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ABSTRACT

Exploration inefficiency caused by large policy spaces is a common challenge in
multi-agent reinforcement learning. Although incorporating prior knowledge has
been demonstrated to improve exploration efficiency, existing methods typically
model it as intrinsic rewards, which may violate potential-based conditions, lead-
ing to policy deviation and hindering optimal policy learning. To address this, we
propose a novel two-phase multi-agent learning framework, PTMC (Pre-training
Tacit Model for efficient Coordination), comprising pre-training and coordinated
training phases. In the pre-training phase, PTMC conducts decentralized agent
training by integrating general prior knowledge through tacit rewards, while en-
hancing model scalability by masking opponent information. During the coor-
dinated training phase, coordinated policy is initialized as the pre-trained tacit
model, and a tacit constraint term is incorporated into the optimization objective
to preserve advantageous tacit behaviors while enabling task-specific adaptation.
It is worth emphasizing that the pre-training phase of PTMC is highly efficient,
constituting only a minor fraction of the total training time compared to the coor-
dinated training. Experimental results demonstrate that our approach significantly
outperforms state-of-the-art baselines in terms of both coordinated performance
and exploration efficiency.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has drawn increasing attention for addressing multi-
agent coordination tasks (Cacciamani et al., 2021; Yuan et al., 2023). In contrast to single-agent
settings, the presence of multiple agents leads to exponential growth of the joint state-action space,
thus vastly expanding the policy space (Zhang et al., 2024; Chai et al., 2024). This makes efficient
exploration a critical issue for policy optimization in MARL.

A common strategy to mitigate exploration inefficiency is to regularize the learning process by
incorporating prior knowledge. For instance, existing studies introduce appropriate handcrafted
rewards to supplement the environment reward (Jo et al., 2024; Hou et al., 2025; Li et al., 2024).
By forming such a composite reward function, agents are guided toward exploring more meaningful
policy spaces, which reduces the search space and improves training efficiency. To preserve the
optimal policy when applying reward shaping, a necessary condition is that the shaping reward be
expressible as the difference in potential function values between consecutive states (i.e., potential-
based reward shaping). Other transformations of the reward function may alter the relative values of
state-action pairs and lead to suboptimal policies (Ng et al., 1999; Mannion et al., 2017).

However, in most tasks we possess form of common-sense prior knowledge rather than domain-
specific prior knowledge. Such common-sense knowledge typically cannot be directly applied
to complete the task but instead serves to facilitate task completion. Consequently, incorporating
general prior knowledge—whether common-sense or domain-specific—into training as a potential-
based shaped reward remains highly challenging. This raises a critical question: How can we effec-
tively integrate such general prior knowledge into the learning process while preserving the pursuit
of an optimal policy, thereby enhancing exploration efficiency?

To address the challenge of inefficient exploration in MARL, we introduce Pre-training Tacit Model
for efficient Coordination (PTMC), a novel framework that provides a method for incorporating
general prior knowledge into the learning process. Inspired by spontaneous tacit coordination in
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teamwork (Reber, 1989; Tee & Karney, 2010), we refer to the general prior knowledge as tacit
consensus among agents and construct the corresponding tacit reward function accordingly. In the
pre-training phase, agents are trained in a decentralized manner under the guidance of tacit reward,
efficiently yielding a tacit model with minimal computational cost. During the subsequent coordi-
nated training phase, the pre-trained tacit model is used both to initialize the coordinated policy and
to incorporate a tacit constraint term into the optimization objective. Collectively, the two-phase
framework facilitates efficient policy discovery and promotes stable cooperation among agents.

Our main contributions are three-fold: (1) We formalize the notion of “tacit consensus” and con-
struct a corresponding tacit reward with semantic interpretation and formal definition, enabling the
incorporation of general prior knowledge into learning process. (2) We propose a tacit pre-training
mechanism for MARL, where single-agent training is guided by the tacit reward to produce tacit be-
havior, with model scalability enhanced by masking opponents information. (3) Within the central-
ized coordinated training phase, we integrate a tacit constraint term into the optimization objective,
allowing the policy to selectively retain beneficial tacit behaviors.

Empirically, we evaluate PTMC on challenging StarCraft II micromanagement tasks (Samvelyan
et al., 2019; Ellis et al., 2024) and Predator–Prey scenarios. PTMC outperforms baseline methods
in both coordinated performance and training efficiency. Ablation studies validate the contribution
of each component, and visualizations reveal that PTMC exhibits improved exploration efficiency.

2 RELATED WORK

In MARL, the expansive joint state-action space leads to a vast policy space, resulting in inefficient
exploration. In single-agent reinforcement learning, this issue is often mitigated through warm-
starting or regularizing the learning process using prior knowledge (Taiga et al., 2023; Schwarzer
et al., 2021; Nair et al., 2020; Ramrakhya et al., 2023; Bruce et al., 2023; Zhou et al., 2023). Re-
cent works extend this idea to MARL by introducing intrinsic motivation to augment environment
rewards during training (Zheng et al., 2021; Li et al., 2024; Jeon et al., 2022). For example, FoX
(Jo et al., 2024) introduces formation-based rewards to guide exploration towards meaningful states
under specific formations. E2M (Hou et al., 2025) employs intrinsic motivation to encourage ex-
ploration while avoiding overly conservative policies. However, such handcrafted rewards may
violate potential-based reward conditions, undermining convergence guarantees and impeding opti-
mal policy learning (Ng et al., 1999; Mannion et al., 2017). To this end, we propose a pre-training
mechanism that introduces general prior knowledge to avoid convergence risks.

Existing pre-training approaches in MARL primarily focus on acquiring shared knowledge to facil-
itate online fine-tuning across multiple downstream tasks (Meng et al., 2023b; Wang et al., 2025).
For example, M3 (Meng et al., 2023a) learns transferable high-level policy representations and in-
tegrates them into subsequent training, while recent work extends this idea by leveraging diverse
reward-level data to pre-train policies with broader applicability (Meng et al., 2024). However,
these paradigms typically depend on similar data sources and environment rewards, limiting the
incorporation of diverse information such as common-sense prior knowledge. To address this, we
introduce tacit reward functions to encode prior knowledge for decentralized pre-training, followed
by centralized coordinated training to learn efficient policies. In contrast to conventional pre-training
methods that rely on large-scale data (Baker et al., 2022; Pertsch et al., 2021; Fan et al., 2022), our
approach focuses on simpler single-agent tasks and requires significantly fewer training steps.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

The multi-agent coordinated task can be formalized as a Decentralized Partially Observable
Markov Decision Process (Dec-POMDP) (Oliehoek et al., 2016), defined by the tuple G =
⟨N, S,O,A, P,R, γ⟩. Here, N denotes the set of agents with n = |N |, S is the global state space.
O = {oi}ni=1 is the joint observation space, where oi is the local observation of agent i. The joint
action space is A = {ai}ni=1, comprising individual actions of each agent. In most multi-agent
benchmarks, agents share a common environment reward rt = R(st, at). The environment reward
is determined by the transition function P (st+1|st, at) based on the change in global state and joint
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Figure 1: A toy example illustrating of tacit consensus formation and tacit reward design in multi-
agent coordination tasks. (a) Initial positions of agents and apples, and the environment reward is
provided for the successful capture of an apple. (b) Using agent 1 as an example, its tacit reward r1,ttac
is computed as the temporal difference in distance between agent 1 and agent 3. (c) Training solely
with tacit reward may yield invalid or suboptimal policies. (d) Training solely with environment
reward results in inefficient policy learning. (e) By leveraging the tacit model, PTMC integrates
both rewards and accelerates convergence toward the optimal policy.

action at. The discount factor γ ∈ [0, 1) determines the weight of future rewards. In MARL, each
agent learns a policy πθ(ai|oi) that maps its local observation oi to an action ai, aiming to maximize
the expected cumulative discounted reward:

J(θ) = Eπθ

[ ∞∑
t=0

γt ·R(st, at)

]
. (1)

3.2 KEY CONCEPTS AND DEFINITIONS

In multi-agent coordinated tasks, agents can improve efficiency by leveraging shared prior knowl-
edge toward collective objectives. We term the shared understanding of prior knowledge among
multi agents as tacit consensus. Building on this concept, we construct the corresponding tacit re-
ward function and provide a method for deriving tacit rewards from tacit consensus. Specifically,
tacit consensus typically entails an advantageous configuration Cadv, representing a specific agent
formation that yields a cooperative advantage. Depending on tasks, the configuration C can mani-
fest as either a particular spatial arrangement, a temporal sequence of actions among agents, or both.
During training, the configuration of agent i at time t is denoted by Ct

i . The distance between Ct
i

and Cadv is quantified as configuration distance. The tacit reward rtac for each agent is then con-
structed from the temporal change in configuration distance, quantifying the extent to which agent’s
behavior converges toward Cadv. Formally, the tacit reward is defined as:

ri,ttac =
∥∥Ct

i − Cadv

∥∥− ∥∥Ct+1
i − Cadv

∥∥, (2)
where ∥·∥ represents a general configuration distance metric.

The behaviors learned under the guidance of this tacit reward are defined as tacit behaviors. Al-
though agents make decisions independently, their tacit behaviors collectively foster coordinated
team behavior—precisely the outcome that tacit consensus is intended to achieve. Importantly, tacit
consensus can be derived from either domain-specific prior knowledge or common-sense priors.
Moreover, the approach we describe is not the only method for deriving tacit rewards from tacit
consensus; alternative methods can also be integrated into the overall framework.

3.3 A TOY EXAMPLE

To further clarify the concept of tacit consensus and illustrate how it is formed, we provide a con-
crete example, as shown in Figure 1. In this task, the evident prior knowledge is that agents can
accomplish the objective more efficiently by moving closer to each other. Building on this insight,
we derive the tacit consensus and corresponding tacit reward for this task, as illustrated in Figure 1.
Moreover, tacit rewards can also be constructed by defining the task’s advantageous configuration.
Accordingly, we define “spatial configuration where agents are clustered” as advantageous config-
uration Cadv. At time t, the distance between agent i and its nearest teammate is defined as Ct

i .
Consequently, the tacit reward ri,ttac is formulated as the temporal reduction in the distance to Cadv.

3
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Figure 2: The overall PTMC framework. The colored arrows and blocks depict processes and
modules unique to PTMC.

It is important to emphasize that the objective of tacit consensus is not fully aligned with original
task objective. For example, reducing pairwise distances among agents is a necessary but insufficient
condition for task completion. Relying solely on tacit rewards may cause deviation from the task
objective, leading to invalid or suboptimal policy (Figure 1(c)), whereas relying only on environment
rewards causes inefficient exploration (Figure 1(d)). Our method combines both, using tacit reward
as auxiliary guidance to accelerate convergence toward the optimal policy (Figure 1(e)).

4 METHOD

This section presents the proposed method, PTMC, a learning framework that enhances coordina-
tion efficiency in multi-agent settings by leveraging prior knowledge. As shown in Figure 2, PTMC
comprises two training phases. In the decentralized tacit pre-training phase, agents are trained indi-
vidually while masking opponent-related information, yielding tacit behaviors that generalize across
diverse coordinated scenarios. In the centralized coordinated training phase, we introduce a tacit
constraint term into the optimization objective, defined as the product of a binary gating function
and a deviation regularization term. This constraint is incorporated to selectively leverage the bene-
ficial coordination encoded in the pre-trained tacit model, promoting efficient learning of high-return
coordinated policies.

4.1 TACIT PRE-TRAINING

Under the decentralized training paradigm, the tacit reward guides agent toward efficient tacit be-
haviors, facilitating the integration of prior knowledge. A simple yet effective masking strategy
is employed to train the tacit policy independently of specific opponent settings. Additionally, a
“tacit metric” is introduced to quantify the degree of tacit behavior acquisition, enabling adaptive
termination of the pre-training phase.

4.1.1 MASK OPPONENTS INFORMATION.

To facilitate the learning of tacit behavior among agents and ensure that the resulting tacit policy is
opponent-agnostic, we define the policy of agent i during the tacit pre-training phase as:

πtac
i ≜ πtac

i (ai | fmask(oi), hmask(Ãi); θtac). (3)

Here, the opponent-related components are masked in agent i’s observation space oi and executable
action space Ãi. The masking functions fmask and hmask are given by:

fmask (oi) = fmask ([o
ag
i , oopi ]) = [oagi , 0] , (4)

hmask

(
Ãi

)
= hmask

([
Ãag

i , Ãop
i

])
=

[
Ãag

i , 0
]
, (5)

where oi is partitioned into two subsets: oi = oagi ∪ oopi . oagi denotes agent i’s own state and its
local observations of allied agents, and oopi contains local observations of opponents. Similarly, Ãi

is divided as Ãi = Ãag
i ∪ Ã

op
i . Ãag

i represents executable actions related to the agent i and its allies
(e.g., movement), and Ãop

i includes executable actions that interact with opponents (e.g., attack).

4
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By masking opponent-related components during pre-training, the resulting tacit policy acquires
opponent-agnostic coordination skills, improving adaptability during subsequent coordinated train-
ing. For instance, in the task presented in “A Toy Example” section, the tacit behavior learned during
pre-training remains effective despite variations in the number or positions of apples.

4.1.2 TACIT PRE-TRAINING OBJECTIVE.

During the tacit pre-training phase, each agent’s tacit policy model is trained under the decentralized
training paradigm (e.g., IPPO or IQL), where agents rely only on local observations and thus struggle
to learn global coordinated behaviors. To address this, we design a tacit reward function rtac to
incorporate global state information, allow agents to access information beyond their observation
ranges, and thereby promote effective tacit coordination. Specifically, ri,ttac

(
st, st+1

i

)
is defined

using a counterfactual global state st+1
i , where agent i’s state is updated while all allied agents’ state

remain as in st. This design ensures that the reward captures only the impact of agent i’s action,
isolated from the influence of other agents.

For environments with homogeneous teammates, we adopt parameter sharing and optimize a single
policy parameterized by θtac. In tacit pre-training, the optimization objective is to maximize:

J(θtac) = Eπtac

[
1

n

∞∑
t=0

n∑
i=1

γtri,ttac

(
st, st+1

i

)]
. (6)

Although both phases employ multi-agent algorithms, tacit pre-training is essentially single-agent
learning, without opponent-induced variability, whereas coordinated training involves multi-agent
interactions. Due to these factors, the tacit pre-training phase exhibits lower learning complexity,
requiring fewer training steps than coordinated training.

4.1.3 TERMINATION CRITERIA.

To quantitatively evaluate the real-time effectiveness of tacit pre-training and determine its termina-
tion point, we introduce the tacit metric Mtac. In each training episode, a batch of test trajectories
is sampled, and Mtac is computed by accumulating over the samples in the batch as follows:

Mtac =
1

N

N−1∑
t=0

H
(
rttac

)
, (7)

where H(·) denotes the Heaviside step function, rttac is the tacit reward obtained under policy πt
tac,

and N represents the total number of samples in the test batch.

Throughout tacit pre-training phase, Mtac is monitored to evaluate the degree of tacit behavior
acquisition. Once it exceeds a predefined threshold M∗

tac, the tacit pre-training process is terminated,
indicating that agents have acquired the coordination capability required for tacit behaviors.

4.2 COORDINATED TRAINING

During the centralized coordinated phase, the pre-trained tacit policy initializes coordinated policy
learning, enabling agents to develop coordination skills efficiently. To facilitate this process, we
incorporate a tacit constraint term into the optimization objective, guiding policy updates to selec-
tively preserve beneficial tacit behaviors. Within this module, a binary gating function activates the
deviation regularization term only when harmful drift from tacit coordination is detected, ensuring
that corrections are applied adaptively while maintaining useful tacit behaviors.

4.2.1 COORDINATED TRAINING PROCESS.

During the coordinated training phase, agent i’s policy is denoted as πcoor
i and initialized from the

pre-trained tacit policy πtac
i by setting θcoor ← θtac. Unlike the critic used in tacit pre-training,

which is trained on individual observations, the critic network in coordinated training is based on
the global state. Coordinated training follows the Centralized Training with Decentralized Execution
(CTDE) paradigm and is guided by the environment reward renv, computed from joint actions.

5
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Figure 3: Detailed structure of the tacit constraint term, expressed as the product of a binary gating
function and a deviation regularization term.

Although initialization with the pre-trained model incorporates tacit coordination potential, itera-
tive policy updates may compromise the retention of its benefits. To mitigate this, we introduce a
tacit regularization term Ltac (structure shown in Figure 3) that dynamically constrains deviations
between πcoor and πtac during training. The coordinated objective is formulated as follows:

J(θcoor) = Eπcoor

[ ∞∑
t=0

γt · rtenv − αtac · Ltac

]
, (8)

Ltac = G
(
ρt, ε, r

t
env

)
·Dmask

KL (πtac ∥πcoor ), (9)
where αtac is a hyperparameter that balances the return and the tacit constraint term, and G(·) is a
binary gating function (taking values 0 or 1).

4.2.2 BINARY GATING FUNCTION.

To enable selective activation and adaptive adjustment during training, we introduce a binary gating
function G(·). This function takes as input the deviation term ρt between the action probability
distributions of πcoor and πtac, a threshold parameter ε, and the environment reward rtenv. The
definition of G(·) is given as:

G(ρt, ε, r
t
env) =


0, rtenv ≥ 0,

0, rtenv < 0 and |ρt − 1| ≤ ε,

1, rtenv < 0 and |ρt − 1| > ε,

ρt =
πcoor
i (ati | oti)

πtac
i (ati | fmask(oti))

. (10)

A positive environment reward rtenv indicates effective agent behavior, negating the need for align-
ment with the pre-trained tacit policy. In contrast, a negative reward reflects suboptimal actions,
and we evaluate whether the suboptimal performance results from the current policy deviating from
pre-trained tacit policy, by measuring the deviation of ρt from 1.

4.2.3 DEVIATION REGULARIZATION TERM.

The deviation regularization term Dmask
KL (·) quantifies the divergence between current policy πcoor

and pre-trained tacit policy πtac. During coordinated policy learning, it guides the agent toward
actions that promote task completion while also encouraging behavioral alignment with the pre-
trained tacit policy. It is formally defined as:

Dmask
KL ≜ DKL

(
gmask

(
πtac(· | fmask(o

t
i))

) ∥∥ gmask
(
πcoor(· | oti)

))
, (11)

where fmask(·) masks opponent-related information as defined in Eq. (4).

Moreover, for the action probability distributions under πtac and πcoor, actions involving opponent
interactions are excluded, ensuring fair alignment since πtac is not trained on such actions. The
masking and renormalization function for policy, denoted as gmask(·), is given by:

gmask

(
π(oti)

)
=

mi[ai]⊙ π(ai | oti)∑
ai∈Aag

i
π(ai | oti)

, mi[ai] =

{
1, ai ∈ Aag

i ,

0, ai ∈ Aop
i ,

(12)

where ⊙ denotes element-wise multiplication, Ai denotes the full action space, distinct from the
executable subset Ãi used in pre-training. The action space Ai is divided into: Ai = Aag

i ∪ A
op
i .
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5 EXPERIMENTS

We evaluate PTMC on the StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019),
SMACv2 (Ellis et al., 2024) and the Predator-Prey environment (Lowe et al., 2017), comparing it
against five advanced MARL algorithms. The results demonstrate that PTMC achieves improved
learning efficiency, enhanced coordinated performance and scalability. We further conduct ablation
study to validate the contributions of key components within PTMC. Additionally, visualizations are
provided to illustrate the advantage of PTMC in high-return state exploration.

5.1 COMPARATIVE EVALUATION

5.1.1 BASELINE.

We compare PTMC against five well-established baselines, encompassing both value-based and
policy-gradient methods. Several of these baselines are specifically designed to enhance exploration
efficiency from different perspectives:

• AIR (Zhou et al., 2025) improves exploration through identity recognition and adaptive
modulation of exploration mode and intensity.

• GoMARL (Zang et al., 2024) promotes exploration via automatic agent grouping.
• MAT (Wen et al., 2022) reformulates joint policy optimization as a sequential advantage-

guided process to enhance exploration and convergence.
• QMIX (Rashid et al., 2018) factorizes the joint action-value via a mixing network under

CTDE, enabling decentralized greedy policies trained with a global reward.
• MAPPO (Yu et al., 2022) applies PPO in a CTDE setting with a centralized critic and

decentralized actors, providing a strong and stable baseline.

All algorithms are open-source, with finetuned hyperparameters for optimal performance. Among
them, AIR and GoMARL are QMIX-based variants, while MAT is based on MAPPO.

5.1.2 ENVIRONMENT.

We evaluate our approach on SMAC, SMACv2 and Predator-Prey environments. SMAC and
SMACv2 are cooperative multi-agent benchmarks, where two opposing teams engage in combat:
one controlled by built-in game bots and the other by MARL algorithms. Notably, we randomize the
initial positions of agents in SMAC maps to increase the difficulty of the scenarios. Predator-Prey
focuses on coordination, requiring agents (predators) to capture stags and hares in a 25×25 grid.
Stags must be captured cooperatively by two agents (reward: 10), whereas hares can be captured by
a single agent (reward: 2). All environments employ global rewards to reflect overall system per-
formance. Appendix B.1 and B.2 details the environment-specific definitions of the tacit consensus
and the corresponding tacit reward employed in PTMC. Appendix C provides a detailed description
of the environment settings. Appendix D presents the results of tacit pre-training, along with the
scenario-specific settings for the predefined threshold of the tacit metric.

5.1.3 PERFORMANCE.

Since our method is compatible with both QMIX-based and MAPPO-based algorithms, we imple-
ment PTMC on each framework and conduct comparative evaluations. Figure 4 presents the learning
curves for three SMAC and three SMACv2 scenarios. Although MAPPO-based and QMIX-based
algorithms exhibit distinct performance in SMACv2, both PTMC-MAPPO and PTMC-QMIX con-
sistently outperform their respective baselines. While MAPPO and QMIX show stable learning,
they exhibit lower efficiency and suboptimal final performance. AIR displays training instability, as
reflected by large confidence intervals. MAT shows limited effectiveness across all scenarios. Al-
though GoMARL performs competitively in SMACv2, it demonstrates limited learning efficiency
and low win rates in SMAC. In contrast, PTMC-MAPPO and PTMC-QMIX achieve higher learning
efficiency, improved final win rates, and enhanced training stability across all tasks.

Figure 5 shows the total training steps to reach equivalent mean return in four Predator–Prey tasks.
Notably, PTMC employs the same pre-trained tacit model across all experiments to facilitate coordi-
nation among ten agents. Across scenarios varying in prey numbers (more or fewer than predators)

7
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PTMC -- MAPPO MAT MAPPO AIR GoMARL QMIXPTMC -- QMIX

Figure 4: Comparison of training performance in SMAC and SMACv2 over 6M steps. The top row
presents results for three SMAC scenarios, and the bottom row for three SMACv2 scenarios. Solid
curves indicate the mean across five random seeds and shaded regions denote confidence intervals.

Figure 5: Comparison of training efficiency in Predator–Prey tasks. The bars represent the total
number of training steps required to achieve a specified mean return across four scenarios, with
PTMC results including its tacit pre-training phase.

and the composition of stags and hares, PTMC-MAPPO and PTMC-QMIX both achieve faster con-
vergence and superior performance compared to their baselines. These results demonstrate the scal-
ability of the tacit pre-training and the effectiveness of PTMC. Additional results for comparative
evaluation are provided in Appendix E.

5.2 ABLATION STUDIES

Figure 6: Ablation study of PTMC
on the 3s vs 5z map.

We conduct ablation study on 3s vs 5z to evaluate the con-
tributions of key components in PTMC, where PTMC is built
on MAPPO. Specifically, “PTMC w/o Constr.” removes tacit
constraint term; “PTMC w/o Pretr.” omits actor network ini-
tialization from tacit pre-training ; and “PTMC w/o BinGate.”
removes binary gating function to assess the impact of selec-
tive constraint enforcement. As shown in Figure 6, PTMC
consistently outperforms all ablated variants. Notably, “PTMC
w/o Pretr.” performs significantly worse, underscoring the im-
portance of pre-trained initialization. PTMC exhibits an early-
stage advantage over “PTMC w/o Constr.”, validating the ben-
efit of introducing tacit constraint term. Additionally, the performance drop of “PTMC w/o Bin-
Gate.” suggests that indiscriminate constraint may impair learning due to inaccurate loss estimation.
Extensive ablation studies on additional scenarios are presented in Appendix F. In addition, Ap-
pendix G reports the evaluation of the parameter setting for αtac.
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0.2821 0.3552 3 0.386 4 0.449 5 0.491 mean return

1

2

4

3

5 optimal

(a) (b)

(c)

Figure 7: Visualization of exploration efficiency on the 3s vs 5z map. (a) Training steps re-
quired by PTMC and MAPPO to achieve the same win rate. (b–c) Each of the five subplots in (c)
corresponds to a marked point in (b). Within each subplot, scatter points represent the 2D t-SNE
embeddings of states, color-coded by the normalized mean return on a gradient from light blue (low
return) to pink (high return), with the average value indicated in the top-left corner.

5.3 VISUALIZATION ANALYSIS

We evaluate PTMC and MAPPO on 3s vs 5z map in SMAC under identical training configura-
tions, where PTMC is built on the MAPPO framework. As shown in Figure 7(a), the total training
steps of PTMC across both phases remain fewer than those required by MAPPO, with the differ-
ence increasing as the target win rate rises, indicating the superior training efficiency of PTMC.
To further investigate the cause of this efficiency gap, we analyze the efficiency of exploring high-
return states as training progresses. Specifically, we collect all global states encountered during 32
evaluation episodes for both methods, using the same random seed. Each state is embedded into a
low-dimensional space via t-SNE. To ensure consistent relative positioning, we jointly embed five
representative state groups into a shared t-SNE space: MAPPO and PTMC at 2M and 4M steps, and
PTMC at 10M steps (approximately optimal model).

In Figure 7(c), the state distributions increasingly shift toward high-return regions as training pro-
gresses, with Subplot 5 (optimal) showing the highest concentration of high-return states. At 2M
steps (Subplots 1 and 2), PTMC already covers a wider range of high-return states, while MAPPO
remains concentrated in low-return areas. Moreover, PTMC achieves a significantly higher aver-
age normalized mean return than MAPPO at 2M steps, confirming the effectiveness of the tacit
pre-training mechanism in guiding exploration toward high-return states. By 4M steps (Subplots
3 and 4), PTMC’s state distribution closely aligns with the optimal model and clearly outperforms
MAPPO in high-return coverage. Additional visualizations and state coverage comparisons with
optimal model are provided in Appendix H.

6 CONCLUSION

In this paper, we propose PTMC to improve inter-agent coordination and facilitate efficient policy
discovery, thereby enhancing exploration efficiency in MARL. PTMC adopts a two-phase paradigm
comprising tacit pre-training and coordinated training, where prior knowledge is encoded as a tacit
reward. The tacit reward guides decentralized pre-training to learn individual tacit policies. Building
on the pre-trained tacit model, PTMC incorporates a tacit constraint term into the optimization
objective, enabling the policy to selectively retain beneficial tacit behaviors. Experiments show that
PTMC achieves superior learning efficiency, improved coordinated performance, and scalability
across diverse tasks. Ablation studies and visualizations further validate the contributions of key
components and the overall effectiveness of PTMC in guiding exploration.
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We acknowledge that all authors of this work have read and commit to adhering to the ICLR Code
of Ethics. We explicitly confirm our compliance with the Code throughout the submission, review,
and discussion processes.

8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. The source code is provided in
the “Supplementary Material”, together with the modified SMAC map files (.SC2Map) used in our
experiments. The detailed settings of the threshold parameter M∗

tac in the pre-training phase for both
SMAC and predator-prey tasks are described in Appendix D. The design of the key parameter αtac

in the coordinated training phase, as well as its performance under different values, is thoroughly
analyzed in Appendix G.
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A LLM USAGE STATEMENT

We employed large language models (LLMs) solely for translation and language polishing of the
manuscript. No part of the research design, problem formulation, experimental setup, or result
interpretation was generated or influenced by LLMs. All scientific contributions, ideas, and analyses
are entirely the authors’ own.

B DEFINITION OF TACIT REWARDS BASED ON DIFFERENT ENVIRONMENTS

B.1 SMAC

Our intuitive insight is that agents can achieve the overall objective more efficiently by forming
advantageous spatial relationships, specifically, by enabling the multi-agent system to locally aggre-
gate more agents than its opponents. Considering the partial observability in SMAC environments,
we define the tacit consensus among agents as maintaining mutual observability while preserving
a stable inter-agent distance over time. Due to the complexity of the SMAC environment, we cat-
egorize four typical cases and define their corresponding advantageous configuration Cadv and
agent-specific configuration Ct

i , where agent i denotes a representative agent from multiple agents.
Additionally, we introduce a parameter term λi,t before the tacit reward to dynamically adjust its
weight during training, thereby improving learning efficiency.

Case (a): In this case, the distance between every pair of agents in the global state exceeds their
respective perception ranges, resulting in a lack of mutual observability. To establish the aforemen-
tioned tacit consensus, agents should individually converge toward a fixed point to rapidly enter
each other’s observation range. Accordingly, the advantageous configuration Cadv is defined as
the minimum distance between agent i and the fixed point, while the agent-specific configuration
Ct

i denotes the distance between agent i’s current position and the fixed point. Formally, Cadv and
Ct

i are defined as: 
Ct

i = ∥φt
i − φpt∥2

Ct+1
i =

∥∥φt+1
i − φpt

∥∥
2

Cadv = ∥φcls − φpt∥2 ,

(13)

where the position of agent i is denoted by φi(oi, s), which is abbreviated as φi for simplicity in the
aforementioned definitions. φpt denotes the position of the fixed point, φcls refers to the position
closest to the fixed point.

The parameter term λi,t of case (a) is defined in 14. The tacit reward term ri,ttac is defined in 15.

λi,t
a = min


min
k/∈ρt

i

∥φt
i − φt

k∥2 − di

βdi − di
, 1

, (14)

ri,ttac = λi,t
a ×

(∥∥Ct
i − Cadv

∥∥− ∥∥Ct+1
i − Cadv

∥∥) , (15)

where the set ρi denotes the collection of agents within the perceptual range of the agent i. The
parameter β > 1 is introduced to define the upper bound of λ. The term di represents the perceptual
distance of the agent i.

Case (b): In this case, a subset of agents forms clusters, while agent i has no neighbors within
its perceptual range. To establish the aforementioned tacit consensus, agent i should move toward
its nearest agent. Accordingly, the advantageous configuration Ct

adv is defined as the minimum
distance between agent i and its nearest agent, and the agent-specific configuration Ct

i denotes the
distance between agent i and its nearest agent. Formally, Ct

adv and Ct
i are defined as:

Ct
i = ∥φt

i − φt
k∥2

Ct+1
i =

∥∥φt+1
i − φt

k

∥∥
2

Ct
adv = ∥φt

k min − φt
k∥2 ,

(16)
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where φt
k denotes the position of agent i’s nearest agent k, φk min refers to the position with the

minimum distance to agent k’s position.

The parameter term λi,t of case (b) is defined in 14. The tacit reward term ri,ttac is defined in 17.

ri,ttac = λi,t
b ×

(∥∥Ct
i − Ct

adv

∥∥− ∥∥Ct+1
i − Ct

adv

∥∥) . (17)

Case (c): In this case, agent i perceives more than one other agent within its perceptual range. To
establish the aforementioned tacit consensus, agent i is expected to continuously detect neighboring
agents while maintaining a specified inter-agent distance. Accordingly, the advantageous config-
uration Ct

adv is defined as the target distance between agent i and the position that maintains the
specified inter-agent distance relative to its nearest neighbor, and the agent-specific configuration
Ct

i denotes the distance between agent i and its nearest agent. Formally, Ct
adv and Ct

i are defined
as: 

Ct
i = ∥φt

i − φt
k∥2

Ct+1
i =

∥∥φt+1
i − φt

k

∥∥
2

Ct
adv = ∥φt

k sd − φt
k∥2 ,

(18)

where φt
k sd denotes the position at which agent i maintains the specified distance relative to its

nearest agent k.

The parameter term λi,t of case (c) is defined in 19. The tacit reward term ri,ttac is defined in 20.

λi,t
c =



min
k∈ρi

∥φi − φk∥2
αdk

, if min
k∈ρi

∥φi − φk∥2 < αdk

max
k∈ρi

∥φi − φk∥2 − αdk

dk − αdk
, if αdk ≤ min

k∈ρi

∥φi − φk∥2 < dk,

(19)

where α is a parameter in the range (0, 1), representing a specified distance relative to agent k’s
perceptual range dk.

ri,ttac = λi,t
c ×

(∥∥Ct
i − Ct

adv

∥∥− ∥∥Ct+1
i − Ct

adv

∥∥) . (20)

Case (d): In this case, the agent perceive only one other agent within its perceptual range. Agents
in this case are classified as either leader agents or follower agents, based on their relative positions
to the nearby agents. We designate the agent positioned on the left as the leader, while the other
is assigned as the follower. The corresponding subscripts for the leader and follower agents are
denoted as l and f respectively.

To establish the aforementioned tacit consensus, the leader agent is expected to move toward the
nearest agent outside its perceptual range. Accordingly, the advantageous configuration of the
leader agent, denoted as Ct

adv l, is defined as the minimum distance between agent l and its nearest
agent outside its perceptual range. The agent-specific configuration of the leader agent Ct

l repre-
sents the distance between agent l and its nearest agent outside its perceptual range. Formally, Ct

adv l
and Ct

l are defined as: 
Ct

l = ∥φt
l − φt

k∥2
Ct+1

l =
∥∥φt+1

l − φt
k

∥∥
2

Ct
adv l = ∥φt

k min − φt
k∥2 ,

(21)

where φt
k denotes the position of agent k, which is the nearest agent outside the perceptual range of

agent l, and φk min denotes the position that is closest to agent k.

The parameter term λl,t
d for leader agent in case (d) is defined in 22. The tacit reward term rl,ttac is

defined in 23.
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λl,t
d = min


min
k/∈ρt

l

∥φt
l − φt

k∥2 − dl

βdl − dl
, 1

 , (22)

rl,ttac = λl,t
d ×

(∥∥Ct
l − Ct

adv l

∥∥− ∥∥Ct+1
l − Ct

adv l

∥∥) . (23)

To establish the aforementioned tacit consensus, the follower agent is expected to move toward
the leader agent. Accordingly, the advantageous configuration of the follower agent, denoted as
Ct

adv f , is defined as the minimum distance between agent f and agent l. The agent-specific con-
figuration of the follower agent Ct

f represents the distance between agent f and agent l. Formally,
Ct

adv f and Ct
f are defined as: 

Ct
f =

∥∥∥φt
f − φt

l

∥∥∥
2

Ct+1
f =

∥∥∥φt+1
f − φt

l

∥∥∥
2

Ct
adv f = ∥φt

l min − φt
l∥2 ,

(24)

where φl min denotes the position that is closest to agent l.

The parameter term λf,t
d for follower agent in case (d) is defined in 25. The tacit reward term rf,ttac is

defined in 26.

λf,t
d =



∥∥∥φt
l − φt

f

∥∥∥
2

αdf
, if

∥∥φt
l − φt

f

∥∥
2
< αdf∥∥∥φt

l − φt
f

∥∥∥
2
− αdf

df − αdf
, if αdf ≤

∥∥φt
l − φt

f

∥∥
2
< df ,

(25)

rf,ttac = λf,t
d ×

(∥∥Ct
f − Ct

adv f

∥∥− ∥∥∥Ct+1
f − Ct

adv f

∥∥∥) . (26)

B.2 PREDATOR-PREY

For Predator-Prey task, our intuitive insight is that agents can achieve the overall objective more
efficiently if they move closer to each other. Considering the partial observability in Predator-Prey
environments, we define the tacit consensus among agents as agents intentionally reducing their
pairwise distances. To facilitate the efficient acquisition of the desired tacit behavior, we catego-
rize three representative cases and define the corresponding advantageous configuration Cadv and
agent-specific configuration Ct

i , where agent i represents a typical agent among multiple agents.
Additionally, a parameter term λi,t is introduced prior to the tacit reward to dynamically adjust its
weight during training, thereby improving learning efficiency.

Case (a): In this case, agent i has no neighbors within its perceptual range. To establish the afore-
mentioned tacit consensus, agent i should move toward its nearest agent. Accordingly, the advanta-
geous configuration Ct

adv is defined as the minimum distance between agent i and its nearest agent,
and the agent-specific configuration Ct

i denotes the distance between agent i and its nearest agent.
Formally, Ct

adv and Ct
i are defined as:


Ct

i = ∥φt
i − φt

k∥2
Ct+1

i =
∥∥φt+1

i − φt
k

∥∥
2

Ct
adv = ∥φt

k min − φt
k∥2 ,

(27)

where φt
k denotes the position of agent i’s nearest agent k, φk min refers to the position with the

minimum distance to agent k’s position.
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The parameter term λi,t
a of case (a) is defined in 28. The tacit reward term ri,ttac is defined in 29.

λi,t
a = min

 ∥φt
i − φt

k∥2 − (di + 1)√
(di + 1)

2
+ (di + 2)

2 − (di + 1)
, 1

, (28)

ri,ttac = λi,t
a ×

(∥∥Ct
i − Ct

adv

∥∥− ∥∥Ct+1
i − Ct

adv

∥∥) , (29)

where the term di represents the perceptual distance of the agent i.

Case (b): In this case, agent i perceives more than one other agent within its perceptual range. To
establish the aforementioned tacit consensus, agent i is expected to approach its nearest neighbor as
closely as possible. Accordingly, the advantageous configuration Ct

adv is defined as the minimum
achievable distance to agent i’s nearest agent, and the agent-specific configuration Ct

i denotes the
distance between agent i and its nearest agent. The formal definitions of Ct

adv and Ct
i are defined as

27.

The parameter term λi,t
b of case (b) is defined in 30. The tacit reward term ri,ttac is defined in 31.

λi,t
b =


0, if ∥φt

i − φt
k∥2 = 1

di − ∥φt
i − φt

k∥2
di − 1

, if 1 < ∥φt
i − φt

k∥2 ≤ di

1, if di < ∥φt
i − φt

k∥2 ,

(30)

ri,ttac = λi,t
b ×

(∥∥Ct
i − Ct

adv

∥∥− ∥∥Ct+1
i − Ct

adv

∥∥) , (31)

where φt
k denotes the position of agent i’s nearest agent k.

Case (c): In this case, the agent perceives only one other agent within its perceptual range. Agents
in this case are classified as either leader agents or follower agents, based on their relative positions
to the nearby agents. We designate the agent positioned on the left as the leader, while the other
is assigned as the follower. The corresponding subscripts for the leader and follower agents are
denoted as l and f respectively.

To establish the aforementioned tacit consensus, the leader agent is expected to move toward the
nearest agent outside its perceptual range. Accordingly, the advantageous configuration of the
leader agent, denoted as Ct

adv l, is defined as the minimum distance between agent l and its nearest
agent outside its perceptual range. The agent-specific configuration of the leader agent Ct

l repre-
sents the distance between agent l and its nearest agent outside its perceptual range. Formally, Ct

adv l
and Ct

l are defined as 21.

The parameter term λl,t
c of case (c) is defined in 32. The tacit reward term rl,ttac is defined in 33.

λl,t
c = min


min
k/∈ρt

l

∥φt
l − φt

k∥2 − (dl + 1)√
(dl + 1)

2
+ (dl + 2)

2 − (dl + 1)
, 1

, (32)

rl,ttac = λl,t
c ×

(∥∥Ct
l − Ct

adv l

∥∥− ∥∥Ct+1
l − Ct

adv l

∥∥) , (33)

where the set ρl denotes the collection of agents within the perceptual range of the agent l.

To establish the aforementioned tacit consensus, the follower agent is expected to move toward
the leader agent. Accordingly, the advantageous configuration of the follower agent, denoted as
Ct

adv f , is defined as the minimum distance between agent f and agent l. The agent-specific con-
figuration of the follower agent Ct

f represents the distance between agent f and agent l. Formally,
Ct

adv f and Ct
f are defined as 24.
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The parameter term λf,t
c for follower agent in case (c) is defined in 34. The tacit reward term rf,ttac is

defined in 35.

λf,t
c =



0, if
∥∥∥φt

f − φt
l

∥∥∥
2
= 1

df −
∥∥∥φt

f − φt
l

∥∥∥
2

df − 1
, if 1 <

∥∥∥φt
f − φt

l

∥∥∥
2
≤ df

1, if df <
∥∥∥φt

f − φt
l

∥∥∥
2
,

(34)

rf,ttac = λf,t
c ×

(∥∥Ct
f − Ct

adv f

∥∥− ∥∥∥Ct+1
f − Ct

adv f

∥∥∥) . (35)

C ENVIRONMENTS AND IMPLEMENTATION DETAILS

C.1 DETAILED EXPERIMENTAL SETUP

All experiments in this paper are run on Nvidia GeForce RTX 3090 graphics cards and AMD EPYC
7H12 64-Core processor CPU. To ensure fair comparisons, we fine-tuned the hyperparameters of all
baseline models accordingly. In SMAC environments, PTMC and all baseline methods in our paper
are trained in the same testbeds. In addition, some methods involve specific parameter tuning across
different scenarios, making comparisons unfair. Therefore, based on relevant literature, we adjusted
the parameters of these methods appropriately for each scenario and ensured consistent parameters
across different random seeds within same scenario during our experiments.

C.2 SMAC

Table 1: SMAC maps in different scenarios.
Name Ally Units Enemy Units Type Difficulty
3s vs 5z 3 Stalkers 5 Zealots micro-trick:

kiting
Hard

corridor 6 Zealots 24 Zerglings micro-trick: wall
off

Super Hard

6h vs 8z 6 Hydralisks 8 Zealots micro-trick:
focus fire

Super Hard

2s3z 2 Stalkers & 3
Zealots

2 Stalkers & 3
Zealots

heterogeneous &
symmetric

Easy

2s vs 1sc 2 Stalkers 1 Spine Crawler micro-trick:
alternating fire

Hard

5m vs 6m 5 Marines 6 Marines homogeneous &
asymmetric

Hard

3s5z vs 3s6z 3 Stalkers & 5
Zealots

3 Stalkers & 6
Zealots

heterogeneous &
asymmetric

Super Hard

In SMAC tasks, a group of units controlled by decentralized agents cooperates to defeat the enemy
agent system controlled by handcrafted heuristics. Each agent has its perceptual range, and at each
timestep the agent can observe information about allied and enemy units within that range, includ-
ing distance, relative position, health, shield amount, and unit type. The global state information,
which includes all agents’ positions, health, allied units’ previous actions, and cooldowns, is only
accessible during centralized training. The objective of our agents is to defeat enemy agents within
a limited timesteps, with the environment’s reward function tied to the health of both units. Battles
can be either symmetric or asymmetric, and the group of agents can be homogeneous or heteroge-
neous. Asymmetric scenarios generally present a higher level of learning difficulty. Additionally,
scenarios with larger numbers of agents tend to pose greater challenges for coordinated learning.
Table 1 provides a detailed description of each SMAC scenario.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) 3s_vs_5z (b) 5m_vs_6m (c) 6h_vs_8z

Figure 8: The thumbnails of initial position in 3s vs 5z, 5m vs 6m and 6h vs 8z.

In this paper, we increase the difficulty of the original SMAC maps by randomizing the initial
positions of both sides and creating scenarios in which agents cannot initially perceive one
another. For clarity, Figure 8 presents thumbnails of the modified maps, where red circles de-
note enemy units and yellow circles denote allied units. The modified map files (.SC2Map) are
provided in the supplementary material.

C.3 SMACV2

SMACv2 is an updated version of SMAC, introducing increased variability and difficulty through
randomized start positions and unit types. Specifically, start positions are randomized in two ways:
(a) Reflect scenario, where allied positions are randomly assigned, and enemy positions are sym-
metrically reflected across the map’s midpoint (as shown in Figure 9(a)); and (b) Surround scenario,
where allied units spawn in the center of the map and are encircled by enemy units (as shown in
Figure 9(b)). The probability of each scenario type is controlled by a parameter p ∈ [0, 1].

(a) The reflect scenario (b) The surround scenario

Figure 9: Illustration of two starting position types: reflect and surround. Allied units are shown in
blue; enemy units in orange.

Moreover, unlike SMAC where unit types are fixed, SMACv2 introduces randomized unit compo-
sitions based on predefined generation probabilities (Table 2). For each StarCraft II race (Protoss,
Terran, and Zerg), three unit types are selected. For example, in the Zerg_10_vs_10 scenario,
both the 10 allied and 10 enemy units are independently sampled from the Zerg race according to
the predefined generation probabilities.

Table 2: Unit types and generation probabilities for each race in SMACv2.
Race Unit Types Generation Probabilities
Terran Marine, Marauder, Medivac 0.45, 0.45, 0.10
Protoss Stalker, Zealot, Colossus 0.45, 0.45, 0.10
Zerg Zergling, Hydralisk, Baneling 0.45, 0.45, 0.10

C.4 PREDATOR-PREY

In the Predator-Prey task, predator agents attempt to capture two types of prey—stags and
hares—within a grid-based environment. Each predator has a local observation radius of three grids
centered on itself, within which it can perceive the relative positions of other agents and nearby prey,
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as well as the prey type. Prey do not move proactively; instead, they respond only to blocked move-
ments after the predators have acted. The global state includes the relative positions of all agents
and prey across the entire grid. Both predators and prey can move to one of the four adjacent grid
or remain stationary. Movements are executed sequentially: predators move first in random order,
followed by the prey selecting a random valid action (i.e. an action that would not lead to a collision
with another entity). A prey is considered captured if a sufficient number of predator agents occupy
the adjacent grids and perform a capture action. Specifically, capturing a stag requires at least two
predators to simultaneously occupy adjacent grids, while capturing a hare requires at least one. Due
to differing capture difficulty, rewards vary: successfully capturing a stag yields a shared reward of
+10, whereas capturing a hare yields +2. Consequently, predator agents are expected to prioritize
coordinated efforts to capture stags rather than acting independently. To intuitively illustrate the
Predator-Prey tasks, we visualize a simplified example. Specifically, we consider a scenario where
five agents (predators) aim to capture four stags and three hares within a 6×6 grid , as shown in
Figure 10.

agents haresstags

Figure 10: Illustration of a Predator-Prey task in a 6×6 grid (5 agents, 4 stags, 3 hares).

D RESULTS FOR PRE-TRAINING

In the main text, we mention that during the tacit pre-training phase, the tacit metric Mtac is mon-
itored to evaluate the emergence of tacit behavior. When it exceeds a predefined threshold M∗

tac,
the pre-training process is terminated, indicating that the agents have acquired the coordination ca-
pability necessary for forming tacit behavior. The threshold M∗

tac is adjusted according to different
experimental scenarios. In addition, based on our previous definition of tacit reward, we design
distinct tacit rewards for different cases. Consequently, each case is associated with a specific tacit
metric and its corresponding threshold M∗

tac. During training, we consider the extent to which the
tacit metric in each case reaches its designated threshold, and terminate the pre-training accord-
ingly. For instance, in the SMAC environment under the 3s_vs_5z scenario, we empirically set
the thresholds for the four cases to [0.75, 0.85, 0.85, 0.85], and the pre-training process is terminated
once all four conditions are satisfied. Specifically, for the 6h_vs_8z and corridor scenarios,
the thresholds for the four cases are set to [0.9, 0.85, 0.9, 0.9] and [0.75, 0.8, 0.85, 0.8], respectively.
Furthermore, we report the results of ten independent pre-training runs, presenting the corresponding
tacit metric values of the four cases at the point when pre-training is terminated for each scenario.
The statistical results are shown in Figure 11, where the height of each bar represents the mean
value, with the exact values labeled on the bars. The error bars represent the corresponding standard
deviation.

For the predator-prey environment, we empirically set the thresholds for the three cases to [0.75,
0.9, 0.85]. Similarly, we report the results of ten independent pre-training runs, presenting the
corresponding tacit metric values of the three cases at the point when pre-training is terminated. The
statistical results are illustrated in Figure 12.

As mentioned in the main text, unlike conventional pre-training, our tacit pre-training focuses on
simpler individual-agent tasks and requires significantly fewer training steps compared to coordi-
nated training. To further illustrate the differenc in training steps between the two training phases,
we report the average number of training steps at the end of tacit pre-training across 10 independent

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026预训练 --SMAC

3s_vs_5z 6h_vs_8zcorridor

Figure 11: Mean and standard deviation of tacit metrics across four cases in three SMAC tasks.预训练 --围捕

10 agents in 25×25 grid

预训练阶段：
model step:
33.2k±12.5k

Figure 12: Mean and standard deviation of tacit metrics across three cases in Predator-Prey task.

runs for three scenarios in the SMAC environment, along with the corresponding standard deviations
(std). The detailed results are summarized in Table 3.

Table 3: Training steps (mean ± std.) of tacit pre-training in three SMAC scenarios.
Scenario 3s vs 5z corridor 6h vs 8z
Training Steps (×103) 588.8 ± 114.5 871.7 ± 120.3 394.1 ± 111.4

For the SMAC tasks, coordinated training involves 6 million training steps, which is approximately
ten times the number required for tacit pre-training. In the predator-prey environment, we evalu-
ate the average number of training steps at the end of tacit pre-training over 10 independent runs,
yielding a mean of 33.2k steps with a standard deviation of 12.5k. In contrast, coordinated training
in this environment requires 500k steps, which is over ten times the number of steps required for
tacit pre-training. These results clearly highlight the distinction between the PTMC framework and
the conventional paradigm of extensive pre-training followed by light fine-tuning, demonstrating the
greater learning efficiency of PTMC in MARL.

E ADDITIONAL RESULTS FOR COMPARATIVE EVALUATION

To strengthen the “Comparative Evaluation” section in main text, we further incorporate diverse
scenarios from Predator-Prey, SMAC, and SMACv2 environments to evaluate the effectiveness of
PTMC across a broader range of tasks.

E.1 COMPARATIVE PERFORMANCE EVALUATION ON PREDATOR-PREY TASKS

In the main text, Table 1 reports the mean and standard deviation of returns after 500k steps across
three Predator-Prey scenarios. In this section, we present detailed training curves and further exper-
iments under various settings, including different opponent combinations and grid configurations.
For clarity, we compare MAPPO-based and QMIX-based algorithms separately. In the following
figures, solid lines represent the mean over five random seeds, and shaded areas indicate the corre-
sponding confidence intervals.
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性能实验 --围捕 25x25 grid

Figure 13: Comparative training performance of MAPPO-based algorithms in predator-prey (25×25
grid).

As shown in Figure 13, all experiments employ the same pre-trained tacit model to facilitate coor-
dination among ten agents in a 25×25 grid. Across scenarios with varying prey numbers (more or
fewer than predators) and different compositions of stags and hares, PTMC-MAPPO consistently
outperforms both MAPPO and MAT in terms of cooperative performance. MAPPO generally ranks
second, though it demonstrates limited training efficiency in the early stages. MAT yields the lowest
final mean return across all four scenarios. Despite initially outperforming both PTMC and MAPPO
in the “10 agents vs 5 stags” scenario, it fails to sustain this early advantage. Additionally, MAT
exhibits considerable training instability, as reflected by large confidence intervals. These results
highlight the scalability of the tacit pre-training mechanism and further substantiate the effective-
ness of PTMC.

Figure 14: Comparative training performance of QMIX-based algorithms in predator-prey (25×25
grid).

We further evaluate PTMC-QMIX in the same scenarios, using QMIX as the base algorithm, and
compare its performance with three QMIX-based variants, as shown in Figure 14. All methods uti-
lize the same pre-trained tacit model. Across all four scenarios, PTMC-QMIX consistently achieves
superior final mean returns. In the “10 agents vs 5 stags” and “10 agents vs 15 stags and 5 hares”
settings, AIR exhibits faster early-stage learning but is slightly outperformed by PTMC-QMIX in
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terms of final return. In the “10 agents vs 10 stags and 5 hares” scenario, AIR demonstrates clearly
inferior overall training efficiency, further underscoring the robustness and performance advantage
of PTMC-QMIX. GoMARL achieves comparable final returns to PTMC-QMIX in the “10 agents
vs 10 stags and 5 hares” and “10 agents vs 15 stags and 5 hares” scenarios, although its early-stage
learning is slightly slower. As a classical baseline, QMIX exhibits stable training but consistently
shows lower efficiency and suboptimal final performance across all scenarios. These results further
demonstrate the flexibility of PTMC, which can be incorporated into both QMIX- and MAPPO-
based frameworks while consistently improving performance.性能实验 --围捕 20x20 grid

Figure 15: Comparative training performance of QMIX-based algorithms in predator-prey (20×20
grid).

Moreover, we evaluate the training performance of PTMC under different grid sizes in predator-prey
tasks. Specifically, PTMC-QMIX and three QMIX-based baselines are tested across four scenarios
on a 20×20 grid, as shown in Figure 15. Overall, PTMC-QMIX consistently achieves the best
performance across all scenarios, both in terms of learning speed and final mean return. Among
the baselines, GoMARL and QMIX exhibit similar trends, with GoMARL showing slightly better
overall performance. Notably, while AIR demonstrate competitive performance with PTMC-QMIX
in some 25×25 grid settings (Figure 14), it performs significantly worse across all four scenarios
in the 20×20 grid settings, both in learning efficiency and final performance. These results further
confirm that PTMC maintains stable performance across diverse predator-prey scenarios, and that
the tacit pre-training mechanism exhibits robust and effective scalability.

E.2 COMPARATIVE PERFORMANCE EVALUATION ON SMAC TASKS

To evaluate the generality of our approach, we further include a range of SMAC scenarios with vary-
ing difficulty levels and type diversity, including homogeneous or heterogeneous agents, symmetric
or asymmetric setups, and distinct micro-tracks. We conduct comparisons between PTMC and their
respective QMIX-based and MAPPO-based baselines.

As shown in Figure 16, we compare PTMC-QMIX with three QMIX-based baselines across three
SMAC scenarios. PTMC-QMIX achieves the highest final win rates on all maps. On 2s_vs_1sc,
QMIX exhibits faster early-stage learning, and in 5m_vs_6m, all baselines show more rapid ini-
tial improvement. However, PTMC-QMIX consistently outperforms them in terms of final perfor-
mance on both maps. On the super hard map 3s5z_vs_3s6z, PTMC-QMIX demonstrates clear
advantages in both learning efficiency and final win rate. Overall, PTMC-QMIX exhibits strong
performance across diverse SMAC tasks.

To further validate the effectiveness of PTMC on SMAC, we compare PTMC-MAPPO with MAPPO
and MAT across three scenarios, as shown in Figure 17. Although MAT exhibits a slight advantage
over PTMC-MAPPO in 5m_vs_6m, PTMC-MAPPO still significantly outperforms MAPPO, upon
which it is based. In the other two scenarios, PTMC-MAPPO consistently demonstrates superior
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Figure 16: Training performance comparison of QMIX-based algorithms in SMAC.

性能实验 -- SMAC

Figure 17: Training performance comparison of MAPPO-based algorithms in SMAC.

performance. Specifically, on 2s3z, it achieves a steeper improvement curve; and on the super hard
map 3s5z_vs_3s6z, it shows a substantial advantage, whereas MAPPO and MAT exhibit only
marginal gains in test win rates. These results further confirm the consistent superiority of PTMC
when built upon either QMIX or MAPPO, highlighting its effectiveness across diverse scenarios.

E.3 COMPARATIVE PERFORMANCE EVALUATION ON SMACV2 TASKS
性能实验 – SMACv2

Figure 18: Training performance comparison of MAPPO-based algorithms in SMACv2.

To complement the three scenarios presented in Figure 4 of the main text, we further evaluate PTMC-
MAPPO against MAPPO and MAT in four SMACv2 scenarios, as shown in Figure 18. PTMC-
MAPPO consistently achieves superior performance across all four scenarios. Although MAPPO
exhibits comparable final performance in terran_15_vs_15, it demonstrates a slower learning
curve compared to PTMC-MAPPO. In contrast, MAT consistently underperforms, yielding the low-
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est win rates in all scenarios. These additional results on SMACv2 further validate the robustness
and effectiveness of PTMC across a wider range of tasks.

F ADDITIONAL RESULTS FOR ABLATION STUDY

We conduct ablation studies on three SMAC scenarios to evaluate the contributions of key compo-
nents in PTMC, where PTMC is built on MAPPO. Specifically, “PTMC w/o Constr.” removes the
tacit constraint term; “PTMC w/o Pretr.” omits actor network initialization from tacit pre-training,
while still allowing selective alignment with the pre-trained tacit model during coordinated train-
ing; and “PTMC w/o BinGate.” removes the binary gating function to assess the effect of selective
constraint enforcement.

消融实验 -- SMAC

Figure 19: Ablation study of PTMC in SMAC scenarios.

As shown in Figure 19, PTMC consistently outperforms all ablated variants. Notably, “PTMC w/o
Pretr.” performs significantly worse across all three scenarios, particularly exhibiting a slower initial
performance increase and poorer final coordinated performance in 6h_vs_8z and corridor,
underscoring the importance of pre-trained initialization. In addition, PTMC demonstrates a clear
early-stage advantage over “PTMC w/o Constr.” in all three scenarios, validating the benefit of
incorporating the tacit constraint term during coordinated training. Furthermore, while “PTMC w/o
BinGate.” achieves performance comparable to PTMC in 6h_vs_8z and remains the second-best
performer in 3s_vs_5z, it suffers a noticeable early-stage performance drop in the corridor
scenario. This may be attributed to the adverse effect of indiscriminate constraint enforcement,
which could impair learning due to inaccurate loss estimation.

消融实验 --围捕

Figure 20: Ablation study of PTMC in Predator-Prey scenarios.

We also conduct ablation studies in the Predator-Prey environment, as shown in Figure 20. PTMC
consistently outperforms all ablated variants across the three predator-prey scenarios. “PTMC w/o
Constr.” performs poorly in all cases, highlighting the effectiveness of aligning with the pre-trained
tacit model during coordinated training. Compared to its performance in SMAC, the greater impact
of the tacit constraint term in this environment can be attributed to the higher relevance between the
designed tacit reward and the task objective in Predator-Prey. A similar performance degradation
is observed for “PTMC w/o BinGate.”, where inaccurate loss estimation likely hinders effective
learning, resulting in inferior performance compared to full PTMC. Interestingly, unlike the SMAC
results, “PTMC w/o Pretr.” achieves the suboptimal performance in the “10 agents vs 7 stags and

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

3 hares” scenario. This suggests that the effect of pre-trained initialization is relatively limited in
this task, while the tacit constraint term still plays a critical role in guiding coordination during
coordinated training.

G EXPERIMENTAL EVALUATION OF KEY PARAMETER SETTINGS

In coordinated training, a tacit constraint term Ltac is incorporated into the loss function, as de-
fined in Eq 36. The hyperparameter αtac is introduced as a weighting coefficient to balance the
contribution of Ltac relative to the main loss term Lmain.

J(θcoor) = Lmain − αtac · Ltac. (36)

To ensure that the magnitude of the tacit constraint term remains within a stable range relative to the
main loss term throughout training, we design the hyperparameter αtac as an adaptive coefficient,
defined as:

αtac = α · αadapt, (37)

where α denotes a base coefficient representing the desired order-of-magnitude difference between
Ltac and Lmain, and αadapt is an adaptive scaling factor that dynamically adjusts Ltac to match the
scale of Lmain during training. Specifically, αadapt is computed by first calculating the ratio between
the main loss Lmain and the value of the tacit constraint term Ltac:

ratio =
Lmain

Ltac
. (38)

Then, αadapt is selected as the closest value to this ratio from a predefined set of scaling candidates:

αadapt = argmin
x∈X

|ratio− x| , (39)

where X = 10−i | i ∈ Z denotes the set of candidate scaling factors in descending order of magni-
tude.

To validate the effectiveness and robustness of the proposed adaptive weighting scheme, we conduct
a series of experiments in both the SMAC and Predator-Prey environments, where PTMC is built
on MAPPO. Specifically, we evaluate the impact of different base coefficient values α across three
representative scenarios in each environment. These experiments aim to investigate whether the
overall training dynamics and coordinated performance are sensitive to the choice of α, and to
determine an appropriate magnitude range for this hyperparameter. The analysis helps assess the
stability of our adaptive mechanism and its ability to maintain effective regularization throughout
training without requiring fine-tuned manual adjustments.

参数实验 -- SMAC

Figure 21: Effect of α parameter on optimization in SMAC tasks.

As illustrated in Figure 21, the choice of the α parameter has a limited impact on the final co-
ordinated performance across most scenarios. For instance, in the 3s_vs_5z and corridor
tasks—both of which exhibit convergence—different values of α yield similar final results. How-
ever, in terms of training efficiency, variations in α lead to noticeable differences. In both
3s_vs_5z and 6h_vs_8z, larger values of α correspond to faster learning progress, with the
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setting α = 1 (when Ltac and Lmain are of the same order of magnitude), achieving the most rapid
ascent in performance. In contrast, the corridor scenario exhibits an inverse trend. The smallest
α value (1e-5) results in the most efficient training, while α = 1 leads to the slowest improvement.
This discrepancy suggests that the optimal scaling of the tacit constraint term may depend on the
specific task dynamics: in scenarios requiring more active adjustment of inter-agent coordination, a
stronger regularization signal could accelerate policy adaptation.

参数实验 --围捕

Figure 22: Effect of α parameter on optimization in Predator-Prey tasks.

In the Predator-Prey environment, we evaluate three task configurations: “10 agents vs. 5 stags”,
“10 agents vs. 7 stags and 3 hares” and “10 agents vs. 15 stags and 5 hares”, as shown in Figure 22.
For the latter two tasks, the choice of α has limited impact on the overall training performance, with
α = 1 yielding slightly better results. In contrast, for the more complex “10 agents vs. 5 stags”
scenario, the performance varies significantly across different α values. Specifically, both α = 1
and α = 1e−4 achieve satisfactory performance, while a smaller value such as α = 1e−6 leads
to noticeably slower convergence. These results suggest that larger α values generally yield better
training outcomes across all three settings in Predator-Prey environments. This can be attributed to
the fact that the task objective in Predator-Prey is largely aligned with the tacit objective. Therefore,
increasing the weight of the tacit constraint term (i.e., using a larger α) reinforces beneficial inductive
biases without introducing significant conflict with task-specific learning. Conversely, when α is too
small, the influence of tacit guidance becomes negligible, diminishing its intended effect, especially
in more challenging settings where such guidance is crucial.

H ADDITIONAL RESULTS FOR VISUALIZATION ANALYSIS

To further demonstrate PTMC’s superior exploration efficiency and its effectiveness in guiding ex-
ploration, we collect all global states encountered during 32 evaluation episodes for both PTMC and
MAPPO under the same random seed, where PTMC is built on the MAPPO framework. Each state
is embedded into a low-dimensional space using t-SNE. Specifically, we evaluate models from the
2M, 4M, 8M, and 10M training steps for both algorithms, treating the 10M-step models as approx-
imations of the optimal policy. To ensure consistent relative positioning across different models,
the eight groups of states are jointly embedded into a shared t-SNE space, enabling direct spatial
comparison based on preserved relative distances.

1. Return-colored state embedding:

Each subplot shows the t-SNE projection of the global states obtained from a specific model. Each
scatter point is color-coded based on the normalized cumulative return of its corresponding state,
using a gradient from light blue (low return) to pink (high return). The mean return of each subplot
is annotated in the lower-left corner for comparison.

2. State coverage comparison with the optimal model:

Each subplot presents the projected states of a given model alongside those from its corresponding
optimal model (i.e., the model at 10M training steps). Green points represent the states from the
current model, while orange points indicate the states from the optimal model. The overlap ratio
between the two sets of points is shown in the top-left corner for comparison.
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H.1 VISUALIZATION ANALYSIS ON 3S VS 5Z MAP

For the 3s_vs_5z map visualization, as shown in Figure 23, the state distribution progressively
shifts toward high-return regions as training advances. Compared to optimal-MAPPO, the distribu-
tion of optimal-PTMC states is more concentrated in high-return areas, which is also reflected in a
higher mean return displayed in each subplot. Notably, PTMC at 8M training steps achieves a mean
return comparable to that of optimal-MAPPO. Furthermore, at an early stage (2M steps), PTMC
already outperforms MAPPO in terms of both mean return and the extent to which high-return re-
gions are explored. Additionally, at 4M training steps, PTMC not only explores high-return regions
more extensively than MAPPO but also surpasses MAPPO’s 8M-step performance in terms of mean
return. These results demonstrate the superior exploration efficiency of PTMC during coordinated
training.

As shown in Figure 24, both PTMC and MAPPO exhibit progressively increased coverage of the cor-
responding optimal model’s state distribution as training advances, indicating convergence toward
more effective behavioral patterns. Notably, at 2M training steps, MAPPO demonstrates higher
coverage relative to its optimal model than PTMC does. However, by 8M steps, PTMC surpasses
MAPPO in overlap ratio, suggesting that PTMC achieves a faster convergence rate toward the opti-
mal policy and thus exhibits superior exploration efficiency.可视化：SMAC -- 3v5

Figure 23: Comparative visualization of return-colored state distributions on 3s vs 5z map.

可视化：SMAC -- 3v5

Figure 24: State coverage overlap with the optimal model on 3s vs 5z map.
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H.2 VISUALIZATION ANALYSIS ON 6H VS 8Z MAP

For the 6h_vs_8z map visualization, as shown in Figure 25. Unlike the similar state distributions
observed between MAPPO and PTMC on the 3s_vs_5z map, the high-return regions explored
by MAPPO differ significantly from those of PTMC. Overall, PTMC achieves a higher mean re-
turn. Notably, at 4M training steps, PTMC already surpasses the mean return of MAPPO at 8M.
At 8M training steps, PTMC outperforms the optimal model’s mean return achieved by MAPPO.
This advantage can be attributed to PTMC’s more efficient exploration of high-return states. Fur-
thermore, the distinct explored state regions indicate that PTMC reaches more optimal policy faster
than MAPPO.

In the visualization of state coverage on the 6h_vs_8z map (Figure 26), both MAPPO and PTMC
exhibit increasing overlap between the current model and the optimal model as training progresses.
However, the overlap ratio of MAPPO at 4M training steps is unexpectedly higher than that at 8M.
Given that the mean return of MAPPO at 4M is lower than at 8M (Figure 25), this suggests that
the higher overlap at 4M is primarily due to convergence in low-return regions rather than effective
exploration of high-return states. Additionally, at 2M training steps, PTMC shows a significantly
higher overlap ratio than MAPPO, which can be attributed to the effective initialization of PTMC,
further supporting the strength of its algorithmic design.可视化：SMAC – 6v8

Figure 25: Comparative visualization of return-colored state distributions on 6h vs 8z map.

可视化：SMAC – 6v8

Figure 26: State coverage overlap with the optimal model on 6h vs 8z map.
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H.3 VISUALIZATION ANALYSIS ON CORRIDOR MAP

For the comparative visualization of return-colored state distributions on corridor map, as shown in
Figure 27. MAPPO achieves a relatively high return mean at 2M training steps, but fails to maintain
this advantage in later stages, indicating limited policy stability and an inability to consolidate early
gains. Although both MAPPO and PTMC exhibit increasing return means over time, their learning
efficiency differs significantly. Between 4M and 8M steps, MAPPO’s return mean improves by
only 0.07, whereas PTMC achieves a 0.67 increase, demonstrating PTMC’s superior efficiency in
discovering high-return states and sustaining policy refinement.

In the visualization of state coverage on corridor map (Figure 28), PTMC exhibits an increasing
overlap between the current and optimal model as training progresses. In contrast, MAPPO shows
a relatively high overlap ratio with the optimal model at 2M training steps. Consistent with its
performance in Figure 27, this early overlap likely stems from high-return state exploration but is
not maintained in later stages. Moreover, the overall lower overlap ratio values and the distribution
of scatter points suggest a wider range of strategy choices on corridor map. This is attributed to
the scenario’s design, which involves 6 ally units and 24 enemies, resulting in a large joint action
and policy space. Under such complexity, PTMC demonstrates consistent improvements in return
mean, overlap ratio, and the overall trend of state distribution. These metrics progressively align
with the optimal model, highlighting PTMC’s stability and efficiency.可视化：SMAC – corr

Figure 27: Comparative visualization of return-colored state distributions on corridor map.
可视化：SMAC – corr

Figure 28: State coverage overlap with the optimal model on corridor map.
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