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ABSTRACT
Stopping strategies are a crucial aspect of conversational systems
and user simulations, as they provide insight into when users end
their interactions, which is vital for creating realistic simulations.
While the Information Retrieval (IR) community has studied this
topic extensively, little research has been done on stopping strate-
gies in Conversational Search Systems (CSSs). This is due to conver-
sations’ unique sequential and interactive nature, where traditional
IR techniques struggle to accurately predict stopping points well
and require new methods to be adapted from traditional IR tech-
niques. In this paper, we adapt Stopping Rules (SRs) from the IR
community to the conversational setting, creating new SRs and
identifying core features for each. We then analyze these features
with several conversational datasets and aim to identify key fea-
tures that predict stopping points in conversations between users
and CSSs. We found that models based on these features performed
well in predicting stopping points and that textual statistical fea-
tures, i.e., numbers of words, nouns, noun phrases and sentences
users received from systems or outputted by users, always play a
significant role in determining stopping points, with the number of
outputted unique nouns playing a particularly important role as an
SR. Our results provide a foundation for developing more realistic
user models and simulators and guiding the design of more reliable
evaluation measures for CSSs.
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1 INTRODUCTION
In traditional search systems, queries are generally handled as in-
dependent entities, with the exception of ad hoc retrieval. This
approach means that the response to a particular query is not
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influenced by the responses to previous queries. However, in Con-
versational Search Systems (CSSs), queries form sequences like
conversations, making this independence assumption unrealistic.
This dependency between queries makes the design of user sim-
ulators more challenging, as it is important to take into account
features such as the recency effect, which refers to what happened
in the last few turns near the end of a conversation, as it plays a
crucial role in predicting user satisfaction [26]. Without realistic
models of user-stopping behaviour, such an effect cannot be sim-
ulated, making the modelling of stopping behaviour essential to
understanding user behaviour and developing user simulators. If
these models don’t incorporate realistic stopping points, it becomes
challenging to simulate critical aspects like the recency effect, which
significantly influences user satisfaction.

In this paper, we focus on the stopping of conversations between
users and a CSS. A CSS provides information to users via a conver-
sational interface using natural language [27]. While the field of
CSSs is well-established, with connections to Information Retrieval
(IR) systems, chatbots, and dialogue systems, the evaluation of CSSs
remains an open question [4, 17, 37]. Simulating a conversation is
a promising approach for developing new evaluation methods, as it
allows for low-cost and repeatable experimentation [5]. However,
it is still a challenging task due to the complexity and uncertainty
of real user interactions. One of the main challenges is determining
the appropriate stopping point, as stopping too early can result in
missing information, while stopping too late can lead to redundant
or misleading information. As noted in Section 2 based on previous
studies, the decision to stop often reflects the user’s sentiment. In
the IR community, several stopping Rrules (SRs) (or Stopping Strate-
gies) have been proposed to depict stopping behaviours. SRs model
users stopping behaviours according to given conditions. For ex-
ample, one of the most classic SRs is Fixed Depth, which assumes
users will stop their conversations once they are longer than a fixed
length. These studies aim to quantify the feeling of “enough”. For
example, users would likely stop the conversation when they are
frustrated as well as they are satisfied.

Modelling and simulating stopping behaviour is of great im-
portance in the field of CSS, and understanding it is crucial for
evaluating search behaviour and performance [39, 40]. In this pa-
per, we analyze SRs and features for each SR using four datasets
detailed in Section 5: TopiOCQA, FAITHDIAL, TREC CAsT 2021
and EvalCran. For features based on the augmented four datasets,
we run logistic regression to delve into weights and features for
further explanation. The goal of this paper is to study SRs and their
features in a conversational setting and predict the users’ stopping
points.We then analyze the weights of features on different datasets.
We also identify interesting features by combining them separately
and evaluate the performance of models based on these features.
Our contributions can be summarized as follows:
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• An analysis of the performance of SRs on various datasets
in a conversational setting.

• An analysis of the features that contribute to predicting
stopping points.

• Identification of two distinct approaches to modeling stop-
ping behaviors in conversations.

Our results provide a foundation for developing more realistic user
models and simulators, as well as guiding the design of more reliable
evaluation measures for CSSs.

2 RELATEDWORK
2.1 Conversational Search
Conversational search is increasing in popularity due to the use-
fulness of searching on modern devices with small or no screens
[27]. As defined by Anand et al. [4], CSSs inherit properties from
IR systems, chatbots and dialogue systems, such as access to infor-
mation, statefulness, and interaction naturalness. Therefore, many
studies in this field focus on user experience [3, 7] and performance
[4, 24, 28, 49, 51]. Additionally, many studies also focus on the usage
of information [2, 11].

Despite the many studies in this field, the evaluation of CSSs
is still relatively underdeveloped [12, 30, 37]. This remains a key
challenge for CSSs [4]. Traditional metrics, such as nDCG and
MRR, and metrics from other fields, such as BLEU and ROUGE, are
still popular in evaluating CSS in some studies [18, 30, 31, 43, 46].
However, recent studies have shown that these metrics may not
accurately reflect the real user experience and preference [32, 38].

This study aims to contribute to the IR community by improving
stopping prediction, which is essential for accurately simulating
user behaviour.

2.2 Modelling and Simulating Users’ Behaviour
In IR, two popular methods for simulating users are cognitive and
statistical approaches [23]. Cognitive approaches, which were first
introduced by Belkin [6], focus on characterizing users by their
objectives, problems, and knowledge of the world. This approach
has been further developed by many studies (see [22, 29, 35]). On
the other hand, statistical approaches analyze user behaviours and
satisfaction [9, 13, 16, 19, 23]. These user predictive models are also
commonly used as the basis for simulating users in IR.

Early simulators in the field of conversational systems relied on
statistical models [21, 48]. These simulators were built around a
fixed corpus, and thus, had limitations when it came to the diver-
sity of user intents [23]. To overcome these limitations, agenda-
based simulation became popular, as it allowed for more realistic
responses and the ability to easily construct dialogue strategies
[33, 36, 47]. Recently, there has been a trend towards using deep
learning models for simulating users, such as training models with
adversarial generative approaches [52], reinforcement learning ap-
proaches [10], and extracting abstract knowledge from data using
inverse reinforcement learning [8]. Ideas from psychology commu-
nities, such as Priming Effects, are also considered as pathways to
simulate user actions [25].

In this study, the primary focus is on the stopping of conversation,
a crucial aspect that has not been adapted to recent trends. Various

SRs will be analyzed and modified to enhance the prediction of
conversation termination.

2.3 Stopping Rules
Determining when to stop a conversation is a complex task as it is
influenced by various features, including the user’s cognitive state
and decision-making processes [39]. Despite the difficulties of mod-
elling stopping behaviours, several SRs have been proposed in the
IR community to explain when users stop. Cooper [15] presented
two rules:

• the frustration point rule, which states that users will stop
after receiving a certain number of non-relevant replies; and

• the satisfaction stopping rule, which states that users will
stop only after receiving a certain number of relevant replies.

Kraft and Lee [34] introduced two additional rules:

• the expected search length rule, which is based on the num-
ber of results read by users; and

• the combination rule, which combines the rules of frustra-
tion and satisfaction, stating that users will stop if they are
satisfied or disgusted by receiving too many non-relevant
replies.

Nickles [42] then proposed four cognitive rules:

• the mental list rule, which assumes that users have a list of
criteria that must be satisfied before stopping;

• the representational stability rule, where a user continues to
query until the underlying mental model begins to stabilize;

• the difference threshold rule, a user sets an a priori difference
level to gauge when there are no new replies, and;

• the magnitude threshold rule, a user has to attain enough
information before stopping.

In this study, we aim to develop SRs that build upon those estab-
lished in previous studies. In addition to the pre-existing SRs, we
are introducing a range of indicators derived from lexical context.
These indicators are significant as they have the potential to mirror
user preferences within a conversation. [50]

3 RESEARCH QUESTIONS
In this paper, we aim to answer the following research questions:

RQ1. How do different SRs perform on different datasets?
To answer this question, we will evaluate the performance of

various SRs using appropriate measures. This is crucial for under-
standing the reliability of these rules and the features associated
with them in predicting stopping points.

RQ2.What is the performance of models built on selected features?
To build and evaluate models, we will select relevant features

from SRes and augment datasets from completed conversations.
We will also test the performance of models trained on one dataset
on other datasets to demonstrate the robustness of these features
and models.

RQ3. How do the features influence the prediction of stopping?
By analyzing different features and datasets, we will investigate

if there are any unique or particularly important features that con-
tribute to the stopping behaviours. This will provide insights into
other aspects of stopping that can be further explored.
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4 STOPPING RULES
In this section, we propose several SRs. The first SR, which we also
consider as a baseline, is the Fixed Depth.

SR1 Fixed Depth Users will stop once the conversation is
longer than a given length 𝑙 , where 𝑙 is a feature.

This SR is a basic approach inmany simulations and its performance
depends on the specific scenario [40]. For example, this SR will
perform well in simulating conversations with a predefined number
of turns. However, it may not be suitable for other settings.

We also propose SR2-SR7, which are based on rules of frustra-
tion and satisfaction from previous studies.

SR2 Similar Hits Users will stop once they get a response
similar to a previous response. The feature of this SR is the
number of similar (more than 0.5, TF-IDF) responses 𝑠 .

SR3 Continually Similar Users will stop once they get a se-
ries of similar responses. The feature of this SR is the number
of series of similar (more than 0.5, TF-IDF) responses 𝑠𝑐 .

SR2 and SR3 focus on similar system’s responses, which are based
upon the difference threshold rule [42]. For these two SRs, the
similarity between the current response and the previous response
is calculated via TF-IDF. Getting similar responses means getting
less new information, thereby frustrating the users and resulting
in stopping.

SR4-SR7 take another approach to judge frustration and sat-
isfaction, which is based on the relevance of the responses. We
introduce these SRs because the relevance of responses from the
CSS has been proved that plays a significant role in satisfaction
[26]. However, these SR and factors will only be applied in datasets
where relevance labels are available.

SR4 Total Non-relevant Users will stop once they receive
more than a number of non-relevant responses. The feature
of this SR is the number of non-relevant responses 𝑖 .

SR5 Continually Non-relevant Users will stop once they ob-
serve a series of non-relevant responses. The feature of this
SR is the number of such series 𝑖𝑖 .

SR6 Total Relevant Users will stop once they receive more
than a number of relevant responses. The feature of this SR
is the number of relevant responses 𝑟 .

SR7 Relevant-rate Users will stop once the relevant rate of
replies is lower than a given number. The feature of this SR
is the relevant-rate 𝑃 (𝑟𝑒𝑙).

In SR4 and SR5, we focus on the number of non-relevant responses
and assume that frustration accumulates with each non-relevant
response received, leading to a stopping point [15]. Similarly, in SR6,
we posit that users will feel satisfied when they receive a sufficient
number of relevant responses. Lastly, with SR7, we consider the
overall quality of the conversation, assuming that users will stop if
they believe the quality is lower than their expectation.

We then design SR8-SR10 to analyze conversations from a statis-
tical perspective. These SRs are based on statistics calculated from
the conversation logs. We assume that the number of words used
by the replies reflects the effort users put into the conversation. We
assume the same for the number of sentences, which may reflect
the number of information clusters in the conversation.

SR8 Total Received Users will stop once they have received
enough information:
SR8.1 Words Users will stop after reading a number of-

words. The feature of this SR is the number of received
words 𝑛𝑤𝑡𝑟 .

SR8.2 Nouns Similar to SR8.1 but only considering nouns.
The feature of this SR is the number of received nouns
𝑛𝑛𝑡𝑟 .

SR8.3 Sentences Similar to SR8.1 but counting sentences.
The feature of this SR is the number of received sentences
𝑛𝑠𝑡𝑟 .

SR9 Total Sent Users will stop after replying with enough
information:
SR9.1 Words Userwill stop once they repliedwith a number

of words. The feature of this SR is the number of words
sent 𝑛𝑤𝑡𝑠 .

SR9.2 Nouns Similar to SR9.1, but counting the number of
nouns. The feature of this SR is the number of nouns sent
𝑛𝑛𝑡𝑠 .

SR9.3 Sentences Similar to SR9.1, but counting the num-
ber of sentences. The feature of this SR is the number of
sentences sent 𝑛𝑠𝑡𝑠 .

SR10 Last Received Users will stop once they have received
enough information in the last turn:
SR10.1 Words User will stop once they receive a number of

words from the system in the last turn. The feature of this
SR is the number of received words in the last turn 𝑛𝑤𝑙𝑡 .

SR10.2 Nouns Similar to SR10.1, but counting the number
of nouns. The feature of this SR is the number of received
nouns in the last turn 𝑛𝑛𝑙𝑡 .

SR10.3 Sentences Similar to SR10.1, but counting the num-
ber of sentences. The feature of this SR is the number of
received sentences in the last turn 𝑛𝑠𝑙𝑡 .

Note that when considering nouns (SR8.2, SR9.2 and SR10.2), we
count the number of unique nouns/noun phrases as ameasure of the
amount of new information conveyed in the conversation as Clark
and Sengul [14] point out the strong relationship between under-
standing new information and identifying new nouns/noun phrases.
We used TextBlob andNLTK packages to locate nouns/noun phrases
in this paper.

In this study, we will utilize all of the SRs defined in this section
to identify stopping points. Initially, each rule will be analyzed
individually. Subsequently, indicators derived from these SRs will
be employed as features in the development of models aimed at
predicting stopping points.

5 DATA
In this study, we analyze four datasets to understand the stopping
behaviours of users in conversational search systems. We choose
four basic datasets in order to introduce more settings. For example,
we use two datasets that include replies in free-form (TopiOCQA
and FAITHDIAL), and two datasets that include replies with para-
graphs. On average, the FAITHDIAL dataset has the shortest con-
versation depth, with an average of 4.5 turns, while the TopiOCQA
dataset has the longest conversation depth, with an average of 13
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Table 1: Properties of each dataset. Size refers to the total
number of conversations, 𝑙 refers to the average depth of the
dataset, 𝜎 refers to the standard deviation on depth, and Rel
refers to if the relevance of responses is labelled.

Dataset Size 𝑙 𝜎 Answer Style Rel

TopiOCQA 3920 13 3.3 Free-form F
FAITHDIAL 5649 4.5 0.5 Free-form F
TREC CAsT 2021 26 9.2 1.7 Passage T
EvalCran 131 5.4 2.6 Passage T
Topi+FD 9569 7.8 4.6 Free-form F
TREC+Cran 157 6.7 2.7 Passage T
ALL 9726 7.8 4.6 Mixed F

turns. Replies from FAITHDIAL and TopiOCQA are written by the
system as free-form answers.

5.1 Datasets
TopiOCQA (Topi). TopiOCQA is a conversational dataset that

draws its content from Wikipedia [1] and is characterized by its fo-
cus on the complexities of topic switching. Each conversation turn
includes a marker indicating the topic being discussed. Comprising
of 3,920 interactions, the dataset includes free-form answers. Most
of them are within one sentence. These conversations have a con-
versational depth of 13 turns on average, with a standard deviation
of 3.3 and four distinct topics.

FAITHDIAL (FD). FAITHDIAL is a conversational dataset based
on Wikipedia [20] that is designed to study the phenomenon of in-
formation seekers and bots misunderstanding each other. It includes
5,649 conversations, comprising 50,761 queries and responses. The
bot typically responds to the user with a few sentences per turn.
The average length of conversations in this dataset is 4.5, with a
standard deviation of 0.5.

TREC CAsT 2021 (TREC). The TREC Conversational Assis-
tant Track (CAsT) 2021 dataset 1 offers a collection of open-domain,
information-centric conversational dialogues featuring 26 conversa-
tions between users and systems. TREC CAsT 2021 emphasizes the
importance of considering the context of the dialogue and retriev-
ing relevant information. The dataset includes information from
sources such as the Washington Post2 (2012-2020), KILT Wikipedia
(August 1st, 2019) [44], and MSMACRO [41]. The system provides a
passage in response to the user’s question in each turn. The average
conversation length in this dataset is 9.2, with a standard deviation
of 1.7.

EvalCran (Cran). This dataset, collected by Lipani et al. [37],
consists of 131 conversations based on the SQuAD dataset [45]. It
features a user-system interaction where the user poses a query to
the system, and the system responds with a paragraph. Users then
evaluate the relevance of the paragraph to the query.

1https://www.treccast.ai/
2https://trec.nist.gov/data/wapost/

5.2 Grouping, Splitting and Augmenting
In Table 1, we show the properties of each dataset. In order to
make the most of the features present in each dataset, we group
them to create new datasets. For example, we merge TopiOCQA
and FAITHDIAL to augment diversity and also merge EvalCran
and TREC CAsT 2021. We merged TopiOCQA, and FAITHDIAL
since both of them feature free-form as the response style, as well as
TRECCAsT 2021 and EvalCran feature raw passages as the response.
Another reason is the size of datasets, where TopiOCQA is similar
to FAITHDIAL while TREC is similar to EvalCran. Additionally, we
combine all four datasets into one to take advantage of all available
data. In Table 1, we also show the statistics of the merged datasets.

To train the Logistic Regression (LR) models, we augmented
the original datasets by producing unfinished conversations, i.e.,
negative samples. This is done by randomly cutting the conversa-
tions at different points. For each original conversation, there is
one corresponding unfinished version for a balanced distribution.
In the final dataset, 50% of the conversations are unfinished. Finally,
we divide each dataset randomly into 7:3 train and test sets.

The process of generating datasets in this study is 1) Merging
datasets (e.g., TREC CAsT 2021 and EvalCran) into one dataset if
needed; 2) Shuffling the dataset; 3) The dataset is split into a train
set and a test set with a 7:3 ratio, and; 4) Augmenting each set by
generating unfinished versions.

To summarize, we have four original datasets: TopiOCQA, FAITH-
DIAL, EvalCran, and TRECCAsT 2021. By grouping them, we create
three mixed datasets: Topi+FD, TREC+Cran and ALL. Each dataset
is then further split into train and test sets and augmented by un-
finished conversations.

6 EXPERIMENTS AND FINDINGS
In this study, we approach the task of understanding user behaviour
in conversations as a binary classification problem. At each turn,
we aim to predict whether the user will continue or stop the conver-
sation. To make this prediction, we utilize as features the previously
defined SRs. We employ Logistic Regression (LR), a method well-
suited for binary classification tasks, due to its efficiency and ability
to illustrate the impact of individual features.

To answer the research question RQ1, which asks about the
performance of different SRs on different datasets, we study the
performance of each SR by taking each one of them individually
and use it to make predictions about whether users stop or not.

To address RQ2 about the predictability of users’ stopping be-
haviour combining all features and RQ3 about understanding the
importance of each feature, we instead combine all the parameters
and train an LR model and utilize the LR weights to analyse the
impact of each SR on the prediction. The greater the weight, the
greater the influence of the stopping rule. Positive weights indicate
a tendency towards stopping, while negative weights suggest a
tendency towards continuing.

To evaluate the performance of the trained models, we use
the metric Precision, Recall, F1-score and AUC (Area Under the
Precision-Recall Curve). We use the F1-score as the main measure,
and the results for the other measures are attached in the Appendix.
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Figure 1: From the conversations, features are extracted. Then, the features of the conversations used for the training set are
normalized using a Min-Max normalization and used to train Logistic Regression models.

Table 2: Mapping between SR and Features.

SR Feature Symbol
SR1 Number of depth 𝑙

SR2 Number of similar replies 𝑠

SR3 Number of clusters of similar replies 𝑠𝑐
SR4 Number of received non-relevant replies 𝑖

SR5 Number of continually non-relevant lists 𝑖𝑖

SR6 Number of received relevant replies 𝑟

SR7 Ratio of relevant replies and total replies 𝑃 (𝑟𝑒𝑙)
SR8.1 Number of total received words 𝑛𝑤𝑡𝑟

SR8.2 Number of total received unique nouns 𝑛𝑛𝑡𝑟
SR8.3 Number of total received sentences 𝑛𝑠𝑡𝑟
SR9.1 Number of total sent words 𝑛𝑤𝑡𝑠

SR9.2 Number of total sent unique nouns 𝑛𝑛𝑡𝑠
SR9.3 Number of total sent sentences 𝑛𝑠𝑡𝑠
SR10.1 Number of received words in the last turn 𝑛𝑤𝑙𝑡
SR10.2 Number of received unique nouns in the last turn 𝑛𝑛𝑙𝑡
SR10.3 Number of received sentences in the last turn 𝑛𝑠𝑙𝑡

6.1 LR Model Training
In Figure 1, we show the process of training LR models. From
the raw conversations, we calculate the features. After a Min-Max
normalization, these features are used to train the LR models. As
concluded in Section 5, the datasets will be augmented with gen-
erated unfinished conversations and keep 50% of conversations
unfinished. For each conversation, each feature will be calculated.

Because TREC CAsT 2021 and EvalCran are the only datasets
with relevant labels on systems’ replies, we trained two LR models
for them. One with features related to relevance and one without.

6.2 Performance of SRs
To answer RQ1, we use single features from SRs to train LR models.
Table 2 shows the features of each SR we adjust to adapt different
datasets.

The F1-scores of each model on the corresponding test set are
shown in Table 3. The results indicate that the performance of
SR varies depending on the dataset used. For instance, using the
number of total sentences sent by users can yield high performance

on TREC and Topi datasets, while on other datasets, the F1-score
is lower. This highlights the limitations of traditional SRs, as the
most classic rule, the fixed depth 𝑙 , only achieves good performance
on two datasets. The rules based on similarity are only effective
on TREC and Cran, which may be due to the fact that replies on
Topi and FD are generated by conversational systems rather than
other humans. The rules based on relevance are also limited by the
dataset, where only Cran and TREC have users’ replies labelled.
Overall, only one SR achieved good performance on each dataset.
The feature 𝑛𝑛𝑡𝑠 , the number of nouns sent by users, achieved
scores higher than 0.7 on all datasets, with the exception of a score
of 0.645 on Topi.

To address RQ2, we trained LR models using all features on
all seven datasets discussed in Section 5. We then applied all of
the trained models on each dataset to evaluate their capacity and
identify any biases resulting from training on a single dataset. After
training the models, we analyzed the weights of each feature to gain
insight into the models. We will begin by examining the weights
compared with other features in all eight models to establish a
general ranking of features for each dataset.

In Table 4, we display the scores of the LR models on the test
sets. For the EvalCran and TREC CaST 2021 datasets, two models
were trained: one without relevance features (Cran, TREC) and
one with relevance labels (Cran+, TREC+). The first observation
is that all models achieved high scores on the corresponding test
sets, indicating that combining all the features listed in Section
4 allows the models to effectively extract relevant information
from the context to predict stopping points. Secondly, the scores
of Cran are lower than those of Cran+ as well as TREC vs TREC+,
suggesting that features related to relevance play an important
role in predicting stopping points and cannot be replaced by other
features listed in Section 4.

In Table 5, we present the F1-scores of models that were trained
and tested on different datasets. The columns indicate the source of
the test sets, while the rows indicate the source of the training sets.
Here we discover that four models obtained satisfactory F1-scores
(higher than 0.7) in the majority of the test sets. This suggests that
the weight distributions of these four models (All, Topi+FD, FD,
and Cran) effectively predict stopping points in diverse settings.
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Table 3: The F1 scores of LR models. In bold we indicate all features achieving a score equal to or greater than 0.700.

Free-Form Passage

Feature ALL Topi+FD Topi FD TREC+Cran TREC EvalCran

𝑙 0.489 (7) 0.487 (8) 0.789 (3) 0.000 (11) 0.583 (6) 0.800 (3) 0.526 (5)
𝑠 0.271 (10) 0.259 (11) 0.512 (8) 0.007 (10) 0.667 (4) 0.400 (9) 0.714 (3)
𝑠𝑐 0.131 (11) 0.108 (12) 0.237 (11) 0.007 (10) 0.757 (1) 0.857 (2) 0.733 (1)

𝑛𝑤𝑡𝑟 0.681 (4) 0.682 (5) 0.752 (5) 0.616 (4) 0.653 (5) 0.667 (6) 0.650 (4)
𝑛𝑛𝑡𝑟 0.515 (6) 0.510 (7) 0.778 (4) 0.125 (9) 0.653 (5) 0.667 (6) 0.650 (4)
𝑛𝑠𝑡𝑟 0.748 (2) 0.751 (2) 0.692 (6) 0.790 (1) 0.653 (5) 0.667 (6) 0.650 (4)
𝑛𝑤𝑡𝑠 0.753 (1) 0.759 (1) 0.817 (2) 0.709 (3) 0.211 (10) 0.667 (6) 0.000 (9)
𝑛𝑛𝑡𝑠 0.711 (3) 0.710 (3) 0.645 (7) 0.748 (2) 0.743 (2) 0.857 (2) 0.714 (3)
𝑛𝑠𝑡𝑠 0.681 (4) 0.685 (4) 0.830 (1) 0.533 (6) 0.316 (6) 1.000 (1) 0.000 (9)
𝑛𝑤𝑙𝑡 0.478 (8) 0.473 (9) 0.355 (10) 0.526 (7) 0.653 (5) 0.667 (6) 0.650 (4)
𝑛𝑛𝑙𝑡 0.393 (9) 0.385 (10) 0.397 (9) 0.376 (8) 0.667 (4) 0.750 (4) 0.650 (4)
𝑛𝑠𝑙𝑡 0.605 (5) 0.609 (6) 0.645 (7) 0.578 (5) 0.000 (11) 0.000 (10) 0.000 (9)

𝑖 - (-) - (-) - (-) - (-) 0.507 (7) 0.714 (5) 0.415 (6)
𝑟 - (-) - (-) - (-) - (-) 0.698 (3) 0.588 (7) 0.722 (2)
𝑖𝑖 - (-) - (-) - (-) - (-) 0.312 (9) 0.500 (8) 0.143 (8)

𝑃 (𝑟𝑒𝑙) - (-) - (-) - (-) - (-) 0.488 (8) 0.500 (8) 0.413 (7)

Table 4: Scores of LR models on test sets.

Free-Form Passage

ALL TF Topi FD TC TREC Cran TREC+ Cran+
𝐹1 0.806 0.815 0.857 0.944 0.809 0.706 0.694 0.973 0.769

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 0.797 0.812 0.812 0.894 0.776 0.667 0.714 0.947 0.789
𝑅𝑒𝑐𝑎𝑙𝑙 0.814 0.819 0.907 1.000 0.844 0.750 0.676 1.000 0.750
𝐴𝑈𝐶 0.846 0.851 0.856 0.969 0.847 0.842 0.706 0.969 0.744

Table 5: F1 scores of models on datasets. Columns represent where the test set comes from, while rows represent the origin of
the train set.

Free-Form Passage

train \ test ALL Topi+FD Topi FD TREC+Cran TREC Cran

ALL 0.797 0.800 0.829 0.779 0.692 0.765 0.650
Topi+FD 0.812 0.815 0.818 0.812 0.728 0.743 0.717

Topi 0.525 0.524 0.857 0.122 0.542 0.825 0.436
FD 0.846 0.849 0.737 0.944 0.769 0.743 0.784

TREC+Cran 0.504 0.498 0.837 0.026 0.809 0.847 0.724
TREC 0.290 0.290 0.583 0.001 0.307 0.706 0.101

EvalCran 0.738 0.738 0.825 0.656 0.742 0.800 0.694

In Table 6, we show the weights of models in Table 4. For each
column, the top 5 biggest weights in absolute value are marked in
bold, and their orders are also labelled. One finding is that there
are at least two distribution patterns of weights in the four high-
diverse models. First is ALL and Topi+FD, where features related
to the total received from the system and the total outputted by
users play a leading role. Second is FD and Cran, where depth is the
most significant contributor. Especially in FD, the weight of depth
is far larger than the other features. While in ALL and Topi+FD,

the depth is a minor feature. Another finding is that in all four
original datasets’ models, depth always plays the most important
role. This means that the high value of the depth to predict stopping
points works well only in specific contexts or that these datasets
lack variety in the sampled conversations.

6.3 Special Features
Based on previous experiments, we can answer RQ3 by analyzing
features with unique behaviours. One interesting property of such
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Table 6: Weights of LR model per dataset, where the top 5 features for each dataset are marked in bold.

ALL TF TC Topi FD TREC TREC+ EvalCran EvalCran+
𝑙 0.819 (11) 1.593 (7) 1.882 (1) 4.841 (1) 15.992 (1) 1.015 (1) 0.943 (1) 1.731 (1) 1.737 (1)
𝑠 -0.910 (10) 0.172 (11) 0.871 (5) 0.318 (6) -0.495 (7) 0.160 (11) 0.195 (12) 0.291 (9) 0.815 (5)
𝑠𝑐 -0.058 (12) 0.107 (12) 0.427 (8) 0.070 (11) 0.358 (9) 0.458 (6) -0.134 (15) 0.568 (7) 0.284 (13)

𝑛𝑤𝑡𝑟 4.350 (4) 7.004 (2) 0.645 (7) 0.913 (4) 1.350 (2) 0.804 (4) 0.827 (3) 0.856 (3) 1.069 (3)
𝑛𝑛𝑡𝑟 -5.819 (3) -8.385 (1) 0.901 (4) -0.444 (5) 0.495 (7) 0.812 (3) 0.617 (9) 0.767 (4) 0.731 (7)
𝑛𝑠𝑡𝑟 8.860 (1) 4.410 (4) 0.666 (6) 0.034 (12) 1.012 (3) 0.487 (5) 0.655 (7) 0.732 (5) 0.664 (8)
𝑛𝑤𝑡𝑠 5.924 (2) 5.106 (3) -0.153 (10) 1.775 (3) 0.525 (6) 0.363 (9) 0.639 (8) 1.070 (2) 0.951 (4)
𝑛𝑛𝑡𝑠 3.907 (5) 3.401 (5) 1.317 (2) -0.140 (10) 0.659 (4) 0.351 (10) 0.480 (10) 0.722 (6) 0.479 (9)
𝑛𝑠𝑡𝑠 2.045 (8) 2.467 (6) -1.016 (3) 4.366 (2) 0.212 (10) 0.822 (2) 0.937 (2) 0.000 (12) 0.000 (16)
𝑛𝑤𝑙𝑡 2.206 (6) 0.954 (9) -0.384 (9) 0.199 (9) 0.017 (11) -0.399 (7) -0.320 (11) 0.516 (8) 0.219 (14)
𝑛𝑛𝑙𝑡 -2.184 (7) -0.439 (10) -0.082 (11) -0.223 (8) -0.378 (8) -0.371 (8) -0.085 (16) 0.284 (10) 0.407 (11)
𝑛𝑠𝑙𝑡 -1.530 (9) -1.247 (8) -0.141 (12) 0.257 (7) -0.613 (5) -0.150 (12) 0.167 (13) -0.061 (11) -0.778 (6)

𝑟 - (-) - (-) - (-) - (-) - (-) - (-) 0.663 (6) - (-) 0.300 (12)
𝑖 - (-) - (-) - (-) - (-) - (-) - (-) 0.667 (5) - (-) 1.341 (2)

𝑃 (𝑟𝑒𝑙) - (-) - (-) - (-) - (-) - (-) - (-) -0.138 (14) - (-) -0.048 (15)
𝑖𝑖 - (-) - (-) - (-) - (-) - (-) - (-) 0.787 (4) - (-) -0.432 (10)

bias -3.334 -3.639 -1.438 -3.900 -11.951 -2.093 -2.659 -2.237 -1.901

Figure 2: Weights of features (and bias) in the function of
dataset proportion based on 10 runs.

features is when they assume a negative weight, i.e., they promote
the conversation to continue. Another potential direction is the
changes in features’ weights through the change of the dataset size.
This is because when the dataset is small, some features may be
important just because the LR models are overfitting on them. For
example, predicting the stopping points in FD is relatively easy since
most of the original conversations stop at turn 4 or 5. Hence depth
will play a paramount role. By studying how feature importance
changes when increasing the dataset size, which is proportional
to the dataset diversity, we show which features tend to become
more prominent. Our hypothesis is that when more data is added,
features with better generalizability will rise.

Before looking at what happens to the feature weights while
changing the proportion of data used, we first look at how the
performance of the LR models changes. In Table 7, we show that
there is not a significant change in the scores. Therefore, all models
trained with a different proportion of data are comparable.

Table 7: Test set scores of models using a different proportion
of the dataset over 10 runs.

Proportion F1 Precision Recall AUC

10% 0.798 0.802 0.794 0.840
20% 0.796 0.810 0.782 0.843
30% 0.794 0.806 0.783 0.845
40% 0.793 0.809 0.778 0.846
50% 0.797 0.811 0.784 0.845
60% 0.800 0.809 0.790 0.846
70% 0.797 0.809 0.785 0.847
80% 0.799 0.810 0.788 0.847
90% 0.801 0.810 0.791 0.848
100% 0.801 0.811 0.791 0.848

Figure 3: L2-normalized weights and bias on 10 runs.

In Figure 2, we show how the features’ weights change when
changing the proportion of data used. We found that only three
features change significantly when the size of the dataset increases,
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Figure 4: Kendall’s Tau of weights between each step and the
final step of Figure 3.

while other features do not change even after 70% of all data is
used. We observe that the features that promote the conversation
to continue are: the total number of received unique nouns, the
number of unique nouns received at the last turn, the number of
sentences received at the last turn and the number of similar replies.
However, we notice that the magnitude of the features’ weights
increases with the increase of the data. For a LR model, this means
that the separation of the space between stopping and continuing
the conversation is becoming sharper and sharper. This means that
without an appropriate normalization, we cannot tell if the features
are becoming more important with the dataset size or because their
overall magnitude is changing.

To avoid this effect, we also look at how the features’ weights
change after having them normalized. To do that, we first take the
absolute value of each feature, then divide them by the L2-norm
of the weights and bias vector. The result of this normalization is
shown in Figure 3. After performing this normalization, we observe
that the features that become more important are the total number
of received sentences, words and unique nouns. The models tend to
focus on three specific features when there is a larger sample of data.
One notable finding is that the weight of the total number of unique
nouns received has a negative and significant increase. Along with
the increase in the number of total received sentences, we can
deduce that users’ stopping behaviour is depicted as a process of
receiving information, with each sentence being treated as a unit of
information. As users receive more information, they become more
inclined to stop. Unique nouns represent novel information, and
a larger amount of novel information prolongs the search process
and ultimately delays the stopping point.

In Figure 4, we show the Kendall’s Tau correlation coefficient of
the weights between each dataset proportion vs the full dataset, as
shown in Figure 3. This shows that to achieve a Kendall’s Tau of
0.85 we need around 50% of the dataset. That indicates that to get a
similar distribution of weights as the full dataset, we need around
4,000 conversations.

7 DISCUSSION AND CONCLUSION
In this paper, we analyzed several SR and corresponding features.
We first adapted SR to fit the conversational setting. Then we ana-
lyzed the performance of SR on four independent datasets. After

SR, we further explored features from each SR. We run logistic re-
gressions on different combinations of 4 datasets. Each model from
this step is also tested in other combinations of datasets. We then
analyzed the weights of features in each model and ran further LR
based on different features. Finally, we revealed the special features
by changing the amount of input data.

Our results show:

(1) While the baseline (depth, 𝑙 ) can achieve good performance,
there are more suitable SRs for high-diverse scenarios.

(2) Models with the combination of listed features in Section 4
can properly predict stopping points in different scenarios.

(3) Relevance-related features can contribute to predicting stop-
ping points.

(4) Significant contribution of the depth to predicting stopping
points in single scenarios.

(5) The necessarily contribution of features groups of SR8 and
SR9.

(6) Two predicting strategies can handle high-diverse datasets:
one focuses on features based on text statistics, and another
focuses on depth.

(7) Special features where weights will change through increas-
ing diversity, which may also represent some properties of
received information.

Result 1 addresses RQ1, Result 2 addresses RQ2, and Results 3-7
collectively address RQ3.

Our research reveals two distinct ways of depicting stopping be-
haviours. The first approach views stopping as the conclusion of an
information-receiving process, where users reach their information
limit and feel "enough." Fresh information prolongs this limit, and
textual statistical features such as the number of total sentences and
unique nouns in received documents provide a reliable representa-
tion. This depiction is particularly effective in high-diverse settings.
The second approach views stopping as a fixed-length, anticipated
journey, where the depth of the conversation is the most important
factor. This approach is suitable for single-regular settings.

Our study presents substantial promise in augmenting user sim-
ulation and related functions. Specifically, this research can be
assimilated into dialogue management systems, offering improved
guidance of interactions. Furthermore, the implementation of our
findings in agents may facilitate the extension of conversations
through more adept selection of ensuing responses. Moreover, sim-
ulated users that incorporate our research can achieve more appro-
priate termination of conversations.

In this study, we identified four limitations from which future
works may benefit. First, more SR and features should be consid-
ered. For example, the time spent in the conversation is a potential
feature for analyzing stopping points. However, in this paper, due
to datasets’ limitations, these features can not be explored. Second,
the datasets are unbalanced. For example, TopiOCQA has 3,920
conversations, while EvalCran has only 131. This may result in
a deficient analysis of SR and features in settings related to such
datasets. Third, TF-IDF is an effective algorithm in calculating simi-
larities between documents, but in some datasets, the system did
not reply with original documents. For example, in FAITHDIAL,
candidate documents will be rewritten. In this case, the results of
TF-IDF may not be reliable. Finally, Large Language Models like
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Llama-2, GPT-3.5, and GPT-4, which are popular within the IR com-
munity, can also be utilized for predicting stopping. However, this
application is not explored in this study.

A OTHER MEASURES FOR RQ1
In Table 8 we present the results for Precision, Recall and AUC.

Table 8: Precision, Recall and AUC of LR models. The first
section is Precision, the second section is Recall and the last
one is AUC. TF refers to the dataset merged from Topi and
FD, and TC refers to TREC + EvalCran.

Free-Form Passage

ALL TF Topi FD TC TREC Cran

𝑙 0.668 0.665 0.665 0.000 0.875 1.000 0.833
𝑠 0.738 0.746 0.744 1.000 0.647 0.500 0.667
𝑠𝑐 0.690 0.696 0.688 1.000 0.667 0.750 0.647
𝑛𝑤𝑡𝑟 0.765 0.778 0.694 0.904 0.485 0.500 0.481
𝑛𝑛𝑡𝑟 0.679 0.690 0.674 0.884 0.485 0.500 0.481
𝑛𝑠𝑡𝑟 0.722 0.730 0.671 0.770 0.485 0.500 0.481
𝑛𝑤𝑡𝑠 0.796 0.797 0.742 0.859 0.667 0.667 0.000
𝑛𝑛𝑡𝑠 0.729 0.730 0.730 0.730 0.684 0.750 0.667
𝑛𝑠𝑡𝑠 0.793 0.792 0.739 0.899 1.000 1.000 0.000
𝑛𝑤𝑙𝑡 0.475 0.475 0.502 0.467 0.485 0.500 0.481
𝑛𝑛𝑙𝑡 0.498 0.498 0.496 0.500 0.500 0.600 0.481
𝑛𝑠𝑙𝑡 0.510 0.510 0.493 0.527 0.000 0.000 0.000
𝑖 - - - - 0.679 0.833 0.786
𝑟 - - - - 0.769 0.556 0.788
𝑖𝑖 - - - - 0.588 0.750 1.000
𝑃 (𝑟𝑒𝑙) - - - - 0.571 0.500 0.542

𝑙 0.386 0.385 0.970 0.000 0.438 0.667 0.385
𝑠 0.166 0.157 0.391 0.004 0.688 0.333 0.769
𝑠𝑐 0.072 0.059 0.143 0.004 0.875 1.000 0.846
𝑛𝑤𝑡𝑟 0.613 0.607 0.819 0.467 1.000 1.000 1.000
𝑛𝑛𝑡𝑟 0.415 0.405 0.919 0.067 1.000 1.000 1.000
𝑛𝑠𝑡𝑟 0.776 0.772 0.714 0.811 1.000 1.000 1.000
𝑛𝑤𝑡𝑠 0.714 0.724 0.908 0.604 0.125 0.667 0.000
𝑛𝑛𝑡𝑠 0.693 0.691 0.577 0.766 0.812 1.000 0.769
𝑛𝑠𝑡𝑠 0.597 0.604 0.946 0.379 0.188 1.000 0.000
𝑛𝑤𝑙𝑡 0.481 0.472 0.275 0.602 1.000 1.000 1.000
𝑛𝑛𝑙𝑡 0.325 0.313 0.332 0.301 1.000 1.000 1.000
𝑛𝑠𝑙𝑡 0.743 0.755 0.933 0.639 0.000 0.000 0.000
𝑖 - - - - 0.404 0.625 0.282
𝑟 - - - - 0.638 0.625 0.667
𝑖𝑖 - - - - 0.213 0.375 0.077
𝑃 (𝑟𝑒𝑙) - - - - 0.426 0.500 0.333

𝑙 0.773 0.773 0.865 0.975 0.795 1.000 0.778
𝑠 0.653 0.659 0.712 0.751 0.683 0.583 0.704
𝑠𝑐 0.613 0.613 0.630 0.751 0.801 0.875 0.784
𝑛𝑤𝑡𝑟 0.752 0.782 0.774 0.904 0.790 1.000 0.754
𝑛𝑛𝑡𝑟 0.696 0.718 0.775 0.817 0.794 1.000 0.749
𝑛𝑠𝑡𝑟 0.749 0.773 0.744 0.841 0.779 1.000 0.768
𝑛𝑤𝑡𝑠 0.816 0.819 0.821 0.855 0.745 0.903 0.784
𝑛𝑛𝑡𝑠 0.759 0.759 0.724 0.781 0.757 1.000 0.714
𝑛𝑠𝑡𝑠 0.807 0.811 0.868 0.846 0.588 1.000 0.741
𝑛𝑤𝑙𝑡 0.485 0.484 0.502 0.468 0.467 0.378 0.452
𝑛𝑛𝑙𝑡 0.501 0.504 0.506 0.506 0.432 0.378 0.458
𝑛𝑠𝑙𝑡 0.691 0.694 0.730 0.674 0.441 0.500 0.449
𝑖 - - - - 0.628 0.835 0.710
𝑟 - - - - 0.775 0.656 0.811
𝑖𝑖 - - - - 0.572 0.755 0.766
𝑃 (𝑟𝑒𝑙) - - - - 0.562 0.561 0.523
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