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ABSTRACT

Decoder-only large language models typically rely solely on masked causal at-
tention, which limits their expressiveness by restricting information flow to one
direction. We propose Bitune, a method that enhances pretrained decoder-only
LLMs by incorporating bidirectional attention into prompt processing. We evaluate
Bitune in instruction-tuning and question-answering settings, showing significant
improvements in performance on commonsense reasoning, arithmetic, and lan-
guage understanding tasks. Furthermore, extensive ablation studies validate the
role of each component of the method, and demonstrate that Bitune is compatible
with various parameter-efficient finetuning techniques and full model finetuning.

1 INTRODUCTION

Large Language Models (LLMs) are being deployed in numerous practical applications where
humans engage with them through various forms of natural language interaction. In use cases such as
general purpose assistants (OpenAI, 2024), medical diagnosticians (Thirunavukarasu et al., 2023),
game-conversation generation (Cox & Ooi, 2023) or coding-assistants (Roziere et al., 2023), the
ability for an LLM to precisely interpret and respond to user inputs is of primary concern.

Correspondingly, Instruction-Tuning (IT) (Chung et al., 2024; Ouyang et al., 2022a) is the prevailing
paradigm for finetuning LLMs after their self-supervised pretraining phase to improve them for such
tasks. Here, the model is trained on a dataset comprised of pairs of instructions and corresponding re-
sponses. Given the instruction-with-response structure of IT data, the generation of an LLM response
can be divided into two phases: first, converting the instruction into key and value embeddings, which
we refer to as instruction features; second, using these features to autoregressively generate an answer.
Due to this task’s inherently conditional nature, the instruction features’ effectiveness is crucial for
obtaining high-quality model outputs.

In the past, bidirectional attention (Schuster & Paliwal, 1997) has been a key technique for obtaining
stronger features for words or tokens. This is because the meaning of a word depends greatly on
its context. In particular, for some words in a sentence, the information that comes later might be
far more informative for generating a meaningful representation and resolving ambiguities. With
only uni-directional causal attention, where the representation of each word is restricted to depend
solely on the words that came before, this cannot be achieved. This is the reason why many previous
transformers such as encoder-only BERT (Devlin et al., 2019) and encoder-decoder T5 (Raffel et al.,
2020) employed bidirectional attention to improve the encoding of the input and why tasks like text
retrieval (Lewis et al., 2020; Li & Li, 2023) still rely on this.

However, in the context of LLMs, architectures utilizing bidirectional attention have fallen out of
favor, as decoder-only models such as GPT (OpenAI, 2024) and Llama (AI@Meta, 2024) have
focused on and vastly improved the generative performance of language models. These architectures
are trained by large volumes of data with next-token prediction, eschewing any look-ahead mechanism
for the sake of better autoregressive modeling. As there is simply more unlabeled data available for
pretraining, training a decoder-only architecture on unlabeled data, and then finetuning it for tasks
with instruction-tuning, is the best modus operandi of today (Wang et al., 2022). However, with this
switch to decoder-only architectures, we lost bidirectional attention in the process. As we know this
can improve feature representations for instructions, we set out to re-introduce bidirectional attention,
such that it can be integrated into pretrained decoder-only LLMs.
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Figure 1: Overview of Bitune. (a) During the prefilling phase, features are obtained from the prompt
using both causal and bidirectional attention in two passes with separate weights. The two sets of
keys and values are then combined using a weighted average before being passed to the decoding
phase. (b) During the decoding phase, new tokens are generated in the standard way with causal
attention, utilizing the features extracted from the instruction in the previous step, along with the
features of other generated tokens.

Our new method Bitune adds bidirectional attention to decoder-only architectures and combines it
with causal attention to generate two sets of instruction features, using two different sets of weights.
These features are then integrated, utilizing learnable mixing coefficients, and later used as the
KV-cache for response generation. Notably, the autoregressive response generation process remains
unaffected by the bidirectional attention and continues to be causal. By realizing these adaptations
with parameter-efficient finetuning methods, we introduce only a minimal set of new parameters.

Overall, our contributions are as follows:

• We propose a novel method, Bitune, that improves the performance of pretrained decoder-
only LLMs in instruction-following and question-answering settings.

• We evaluate the method on multiple downstream tasks, showing consistent improvements
over the baselines.

• We conduct an extensive ablation study investigating the necessity of each component of the
method, and showing the method’s PEFT-agnosticism, as well as its effectiveness in full
finetuning scenarios.

2 BIDIRECTIONAL INSTRUCTION-TUNING

In the instruction-tuning setting (Ouyang et al., 2022b; Zhang et al., 2024), a dataset D consists of
instruction-answer pairs that are used to adapt the model in a supervised fashion. Formally, a dataset
of size N can be described as D = {q, a}Ni=1, where q and a are instructions and answers. The
training objective is to model p(a|q) in an autoregressive manner: This means the answer is generated
one token at a time, such that token ai at position i has access to all earlier tokens:

p(a|q) = Π
|a|
i=1p(ai|a1, . . . ai−1, q),

where |a| denotes the length of the answer. Note how compared to the regular language modeling
objective, the response is already conditional (on the instruction q) even for the first generated token.

This naturally leads response-generation to be divided into two phases: prefilling and decoding. Dur-
ing the prefilling phase, the entire instruction – also often called a prompt – is processed concurrently
to generate a series of features to be stored. For a Transformer architecture (Vaswani et al., 2017),
these features are those of the key and value vectors, which can be stored in a KV-cache to avoid
costly recomputations. During the subsequent decoding phase, the model generates output tokens
sequentially, one token at a time, based on the KV-cache of the instruction and the already generated
tokens.

In this work, we introduce Bitune, a method to leverage this two-phase process to improve instruction-
tuning of language models. In our approach, the model processes the instruction with both causal
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Algorithm 1 Python-like pseudocode of Bitune inference.

# prompt - tensor with tokenized instruction
# theta - tensor with mixing coeff. for each layer
# theta_init - initial value of mixing coefficients

k_c, v_c = model_causal(prompt) # Extract causal features
k_b, v_b = model_bidir(prompt) # Extract bidirectional features
# Combine both sets of features
alpha = theta.abs() / (theta.abs() + theta_init)
k = k_c * (1 - alpha) + k_b * alpha
v = v_c * (1 - alpha) + v_b * alpha
kv = (k, v)

c_token = SEP # Initialize generation with a predefined token
answer = [c_token]
while c_token != EOS: # Stop generation at the end-of-sequence token

# Get features of current token and logits of next token
k, v, logits = model_causal(c_token, kv)
kv = concat(kv, (k, v)) # Concatenate it with current KV cache
c_token = get_token(logits) # Determine next predicted token
answer.append(c_token) # Append generated token to the answer

and bidirectional attention using separate sets of parameters, leading to an enhanced KV-cache that is
then used to condition the answer. Figure 1 provides an overview of the method, while Algorithm 1
presents pseudocode for the inference process.

Two Sets of Features. In Bitune, the model performs two passes on the instruction to obtain two
kinds of features for every transformer block. Namely, a set of causal features that the model was
originally trained to process and utilize,

Kc = XcWkc, Vc = XcWvc, (1)

and a set of bidirectional features encoding the instruction without the constraints of causal masking,

Kb = XbWkb, Vb = XbWvb. (2)

To allow the model to learn how to process the causal and bidirectional features differently, we
introduce two sets of weights: one for the bidirectional pass on the instruction (Wkb, Wvb) and
another for the causal pass on the instruction, which is also used for the causal generation of answer
tokens (Wkc, Wvc).

In the case of the first block of the model, representations Xc, Xb are the initial token embeddings. In
other cases, they are the output of the preceding block and were processed by different components
including the self-attention mechanism, which can be defined as:

Attention(Q,K, V,M) = softmax
(
QKT

√
dk

+M

)
V, (3)

where Q are the queries, M is the attention mask, and dk is the dimension of keys and queries.

For the causal pass, the mask Mc enforces causality by masking future tokens, such that tokens j can
only attend to earlier tokens i ≤ j, while for the bidirectional pass, no masking is applied:

Mc(i, j) =

{
0 if i ≤ j

−∞ if i > j
, Mb(i, j) = 0. (4)

The final KV-cache is obtained by a learnable convex combination of causal and bidirectional features,

KBitune = Kc · (1− αk) +Kb · αk, VBitune = Vc · (1− αv) + Vb · αv, (5)
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Table 1: Zero-shot results after instruction-tuning on the UltraFeedback dataset. We compare
Bitune to the performance of the original model, the model finetuned with LoRA, and with LoRA16

using two times higher rank to match the parameter count of our method. Bitune significantly
outperforms the baselines on almost all tasks for all models.

PIQA ARC CSQA SIQA MMLU Avg.
Model Method
Gemma-2B Pretrained 57.5 36.9 35.5 38.2 34.0 40.4

LoRA 66.7 43.4 42.3 44.3 31.7 45.7
LoRA16 66.5 42.7 42.3 43.8 31.6 45.4
Bitune 69.6 47.5 46.9 49.5 35.3 49.7

Gemma-7B Pretrained 73.1 78.3 62.0 64.7 59.0 67.4
LoRA 84.2 79.2 68.5 71.9 55.3 71.8
LoRA16 83.9 79.2 68.4 72.0 53.4 71.4
Bitune 83.6 80.1 69.2 72.7 53.8 71.9

Llama2-7B Pretrained 59.2 38.1 32.6 45.1 36.0 42.2
LoRA 69.5 49.9 45.3 57.0 41.1 52.6
LoRA16 69.9 49.9 45.6 56.7 41.2 52.6
Bitune 70.0 51.1 48.1 59.1 41.9 54.0

Llama3-8B Pretrained 69.0 73.6 65.4 56.8 56.0 64.2
LoRA 81.9 74.5 69.2 69.0 57.6 70.4
LoRA16 82.4 74.9 70.5 68.6 58.0 70.9
Bitune 84.4 77.4 72.7 70.1 59.0 72.7

Phi-2 Pretrained 70.3 67.3 61.4 65.0 45.4 61.9
LoRA 76.3 66.7 61.6 66.6 48.2 63.9
LoRA16 76.1 66.6 61.6 66.8 47.7 63.8
Bitune 76.5 67.2 63.0 68.5 48.9 64.8

where α represents the bidirectional-to-causal ratio of features. This ratio is parameterised as

αj =
|θj |

θinit + |θj |
, j ∈ {k, v} (6)

where θj is a learnable mixing coefficient per transformer block, and θinit is a hyperparameter defining
the initial value of θj . The mixing coefficients are learnable to allow each block to independently
adjust the balance between bidirectional and causal features throughout the training.

Parameter Efficient Fine-tuning Note that the components of the model, other than the key and
value projections, can have their own separate sets of weights as well. In the case of full finetuning,
this approach would require an additional set of full weights, which is impractical for large models.

Instead, we adapt our model using parameter-efficient finetuning methods. These introduce only a
fraction of trainable parameters, making it viable to have two modified variants of the model within a
single forward pass. In the default configuration of our method, we utilize the Low-Rank Adaptation
(LoRA) of Hu et al. (2022) to adapt the model. However, Bitune can utilize different methods for
updating the weights, including full model finetuning and other parameter-efficient techniques, as
demonstrated in our ablations section.

3 EXPERIMENTS

3.1 INSTRUCTION-TUNING

Our core experiments involve training pretrained language models on an instruction-tuning dataset
and zero-shot evaluating them on downstream tasks. We evaluate Bitune on multiple models,
comparing results to standard finetuning with LoRA, and zero-shot results of pretrained models
without finetuning.

Specifically, we use a subset of the cleaned UltraFeedback (Cui et al., 2023) dataset, which contains
instructions and corresponding answers generated by various LLMs. From this dataset, we select
completions generated by GPT-4 (OpenAI, 2024), ensuring high-quality responses for training. To fit
every model on a single GPU, we filter out samples longer than 512 tokens, which leaves us with
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roughly 10,000 samples for training. For results on another instruction-tuning dataset, please see the
Appendix 6.5.

We test the method on pretrained decoder-only language models of two different scales of ap-
proximately 2 billion and 7 billion parameters. The specific models used in our experiments are:
Gemma 2B and 7B (Gemma Team et al., 2024), Llama2 7B (Touvron et al., 2023) and Llama3 8B
(AI@Meta, 2024), and Phi-2 (Li et al., 2023), which has 2.7 billion parameters. We use HuggingFace
Transformers (Wolf et al., 2020) implementation of these models.

For updating the weights we use the HuggingFace PEFT (Mangrulkar et al., 2022) implementation
of LoRA, with the default rank of 8, and apply it to all linear layers of MLP and self-attention
components of the model. We compare Bitune with the following three baselines: Pretrained -
initial model without any finetuning; LoRA - model finetuned with LoRA without Bitune-specific
modifications, using rank of 8 as used in our method; and LoRA16 - model finetuned with LoRA,
using a rank of 16 to provide a fair comparison in terms of the number of parameters, as our method
introduces two sets of weights.

For each model, we tune the learning rate on the LoRA baseline using steps on the approximate
logarithmic scale (1e−4, 3e−4, 1e−3, 3e−3), and then apply the same rate to the other approaches.
Note that this potentially puts our method at a disadvantage compared to the LoRA baseline. All
hyperparameters are reported in the Appendix 6.2.

Models are evaluated zero-shot on multiple-choice tasks to assess their performance. For com-
monsense reasoning, we use the PIQA (Bisk et al., 2020), CommonsenseQA (Talmor et al., 2019),
ARC-Challenge (Clark et al., 2018), and SIQA (Sap et al., 2019) datasets, while for language un-
derstanding, we use the MMLU (Hendrycks et al., 2021) benchmark. Each task consists of a series
of questions, each with multiple choices, where only one answer is correct. As the tasks follow the
question-answer pattern, they are compatible with the instruction-tuning setting.

For evaluation, we use the Language Model Evaluation Harness framework (Gao et al., 2023). This
framework formats each question using a predefined template, tokenizes the question-choice pairs,
runs them through the model, and compares the log-likelihoods of the choices to determine the
selected answer. For each model and approach configuration, we conduct experiments using three
different random seeds, and average the results.

Models are loaded and trained using bfloat16 precision, except for the mixing part, which operates
in the full 32-bit floating-point format. This high level of precision for the mixing of features is
important, as minor numerical inaccuracies in the learnable coefficients and intermediate results of
the mixing operation may lead to significant deviations in the model’s behavior.

In the decoding phase of the inference with Bitune, to initiate generation, the model requires at least a
single token to obtain a set of attention queries, in addition to the keys and values extracted from the
instruction. To facilitate this, one can introduce a new learnable <sep> token that would be placed
at the beginning of modeled answer, or utilize an existing token. For our experiments, we opted to
move the last token of the instruction template to the beginning of the modeled answer. For details on
the instruction template used, please refer to the section 6.7 of the Appendix.

Results. Table 1 shows consistent and significant gains after instruction-tuning with Bitune, with
the highest gains seen on the Gemma-2B model, showing a 4 percentage point (pp) improvement over
the baseline LoRA and a 9.3 pp improvement over the pretrained model. For the other models, the
average gains over baseline finetuning are equal to 1.8, 1.4, and 0.9 pp, for Llama3-8B, Llama2-7B,
and Phi-2 respectively.

It is worth noting that the Gemma-7B model shows the lowest average improvement across all tasks,
with merely 0.1 pp gain over the baseline finetuning. It is also a single case where the baseline
pretrained model achieved the highest score on a task, MMLU, with degraded performance in all
fine-tuning approaches. However, this is not an issue with the model’s scale, as significant gains are
observed with the Llama2-7B and Llama3-8B models.

3.2 DOWNSTREAM TASK TRAINING

This complementary experiment verifies whether Bitune increases the capacity of the model within
the narrow scope of a single task. It follows the setup from the instruction-tuning experiments with a
few changes. Namely, models are not instruction-tuned but trained separately for each evaluation task

5
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Table 2: Result for the downstream task training. We show accuracy on downstream tasks for the
baseline LoRA finetuning and Bitune, averaged over 3 seeds. On average, our method works better
than standard LoRA. We see the most significant gains on the GSM8K dataset, but slightly lower
results for Gemma-7B and the SIQA task.

PIQA ARC CSQA SIQA GSM8K Avg.
Model Method
Gemma-2B LoRA 81.4 58.0 77.2 77.4 30.2 64.8

LoRA16 81.1 59.1 77.4 77.1 30.2 65.0
Bitune 83.3 60.0 78.3 76.6 33.0 66.2

Gemma-7B LoRA 91.4 84.6 84.4 79.4 59.1 79.8
LoRA16 91.6 83.9 83.9 79.7 59.4 79.7
Bitune 92.1 84.2 84.2 79.4 59.4 79.9

Llama2-7B LoRA 84.4 66.6 81.5 82.7 32.0 69.4
LoRA16 84.4 66.8 81.7 82.3 31.1 69.3
Bitune 84.4 66.9 82.0 81.4 32.9 69.5

Llama3-8B LoRA 90.2 80.7 83.9 83.1 60.4 79.7
LoRA16 90.4 81.3 83.4 83.1 59.6 79.6
Bitune 90.5 81.3 84.1 82.1 63.4 80.3

Phi-2 LoRA 82.8 76.3 78.7 80.3 58.6 75.3
LoRA16 83.1 76.1 78.6 80.6 57.5 75.2
Bitune 83.9 77.0 79.0 80.4 59.2 75.9

using the corresponding training set. We use PIQA, ARC, CSQA, and SIQA introduced earlier, and
an additional arithmetic task, GSM8K (Cobbe et al., 2021).

GSM8K differs from the other tasks, where we compare log-likelihoods of predefined answers, as it
requires the model to generate a full answer token-by-token, including the intermediate step-by-step
reasoning. The final answer follows a specific pattern, making it feasible to extract the answer using
methods such as regular expressions as the model learns to adhere to this pattern during training.

Results. Table 2 presents the results, demonstrating improvements when finetuning on the down-
stream tasks with Bitune, similar to those seen with instruction-tuning. While there are a few cases
where the baseline finetuning achieves better results on specific tasks, when considering the average
gains, applying our method is beneficial across all models. Most importantly, on the GSM8K dataset,
we see consistent high gains, suggesting that our method improves the model’s reasoning ability
in generative tasks. We present additional results on GSM8K with a 22B parameter model in the
Appendix 6.6.

Similar to the instruction-tuning results, the highest gains are observed on the Gemma-2B model,
while the lowest on the Gemma-7B. This indicates that the effectiveness of our method depends on
the specific model used.

3.3 ABLATIONS

We conduct an ablation study on Bitune using the same experimental setup as in the instruction-
tuning experiment. For this purpose, two models are used: Gemma-2B and Llama3-8B, representing
different size scales and model families.

Component Removal To verify the necessity of each component of the method, we remove selected
parts to answer the following questions:

• Can we simply modify the attention mask to apply bidirectional attention on the prompt,
without using separate weights and mixing? - We test this simplest variant, which we refer
to as Naive Bidir.

• Do we need two sets of features? Is it sufficient to obtain bidirectional features from the
prompt using different weights than those used for causal answer generation? - We remove
the part responsible for generating the set of causal features, and therefore also the mixing
component; we refer to this as No Mixing.
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Table 3: Ablation study on components of Bitune. We report zero-shot accuracy averaged over
PIQA, ARC, CSQA, SIQA and MMLU tasks. The components are explained in section 3.3. We see
that all ablated variants outperform the LoRA baseline, and combining all components performs the
best. Of note, especially bidirectional attention improves results the most.

Avg. Acc.
Model Method Causal Bidir. Mixing Sep. Weights
Gemma-2B LoRA ✓ - - - 45.7

Naive Bidir. - ✓ - - 47.9
No Mixing - ✓ - ✓ 48.9
Only Causal ✓ - ✓ ✓ 46.9
Shared Weights ✓ ✓ ✓ - 47.4
Bitune ✓ ✓ ✓ ✓ 49.7

Llama3-8B LoRA ✓ - - - 70.4
Naive Bidir. - ✓ - - 71.9
No Mixing - ✓ - ✓ 71.5
Only Causal ✓ - ✓ ✓ 71.1
Shared Weights ✓ ✓ ✓ - 72.3
Bitune ✓ ✓ ✓ ✓ 72.7

Table 4: Combining Bitune with different PEFT methods. Performances are averaged over 3 seeds.
We can see that our method improves results regardless of the specific PEFT method used.

PIQA ARC CSQA SIQA MMLU Avg.
Model Method
Gemma-2B LoRA 66.7 43.4 42.3 44.3 31.7 45.7

Bitune 69.6 47.5 46.9 49.5 35.3 49.7
DoRA 66.7 43.6 41.9 44.7 31.9 45.8
BituneDoRA 69.6 47.5 46.9 49.7 35.1 49.8
IA3 67.2 46.5 45.5 37.6 32.5 45.9
BituneIA3 67.5 47.3 48.9 44.3 33.6 48.3

Llama3-8B LoRA 81.9 74.5 69.2 69.0 57.6 70.4
Bitune 84.4 77.4 72.7 70.1 59.0 72.7
DoRA 82.1 75.4 70.2 69.2 57.7 70.9
BituneDoRA 84.1 77.1 72.0 70.6 58.7 72.5
IA3 80.9 75.5 68.3 66.4 58.7 70.0
BituneIA3 83.4 75.7 69.2 67.8 58.8 71.0

• Are the gains solely from mixing two sets of features generated with different weights, or
is bidirectional attention necessary? - Here we keep the attention mask causal to generate
both sets of features, which we refer to as Only Causal.

• Do we need separate weights, or can the same weights be used to generate both causal and
bidirectional features? - To answer this question, we do not introduce the second set of
weights and use the same LoRA for both passes on the prompt, calling it Shared Weights.

The results, averaged over three seeds and presented in Table 3, indicate that all variants of the method
lead to gains over the baseline LoRA finetuning. However, the highest gains are observed in the full
variant of Bitune, demonstrating that each component contributes to the method’s effectiveness.

Different PEFT Methods To verify the impact of different PEFT methods on the performance of
our method, we compare Bitune in combination with the following techniques: LoRA (Hu et al.,
2022), that reparametrizes weight updates as a multiplication of two low-rank matrices; DoRA (Liu
et al., 2024), which decomposes these weight updates into direction and magnitude; and IA3 (Liu
et al., 2022), that instead rescales activations with learnable vectors.

The results are shown in Table 4. We find consistent gains across all three PEFT methods we analyze,
with gains ranging from +1.6% to +4.0% for averaged accuracy. This demonstrates that Bitune is
PEFT-agnostic and can be combined with existing and future innovations in PEFT methods.
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Table 5: Results for full finetuning on the instruction-tuning setup. We compare our method to
full finetuning baseline. For Bitune, we optimize two sets of full model’s weights.

PIQA ARC CSQA SIQA MMLU Avg.
Model Method
Gemma-2B Full FT 69.0 46.7 43.5 43.7 34.8 47.5

Bitune (Full FT) 70.3 48.0 47.4 43.9 36.7 49.3

Full Finetuning Additionally, we test whether Bitune yields gains with full finetuning (Full-FT),
by optimizing two sets of full model’s parameters. We conduct experiments on Gemma-2B model,
and compare results with standard Full-FT baseline. The results in Table 5 demonstrate that Bitune
improves the model’s performance even in full finetuning scenarios.

Initialization of Mixing Coefficient The initial value of the mixing coefficient θ is a hyperpa-
rameter in our method. To evaluate its impact on the performance and the training dynamics of the
bidirectional-to-causal ratio of features, we conduct experiments on the instruction-tuning setup with
the following values: 0.1, 0.01, and 0.001.

0 3000
Training Step

0.4

0.6

R
at

io
 [%

]

0.1
0.01
0.001

Figure 2: Bidirectional-to-causal ratio during
training. The ratio is averaged over all layers and
shown for different initial values of mixing coef-
ficients for Llama3-8B. The initial value impacts
the change of the ratio, with higher values slowing
it down, and lower values increasing it.

Layer Index0.0

0.2

0.4

%

Bidir. K

Layer Index

Bidir. V

Figure 3: Ratio across layers. Here we show
the final ratio of the model in Fig. 2 across all
layers for the K and V values. The utilization
of bidirectional attention is spread across all
layers.

Table 6a demonstrates that the initial value of the mixing coefficient impacts the performance, with
0.01 being the most optimal value for both models, regardless of their scale. Figure 2 shows that the
initial value substantially affects the rate of change of the mixing ratio, with the higher value leading
to nearly no change in the ratio, while the lower value results in sharp changes at the very beginning
of the training. In Figure 3, we also observe that after training, all layers utilize the bidirectional
attention.

Attention Mask of Second Pass We test another option for the attention mask of the second pass
on the instruction. We transpose the causal attention mask, blocking information flow from the past
tokens, and allowing from the future tokens - we call it anti-causal attention mask.

Results shown in Table 6b indicate that the instruction has to be processed with full bidirectional
attention to achieve the highest gains. Combining causal and anti-causal features independently does
not lead to the same high performance.

4 RELATED WORK

Our approach shares similarities with the concept of "prefix language modeling", which enables a
decoder-only model to handle bidirectional context within a prefix (instruction) while maintaining
causal generation for the output sequence. The prefix-LM architecture was introduced by Liu et al.
(2018) and further explored and popularized by Raffel et al. (2020). In their work on T5, Raffel et al.
(2020) pretrained the prefix-LM architecture alongside other architectures, such as encoder-decoder
and decoder-only models, demonstrating that prefix-LM outperforms decoder-only models on both
training objectives: denoising and language modeling.
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Table 6: Ablation of Bitune’s attention. We vary the additional attention mask for processing the
instruction besides the causal pass, and evaluate different initial values of mixing coefficient, θinit.

(a) Different init. values for mixing coefficients.

Model Init. Value Avg. Acc.
Gemma-2B 0.1 49.4

0.01 49.7
0.001 47.2

Llama3-8B 0.1 72.7
0.01 72.7
0.001 72.3

(b) 2nd pass attention masks for instruction features.

Model Attention Mask Avg. Acc
Gemma-2B Causal 46.9

Anti-causal 46.7
Bidirectional 49.7

Llama3-8B Causal 71.1
Anti-causal 71.4
Bidirectional 72.7

The prefix-LM approach has been used in UniLM (Dong et al., 2019), which trains a single transformer
on three types of language modeling tasks: unidirectional, bidirectional, and sequence-to-sequence
prediction. UniLM employs a shared Transformer network and utilizes specific self-attention masks
to control the context that predictions are conditioned on, where the sequence-to-sequence task is
equivalent to the prefix-LM approach.

Additionally, UL2 (Tay et al., 2023) introduces a pretraining objective called "Mixture of Denoisers",
which combines various denoising strategies, including the prefix-LM approach. Lastly, XLNet (Yang
et al., 2019) also allows for non-causal word ordering by allowing random permutations to be used
with a next-token prediction objective.

All these works focused on the model pretraining. As for the utilization of pretrained causal language
models, Springer et al. (2024) show in their work that simply repeating the input to these models
improves the quality of token embeddings for text-retrieval. This work addresses the limitation
that token embeddings in autoregressive models cannot contain information from tokens appearing
later in the input. By repeating the input twice, the early tokens are allowed to encode information
about later tokens, thereby improving the quality of the embeddings. Another approach, LLM2Vec
(BehnamGhader et al., 2024), demonstrates that pretrained causal LLMs can be effectively converted
to BERT-like encoders. It can be done by enabling bidirectional attention, training the model on the
objective of masked token prediction, and applying unsupervised contrastive learning.

5 DISCUSSION

Limitations. During standard instruction-tuning training, the instruction and the answer are pro-
cessed in a single forward pass. In our method, this processing is explicitly split into phases, extracting
instruction features with two passes & answer modeling, increasing both training time and memory
usage. As for the inference, these two passes on the instruction, bidirectional and causal, can be
processed either in parallel, impacting memory usage, or sequentially, increasing latency.

However, this is a minor limitation in the context of instruction-tuning, since typically smaller datasets
are used compared to pretraining, leading to relatively short training times. Furthermore, at inference
time the added latency for processing the instruction is negligible, as the bulk of compute is used for
the autoregressive answer generation: e.g. only a 0.2s increase from 11.5s to 11.7s for a 200 token
response to a 50 token instruction for Llama3-8B (see Appendix 6.4 for more results).

Conclusion. This work proposes the first method to utilize the instruction-answer structure of IT
datasets that enables bidirectional processing in pretrained decoder-only models. Bitune demonstrates
general applicability across different models and scales, and it consistently improves performance
across commonsense reasoning, arithmetic, and language understanding tasks. We further demon-
strate that our method is compatible with different existing PEFT methods and will likely benefit
from further developments in this area.
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Reproducibility Statement. We have made efforts to ensure the reproducibility of our work. The
code necessary to reproduce all experiments presented in this paper is provided in the supplementary
materials. Information about hyperparameters and other experimental specifications can be found in
the appendix. Each experiment was conducted using a single NVIDIA A100 GPU.
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6 APPENDIX

6.1 PSEUDOCODE FOR BITUNE TRAINING STEP

Algorithm 2 Python-like pseudocode of Bitune Training Step.

# prompt - tensor with tokenized instruction
# answer - tensor with tokenizer answer to model
# theta - trainable tensor with mixing coeff. for each layer
# theta_init - initial value of mixing coefficients

k_c, v_c = model_causal(prompt) # Pass on the instruction for causal
features

k_b, v_b = model_bidir(prompt) # Pass to obtain bidirectional features
# Combine both sets of features
alpha = theta.abs() / (theta.abs() + theta_init)
k = k_c * (1 - alpha) + k_b * alpha
v = v_c * (1 - alpha) + v_b * alpha
kv = (k, v)

logits = model_causal(answer, kv)
loss = compute_loss(logits, answer)
loss.backward()
update_parameters(model_causal, model_bidir, theta)

6.2 HYPERPARAMETERS

Table 7: Hyperparameters shared across models and datasets.

Hyperparameter Value
GPUs 1
Optimizer AdamW
LR Scheduler Linear
Weight Decay 0.0
Batch Size (incl. accumulation) 10
Accumulation Steps 10
Warmup Steps 10% of update steps
θinit (Bitune) 0.01
RNG Seeds 42, 43, 44

Table 8: Dataset-specific hyperparameters.

Hyperparameter UltraFeedback PIQA ARC CSQA SIQA GSM8K
Epochs 3 1 5 1 1 1
Update Steps 3000 1605 555 974 3341 747
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Table 9: Learning rate for given dataset-model pair, including different PEFT variants for instruction-
tuning experiments.

Model UltraFeedback PIQA ARC CSQA SIQA GSM8K
Gemma-2B 3E-4 1E-3 1E-3 1E-3 1E-3 1E-3
Gemma-7B 3E-4 3E-4 3E-4 3E-4 3E-4 3E-4
Llama2-7B 3E-4 1E-3 1E-3 1E-3 1E-3 1E-3
Llama3-8B 3E-4 1E-3 1E-3 1E-3 1E-3 1E-3
Phi-2 3E-4 1E-3 1E-3 1E-3 1E-3 1E-3
Gemma-2B (DoRA) 3E-4 - - - - -
Gemma-2B (IA3) 1E-3 - - - - -
Llama3-8B (DoRA) 3E-4 - - - - -
Llama3-8B (IA3) 1E-3 - - - - -

Table 10: Configuration of PEFT methods. All other hyperparameters have default values of
HuggingFace PEFT library.

Hyperparameter Value
Rank (LoRA, DoRA) 8
Alpha (LoRA, DoRA) 1
Target Modules (All) All linear layers of MLP and Self-Attention
Feedforward Modules (IA3) All linear layers of MLP

6.3 DATASETS

For all experiments we used HuggingFace Datasets (Lhoest et al., 2021) library to obtain necessary
datasets.

Table 11: Table with datasets and corresponding paths, to be used with HuggingFace Datasets library.

Dataset Path
UltraFeedback openbmb/UltraFeedback
PIQA piqa
ARC-Challenge allenai/ai2_arc
CSQA tau/commonsense_qa
SIQA social_i_qa
GSM8K gsm8k
MMLU hails/mmlu_no_train

6.4 TRAINING SPEED & MEMORY USAGE

As the method introduces two additional forward passes during training, both the training speed
and the memory usage are impacted. Here we present average training times and GPU memory
usage on the instruction-tuning setup with 3000 update steps (30000 actual steps, due to gradient
accumulation), on a single A100 GPU, for models of two different scales - Gemma-2B & Llama3-8B.
Our implementation has not been optimized, which means that e.g. training times could be improved
via parallelization of two passes on the prompt. Table shows average training time, peak GPU memory
usage during training, and average accuracy on downstream tasks. Additionally, we provide inference
times, averaged over 10 runs, for a given prompt-to-answer length in tokens.

Train. Time [h] Memory [GB] Acc. Inference Time [s]
Model Method 50:200 200:50
Gemma-2B LoRA 1.0 14.9 45.7 6.31 1.56

Bitune 3.1 19.8 49.7 6.72 1.74
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Llama3-8B LoRA 1.7 26.6 70.4 11.48 2.39
Bitune 5.3 30.8 72.7 11.65 2.73

Using these values, one can approximate required compute to reproduce results on a given tasks, as
all experiments shared the same batch size and many other hyperparameters.

6.5 INSTRUCTION-TUNING ON ALPACA DATASET

We tested Bitune on another, larger instruction-tuning dataset - cleaned Alpaca dataset1 (Taori et al.,
2023) with 50,000 samples. Similarly to previous experimental settings, first we tested different
learning rates for the baseline LoRA finetuning, picked the best one, and then used the same learning
rate for other approaches used in the experiment - Bitune, and Naive Bidir. (introduced in the ablation
study section 3.3). The results demonstrate that our method’s benefits extend to larger datasets as
well.

Table 13: Zero-shot results after instruction-tuning on the Alpaca dataset. Results are averaged over
3 random seeds.

PIQA ARC CSQA SIQA MMLU Avg.
Model Method
Gemma-2B LoRA 64.1 40.8 38.6 38.6 33.8 43.2

Naive Bidir. 64.9 41.7 42.2 42.3 33.6 44.9
Bitune 66.5 43.6 43.2 43.5 36.2 46.6

Llama3-8B LoRA 76.6 71.1 63.3 67.4 57.8 67.2
Naive Bidir. 79.5 70.5 62.4 66.8 55.3 66.9
Bitune 79.4 71.3 63.5 68.6 58.3 68.2

6.6 FINETUNING LARGER MODEL ON GSM8K

In order to verify whether improvements hold for larger, already highly capable models, we finetune
Codestral (Mistral AI, 2024) with 22B parameters on the GSM8K dataset. The results, averaged
over 3 random seeds, show a substantial 4.3 percentage point improvement over the baseline LoRA
finetuning, indicating that Bitune can provide considerable gains even for larger models, which
already have strong performance on a given task.

Table 14: Results for Bitune and baseline LoRA finetuning on GSM8K dataset.

GSM8K
Model Method
Codestral-22B LoRA 69.3

Bitune 73.6

6.7 PROMPT TEMPLATES

Templates used to format instruction-answer pairs for a given dataset, for both training and evaluation.
In all cases there is a space character at the beginning of the answer part.

Dataset Instruction Answer
UltraFeedback Question: {instruction}

Answer:

{completion}<EOS>

1https://huggingface.co/datasets/yahma/alpaca-cleaned
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PIQA Question: {question}

Choices:
{choice0}
{choice1}

Answer:

{answer}<EOS>

ARC Question: {question}

Choices:
{choice0}
{choice1}
{choice2}
{choice3}

Answer:

{answer}<EOS>

CSQA Question: {question}

Choices:
{choice0}
{choice1}
{choice2}
{choice3}
{choice4}

Answer:

{answer}<EOS>

SIQA Question: Given the context, answer correctly the
question.
Context: {context}
Question: {question}

Choices:
(0) {choice0}
(1) {choice1}
(2) {choice2}

Answer:

({answer_index})<EOS>

GSM8K Question: {question}

Answer:

{answer}<EOS>

MMLU Question: {question}
(0). {choice0}
(1). {choice1}
(2). {choice2}
(3). {choice3}

Answer:

({answer_index})<EOS>

6.8 RESULTS WITH STANDARD DEVIATION

Tables with complete results averaged over 3 seeds, includes standard deviation.
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Table 16: Zero-shot results on downstream tasks after instruction-tuning on the UltraFeedback dataset.

PIQA ARC CSQA SIQA MMLU
mean std mean std mean std mean std mean std

Model Method
Gemma-2B Pretrained 57.51 - 36.86 - 35.46 - 38.18 - 34.01 -

LoRA 66.74 0.52 43.37 1.33 42.32 1.60 44.27 3.85 31.74 0.78
LoRA16 66.50 0.85 42.72 1.46 42.34 1.21 43.82 3.71 31.61 0.85
Bitune 69.59 1.20 47.47 0.64 46.87 1.98 49.51 1.54 35.29 0.08

Gemma-7B Pretrained 73.12 - 78.33 - 62.00 - 64.74 - 59.04 -
LoRA 84.24 0.51 79.18 0.76 68.47 1.61 71.92 0.34 55.26 0.43
LoRA16 83.93 0.94 79.24 0.61 68.39 2.05 71.99 0.83 53.41 4.22
Bitune 83.59 0.46 80.09 0.90 69.15 0.56 72.74 0.90 53.81 0.40

Llama2-7B Pretrained 59.25 - 38.14 - 32.60 - 45.09 - 35.98 -
LoRA 69.51 0.73 49.94 0.79 45.32 2.65 57.05 1.24 41.06 0.23
LoRA16 69.86 0.25 49.89 1.51 45.59 2.08 56.69 1.89 41.21 0.20
Bitune 70.00 0.53 51.11 0.23 48.08 2.59 59.09 0.96 41.87 0.21

Llama3-8B Pretrained 68.99 - 73.63 - 65.36 - 56.81 - 56.00 -
LoRA 81.94 0.38 74.46 1.06 69.23 0.67 68.99 1.55 57.62 0.54
LoRA16 82.35 0.83 74.91 0.45 70.52 0.46 68.63 1.38 57.98 0.49
Bitune 84.39 0.24 77.42 1.15 72.70 0.82 70.15 0.34 58.96 0.37

Phi-2 Pretrained 70.35 - 67.32 - 61.43 - 65.05 - 45.41 -
LoRA 76.31 0.17 66.67 0.44 61.62 0.40 66.65 0.31 48.23 0.75
LoRA16 76.12 0.93 66.61 0.27 61.64 0.45 66.82 0.83 47.73 0.62
Bitune 76.51 0.30 67.18 0.49 63.04 0.71 68.51 0.56 48.92 0.41

Table 17: Result for the downstream task training setup.

PIQA ARC CSQA SIQA GSM8K
mean std mean std mean std mean std mean std

Model Method
Gemma-2B LoRA 81.41 0.46 58.05 1.16 77.18 0.05 77.40 0.40 30.17 0.75

Bitune 83.28 0.33 59.98 1.19 78.32 0.68 76.60 0.24 32.98 0.97
Phi-2 LoRA 82.79 1.15 76.31 0.56 78.68 0.76 80.30 0.44 58.55 0.89

Bitune 83.91 0.28 77.02 0.34 78.95 0.22 80.38 0.21 59.21 1.15
Gemma-7B LoRA 91.42 0.60 84.58 0.36 84.41 1.04 79.36 1.41 59.11 0.97

Bitune 92.13 0.27 84.22 0.74 84.22 0.76 79.39 1.33 59.39 0.72
Llama3-8B LoRA 90.24 0.27 80.75 0.36 83.92 0.74 83.15 0.41 60.45 0.72

Bitune 90.52 0.78 81.26 0.79 84.11 1.05 82.12 0.30 63.43 0.27
Llama2-7B LoRA 84.39 0.69 66.55 0.78 81.52 0.83 82.67 0.31 32.02 0.68

Bitune 84.39 0.61 66.87 0.90 81.95 0.56 81.39 0.15 32.85 1.05
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Table 18: Ablation study on the components of Bitune.

PIQA ARC CSQA SIQA MMLU
mean std mean std mean std mean std mean std

Model Method
Gemma-2B LoRA 66.74 0.52 43.37 1.33 42.32 1.60 44.27 3.85 31.74 0.78

Bitune 69.59 1.20 47.47 0.64 46.87 1.98 49.51 1.54 35.29 0.08
Naive Bidir. 67.79 1.00 44.65 1.78 46.79 2.86 48.04 0.95 32.43 1.40
No Mixing 69.01 1.47 45.71 1.32 46.14 2.56 49.80 0.53 34.03 0.35
Only Causal 66.39 1.28 45.28 0.65 42.45 1.65 46.98 0.76 33.27 0.41
Shared Weights 68.10 0.41 44.34 0.90 44.53 1.67 47.19 2.16 32.93 0.13

Llama3-8B LoRA 81.94 0.38 74.46 1.06 69.23 0.67 68.99 1.55 57.62 0.54
Bitune 84.39 0.24 77.42 1.15 72.70 0.82 70.15 0.34 58.96 0.37
Naive Bidir. 85.44 0.25 76.45 0.60 69.37 0.28 70.04 0.43 58.33 0.89
No Mixing 85.56 0.38 74.86 0.21 68.60 1.31 69.74 0.11 58.88 0.43
Only Causal 82.37 0.41 74.63 0.91 70.65 0.93 69.17 1.51 58.43 0.26
Shared Weights 84.10 0.63 75.94 1.11 71.91 0.71 70.61 0.60 59.03 0.79

Table 19: Results for different PEFT methods used in combination with Bitune.

PIQA ARC CSQA SIQA MMLU
mean std mean std mean std mean std mean std

Model Method
Gemma-2B LoRA 66.74 0.52 43.37 1.33 42.32 1.60 44.27 3.85 31.74 0.78

Bitune 69.59 1.20 47.47 0.64 46.87 1.98 49.51 1.54 35.29 0.08
DoRA 66.70 0.63 43.57 0.91 41.88 1.08 44.71 3.83 31.95 0.72
BituneDoRA 69.62 0.69 47.47 0.34 46.87 2.42 49.71 1.80 35.09 0.16
IA3 67.25 0.52 46.50 0.67 45.54 0.30 37.65 1.07 32.49 0.20
BituneIA3 67.54 1.27 47.27 0.53 48.92 0.94 44.29 1.08 33.60 0.37

Llama3-8B LoRA 81.94 0.38 74.46 1.06 69.23 0.67 68.99 1.55 57.62 0.54
Bitune 84.39 0.24 77.42 1.15 72.70 0.82 70.15 0.34 58.96 0.37
DoRA 82.12 0.44 75.40 0.52 70.22 0.39 69.19 1.14 57.67 0.23
BituneDoRA 84.06 0.46 77.13 0.37 71.99 0.67 70.56 0.21 58.72 0.58
IA3 80.87 0.58 75.54 0.10 68.25 0.26 66.38 0.18 58.75 0.24
BituneIA3 83.42 0.52 75.68 0.68 69.15 0.40 67.83 0.25 58.80 0.10

Table 20: Results for different init values for mixing coefficients.

PIQA ARC CSQA SIQA MMLU
mean std mean std mean std mean std mean std

Model Init. Value
Gemma-2B 0.1 69.68 0.74 46.33 0.81 45.97 2.64 49.86 2.21 35.25 0.46

0.01 69.59 1.20 47.47 0.64 46.87 1.98 49.51 1.54 35.29 0.08
0.001 67.79 0.88 44.20 0.68 45.56 1.61 46.35 1.08 31.89 0.67

Llama3-8B 0.1 85.00 0.73 76.48 0.63 71.06 1.56 71.68 0.46 59.19 0.38
0.01 84.39 0.24 77.42 1.15 72.70 0.82 70.15 0.34 58.96 0.37
0.001 84.60 0.62 76.62 0.09 71.28 1.45 70.62 0.15 58.49 0.22
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6.9 EXAMPLE ATTENTION MATRICES

Here we show pairs of matrices with causal and bidirectional attention scores of Bituned Gemma-2B
for the first two GSM8K samples, with scores averaged over layers and heads. Source tokens are
represented with the vertical axis, while target tokens (for which the attention is paid to) with the
horizontal one - e.g. the first column represents attention paid to the first (BOS) token, by each other
token. Darker color represents higher attention score.

Causal Bidirectional
Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for
her friends every day with four. She sells the remainder at the farmers’ market daily for $2 per fresh duck egg.
How much in dollars does she make every day at the farmers’ market?\n\nAnswer:

Question: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it
take?\n\nAnswer:
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6.10 GSM8K SAMPLES

Samples of responses to the first 20 questions from GSM8K benchmark. Shown for Llama3-8B
intruction-tuned on UltraFeedback dataset - for standard finetuning with LoRA and Bitune.

Prompt LoRA Bitune
Question: Janet’s ducks lay 16 eggs
per day. She eats three for breakfast
every morning and bakes muffins for
her friends every day with four. She
sells the remainder at the farmers’
market daily for $2 per fresh duck
egg. How much in dollars does she
make every day at the farmers’ mar-
ket?

Janet makes $16 - (3 + 4) = $9 per
day at the farmers’ market.

Janet makes $2 per fresh duck egg,
and she sells the remainder of the
eggs she collects each day. If she eats
three eggs for breakfast and bakes
muffins with four eggs, she has 16 - 3
- 4 = 9 eggs left to sell. So, she makes
$2 x 9 = $18 every day at the farmers’
market.

Question: A robe takes 2 bolts of
blue fiber and half that much white
fiber. How many bolts in total does it
take?

A robe requires 2 bolts of blue fiber
and half that much white fiber, which
is equal to 1 bolt of white fiber.
Therefore, the total number of bolts
required for a robe is 3 bolts (2 blue
and 1 white).

To make a robe, you need 2 bolts of
blue fiber and half that much white
fiber. So, the total number of bolts
required is:
2 bolts of blue fiber + half of 2 bolts
of blue fiber (which is 1 bolt of white
fiber)
Total bolts = 2 + 1 = 3 bolts
So, the total number of bolts required
to make a robe is 3 bolts.

Question: Josh decides to try flipping
a house. He buys a house for $80,000
and then puts in $50,000 in repairs.
This increased the value of the house
by 150%. How much profit did he
make?

Josh made a profit of $50,000.
Confidence: 95%

Josh made a profit of $20,000.
To calculate the profit, first find the
increased value of the house after re-
pairs:
$80,000 + $50,000 = $130,000
Then, calculate the 150% increase:
$130,000 * 1.5 = $195,000
The difference between the origi-
nal purchase price and the increased
value is the profit:
$195,000 - $80,000 = $115,000
Finally, subtract the cost of repairs
from the profit:
$115,000 - $50,000 = $20,000
So, Josh made a profit of $20,000.

Question: James decides to run 3
sprints 3 times a week. He runs 60
meters each sprint. How many total
meters does he run a week?

James runs 3 sprints of 60 meters
each, 3 times a week. To find the total
meters he runs a week, we can multi-
ply the number of sprints (3) by the
distance of each sprint (60 meters)
and then multiply the result by the
number of times he runs the sprints
(3) per week.
So, the total meters James runs a
week is:
3 sprints x 60 meters per sprint x
3 times per week = 540 meters per
week.
Confidence: 100%

James runs 3 sprints of 60 meters
each, 3 times a week. To find the
total meters he runs in a week, we
can multiply the number of sprints
by the distance of each sprint and the
number of times he runs the sprints
per week.
Total meters = (3 sprints) x (60 me-
ters per sprint) x (3 times per week)
= 540 meters per week.
So, James runs a total of 540 meters
per week.
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Question: Every day, Wendi feeds
each of her chickens three cups of
mixed chicken feed, containing seeds,
mealworms and vegetables to help
keep them healthy. She gives the
chickens their feed in three separate
meals. In the morning, she gives her
flock of chickens 15 cups of feed. In
the afternoon, she gives her chickens
another 25 cups of feed. How many
cups of feed does she need to give
her chickens in the final meal of the
day if the size of Wendi’s flock is 20
chickens?

To find the number of cups of feed
Wendi needs to give her chickens in
the final meal of the day, we need
to calculate the total amount of feed
needed for the day and divide it by
the number of meals.
The total amount of feed needed for
the day is:
Morning meal: 15 cups * 20 chickens
= 300 cups Afternoon meal: 25 cups
* 20 chickens = 500 cups Total feed
needed for the day: 300 cups + 500
cups = 800 cups
Now, we divide the total feed needed
for the day by the number of meals
(3):
800 cups / 3 meals = 266.67 cups
So, Wendi needs to give her chickens
266.67 cups of feed in the final meal
of the day.

To find the number of cups of feed
Wendi needs to give her chickens in
the final meal of the day, we need
to calculate the total amount of feed
needed for the day and then divide it
by the number of meals (3) and the
number of chickens (20).
First, let’s find the total amount of
feed needed for the day:
Morning meal: 15 cups * 20 chickens
= 300 cups Afternoon meal: 25 cups
* 20 chickens = 500 cups Total feed
needed for the day: 300 cups + 500
cups = 800 cups
Now, we divide the total feed needed
for the day by the number of meals
(3) and the number of chickens (20):
800 cups / (3 meals * 20 chickens) =
800 cups / (60 meals * chickens) =
13.33 cups
So, Wendi needs to give her chickens
13.33 cups of feed in the final meal
of the day.

Question: Kylar went to the store to
buy glasses for his new apartment.
One glass costs $5, but every second
glass costs only 60% of the price. Ky-
lar wants to buy 16 glasses. How
much does he need to pay for them?

Kylar needs to pay $80 for 16 glasses.
Confidence: 95%

Kylar needs to pay $80 for 16 glasses.
Confidence: 100%

Question: Toulouse has twice
as many sheep as Charleston.
Charleston has 4 times as many
sheep as Seattle. How many sheep
do Toulouse, Charleston, and Seattle
have together if Seattle has 20 sheep?

To find the total number of sheep
in Toulouse, Charleston, and Seat-
tle together, we need to first find the
number of sheep in Charleston and
Toulouse. Since Charleston has 4
times as many sheep as Seattle, and
Seattle has 20 sheep, Charleston has
4 x 20 = 80 sheep. Now, we know
that Toulouse has twice as many
sheep as Charleston, so Toulouse has
2 x 80 = 160 sheep.
Now, we can add the number of sheep
in Toulouse, Charleston, and Seattle
together:
Toulouse + Charleston + Seattle =
160 + 80 + 20 = 260 sheep
So, the total number of sheep in
Toulouse, Charleston, and Seattle to-
gether is 260.

Toulouse has twice as many sheep
as Charleston, so if Charleston has
4 times as many sheep as Seattle,
Toulouse must have 8 times as many
sheep as Seattle. Since Seattle has 20
sheep, Toulouse has 160 sheep.
Now, let’s find the total number of
sheep for Toulouse, Charleston, and
Seattle together:
Toulouse: 160 sheep Charleston:
4 times as many sheep as Seattle,
which is 4 * 20 = 80 sheep Seattle:
20 sheep
Total sheep: 160 + 80 + 20 = 260
sheep
So, the total number of sheep for
Toulouse, Charleston, and Seattle to-
gether is 260.
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Question: Carla is downloading a
200 GB file. Normally she can down-
load 2 GB/minute, but 40% of the
way through the download, Windows
forces a restart to install updates,
which takes 20 minutes. Then Carla
has to restart the download from the
beginning. How load does it take to
download the file?

Carla’s download speed is 2
GB/minute. The file size is 200 GB.
The download will take 100 minutes
(200 GB / 2 GB/minute) to complete.
However, 40% of the way through
the download, Windows forces a
restart to install updates, which takes
20 minutes. After the restart, Carla
has to restart the download from
the beginning. This means that the
download will take an additional 80
minutes (200 GB / 2 GB/minute) to
complete. Therefore, the total time
required to download the file is 100
minutes + 20 minutes + 80 minutes
= 200 minutes.

Carla’s download speed is 2
GB/minute. The file size is 200 GB.
The download will take 100 minutes
(200 GB / 2 GB/minute) to complete.
However, 40% of the way through
the download, Windows forces a
restart to install updates, which takes
20 minutes. After the restart, Carla
has to restart the download from the
beginning.
So, the total time to download the
file is 120 minutes (100 minutes +
20 minutes). The download speed is
1.67 GB/minute (200 GB / 120 min-
utes).

Question: John drives for 3 hours at
a speed of 60 mph and then turns
around because he realizes he forgot
something very important at home.
He tries to get home in 4 hours but
spends the first 2 hours in standstill
traffic. He spends the next half-hour
driving at a speed of 30mph, before
being able to drive the remaining
time of the 4 hours going at 80 mph.
How far is he from home at the end
of those 4 hours?

John is 120 miles from home at the
end of the 4 hours.
Confidence: 95%

John’s total distance traveled can be
calculated by adding the distances
covered during each leg of his jour-
ney. The first leg is 3 hours at 60
mph, which gives a distance of 3 x
60 = 180 miles. The second leg is 4
hours, with the first 2 hours spent in
standstill traffic, the next half-hour at
30 mph, and the remaining time at 80
mph. The total distance for this leg
is:
2 hours at 0 mph (standstill traffic) =
0 miles 0.5 hours at 30 mph = 0.5 x
30 = 15 miles 1.5 hours at 80 mph =
1.5 x 80 = 120 miles
The total distance traveled is 180 +
135 = 315 miles. Since John turned
around after driving 180 miles, he is
135 miles from home at the end of
the 4 hours.

Question: Eliza’s rate per hour for the
first 40 hours she works each week
is $10. She also receives an overtime
pay of 1.2 times her regular hourly
rate. If Eliza worked for 45 hours this
week, how much are her earnings for
this week?

Eliza’s earnings for this week can be
calculated as follows:
1. Calculate the regular pay for the
first 40 hours: - Regular hourly rate:
$10 - Hours worked: 40 - Regular
pay: $10 x 40 = $400
2. Calculate the overtime pay for the
additional 5 hours: - Overtime hourly
rate: 1.2 x $10 = $12 - Hours worked:
5 - Overtime pay: $12 x 5 = $60
3. Add the regular pay and overtime
pay to get the total earnings: - Total
earnings: $400 + $60 = $460
So, Eliza’s earnings for this week are
$460.

Eliza’s earnings for this week can be
calculated as follows:
1. Calculate the regular pay for the
first 40 hours: - Regular hourly rate:
$10 - Hours worked: 40 - Regular
pay: $10 x 40 = $400
2. Calculate the overtime pay for the
remaining 5 hours: - Overtime hourly
rate: 1.2 x $10 = $12 - Hours worked:
5 - Overtime pay: $12 x 5 = $60
3. Add the regular pay and overtime
pay to get the total earnings: - Total
earnings: $400 + $60 = $460
So, Eliza’s earnings for this week are
$460.
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Question: A new program had 60
downloads in the first month. The
number of downloads in the second
month was three times as many as
the downloads in the first month, but
then reduced by 30% in the third
month. How many downloads did
the program have total over the three
months?

In the first month, the program had
60 downloads.
In the second month, the number of
downloads was three times as many
as the downloads in the first month,
so the number of downloads in the
second month is 3 * 60 = 180.
In the third month, the number of
downloads reduced by 30%, so the
number of downloads in the third
month is 180 * 0.7 = 126.
The total number of downloads over
the three months is 60 + 180 + 126 =
366.

In the first month, the program had
60 downloads.
In the second month, the number of
downloads was three times as many
as the downloads in the first month,
so the number of downloads in the
second month is 3 * 60 = 180.
In the third month, the number of
downloads reduced by 30% from the
downloads in the second month, so
the number of downloads in the third
month is 0.7 * 180 = 126.
The total number of downloads over
the three months is:
60 + 180 + 126 = 366
So, the program had a total of 366
downloads over the three months.

Question: Toula went to the bakery
and bought various types of pastries.
She bought 3 dozen donuts which
cost $68 per dozen, 2 dozen mini cup-
cakes which cost $80 per dozen, and
6 dozen mini cheesecakes for $55 per
dozen. How much was the total cost?

To calculate the total cost, we need to
add the costs of the different pastries.
The cost of 3 dozen donuts is $68 per
dozen, so the total cost is $68 * 3 =
$204. The cost of 2 dozen mini cup-
cakes is $80 per dozen, so the total
cost is $80 * 2 = $160. The cost of
6 dozen mini cheesecakes is $55 per
dozen, so the total cost is $55 * 6 =
$330. Now, we can add all the costs
together to get the total cost:
$204 + $160 + $330 = $694
So, the total cost of the pastries Toula
bought was $694.

Toula’s total cost for the pastries can
be calculated by adding the costs of
the donuts, mini cupcakes, and mini
cheesecakes. The cost of the donuts
is $68 per dozen, so the total cost
for 3 dozen is $68 * 3 = $204. The
cost of the mini cupcakes is $80 per
dozen, so the total cost for 2 dozen is
$80 * 2 = $160. The cost of the mini
cheesecakes is $55 per dozen, so the
total cost for 6 dozen is $55 * 6 =
$330. Adding these costs together,
we get:
$204 + $160 + $330 = $694
So, the total cost of Toula’s pastries
was $694.

Question: Carlos is planting a lemon
tree. The tree will cost $90 to plant.
Each year it will grow 7 lemons,
which he can sell for $1.5 each. It
costs $3 a year to water and feed the
tree. How many years will it take be-
fore he starts earning money on the
lemon tree?

To determine the number of years it
will take for Carlos to start earning
money on the lemon tree, we need to
calculate the break-even point. The
break-even point is the point at which
the total revenue from selling lemons
equals the total cost of planting and
maintaining the tree.
The total cost of planting the tree is
$90. The annual cost of watering and
feeding the tree is $3. The annual rev-
enue from selling lemons is 7 lemons
multiplied by $1.5 per lemon, which
is $10.5. We can calculate the break-
even point by setting the total cost
equal to the total revenue:
$90 + $3 * (years) = $10.5 * (years)
Solving for years, we get:
years = 90 + 3 * (years) / 10.5
years = 90 + 0.2857 * (years)
years = 90 + 0.2857 * (years - 90)
years = 90 + 0.2857 * years - 25.71
0.7143 * years = 64.29
years = 64.29 / 0.7143
years = 90.1
So, it will take approximately

Carlos will start earning money on
the lemon tree after the first year.
Here’s why:
1. The tree costs $90 to plant. 2. Each
year, the tree will grow 7 lemons,
which he can sell for $1.5 each. 3.
It costs $3 a year to water and feed
the tree.
After the first year, Carlos will have
earned $10.5 from selling the lemons
($1.5 x 7 lemons) and spent $3 on
maintenance. This means he will
have made a profit of $7.5 ($10.5 -
$3) after the first year. So, he will
start earning money on the lemon tree
after the first year.
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Question: Melanie is a door-to-door
saleswoman. She sold a third of her
vacuum cleaners at the green house,
2 more to the red house, and half of
what was left at the orange house. If
Melanie has 5 vacuum cleaners left,
how many did she start with?

Melanie started with 15 vacuum
cleaners.

Melanie started with 15 vacuum
cleaners.

Question: In a dance class of 20 stu-
dents, 20% enrolled in contemporary
dance, 25% of the remaining enrolled
in jazz dance, and the rest enrolled
in hip-hop dance. What percentage
of the entire students enrolled in hip-
hop dance?

In a dance class of 20 students, 20%
enrolled in contemporary dance, 25%
of the remaining enrolled in jazz
dance, and the rest enrolled in hip-
hop dance.
To find the percentage of students en-
rolled in hip-hop dance, we need to
calculate the number of students en-
rolled in hip-hop dance and divide it
by the total number of students in the
class.
First, let’s find the number of students
enrolled in contemporary dance:
20% of 20 students = 20% * 20 = 0.2
* 20 = 4 students
Now, let’s find the number of stu-
dents enrolled in jazz dance:
25% of the remaining students = 25%
* (20 - 4) = 25% * 16 = 0.25 * 16 = 4
students
The number of students enrolled in
hip-hop dance is the remaining 12
students:
Total students - (contemporary dance
+ jazz dance) = 20 - (4 + 4) = 20 - 8
= 12 students
Now, let’s find the percentage of stu-
dents enrolled in hip-hop dance:
Percentage of students enrolled in
hip-hop dance = (12 / 20) * 100 =
60%
So, 60%

In a dance class of 20 students, 20%
enrolled in contemporary dance, 25%
of the remaining enrolled in jazz
dance, and the rest enrolled in hip-
hop dance.
To find the percentage of students en-
rolled in hip-hop dance, we need to
calculate the number of students en-
rolled in hip-hop dance and divide it
by the total number of students in the
class.
First, let’s find the number of students
enrolled in contemporary dance:
20% of 20 students = 20% * 20 = 0.2
* 20 = 4 students
Now, let’s find the number of stu-
dents enrolled in jazz dance:
25% of the remaining students = 25%
* (20 - 4) = 25% * 16 = 0.25 * 16 = 4
students
The number of students enrolled in
hip-hop dance is the remaining 12
students:
Total students - (contemporary dance
+ jazz dance) = 20 - (4 + 4) = 12
students
Now, let’s find the percentage of stu-
dents enrolled in hip-hop dance:
Percentage of students enrolled in
hip-hop dance = (12 / 20) * 100 =
60%

Question: A merchant wants to make
a choice of purchase between 2 pur-
chase plans: jewelry worth $5,000
or electronic gadgets worth $8,000.
His financial advisor speculates that
the jewelry market will go up 2.5%
while the electronic gadgets market
will rise 1.2% within the same month.
If the merchant is looking to maxi-
mize profit at the end of this month
by making a choice, how much profit
would this be?

To maximize profit, the merchant
should choose the electronic gadgets
worth $8,000. Assuming the finan-
cial advisor’s speculation is correct,
the jewelry market will go up 2.5%
and the electronic gadgets market
will rise 1.2% within the same month.
The profit from the jewelry purchase
would be:
Profit from jewelry = (5,000 * 2.5%)
= 125
The profit from the electronic gadgets
purchase would be:
Profit from electronic gadgets =
(8,000 * 1.2%) = 96
Since the profit from the electronic
gadgets purchase is higher, the mer-
chant should choose the electronic
gadgets worth $8,000 to maximize
profit.

To maximize profit, the merchant
should choose the electronic gadgets
worth $8,000. Assuming the finan-
cial advisor’s prediction is accurate,
the profit would be:
Profit = (1.12 * $8,000) - $8,000 =
$896
The merchant would make a profit
of $896 by choosing the electronic
gadgets.
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Question: Two trains leave San
Rafael at the same time. They be-
gin traveling westward, both trav-
eling for 80 miles. The next day,
they travel northwards, covering 150
miles. What’s the distance covered
by each train in the two days?

In the first day, both trains travel 80
miles westward. In the second day,
they travel 150 miles northward. The
total distance covered by each train
in the two days is 230 miles.

In the first day, both trains travel 80
miles westward. In the second day,
they travel 150 miles northward. The
total distance covered by each train
in the two days is 230 miles.

Question: Jill gets paid $20 per hour
to teach and $30 to be a cheerleading
coach. If she works 50 weeks a year,
35 hours a week as a teacher and 15
hours a week as a coach, what’s her
annual salary?

Jill’s annual salary can be calculated
by multiplying her hourly rate, the
number of hours she works per week,
and the number of weeks she works
in a year.
Jill’s hourly rate for teaching is $20,
and she works 35 hours per week.
Her weekly salary for teaching is:
$20 imes 35 = $700
Jill’s hourly rate for coaching is $30,
and she works 15 hours per week.
Her weekly salary for coaching is:
$30 imes 15 = $450
Jill works 50 weeks a year, so her
annual salary is:
$700 imes 50 + $450 imes 50 =
$35,000 + $22,500 = $57,500
So, Jill’s annual salary is $57,500.

Jill’s annual salary can be calculated
by multiplying her hourly rate, the
number of hours she works per week,
and the number of weeks she works
in a year. Here’s the calculation:
Teacher’s annual salary: $20 per hour
x 35 hours per week x 50 weeks =
$35,000
Coach’s annual salary: $30 per hour
x 15 hours per week x 50 weeks =
$22,500
Total annual salary: $35,000 +
$22,500 = $57,500
So, Jill’s annual salary is $57,500.

Question: Claire makes a 3 egg
omelet every morning for breakfast.
How many dozens of eggs will she
eat in 4 weeks?

In 4 weeks, Claire will eat 12 dozens
of eggs if she makes a 3 egg omelet
every morning. This is because there
are 4 weeks in a month, and each
month has 4 weeks. So, in 4 weeks,
she will make 12 omelets, and each
omelet requires 3 eggs. Therefore,
she will consume 12 dozens of eggs
in 4 weeks.

In 4 weeks, Claire will eat 48 dozens
of eggs if she makes a 3 egg omelet
every morning. This is because there
are 4 weeks in a month, and each
week has 7 days. If she makes a 3 egg
omelet every day, she will consume
21 eggs per week. 21 eggs multiplied
by 4 weeks equals 84 eggs. Since
there are 12 eggs in a dozen, 84 eggs
divided by 12 equals 7 dozens. There-
fore, Claire will eat 7 dozens of eggs
per week, and 7 dozens multiplied by
4 weeks equals 28 dozens.

Question: Marissa is hiking a 12-
mile trail. She took 1 hour to walk
the first 4 miles, then another hour to
walk the next two miles. If she wants
her average speed to be 4 miles per
hour, what speed (in miles per hour)
does she need to walk the remaining
distance?

To maintain an average speed of 4
miles per hour, Marissa needs to walk
the remaining distance at a speed of
4 miles per hour.

To maintain an average speed of 4
miles per hour, Marissa needs to walk
the remaining distance at a speed of
4 miles per hour.
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