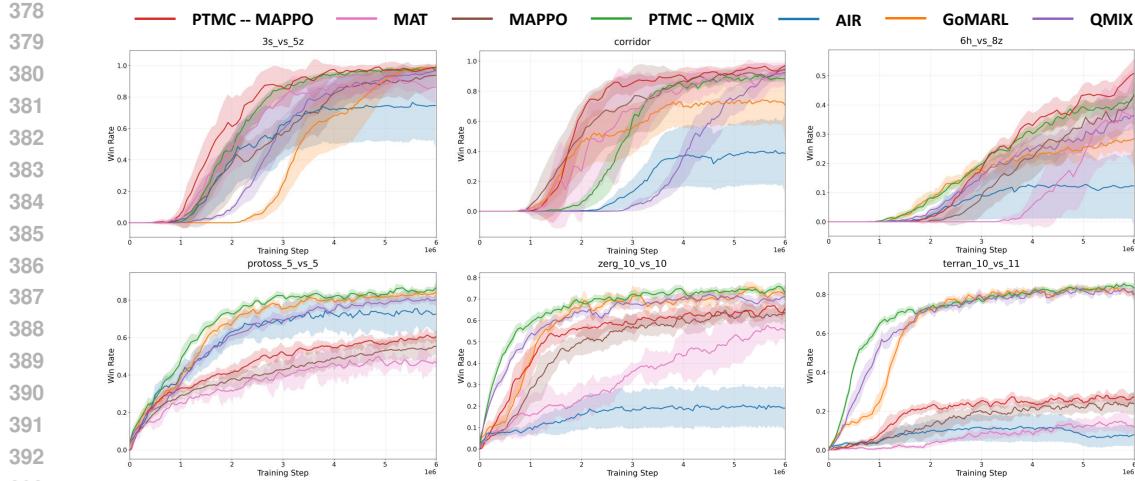


Figure 4: Comparison of training performance in SMAC and SMACv2 over 6M steps. The top row presents results for three SMAC scenarios, and the bottom row for three SMACv2 scenarios. Solid curves indicate the mean across five random seeds and shaded regions denote confidence intervals.

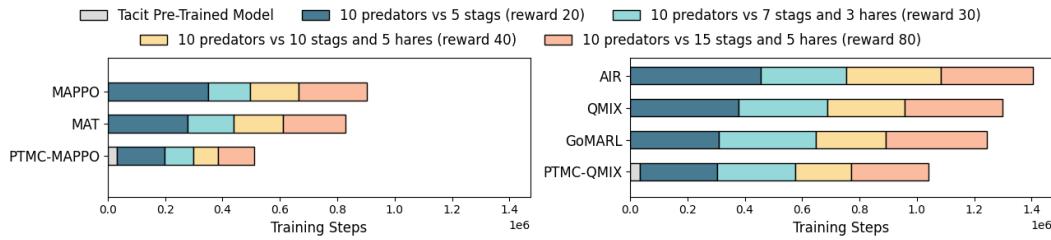


Figure 5: Comparison of training efficiency in Predator–Prey tasks. The bars represent the total number of training steps required to achieve a specified mean return across four scenarios, with PTMC results including its tacit pre-training phase.

and the composition of stags and hares, PTMC-MAPPO and PTMC-QMIX both achieve faster convergence and superior performance compared to their baselines. These results demonstrate the scalability of the tacit pre-training and the effectiveness of PTMC. Additional results for comparative evaluation are provided in Appendix E.

5.2 ABLATION STUDIES

We conduct ablation study on 3s_vs_5z to evaluate the contributions of key components in PTMC, where PTMC is built on MAPPO. Specifically, “PTMC w/o Constr.” removes tacit constraint term; “PTMC w/o Pretr.” omits actor network initialization from tacit pre-training ; and “PTMC w/o BinGate.” removes binary gating function to assess the impact of selective constraint enforcement. As shown in Figure 6, PTMC consistently outperforms all ablated variants. Notably, “PTMC w/o Pretr.” performs significantly worse, underscoring the importance of pre-trained initialization. PTMC exhibits an early-stage advantage over “PTMC w/o Constr.”, validating the benefit of introducing tacit constraint term. Additionally, the performance drop of “PTMC w/o BinGate.” suggests that indiscriminate constraint may impair learning due to inaccurate loss estimation. Extensive ablation studies on additional scenarios are presented in Appendix F. In addition, Appendix G reports the evaluation of the parameter setting for α_{tac} .

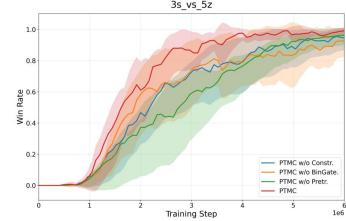


Figure 6: Ablation study of PTMC on the 3s_vs_5z map.

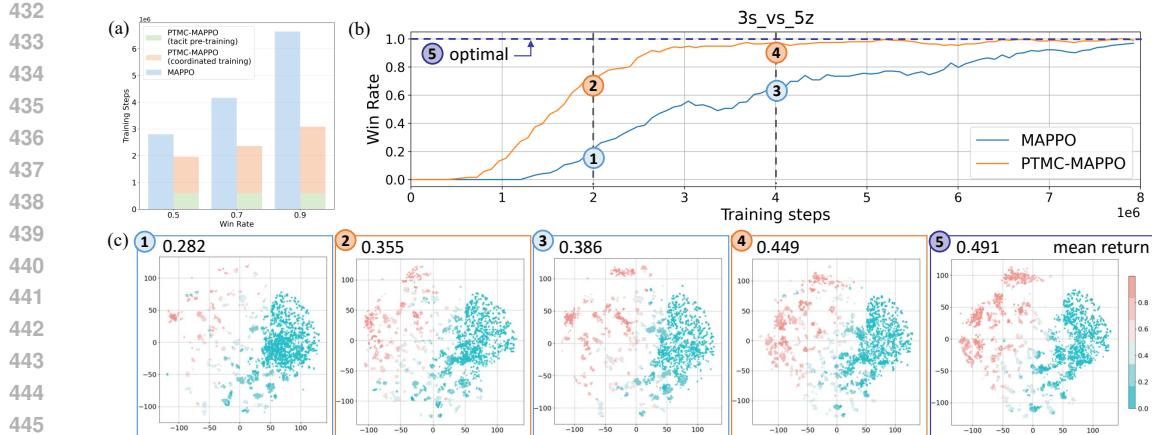


Figure 7: Visualization of exploration efficiency on the $3s_vs_5z$ map. (a) Training steps required by PTMC and MAPPO to achieve the same win rate. (b–c) Each of the five subplots in (c) corresponds to a marked point in (b). Within each subplot, scatter points represent the 2D t-SNE embeddings of states, color-coded by the normalized mean return on a gradient from light blue (low return) to pink (high return), with the average value indicated in the top-left corner.

5.3 VISUALIZATION ANALYSIS

We evaluate PTMC and MAPPO on $3s_vs_5z$ map in SMAC under identical training configurations, where PTMC is built on the MAPPO framework. As shown in Figure 7(a), the total training steps of PTMC across both phases remain fewer than those required by MAPPO, with the difference increasing as the target win rate rises, indicating the superior training efficiency of PTMC. To further investigate the cause of this efficiency gap, we analyze the efficiency of exploring high-return states as training progresses. Specifically, we collect all global states encountered during 32 evaluation episodes for both methods, using the same random seed. Each state is embedded into a low-dimensional space via t-SNE. To ensure consistent relative positioning, we jointly embed five representative state groups into a shared t-SNE space: MAPPO and PTMC at 2M and 4M steps, and PTMC at 10M steps (approximately optimal model).

In Figure 7(c), the state distributions increasingly shift toward high-return regions as training progresses, with Subplot 5 (optimal) showing the highest concentration of high-return states. At 2M steps (Subplots 1 and 2), PTMC already covers a wider range of high-return states, while MAPPO remains concentrated in low-return areas. Moreover, PTMC achieves a significantly higher average normalized mean return than MAPPO at 2M steps, confirming the effectiveness of the tacit pre-training mechanism in guiding exploration toward high-return states. By 4M steps (Subplots 3 and 4), PTMC’s state distribution closely aligns with the optimal model and clearly outperforms MAPPO in high-return coverage. Additional visualizations and state coverage comparisons with optimal model are provided in Appendix H.

6 CONCLUSION

In this paper, we propose PTMC to improve inter-agent coordination and facilitate efficient policy discovery, thereby enhancing exploration efficiency in MARL. PTMC adopts a two-phase paradigm comprising tacit pre-training and coordinated training, where prior knowledge is encoded as a tacit reward. The tacit reward guides decentralized pre-training to learn individual tacit policies. Building on the pre-trained tacit model, PTMC incorporates a tacit constraint term into the optimization objective, enabling the policy to selectively retain beneficial tacit behaviors. Experiments show that PTMC achieves superior learning efficiency, improved coordinated performance, and scalability across diverse tasks. Ablation studies and visualizations further validate the contributions of key components and the overall effectiveness of PTMC in guiding exploration.

486 7 ETHICS STATEMENT
487488 We acknowledge that all authors of this work have read and commit to adhering to the ICLR Code
489 of Ethics. We explicitly confirm our compliance with the Code throughout the submission, review,
490 and discussion processes.
491492 8 REPRODUCIBILITY STATEMENT
493494 We have made every effort to ensure the reproducibility of our results. The source code is provided in
495 the “Supplementary Material”, together with the modified SMAC map files (.SC2Map) used in our
496 experiments. The detailed settings of the threshold parameter M_{tac}^* in the pre-training phase for both
497 SMAC and predator-prey tasks are described in Appendix D. The design of the key parameter α_{tac}
498 in the coordinated training phase, as well as its performance under different values, is thoroughly
499 analyzed in Appendix G.
500501 REFERENCES
502

503 Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
504 Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
505 unlabeled online videos. *Advances in Neural Information Processing Systems*, 35:24639–24654,
506 2022.

507 Jake Bruce, Ankit Anand, Bogdan Mazoure, and Rob Fergus. Learning about progress from experts.
508 In *The eleventh international conference on learning representations*, 2023.

509 Federico Cacciamani, Andrea Celli, Marco Ciccone, Nicola Gatti, et al. Multi-agent coordination
510 in adversarial environments through signal mediated strategies. In *AAMAS’21: Proceedings of
511 the 20th International Conference on Autonomous Agents and MultiAgent Systems*, pp. 269–278,
512 2021.

513 Jiajun Chai, Yuqian Fu, Dongbin Zhao, and Yuanheng Zhu. Aligning credit for multi-agent co-
514 operation via model-based counterfactual imagination. In *Proceedings of the 23rd International
515 Conference on Autonomous Agents and Multiagent Systems*, pp. 281–289, 2024.

516 Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
517 Jakob Foerster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative multi-
518 agent reinforcement learning. *Advances in Neural Information Processing Systems*, 36, 2024.

519 Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
520 De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
521 agents with internet-scale knowledge. *Advances in Neural Information Processing Systems*, 35:
522 18343–18362, 2022.

523 Yaqing Hou, Jie Kang, Haiyin Piao, Yifeng Zeng, Yew-Soon Ong, Yaochu Jin, and Qiang Zhang.
524 Cooperative multiagent learning and exploration with min–max intrinsic motivation. *IEEE Trans-
525 actions on Cybernetics*, 2025.

526 Jeewon Jeon, Woojun Kim, Whiyoung Jung, and Youngchul Sung. Maser: Multi-agent reinfor-
527 cements learning with subgoals generated from experience replay buffer. In *International conference
528 on machine learning*, pp. 10041–10052. PMLR, 2022.

529 Yonghyeon Jo, Sunwoo Lee, Junghyuk Yeom, and Seungyul Han. Fox: Formation-aware explo-
530 ration in multi-agent reinforcement learning. In *Proceedings of the AAAI Conference on Artificial
531 Intelligence*, volume 38, pp. 12985–12994, 2024.

532 Xinran Li, Zifan Liu, Shibo Chen, and Jun Zhang. Individual contributions as intrinsic exploration
533 scaffolds for multi-agent reinforcement learning. In *International Conference on Machine Learn-
534 ing*, pp. 28387–28402. PMLR, 2024.

535 Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
536 critic for mixed cooperative-competitive environments. *Neural Information Processing Systems
537 (NIPS)*, 2017.

540 Patrick Mannion, Sam Devlin, Karl Mason, Jim Duggan, and Enda Howley. Policy invariance under
 541 reward transformations for multi-objective reinforcement learning. *Neurocomputing*, 263:60–73,
 542 2017.

543

544 Linghui Meng, Jingqing Ruan, Xuantang Xiong, Xiyun Li, Xi Zhang, Dengpeng Xing, and Bo Xu.
 545 M3: Modularization for multi-task and multi-agent offline pre-training. In *Proceedings of the*
 546 *2023 International Conference on Autonomous Agents and Multiagent Systems*, pp. 1624–1633,
 547 2023a.

548 Linghui Meng, Muning Wen, Chenyang Le, Xiyun Li, Dengpeng Xing, Weinan Zhang, Ying Wen,
 549 Haifeng Zhang, Jun Wang, Yaodong Yang, et al. Offline pre-trained multi-agent decision trans-
 550 former. *Machine Intelligence Research*, 20(2):233–248, 2023b.

551

552 Linghui Meng, Xi Zhang, Dengpeng Xing, and Bo Xu. A new pre-training paradigm for offline
 553 multi-agent reinforcement learning with suboptimal data. In *ICASSP 2024-2024 IEEE Interna-*
 554 *tional Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 7520–7524. IEEE,
 555 2024.

556 Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
 557 forcement learning with offline datasets. *arXiv preprint arXiv:2006.09359*, 2020.

558

559 Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
 560 Theory and application to reward shaping. In *International Conference on Machine Learning*, pp.
 561 278–287, 1999.

562 Frans A Oliehoek, Christopher Amato, et al. *A concise introduction to decentralized POMDPs*,
 563 volume 1. Springer, 2016.

564

565 Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
 566 skill priors. In *Conference on robot learning*, pp. 188–204. PMLR, 2021.

567

568 Ram Ramrakhyia, Dhruv Batra, Erik Wijmans, and Abhishek Das. Pirlnav: Pretraining with imita-
 569 tion and rl finetuning for objectnav. In *Proceedings of the IEEE/CVF Conference on Computer*
 570 *Vision and Pattern Recognition*, pp. 17896–17906, 2023.

571

572 Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
 573 Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforce-
 574 ment learning. In *International Conference on Machine Learning*, pp. 4295–4304. PMLR, 2018.

575

576 Arthur S Reber. Implicit learning and tacit knowledge. *Journal of experimental psychology: Gen-*
 577 *eral*, 118(3):219, 1989.

578

579 Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
 580 Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon White-
 581 son. The starcraft multi-agent challenge. In *Proceedings of the 18th International Conference on*
 582 *Autonomous Agents and MultiAgent Systems*, pp. 2186–2188, 2019.

583

584 Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R De-
 585 von Hjelm, Philip Bachman, and Aaron C Courville. Pretraining representations for data-efficient
 586 reinforcement learning. *Advances in Neural Information Processing Systems*, 34:12686–12699,
 587 2021.

588

589 Adrien Ali Taiga, Rishabh Agarwal, Jesse Farebrother, Aaron Courville, and Marc G Bellemare.
 590 Investigating multi-task pretraining and generalization in reinforcement learning. In *The eleventh*
 591 *international conference on learning representations*, 2023.

592

593 Meng Yew Tee and Dennis Karney. Sharing and cultivating tacit knowledge in an online learning
 594 environment. *International Journal of Computer-Supported Collaborative Learning*, 5:385–413,
 595 2010.

Jiawei Wang, Lele Xu, and Changyin Sun. Learning general multi-agent decision model through
 multi-task pre-training. *Neurocomputing*, pp. 129524, 2025.

594 Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang.
595 Multi-agent reinforcement learning is a sequence modeling problem. *Advances in Neural Infor-*
596 *mation Processing Systems*, 35:16509–16521, 2022.

597 Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
598 surprising effectiveness of ppo in cooperative multi-agent games. *Advances in neural information*
599 *processing systems*, 35:24611–24624, 2022.

600 Lei Yuan, Ziqian Zhang, Ke Xue, Hao Yin, Feng Chen, Cong Guan, Lihe Li, Chao Qian, and
601 Yang Yu. Robust multi-agent coordination via evolutionary generation of auxiliary adversar-
602 ial attackers. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp.
603 11753–11762, 2023.

604 Yifan Zang, Jinmin He, Kai Li, Haobo Fu, Qiang Fu, Junliang Xing, and Jian Cheng. Automatic
605 grouping for efficient cooperative multi-agent reinforcement learning. *Advances in Neural Infor-*
606 *mation Processing Systems*, 36, 2024.

607 Zhicheng Zhang, Yancheng Liang, Yi Wu, and Fei Fang. Mesa: Cooperative meta-exploration in
608 multi-agent learning through exploiting state-action space structure. In *Proceedings of the 23rd*
609 *International Conference on Autonomous Agents and Multiagent Systems*, pp. 2085–2093, 2024.

610 Lulu Zheng, Jiarui Chen, Jianhao Wang, Jiamin He, Yujing Hu, Yingfeng Chen, Changjie Fan, Yang
611 Gao, and Chongjie Zhang. Episodic multi-agent reinforcement learning with curiosity-driven
612 exploration. *Advances in Neural Information Processing Systems*, 34:3757–3769, 2021.

613 Bohan Zhou, Ke Li, Jiechuan Jiang, and Zongqing Lu. Learning from visual observation via of-
614 fline pretrained state-to-go transformer. *Advances in Neural Information Processing Systems*, 36:
615 59585–59605, 2023.

616 Guangchong Zhou, Zeren Zhang, and Guoliang Fan. Air: Unifying individual and collective explo-
617 ration in cooperative multi-agent reinforcement learning. In *Proceedings of the AAAI Conference*
618 *on Artificial Intelligence*, volume 39, pp. 22919–22927, 2025.

619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648	APPENDIX CONTENTS	
649		
650	A LLM Usage Statement	14
651		
652	B Definition of Tacit Rewards Based on Different Environments	14
653		
654	B.1 SMAC	14
655		
656	B.2 Predator-Prey	16
657		
658	C Environments and Implementation Details	18
659		
660	C.1 Detailed Experimental Setup	18
661		
662	C.2 SMAC	18
663		
664	C.3 SMACv2	19
665		
666	C.4 Predator-Prey	19
667		
668	D Results for Pre-Training	20
669		
670	E Additional Results for Comparative Evaluation	21
671		
672	E.1 Comparative Performance Evaluation on Predator-Prey Tasks	21
673		
674	E.2 Comparative Performance Evaluation on SMAC Tasks	23
675		
676	E.3 Comparative Performance Evaluation on SMACv2 Tasks	24
677	F Additional Results for Ablation Study	25
678		
679	G Experimental Evaluation of Key Parameter Settings	26
680		
681	H Additional Results for Visualization Analysis	27
682		
683	H.1 Visualization Analysis on 3s_vs_5z Map	28
684		
685	H.2 Visualization Analysis on 6h_vs_8z Map	29
686		
687	H.3 Visualization Analysis on corridor Map	30
688		
689		
690		
691		
692		
693		
694		
695		
696		
697		
698		
699		
700		
701		

702 **A LLM USAGE STATEMENT**
703704 We employed large language models (LLMs) solely for translation and language polishing of the
705 manuscript. No part of the research design, problem formulation, experimental setup, or result
706 interpretation was generated or influenced by LLMs. All scientific contributions, ideas, and analyses
707 are entirely the authors' own.
708709 **B DEFINITION OF TACIT REWARDS BASED ON DIFFERENT ENVIRONMENTS**
710711 **B.1 SMAC**
712713 Our intuitive insight is that agents can achieve the overall objective more efficiently by forming
714 advantageous spatial relationships, specifically, by enabling the multi-agent system to locally aggre-
715 gate more agents than its opponents. Considering the partial observability in SMAC environments,
716 we define the ***tacit consensus*** among agents as maintaining mutual observability while preserving
717 a stable inter-agent distance over time. Due to the complexity of the SMAC environment, we cat-
718 ergorize four typical cases and define their corresponding ***advantageous configuration*** C_{adv} and
719 ***agent-specific configuration*** C_i^t , where agent i denotes a representative agent from multiple agents.
720 Additionally, we introduce a parameter term $\lambda^{i,t}$ before the tacit reward to dynamically adjust its
721 weight during training, thereby improving learning efficiency.
722723 **Case (a):** In this case, the distance between every pair of agents in the global state exceeds their
724 respective perception ranges, resulting in a lack of mutual observability. To establish the aforemen-
725 tioned tacit consensus, agents should individually converge toward a fixed point to rapidly enter
726 each other's observation range. Accordingly, the ***advantageous configuration*** C_{adv} is defined as
727 the minimum distance between agent i and the fixed point, while the ***agent-specific configuration***
728 C_i^t denotes the distance between agent i 's current position and the fixed point. Formally, C_{adv} and
729 C_i^t are defined as:
730

731
$$\begin{cases} C_i^t = \|\varphi_i^t - \varphi_{\text{pt}}\|_2 \\ C_i^{t+1} = \|\varphi_i^{t+1} - \varphi_{\text{pt}}\|_2 \\ C_{\text{adv}} = \|\varphi_{\text{cls}} - \varphi_{\text{pt}}\|_2, \end{cases} \quad (13)$$

732

733 where the position of agent i is denoted by $\varphi_i(o_i, s)$, which is abbreviated as φ_i for simplicity in the
734 aforementioned definitions. φ_{pt} denotes the position of the fixed point, φ_{cls} refers to the position
735 closest to the fixed point.
736737 The parameter term $\lambda^{i,t}$ of case (a) is defined in 14. The tacit reward term $r_{\text{tac}}^{i,t}$ is defined in 15.
738

739
$$\lambda_a^{i,t} = \min \left\{ \frac{\min_{k \notin \rho_i^t} \|\varphi_i^t - \varphi_k^t\|_2 - d_i}{\beta d_i - d_i}, 1 \right\}, \quad (14)$$

740

741
$$r_{\text{tac}}^{i,t} = \lambda_a^{i,t} \times (\|C_i^t - C_{\text{adv}}\| - \|C_i^{t+1} - C_{\text{adv}}\|), \quad (15)$$

742

743 where the set ρ_i denotes the collection of agents within the perceptual range of the agent i . The
744 parameter $\beta > 1$ is introduced to define the upper bound of λ . The term d_i represents the perceptual
745 distance of the agent i .
746747 **Case (b):** In this case, a subset of agents forms clusters, while agent i has no neighbors within
748 its perceptual range. To establish the aforementioned tacit consensus, agent i should move toward
749 its nearest agent. Accordingly, the ***advantageous configuration*** C_{adv}^t is defined as the minimum
750 distance between agent i and its nearest agent, and the ***agent-specific configuration*** C_i^t denotes the
751 distance between agent i and its nearest agent. Formally, C_{adv}^t and C_i^t are defined as:
752

753
$$\begin{cases} C_i^t = \|\varphi_i^t - \varphi_k^t\|_2 \\ C_i^{t+1} = \|\varphi_i^{t+1} - \varphi_k^t\|_2 \\ C_{\text{adv}}^t = \|\varphi_{k,\text{min}}^t - \varphi_k^t\|_2, \end{cases} \quad (16)$$

754

756 where φ_k^t denotes the position of agent i 's nearest agent k , $\varphi_{k,\min}$ refers to the position with the
 757 minimum distance to agent k 's position.

758 The parameter term $\lambda^{i,t}$ of case (b) is defined in 14. The tacit reward term $r_{\text{tac}}^{i,t}$ is defined in 17.

$$761 \quad r_{\text{tac}}^{i,t} = \lambda_b^{i,t} \times (\|C_i^t - C_{\text{adv}}^t\| - \|C_i^{t+1} - C_{\text{adv}}^t\|). \quad (17)$$

763 **Case (c):** In this case, agent i perceives more than one other agent within its perceptual range. To
 764 establish the aforementioned tacit consensus, agent i is expected to continuously detect neighboring
 765 agents while maintaining a specified inter-agent distance. Accordingly, the **advantageous config-
 766 uration** C_{adv}^t is defined as the target distance between agent i and the position that maintains the
 767 specified inter-agent distance relative to its nearest neighbor, and the **agent-specific config-
 768 uration** C_i^t denotes the distance between agent i and its nearest agent. Formally, C_{adv}^t and C_i^t are defined
 769 as:

$$770 \quad \begin{cases} C_i^t = \|\varphi_i^t - \varphi_k^t\|_2 \\ C_i^{t+1} = \|\varphi_i^{t+1} - \varphi_k^t\|_2 \\ C_{\text{adv}}^t = \|\varphi_{k,\text{sd}}^t - \varphi_k^t\|_2, \end{cases} \quad (18)$$

774 where $\varphi_{k,\text{sd}}^t$ denotes the position at which agent i maintains the specified distance relative to its
 775 nearest agent k .

776 The parameter term $\lambda^{i,t}$ of case (c) is defined in 19. The tacit reward term $r_{\text{tac}}^{i,t}$ is defined in 20.

$$779 \quad \lambda_c^{i,t} = \begin{cases} \frac{\min_{k \in \rho_i} \|\varphi_i - \varphi_k\|_2}{\alpha d_k}, & \text{if } \min_{k \in \rho_i} \|\varphi_i - \varphi_k\|_2 < \alpha d_k \\ \frac{\max_{k \in \rho_i} \|\varphi_i - \varphi_k\|_2 - \alpha d_k}{d_k - \alpha d_k}, & \text{if } \alpha d_k \leq \min_{k \in \rho_i} \|\varphi_i - \varphi_k\|_2 < d_k, \end{cases} \quad (19)$$

785 where α is a parameter in the range $(0, 1)$, representing a specified distance relative to agent k 's
 786 perceptual range d_k .

$$789 \quad r_{\text{tac}}^{i,t} = \lambda_c^{i,t} \times (\|C_i^t - C_{\text{adv}}^t\| - \|C_i^{t+1} - C_{\text{adv}}^t\|). \quad (20)$$

791 **Case (d):** In this case, the agent perceive only one other agent within its perceptual range. Agents
 792 in this case are classified as either leader agents or follower agents, based on their relative positions
 793 to the nearby agents. We designate the agent positioned on the left as the leader, while the other
 794 is assigned as the follower. The corresponding subscripts for the leader and follower agents are
 795 denoted as l and f respectively.

796 To establish the aforementioned tacit consensus, the leader agent is expected to move toward the
 797 nearest agent outside its perceptual range. Accordingly, the **advantageous config-
 798 uration** of the
 799 leader agent, denoted as $C_{\text{adv},l}^t$, is defined as the minimum distance between agent l and its nearest
 800 agent outside its perceptual range. The **agent-specific config-
 801 uration** of the leader agent C_l^t represents the distance between agent l and its nearest agent outside its perceptual range. Formally, $C_{\text{adv},l}^t$
 802 and C_l^t are defined as:

$$802 \quad \begin{cases} C_l^t = \|\varphi_l^t - \varphi_k^t\|_2 \\ C_l^{t+1} = \|\varphi_l^{t+1} - \varphi_k^t\|_2 \\ C_{\text{adv},l}^t = \|\varphi_{k,\min}^t - \varphi_k^t\|_2, \end{cases} \quad (21)$$

806 where φ_k^t denotes the position of agent k , which is the nearest agent outside the perceptual range of
 807 agent l , and $\varphi_{k,\min}$ denotes the position that is closest to agent k .

808 The parameter term $\lambda_d^{l,t}$ for leader agent in case (d) is defined in 22. The tacit reward term $r_{\text{tac}}^{l,t}$ is
 809 defined in 23.

$$\lambda_d^{l,t} = \min \left\{ \frac{\min_{k \notin \rho_i^t} \|\varphi_i^t - \varphi_k^t\|_2 - d_l}{\beta d_l - d_l}, 1 \right\}, \quad (22)$$

$$r_{\text{tac}}^{l,t} = \lambda_d^{l,t} \times (\|C_i^t - C_{\text{adv},l}^t\| - \|C_i^{t+1} - C_{\text{adv},l}^t\|). \quad (23)$$

To establish the aforementioned tacit consensus, the follower agent is expected to move toward the leader agent. Accordingly, the **advantageous configuration** of the follower agent, denoted as $C_{\text{adv},f}^t$, is defined as the minimum distance between agent f and agent l . The **agent-specific configuration** of the follower agent C_f^t represents the distance between agent f and agent l . Formally, $C_{\text{adv},f}^t$ and C_f^t are defined as:

$$\begin{cases} C_f^t = \|\varphi_f^t - \varphi_l^t\|_2 \\ C_f^{t+1} = \|\varphi_f^{t+1} - \varphi_l^t\|_2 \\ C_{\text{adv},f}^t = \|\varphi_{l,\text{min}}^t - \varphi_l^t\|_2, \end{cases} \quad (24)$$

where $\varphi_{l,\text{min}}$ denotes the position that is closest to agent l .

The parameter term $\lambda_d^{f,t}$ for follower agent in case (d) is defined in 25. The tacit reward term $r_{\text{tac}}^{f,t}$ is defined in 26.

$$\lambda_d^{f,t} = \begin{cases} \frac{\|\varphi_l^t - \varphi_f^t\|_2}{\alpha d_f}, & \text{if } \|\varphi_l^t - \varphi_f^t\|_2 < \alpha d_f \\ \frac{\|\varphi_l^t - \varphi_f^t\|_2 - \alpha d_f}{d_f - \alpha d_f}, & \text{if } \alpha d_f \leq \|\varphi_l^t - \varphi_f^t\|_2 < d_f, \end{cases} \quad (25)$$

$$r_{\text{tac}}^{f,t} = \lambda_d^{f,t} \times (\|C_f^t - C_{\text{adv},f}^t\| - \|C_f^{t+1} - C_{\text{adv},f}^t\|). \quad (26)$$

B.2 PREDATOR-PREY

For Predator-Prey task, our intuitive insight is that agents can achieve the overall objective more efficiently if they move closer to each other. Considering the partial observability in Predator-Prey environments, we define the **tacit consensus** among agents as agents intentionally reducing their pairwise distances. To facilitate the efficient acquisition of the desired tacit behavior, we categorize three representative cases and define the corresponding **advantageous configuration** C_{adv} and **agent-specific configuration** C_i^t , where agent i represents a typical agent among multiple agents. Additionally, a parameter term $\lambda^{i,t}$ is introduced prior to the tacit reward to dynamically adjust its weight during training, thereby improving learning efficiency.

Case (a): In this case, agent i has no neighbors within its perceptual range. To establish the aforementioned tacit consensus, agent i should move toward its nearest agent. Accordingly, the **advantageous configuration** C_{adv}^t is defined as the minimum distance between agent i and its nearest agent, and the **agent-specific configuration** C_i^t denotes the distance between agent i and its nearest agent. Formally, C_{adv}^t and C_i^t are defined as:

$$\begin{cases} C_i^t = \|\varphi_i^t - \varphi_k^t\|_2 \\ C_i^{t+1} = \|\varphi_i^{t+1} - \varphi_k^t\|_2 \\ C_{\text{adv}}^t = \|\varphi_{k,\text{min}}^t - \varphi_k^t\|_2, \end{cases} \quad (27)$$

where φ_k^t denotes the position of agent i 's nearest agent k , $\varphi_{k,\text{min}}$ refers to the position with the minimum distance to agent k 's position.

864 The parameter term $\lambda_a^{i,t}$ of case (a) is defined in 28. The tacit reward term $r_{\text{tac}}^{i,t}$ is defined in 29.
 865

$$866 \quad 867 \quad 868 \quad 869 \quad \lambda_a^{i,t} = \min \left\{ \frac{\|\varphi_i^t - \varphi_k^t\|_2 - (d_i + 1)}{\sqrt{(d_i + 1)^2 + (d_i + 2)^2} - (d_i + 1)}, 1 \right\}, \quad (28)$$

$$870 \quad 871 \quad 872 \quad r_{\text{tac}}^{i,t} = \lambda_a^{i,t} \times (\|C_i^t - C_{\text{adv}}^t\| - \|C_i^{t+1} - C_{\text{adv}}^t\|), \quad (29)$$

873 where the term d_i represents the perceptual distance of the agent i .

874 **Case (b):** In this case, agent i perceives more than one other agent within its perceptual range. To
 875 establish the aforementioned tacit consensus, agent i is expected to approach its nearest neighbor as
 876 closely as possible. Accordingly, the **advantageous configuration** C_{adv}^t is defined as the minimum
 877 achievable distance to agent i 's nearest agent, and the **agent-specific configuration** C_i^t denotes the
 878 distance between agent i and its nearest agent. The formal definitions of C_{adv}^t and C_i^t are defined as
 879 27.

880 The parameter term $\lambda_b^{i,t}$ of case (b) is defined in 30. The tacit reward term $r_{\text{tac}}^{i,t}$ is defined in 31.
 881

$$882 \quad 883 \quad 884 \quad 885 \quad 886 \quad 887 \quad \lambda_b^{i,t} = \begin{cases} 0, & \text{if } \|\varphi_i^t - \varphi_k^t\|_2 = 1 \\ \frac{d_i - \|\varphi_i^t - \varphi_k^t\|_2}{d_i - 1}, & \text{if } 1 < \|\varphi_i^t - \varphi_k^t\|_2 \leq d_i \\ 1, & \text{if } d_i < \|\varphi_i^t - \varphi_k^t\|_2, \end{cases} \quad (30)$$

$$888 \quad 889 \quad r_{\text{tac}}^{i,t} = \lambda_b^{i,t} \times (\|C_i^t - C_{\text{adv}}^t\| - \|C_i^{t+1} - C_{\text{adv}}^t\|), \quad (31)$$

890 where φ_k^t denotes the position of agent i 's nearest agent k .

892 **Case (c):** In this case, the agent perceives only one other agent within its perceptual range. Agents
 893 in this case are classified as either leader agents or follower agents, based on their relative positions
 894 to the nearby agents. We designate the agent positioned on the left as the leader, while the other
 895 is assigned as the follower. The corresponding subscripts for the leader and follower agents are
 896 denoted as l and f respectively.

897 To establish the aforementioned tacit consensus, the leader agent is expected to move toward the
 898 nearest agent outside its perceptual range. Accordingly, the **advantageous configuration** of the
 899 leader agent, denoted as $C_{\text{adv},l}^t$, is defined as the minimum distance between agent l and its nearest
 900 agent outside its perceptual range. The **agent-specific configuration** of the leader agent C_l^t repre-
 901 sents the distance between agent l and its nearest agent outside its perceptual range. Formally, $C_{\text{adv},l}^t$
 902 and C_l^t are defined as 21.

903 The parameter term $\lambda_c^{l,t}$ of case (c) is defined in 32. The tacit reward term $r_{\text{tac}}^{l,t}$ is defined in 33.
 904

$$905 \quad 906 \quad 907 \quad 908 \quad 909 \quad \lambda_c^{l,t} = \min \left\{ \frac{\min_{k \notin \rho_l^t} \|\varphi_l^t - \varphi_k^t\|_2 - (d_l + 1)}{\sqrt{(d_l + 1)^2 + (d_l + 2)^2} - (d_l + 1)}, 1 \right\}, \quad (32)$$

$$910 \quad 911 \quad r_{\text{tac}}^{l,t} = \lambda_c^{l,t} \times (\|C_l^t - C_{\text{adv},l}^t\| - \|C_l^{t+1} - C_{\text{adv},l}^t\|), \quad (33)$$

912 where the set ρ_l denotes the collection of agents within the perceptual range of the agent l .

913 To establish the aforementioned tacit consensus, the follower agent is expected to move toward
 914 the leader agent. Accordingly, the **advantageous configuration** of the follower agent, denoted as
 915 $C_{\text{adv},f}^t$, is defined as the minimum distance between agent f and agent l . The **agent-specific con-
 916 figuration** of the follower agent C_f^t represents the distance between agent f and agent l . Formally,
 917 $C_{\text{adv},f}^t$ and C_f^t are defined as 24.

918 The parameter term $\lambda_c^{f,t}$ for follower agent in case (c) is defined in 34. The tacit reward term $r_{\text{tac}}^{f,t}$ is
 919 defined in 35.
 920

$$\lambda_c^{f,t} = \begin{cases} 0, & \text{if } \|\varphi_f^t - \varphi_l^t\|_2 = 1 \\ \frac{d_f - \|\varphi_f^t - \varphi_l^t\|_2}{d_f - 1}, & \text{if } 1 < \|\varphi_f^t - \varphi_l^t\|_2 \leq d_f \\ 1, & \text{if } d_f < \|\varphi_f^t - \varphi_l^t\|_2, \end{cases} \quad (34)$$

$$r_{\text{tac}}^{f,t} = \lambda_c^{f,t} \times \left(\|C_f^t - C_{\text{adv_}f}^t\| - \|C_f^{t+1} - C_{\text{adv_}f}^t\| \right). \quad (35)$$

C ENVIRONMENTS AND IMPLEMENTATION DETAILS

C.1 DETAILED EXPERIMENTAL SETUP

All experiments in this paper are run on Nvidia GeForce RTX 3090 graphics cards and AMD EPYC 7H12 64-Core processor CPU. To ensure fair comparisons, we fine-tuned the hyperparameters of all baseline models accordingly. In SMAC environments, PTMC and all baseline methods in our paper are trained in the same testbeds. In addition, some methods involve specific parameter tuning across different scenarios, making comparisons unfair. Therefore, based on relevant literature, we adjusted the parameters of these methods appropriately for each scenario and ensured consistent parameters across different random seeds within same scenario during our experiments.

C.2 SMAC

945 Table 1: SMAC maps in different scenarios.
 946

Name	Ally Units	Enemy Units	Type	Difficulty
3s_vs_5z	3 Stalkers	5 Zealots	micro-trick: kiting	Hard
corridor	6 Zealots	24 Zerglings	micro-trick: wall off	Super Hard
6h_vs_8z	6 Hydralisks	8 Zealots	micro-trick: focus fire	Super Hard
2s3z	2 Stalkers & 3 Zealots	2 Stalkers & 3 Zealots	heterogeneous & symmetric	Easy
2s_vs_1sc	2 Stalkers	1 Spine Crawler	micro-trick: alternating fire	Hard
5m_vs_6m	5 Marines	6 Marines	homogeneous & asymmetric	Hard
3s5z_vs_3s6z	3 Stalkers & 5 Zealots	3 Stalkers & 6 Zealots	heterogeneous & asymmetric	Super Hard

In SMAC tasks, a group of units controlled by decentralized agents cooperates to defeat the enemy agent system controlled by handcrafted heuristics. Each agent has its perceptual range, and at each timestep the agent can observe information about allied and enemy units within that range, including distance, relative position, health, shield amount, and unit type. The global state information, which includes all agents' positions, health, allied units' previous actions, and cooldowns, is only accessible during centralized training. The objective of our agents is to defeat enemy agents within a limited timesteps, with the environment's reward function tied to the health of both units. Battles can be either symmetric or asymmetric, and the group of agents can be homogeneous or heterogeneous. Asymmetric scenarios generally present a higher level of learning difficulty. Additionally, scenarios with larger numbers of agents tend to pose greater challenges for coordinated learning. Table 1 provides a detailed description of each SMAC scenario.

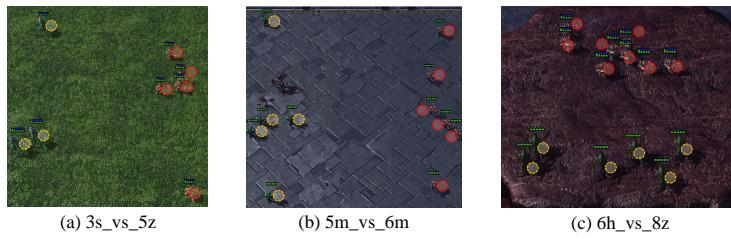


Figure 8: The thumbnails of initial position in 3s_vs_5z, 5m_vs_6m and 6h_vs_8z.

In this paper, we increase the difficulty of the original SMAC maps by randomizing the initial positions of both sides and creating scenarios in which agents cannot initially perceive one another. For clarity, Figure 8 presents thumbnails of the modified maps, where red circles denote enemy units and yellow circles denote allied units. **The modified map files (.SC2Map) are provided in the supplementary material.**

C.3 SMACv2

SMACv2 is an updated version of SMAC, introducing increased variability and difficulty through randomized start positions and unit types. Specifically, start positions are randomized in two ways: (a) *Reflect scenario*, where allied positions are randomly assigned, and enemy positions are symmetrically reflected across the map’s midpoint (as shown in Figure 9(a)); and (b) *Surround scenario*, where allied units spawn in the center of the map and are encircled by enemy units (as shown in Figure 9(b)). The probability of each scenario type is controlled by a parameter $p \in [0, 1]$.

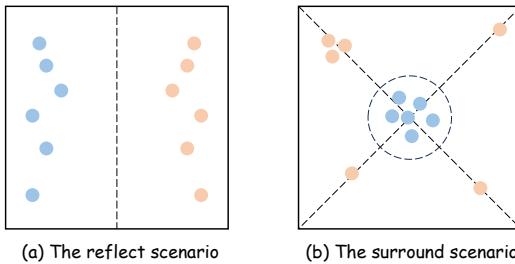


Figure 9: Illustration of two starting position types: reflect and surround. Allied units are shown in blue; enemy units in orange.

Moreover, unlike SMAC where unit types are fixed, SMACv2 introduces randomized unit compositions based on predefined generation probabilities (Table 2). For each StarCraft II race (Protoss, Terran, and Zerg), three unit types are selected. For example, in the Zerg_10_vs_10 scenario, both the 10 allied and 10 enemy units are independently sampled from the Zerg race according to the predefined generation probabilities.

Table 2: Unit types and generation probabilities for each race in SMACv2.

Race	Unit Types	Generation Probabilities
Terran	Marine, Marauder, Medivac	0.45, 0.45, 0.10
Protoss	Stalker, Zealot, Colossus	0.45, 0.45, 0.10
Zerg	Zergling, Hydralisk, Baneling	0.45, 0.45, 0.10

C.4 PREDATOR-PREY

In the Predator-Prey task, predator agents attempt to capture two types of prey—stags and hares—within a grid-based environment. Each predator has a local observation radius of three grids centered on itself, within which it can perceive the relative positions of other agents and nearby prey,

as well as the prey type. Prey do not move proactively; instead, they respond only to blocked movements after the predators have acted. The global state includes the relative positions of all agents and prey across the entire grid. Both predators and prey can move to one of the four adjacent grid or remain stationary. Movements are executed sequentially: predators move first in random order, followed by the prey selecting a random valid action (i.e. an action that would not lead to a collision with another entity). A prey is considered captured if a sufficient number of predator agents occupy the adjacent grids and perform a capture action. Specifically, capturing a stag requires at least two predators to simultaneously occupy adjacent grids, while capturing a hare requires at least one. Due to differing capture difficulty, rewards vary: successfully capturing a stag yields a shared reward of +10, whereas capturing a hare yields +2. Consequently, predator agents are expected to prioritize coordinated efforts to capture stags rather than acting independently. To intuitively illustrate the Predator-Prey tasks, we visualize a simplified example. Specifically, we consider a scenario where five agents (predators) aim to capture four stags and three hares within a 6×6 grid, as shown in Figure 10.

Figure 10: Illustration of a Predator-Prey task in a 6×6 grid (5 agents, 4 stags, 3 hares).

D RESULTS FOR PRE-TRAINING

In the main text, we mention that during the tacit pre-training phase, the tacit metric M_{tac} is monitored to evaluate the emergence of tacit behavior. When it exceeds a predefined threshold M_{tac}^* , the pre-training process is terminated, indicating that the agents have acquired the coordination capability necessary for forming tacit behavior. The threshold M_{tac}^* is adjusted according to different experimental scenarios. In addition, based on our previous definition of tacit reward, we design distinct tacit rewards for different cases. Consequently, each case is associated with a specific tacit metric and its corresponding threshold M_{tac}^* . During training, we consider the extent to which the tacit metric in each case reaches its designated threshold, and terminate the pre-training accordingly. For instance, in the SMAC environment under the 3s_vs_5z scenario, we empirically set the thresholds for the four cases to [0.75, 0.85, 0.85, 0.85], and the pre-training process is terminated once all four conditions are satisfied. Specifically, for the 6h_vs_8z and corridor scenarios, the thresholds for the four cases are set to [0.9, 0.85, 0.9, 0.9] and [0.75, 0.8, 0.85, 0.8], respectively. Furthermore, we report the results of ten independent pre-training runs, presenting the corresponding tacit metric values of the four cases at the point when pre-training is terminated for each scenario. The statistical results are shown in Figure 11, where the height of each bar represents the mean value, with the exact values labeled on the bars. The error bars represent the corresponding standard deviation.

For the predator-prey environment, we empirically set the thresholds for the three cases to [0.75, 0.9, 0.85]. Similarly, we report the results of ten independent pre-training runs, presenting the corresponding tacit metric values of the three cases at the point when pre-training is terminated. The statistical results are illustrated in Figure 12.

As mentioned in the main text, unlike conventional pre-training, our tacit pre-training focuses on simpler individual-agent tasks and requires significantly fewer training steps compared to coordinated training. To further illustrate the difference in training steps between the two training phases, we report the average number of training steps at the end of tacit pre-training across 10 independent

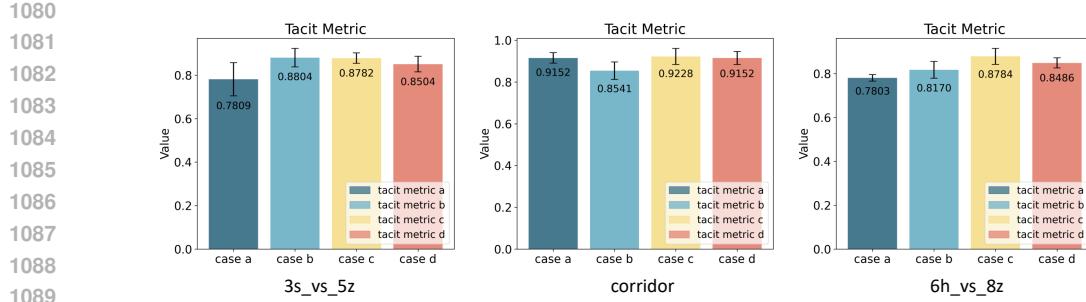


Figure 11: Mean and standard deviation of tacit metrics across four cases in three SMAC tasks.

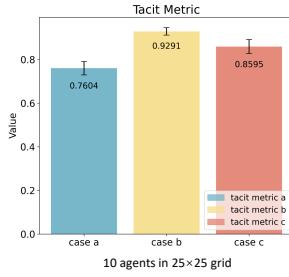


Figure 12: Mean and standard deviation of tacit metrics across three cases in Predator-Prey task.

runs for three scenarios in the SMAC environment, along with the corresponding standard deviations (std). The detailed results are summarized in Table 3.

Table 3: Training steps (mean \pm std.) of tacit pre-training in three SMAC scenarios.

Scenario	3s_vs_5z	corridor	6h_vs_8z
Training Steps ($\times 10^3$)	588.8 ± 114.5	871.7 ± 120.3	394.1 ± 111.4

For the SMAC tasks, coordinated training involves 6 million training steps, which is approximately ten times the number required for tacit pre-training. In the predator-prey environment, we evaluate the average number of training steps at the end of tacit pre-training over 10 independent runs, yielding a mean of 33.2k steps with a standard deviation of 12.5k. In contrast, coordinated training in this environment requires 500k steps, which is over ten times the number of steps required for tacit pre-training. These results clearly highlight the distinction between the PTMC framework and the conventional paradigm of extensive pre-training followed by light fine-tuning, demonstrating the greater learning efficiency of PTMC in MARL.

E ADDITIONAL RESULTS FOR COMPARATIVE EVALUATION

To strengthen the “Comparative Evaluation” section in main text, we further incorporate diverse scenarios from Predator-Prey, SMAC, and SMACv2 environments to evaluate the effectiveness of PTMC across a broader range of tasks.

E.1 COMPARATIVE PERFORMANCE EVALUATION ON PREDATOR-PREY TASKS

In the main text, Table 1 reports the mean and standard deviation of returns after 500k steps across three Predator-Prey scenarios. In this section, we present detailed training curves and further experiments under various settings, including different opponent combinations and grid configurations. For clarity, we compare MAPPO-based and QMIX-based algorithms separately. In the following figures, solid lines represent the mean over five random seeds, and shaded areas indicate the corresponding confidence intervals.

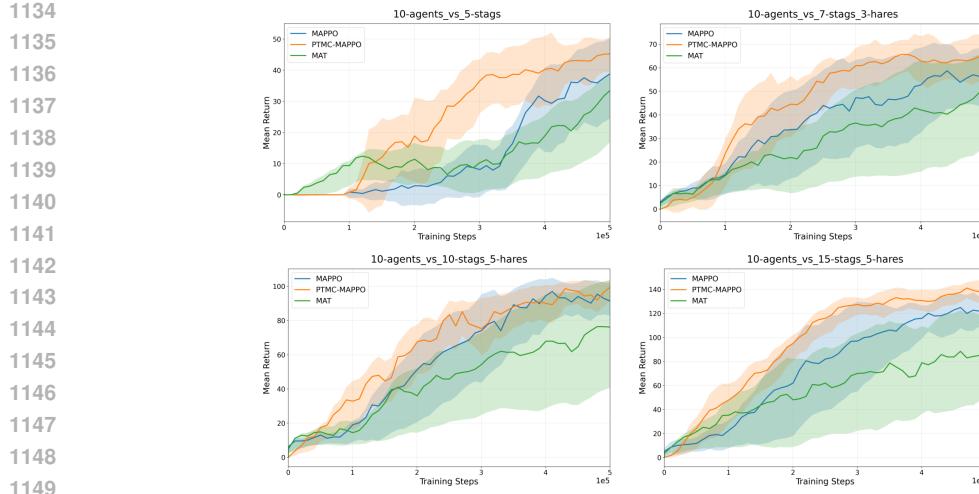


Figure 13: Comparative training performance of MAPPO-based algorithms in predator-prey (25×25 grid).

As shown in Figure 13, all experiments employ the same pre-trained tacit model to facilitate coordination among ten agents in a 25×25 grid. Across scenarios with varying prey numbers (more or fewer than predators) and different compositions of stags and hares, PTMC-MAPPO consistently outperforms both MAPPO and MAT in terms of cooperative performance. MAPPO generally ranks second, though it demonstrates limited training efficiency in the early stages. MAT yields the lowest final mean return across all four scenarios. Despite initially outperforming both PTMC and MAPPO in the “10 agents vs 5 stags” scenario, it fails to sustain this early advantage. Additionally, MAT exhibits considerable training instability, as reflected by large confidence intervals. These results highlight the scalability of the tacit pre-training mechanism and further substantiate the effectiveness of PTMC.

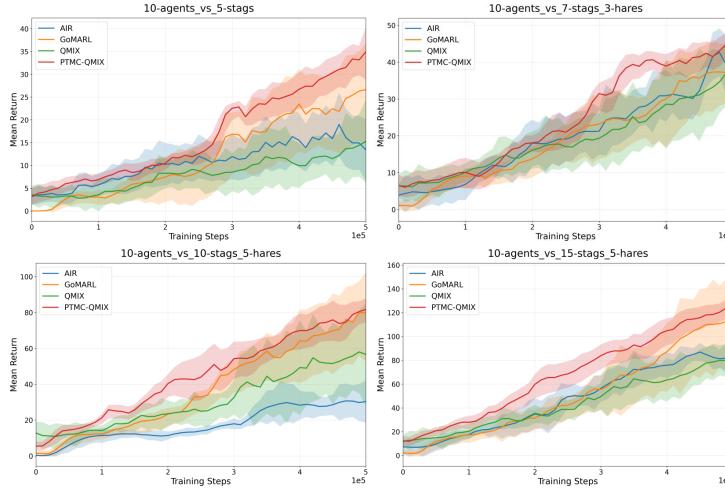
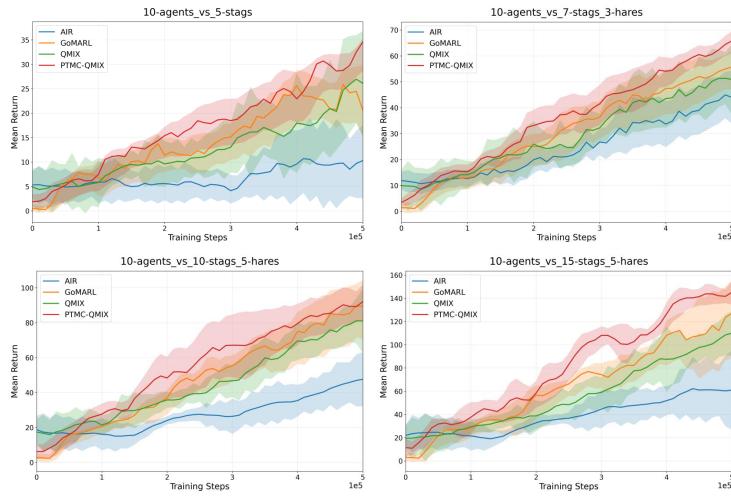


Figure 14: Comparative training performance of QMIX-based algorithms in predator-prey (25×25 grid).

We further evaluate PTMC-QMIX in the same scenarios, using QMIX as the base algorithm, and compare its performance with three QMIX-based variants, as shown in Figure 14. All methods utilize the same pre-trained tacit model. Across all four scenarios, PTMC-QMIX consistently achieves superior final mean returns. In the “10 agents vs 5 stags” and “10 agents vs 15 stags and 5 hares” settings, AIR exhibits faster early-stage learning but is slightly outperformed by PTMC-QMIX in

1188 terms of final return. In the “10 agents vs 10 stags and 5 hares” scenario, AIR demonstrates clearly
 1189 inferior overall training efficiency, further underscoring the robustness and performance advantage
 1190 of PTMC-QMIX. GoMARL achieves comparable final returns to PTMC-QMIX in the “10 agents
 1191 vs 10 stags and 5 hares” and “10 agents vs 15 stags and 5 hares” scenarios, although its early-stage
 1192 learning is slightly slower. As a classical baseline, QMIX exhibits stable training but consistently
 1193 shows lower efficiency and suboptimal final performance across all scenarios. These results further
 1194 demonstrate the flexibility of PTMC, which can be incorporated into both QMIX- and MAPPO-
 1195 based frameworks while consistently improving performance.



1213 Figure 15: Comparative training performance of QMIX-based algorithms in predator-prey (20×20
 1214 grid).

1215 Moreover, we evaluate the training performance of PTMC under different grid sizes in predator-prey
 1216 tasks. Specifically, PTMC-QMIX and three QMIX-based baselines are tested across four scenarios
 1217 on a 20×20 grid, as shown in Figure 15. Overall, PTMC-QMIX consistently achieves the best
 1218 performance across all scenarios, both in terms of learning speed and final mean return. Among
 1219 the baselines, GoMARL and QMIX exhibit similar trends, with GoMARL showing slightly better
 1220 overall performance. Notably, while AIR demonstrate competitive performance with PTMC-QMIX
 1221 in some 25×25 grid settings (Figure 14), it performs significantly worse across all four scenarios
 1222 in the 20×20 grid settings, both in learning efficiency and final performance. These results further
 1223 confirm that PTMC maintains stable performance across diverse predator-prey scenarios, and that
 1224 the tacit pre-training mechanism exhibits robust and effective scalability.

1226 E.2 COMPARATIVE PERFORMANCE EVALUATION ON SMAC TASKS

1227 To evaluate the generality of our approach, we further include a range of SMAC scenarios with vary-
 1228 ing difficulty levels and type diversity, including homogeneous or heterogeneous agents, symmetric
 1229 or asymmetric setups, and distinct micro-tracks. We conduct comparisons between PTMC and their
 1230 respective QMIX-based and MAPPO-based baselines.

1231 As shown in Figure 16, we compare PTMC-QMIX with three QMIX-based baselines across three
 1232 SMAC scenarios. PTMC-QMIX achieves the highest final win rates on all maps. On 2s_vs_1sc,
 1233 QMIX exhibits faster early-stage learning, and in 5m_vs_6m, all baselines show more rapid ini-
 1234 tial improvement. However, PTMC-QMIX consistently outperforms them in terms of final perfor-
 1235 mance on both maps. On the super hard map 3s5z_vs_3s6z, PTMC-QMIX demonstrates clear
 1236 advantages in both learning efficiency and final win rate. Overall, PTMC-QMIX exhibits strong
 1237 performance across diverse SMAC tasks.

1238 To further validate the effectiveness of PTMC on SMAC, we compare PTMC-MAPPO with MAPPO
 1239 and MAT across three scenarios, as shown in Figure 17. Although MAT exhibits a slight advantage
 1240 over PTMC-MAPPO in 5m_vs_6m, PTMC-MAPPO still significantly outperforms MAPPO, upon
 1241 which it is based. In the other two scenarios, PTMC-MAPPO consistently demonstrates superior

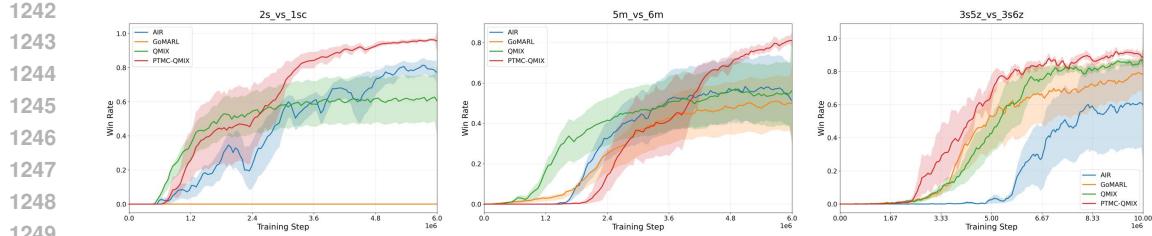


Figure 16: Training performance comparison of QMIX-based algorithms in SMAC.

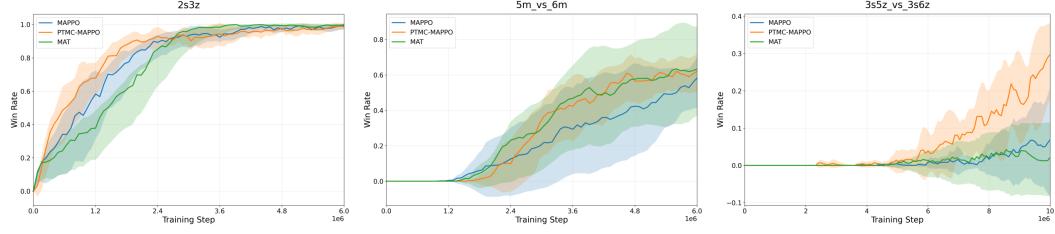


Figure 17: Training performance comparison of MAPPO-based algorithms in SMAC.

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
222210
222211
222212
222213
222214
222215
222216
222217
222218
222219
222220
222221
222222
222223
222224
222225
222226
222227
222228
222229
2222210
2222211
2222212
2222213
2222214
2222215
2222216
2222217
2222218
2222219
2222220
2222221
2222222
2222223
2222224
2222225
2222226
2222227
2222228
2222229
22222210
22222211
22222212
22222213
22222214
22222215
22222216
22222217
22222218
22222219
22222220
22222221
22222222
22222223
22222224
22222225
22222226
22222227
22222228
22222229
222222210
222222211
222222212
222222213
222222214
222222215
222222216
222222217
222222218
222222219
222222220
222222221
222222222
222222223
222222224
222222225
222222226
222222227
222222228
222222229
2222222210
2222222211
2222222212
2222222213
2222222214
2222222215
2222222216
2222222217
2222222218
2222222219
2222222220
2222222221
2222222222
2222222223
2222222224
2222222225
2222222226
2222222227
2222222228
2222222229
22222222210
22222222211
22222222212
22222222213
22222222214
22222222215
22222222216
22222222217
22222222218
22222222219
22222222220
22222222221
22222222222
22222222223
22222222224
22222222225
22222222226
22222222227
22222222228
22222222229
222222222210
222222222211
222222222212
222222222213
222222222214
222222222215
222222222216
222222222217
222222222218
222222222219
222222222220
222222222221
222222222222
222222222223
222222222224
222222222225
222222222226
222222222227
222222222228
222222222229
2222222222210
2222222222211
2222222222212
2222222222213
2222222222214
2222222222215
2222222222216
2222222222217
2222222222218
2222222222219
2222222222220
2222222222221
2222222222222
2222222222223
2222222222224
2222222222225
2222222222226
2222222222227
2222222222228
2222222222229
22222222222210
22222222222211
22222222222212
22222222222213
22222222222214
22222222222215
22222222222216
22222222222217
22222222222218
22222222222219
22222222222220
22222222222221
22222222222222
22222222222223
22222222222224
22222222222225
22222222222226
22222222222227
22222222222228
22222222222229
222222222222210
222222222222211
222222222222212
222222222222213
222222222222214
222222222222215
222222222222216
222222222222217
222222222222218
222222222222219
222222222222220
222222222222221
222222222222222
222222222222223
222222222222224
222222222222225
222222222222226
222222222222227
222222222222228
222222222222229
2222222222222210
2222222222222211
2222222222222212
2222222222222213
2222222222222214
2222222222222215
2222222222222216
2222222222222217
2222222222222218
2222222222222219
2222222222222220
2222222222222221
2222222222222222
2222222222222223
2222222222222224
2222222222222225
2222222222222226
2222222222222227
2222222222222228
2222222222222229
22222222222222210
22222222222222211
22222222222222212
22222222222222213
22222222222222214
22222222222222215
22222222222222216
22222222222222217
22222222222222218
22222222222222219
22222222222222220
22222222222222221
22222222222222222
22222222222222223
22222222222222224
22222222222222225
22222222222222226
22222222222222227
22222222222222228
22222222222222229
222222222222222210
222222222222222211
222222222222222212
222222222222222213
222222222222222214
222222222222222215
222222222222222216
222222222222222217
222222222222222218
222222222222222219
222222222222222220
222222222222222221
222222222222222222
222222222222222223
222222222222222224
222222222222222225
222222222222222226
222222222222222227
222222222222222228
222222222222222229
2222222222222222210
2222222222222222211
2222222222222222212
2222222222222222213
2222222222222222214
2222222222222222215
2222222222222222216
2222222222222222217
2222222222222222218
2222222222222222219
2222222222222222220
2222222222222222221
2222222222222222222
2222222222222222223
2222222222222222224
2222222222222222225
2222222222222222226
2222222222222222227
2222222222222222228
2222222222222222229
22222222222222222210
22222222222222222211
22222222222222222212
22222222222222222213
22222222222222222214
22222222222222222215
22222222222222222216
22222222222222222217
22222222222222222218
22222222222222222219
22222222222222222220
22222222222222222221
22222222222222222222
22222222222222222223
22222222222222222224
22222222222222222225
22222222222222222226
22222222222222222227
22222222222222222228
22222222222222222229
222222222222222222210
222222222222222222211
222222222222222222212
222222222222222222213
222222222222222222214
222222222222222222215
222222222222222222216
222222222222222222217
222222222222222222218
222222222222222222219
222222222222222222220
2222222222222

est win rates in all scenarios. These additional results on SMACv2 further validate the robustness and effectiveness of PTMC across a wider range of tasks.

F ADDITIONAL RESULTS FOR ABLATION STUDY

We conduct ablation studies on three SMAC scenarios to evaluate the contributions of key components in PTMC, where PTMC is built on MAPPO. Specifically, “PTMC w/o Constr.” removes the tacit constraint term; “PTMC w/o Pretr.” omits actor network initialization from tacit pre-training, while still allowing selective alignment with the pre-trained tacit model during coordinated training; and “PTMC w/o BinGate.” removes the binary gating function to assess the effect of selective constraint enforcement.

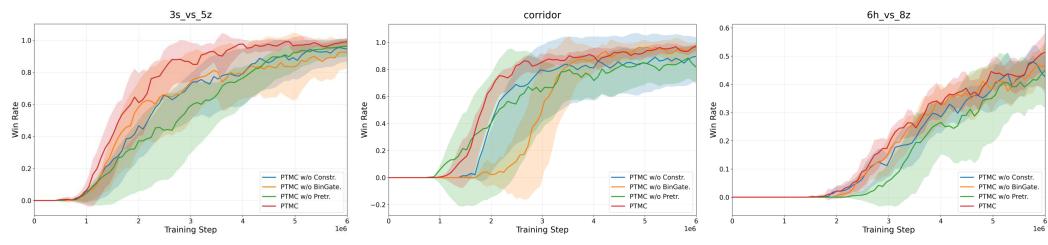


Figure 19: Ablation study of PTMC in SMAC scenarios.

As shown in Figure 19, PTMC consistently outperforms all ablated variants. Notably, “PTMC w/o Pretr.” performs significantly worse across all three scenarios, particularly exhibiting a slower initial performance increase and poorer final coordinated performance in *6h_vs_8z* and *corridor*, underscoring the importance of pre-trained initialization. In addition, PTMC demonstrates a clear early-stage advantage over “PTMC w/o Constr.” in all three scenarios, validating the benefit of incorporating the tacit constraint term during coordinated training. Furthermore, while “PTMC w/o BinGate.” achieves performance comparable to PTMC in *6h_vs_8z* and remains the second-best performer in *3s_vs_5z*, it suffers a noticeable early-stage performance drop in the *corridor* scenario. This may be attributed to the adverse effect of indiscriminate constraint enforcement, which could impair learning due to inaccurate loss estimation.

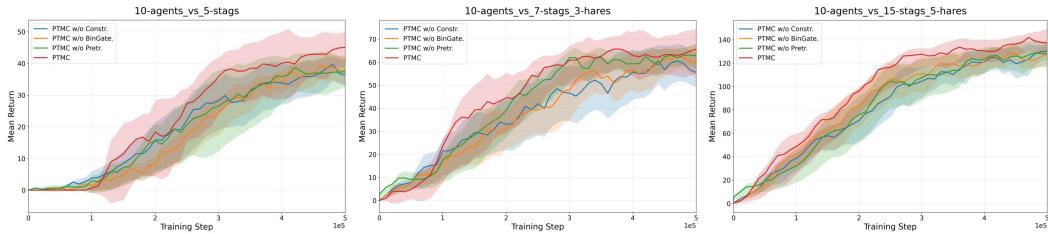


Figure 20: Ablation study of PTMC in Predator-Prey scenarios.

We also conduct ablation studies in the Predator-Prey environment, as shown in Figure 20. PTMC consistently outperforms all ablated variants across the three predator-prey scenarios. “PTMC w/o Constr.” performs poorly in all cases, highlighting the effectiveness of aligning with the pre-trained tacit model during coordinated training. Compared to its performance in SMAC, the greater impact of the tacit constraint term in this environment can be attributed to the higher relevance between the designed tacit reward and the task objective in Predator-Prey. A similar performance degradation is observed for “PTMC w/o BinGate.”, where inaccurate loss estimation likely hinders effective learning, resulting in inferior performance compared to full PTMC. Interestingly, unlike the SMAC results, “PTMC w/o Pretr.” achieves the suboptimal performance in the “10 agents vs 7 stags and

3 hares” scenario. This suggests that the effect of pre-trained initialization is relatively limited in this task, while the tacit constraint term still plays a critical role in guiding coordination during coordinated training.

1354 G EXPERIMENTAL EVALUATION OF KEY PARAMETER SETTINGS

1355 In coordinated training, a tacit constraint term \mathcal{L}_{tac} is incorporated into the loss function, as defined in Eq 36. The hyperparameter α_{tac} is introduced as a weighting coefficient to balance the contribution of \mathcal{L}_{tac} relative to the main loss term $\mathcal{L}_{\text{main}}$.

$$1360 J(\theta_{\text{coor}}) = \mathcal{L}_{\text{main}} - \alpha_{\text{tac}} \cdot \mathcal{L}_{\text{tac}}. \quad (36)$$

1361 To ensure that the magnitude of the tacit constraint term remains within a stable range relative to the main loss term throughout training, we design the hyperparameter α_{tac} as an adaptive coefficient, defined as:

$$1365 \alpha_{\text{tac}} = \alpha \cdot \alpha_{\text{adapt}}, \quad (37)$$

1366 where α denotes a base coefficient representing the desired order-of-magnitude difference between $1367 \mathcal{L}_{\text{tac}}$ and $\mathcal{L}_{\text{main}}$, and α_{adapt} is an adaptive scaling factor that dynamically adjusts \mathcal{L}_{tac} to match the 1368 scale of $\mathcal{L}_{\text{main}}$ during training. Specifically, α_{adapt} is computed by first calculating the ratio between 1369 the main loss $\mathcal{L}_{\text{main}}$ and the value of the tacit constraint term \mathcal{L}_{tac} :

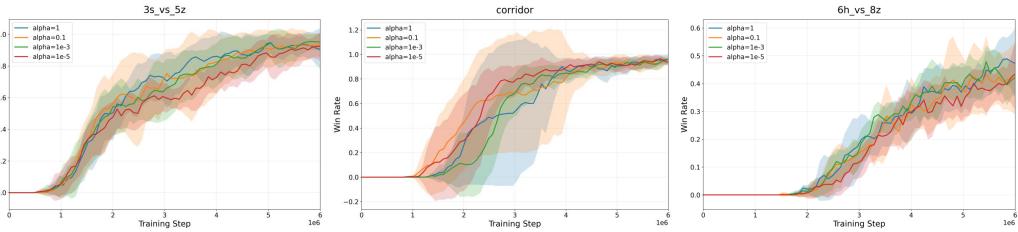
$$1370 \text{ratio} = \frac{\mathcal{L}_{\text{main}}}{\mathcal{L}_{\text{tac}}}. \quad (38)$$

1373 Then, α_{adapt} is selected as the closest value to this ratio from a predefined set of scaling candidates:

$$1375 \alpha_{\text{adapt}} = \arg \min_{x \in \mathcal{X}} |\text{ratio} - x|, \quad (39)$$

1377 where $\mathcal{X} = 10^{-i} \mid i \in \mathbb{Z}$ denotes the set of candidate scaling factors in descending order of magnitude.

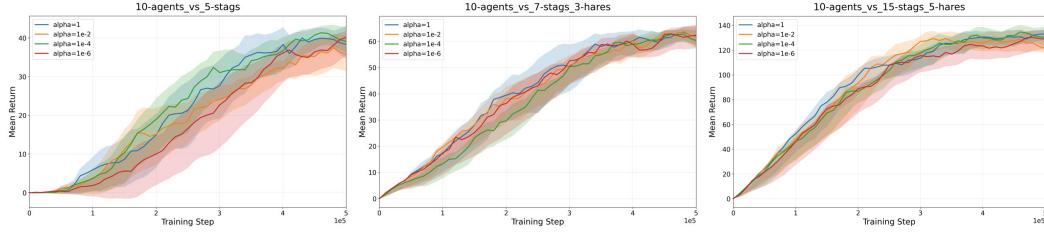
1380 To validate the effectiveness and robustness of the proposed adaptive weighting scheme, we conduct 1381 a series of experiments in both the SMAC and Predator-Prey environments, where PTMC is built 1382 on MAPPO. Specifically, we evaluate the impact of different base coefficient values α across three 1383 representative scenarios in each environment. These experiments aim to investigate whether the 1384 overall training dynamics and coordinated performance are sensitive to the choice of α , and to 1385 determine an appropriate magnitude range for this hyperparameter. The analysis helps assess the 1386 stability of our adaptive mechanism and its ability to maintain effective regularization throughout 1387 training without requiring fine-tuned manual adjustments.



1398 Figure 21: Effect of α parameter on optimization in SMAC tasks.

1400 As illustrated in Figure 21, the choice of the α parameter has a limited impact on the final 1401 coordinated performance across most scenarios. For instance, in the 3s_vs_5z and corridor 1402 tasks—both of which exhibit convergence—different values of α yield similar final results. However, 1403 in terms of training efficiency, variations in α lead to noticeable differences. In both 3s_vs_5z and 6h_vs_8z, larger values of α correspond to faster learning progress, with the

1404 setting $\alpha = 1$ (when \mathcal{L}_{tac} and $\mathcal{L}_{\text{main}}$ are of the same order of magnitude), achieving the most rapid
 1405 ascent in performance. In contrast, the `corridor` scenario exhibits an inverse trend. The smallest
 1406 α value ($1e-5$) results in the most efficient training, while $\alpha = 1$ leads to the slowest improvement.
 1407 This discrepancy suggests that the optimal scaling of the tacit constraint term may depend on the
 1408 specific task dynamics: in scenarios requiring more active adjustment of inter-agent coordination, a
 1409 stronger regularization signal could accelerate policy adaptation.



1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421 Figure 22: Effect of α parameter on optimization in Predator-Prey tasks.
 1422

1423 In the Predator-Prey environment, we evaluate three task configurations: “10 agents vs. 5 stags”,
 1424 “10 agents vs. 7 stags and 3 hares” and “10 agents vs. 15 stags and 5 hares”, as shown in Figure 22.
 1425 For the latter two tasks, the choice of α has limited impact on the overall training performance, with
 1426 $\alpha = 1$ yielding slightly better results. In contrast, for the more complex “10 agents vs. 5 stags”
 1427 scenario, the performance varies significantly across different α values. Specifically, both $\alpha = 1$
 1428 and $\alpha = 1e-4$ achieve satisfactory performance, while a smaller value such as $\alpha = 1e-6$ leads
 1429 to noticeably slower convergence. These results suggest that larger α values generally yield better
 1430 training outcomes across all three settings in Predator-Prey environments. This can be attributed to
 1431 the fact that the task objective in Predator-Prey is largely aligned with the tacit objective. Therefore,
 1432 increasing the weight of the tacit constraint term (i.e., using a larger α) reinforces beneficial inductive
 1433 biases without introducing significant conflict with task-specific learning. Conversely, when α is too
 1434 small, the influence of tacit guidance becomes negligible, diminishing its intended effect, especially
 1435 in more challenging settings where such guidance is crucial.

1436 1437 H ADDITIONAL RESULTS FOR VISUALIZATION ANALYSIS 1438

1440 To further demonstrate PTMC’s superior exploration efficiency and its effectiveness in guiding ex-
 1441 ploration, we collect all global states encountered during 32 evaluation episodes for both PTMC and
 1442 MAPPO under the same random seed, where PTMC is built on the MAPPO framework. Each state
 1443 is embedded into a low-dimensional space using t-SNE. Specifically, we evaluate models from the
 1444 2M, 4M, 8M, and 10M training steps for both algorithms, treating the 10M-step models as approx-
 1445 imations of the optimal policy. To ensure consistent relative positioning across different models,
 1446 the eight groups of states are jointly embedded into a shared t-SNE space, enabling direct spatial
 1447 comparison based on preserved relative distances.

1448 1. Return-colored state embedding:

1449 Each subplot shows the t-SNE projection of the global states obtained from a specific model. Each
 1450 scatter point is color-coded based on the normalized cumulative return of its corresponding state,
 1451 using a gradient from light blue (low return) to pink (high return). The mean return of each subplot
 1452 is annotated in the lower-left corner for comparison.

1453 2. State coverage comparison with the optimal model:

1455 Each subplot presents the projected states of a given model alongside those from its corresponding
 1456 optimal model (i.e., the model at 10M training steps). Green points represent the states from the
 1457 current model, while orange points indicate the states from the optimal model. The overlap ratio
 1458 between the two sets of points is shown in the top-left corner for comparison.

1458
1459

H.1 VISUALIZATION ANALYSIS ON 3s_vs_5z MAP

1460
1461
1462
1463
1464
1465
1466
1467
1468
1469

For the $3s_vs_5z$ map visualization, as shown in Figure 23, the state distribution progressively shifts toward high-return regions as training advances. Compared to optimal-MAPPO, the distribution of optimal-PTMC states is more concentrated in high-return areas, which is also reflected in a higher mean return displayed in each subplot. Notably, PTMC at 8M training steps achieves a mean return comparable to that of optimal-MAPPO. Furthermore, at an early stage (2M steps), PTMC already outperforms MAPPO in terms of both mean return and the extent to which high-return regions are explored. Additionally, at 4M training steps, PTMC not only explores high-return regions more extensively than MAPPO but also surpasses MAPPO's 8M-step performance in terms of mean return. These results demonstrate the superior exploration efficiency of PTMC during coordinated training.

1470
1471
1472
1473
1474
1475

As shown in Figure 24, both PTMC and MAPPO exhibit progressively increased coverage of the corresponding optimal model's state distribution as training advances, indicating convergence toward more effective behavioral patterns. Notably, at 2M training steps, MAPPO demonstrates higher coverage relative to its optimal model than PTMC does. However, by 8M steps, PTMC surpasses MAPPO in overlap ratio, suggesting that PTMC achieves a faster convergence rate toward the optimal policy and thus exhibits superior exploration efficiency.

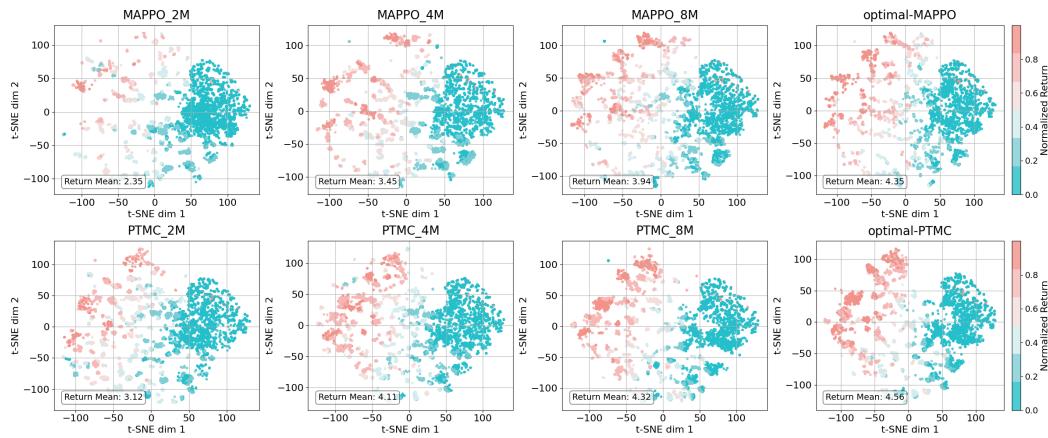
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
14911492
1493

Figure 23: Comparative visualization of return-colored state distributions on $3s_vs_5z$ map.

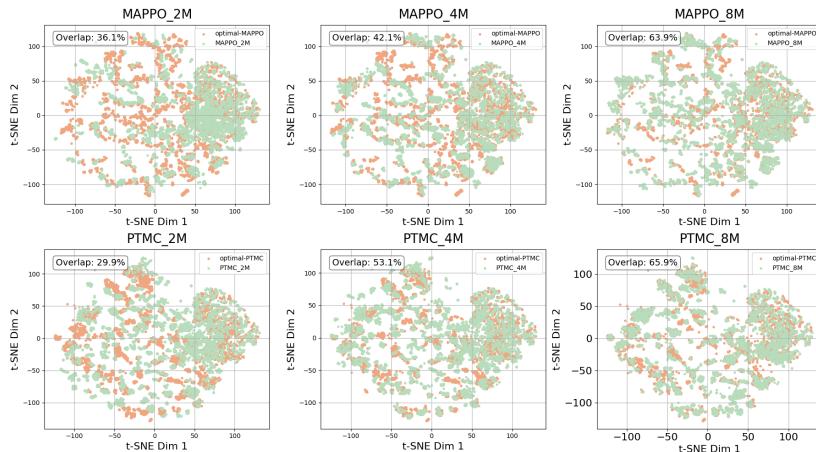
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Figure 24: State coverage overlap with the optimal model on $3s_vs_5z$ map.

1512
1513

H.2 VISUALIZATION ANALYSIS ON 6h_vs_8z MAP

1514
1515
1516
1517
1518
1519
1520
1521

For the 6h_vs_8z map visualization, as shown in Figure 25. Unlike the similar state distributions observed between MAPPO and PTMC on the 3s_vs_5z map, the high-return regions explored by MAPPO differ significantly from those of PTMC. Overall, PTMC achieves a higher mean return. Notably, at 4M training steps, PTMC already surpasses the mean return of MAPPO at 8M. At 8M training steps, PTMC outperforms the optimal model’s mean return achieved by MAPPO. This advantage can be attributed to PTMC’s more efficient exploration of high-return states. Furthermore, the distinct explored state regions indicate that PTMC reaches more optimal policy faster than MAPPO.

1522
1523
1524
1525
1526
1527
1528
1529

In the visualization of state coverage on the 6h_vs_8z map (Figure 26), both MAPPO and PTMC exhibit increasing overlap between the current model and the optimal model as training progresses. However, the overlap ratio of MAPPO at 4M training steps is unexpectedly higher than that at 8M. Given that the mean return of MAPPO at 4M is lower than at 8M (Figure 25), this suggests that the higher overlap at 4M is primarily due to convergence in low-return regions rather than effective exploration of high-return states. Additionally, at 2M training steps, PTMC shows a significantly higher overlap ratio than MAPPO, which can be attributed to the effective initialization of PTMC, further supporting the strength of its algorithmic design.

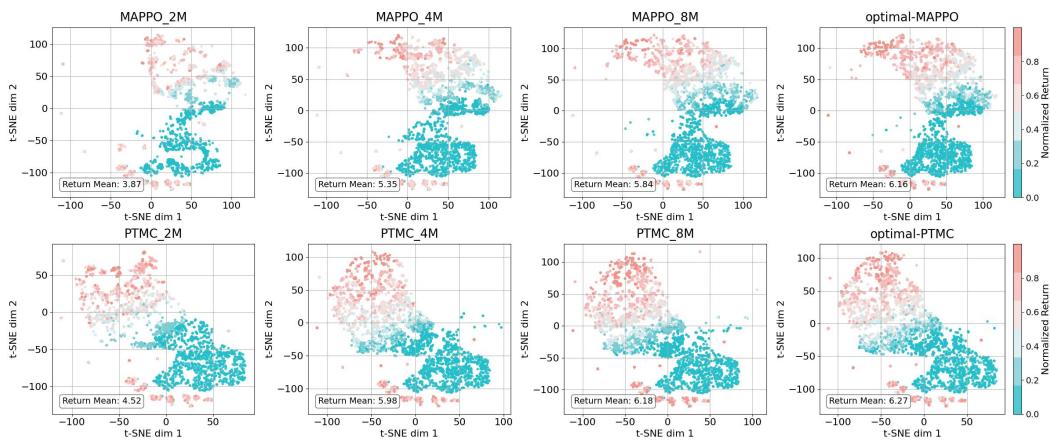
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546

Figure 25: Comparative visualization of return-colored state distributions on 6h_vs_8z map.

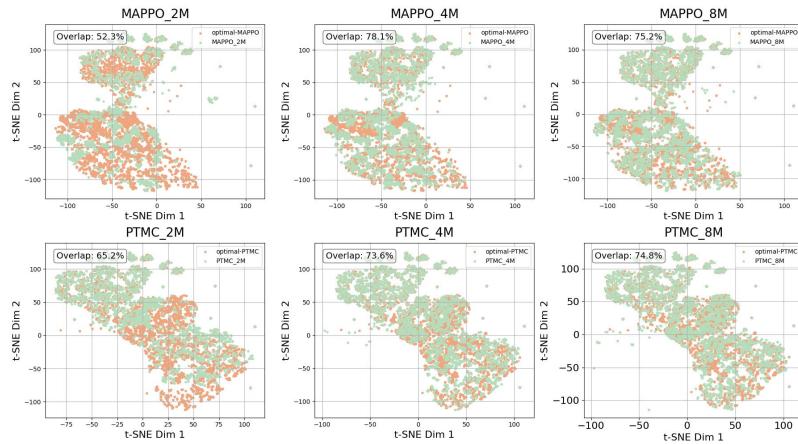
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Figure 26: State coverage overlap with the optimal model on 6h_vs_8z map.

1566
1567

H.3 VISUALIZATION ANALYSIS ON CORRIDOR MAP

1568
1569
1570
1571
1572
1573
1574

For the comparative visualization of return-colored state distributions on corridor map, as shown in Figure 27. MAPPO achieves a relatively high return mean at 2M training steps, but fails to maintain this advantage in later stages, indicating limited policy stability and an inability to consolidate early gains. Although both MAPPO and PTMC exhibit increasing return means over time, their learning efficiency differs significantly. Between 4M and 8M steps, MAPPO’s return mean improves by only 0.07, whereas PTMC achieves a 0.67 increase, demonstrating PTMC’s superior efficiency in discovering high-return states and sustaining policy refinement.

1575
1576
1577
1578
1579
1580
1581
1582
1583
1584

In the visualization of state coverage on corridor map (Figure 28), PTMC exhibits an increasing overlap between the current and optimal model as training progresses. In contrast, MAPPO shows a relatively high overlap ratio with the optimal model at 2M training steps. Consistent with its performance in Figure 27, this early overlap likely stems from high-return state exploration but is not maintained in later stages. Moreover, the overall lower overlap ratio values and the distribution of scatter points suggest a wider range of strategy choices on corridor map. This is attributed to the scenario’s design, which involves 6 ally units and 24 enemies, resulting in a large joint action and policy space. Under such complexity, PTMC demonstrates consistent improvements in return mean, overlap ratio, and the overall trend of state distribution. These metrics progressively align with the optimal model, highlighting PTMC’s stability and efficiency.

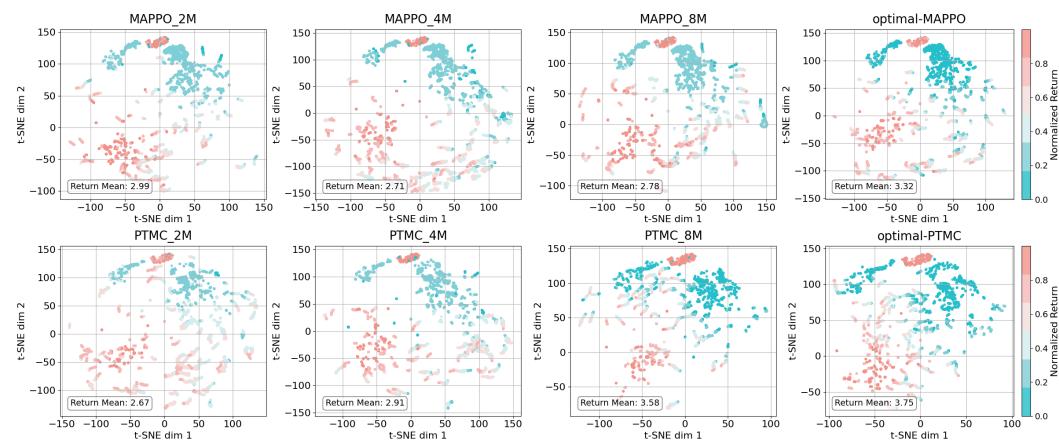
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
16001601
1602

Figure 27: Comparative visualization of return-colored state distributions on corridor map.

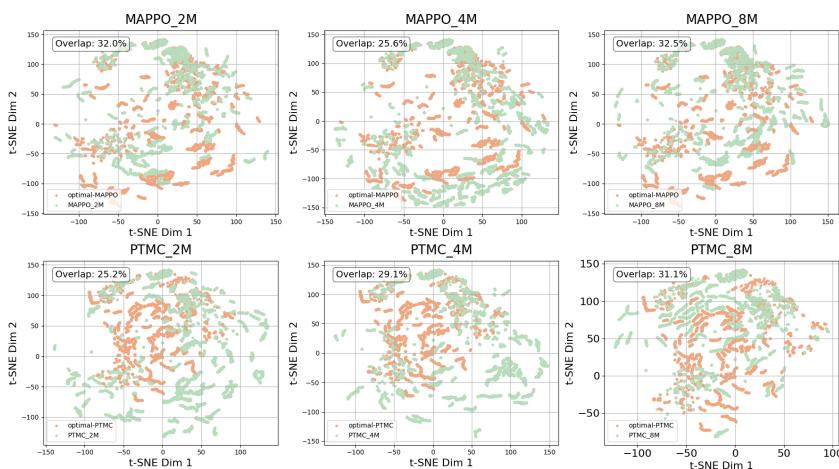
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Figure 28: State coverage overlap with the optimal model on corridor map.