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Abstract

Advancing code reasoning in large language models (LLMs) is fundamentally
limited by the scarcity of high-difficulty datasets, especially those with verifi-
able input-output test cases necessary for rigorous solution validation at scale.
We introduce rStar-Coder, which significantly improves LLM code reasoning
capabilities by constructing a large-scale, verified dataset of 418K competition-
level code problems, 580K long-reasoning solutions along with rich test cases
of varying difficulty. This is achieved through three core contributions: (1) we
curate competitive programming code problems and solutions to synthesize new,
solvable problems; (2) we introduce a reliable input-output test case synthesis
pipeline that decouples the generation into a three-step input generation method
and a mutual verification mechanism for effective output labeling; (3) we aug-
ment problems with high-quality, test-case-verified long-reasoning solutions. Ex-
tensive experiments on Qwen models (1.5B-14B) across various code reason-
ing benchmarks demonstrate the superiority of rStar-Coder dataset, achieving
leading performance comparable to frontier reasoning LLMs with significantly
smaller model sizes. On LiveCodeBench, rStar-Coder improves Qwen2.5-7B
from 17.4% to an impressive 57.3%, and Qwen2.5-14B from 23.3% to 62.5%,
surpassing o3-mini (low) by 3.1%. On the more challenging USA Computing
Olympiad, our 7B model achieves an average pass@1 accuracy of 16.15%, outper-
forming the frontier-level QWQ-32B. rStar-Coder dataset is publicly available at
https://huggingface.co/datasets/microsoft/rStar-Coder.

Figure 1: Pass@1 accuracy on code reasoning benchmarks.
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1 Introduction

Recent large language models (LLMs) have made significant strides in reasoning, with models like
OpenAI o1/o3 [17] and DeepSeek-R1 [9] showing strong performance on complex code problems.
However, to further improve advanced code reasoning, a persistent challenge is the scarcity of large-
scale, high-quality datasets that contain verifiable, high-difficulty programming problems requiring
both algorithmic thinking and efficient code implementations.

Unlike datasets on math word problems, where solution correctness can be verified through simple
rule-based matching against reference answers [9, 8], code reasoning requires executing solutions
against diverse test cases to detect logical and implementation errors. These input-output test cases
must differ in content, scale, and complexity while meeting problem-specific constraints. Critically,
each test output must correctly label the expected result for its corresponding test input.

Obtaining such reliable and verifiable input-output test cases at scale remains highly challenging.
Human-curated datasets, such as CodeContests [22] and TACO [20], provide high-quality problems
but typically lack comprehensive test coverage, often including only a few simple test cases that
fail to capture diverse input scales of edge conditions. Synthetic datasets such as WizardCoder [24],
Magicoder [30], and KodCode [31] primarily target function-level code generation, where correctness
can be verified with minimal or even no test cases. These datasets are therefore insufficient for
advanced competitive-level code reasoning. While frontier LLMs may offer a scalable way for test
case synthesis, two substantial challenges arise: generating semantically valid, constraint-aware
inputs varying in scale and difficulty; and labeling correct outputs without ground truth solutions,
particularly since synthetic problems inherently lack reference implementations.

In this paper, we introduce rStar-Coder, a novel approach that reliably constructs a large-scale,
high-difficulty dataset for training advanced code reasoning LLMs. This dataset includes 418K
unique competitive programming problems and 580K long-reasoning solutions, each verified through
diverse synthetic test cases across difficulty levels. rStar-Coder incorporates three key components.

First, we curate and clean 37.7K expert-written problems with oracle solutions from competitive
programming platforms (e.g., IOI, Codeforces) and use them as seeds to synthesize new, solvable
problems. Unlike prior works [31, 24] that emphasize diversity, we prioritize solvability and correct-
ness, since the seed set already spans a wide range of topics and difficulty levels. However, these
problems are often too difficult for even frontier models like GPT-4o, and directly prompting the
LLM with only the problem statement often results in invalid or unsolvable outputs. To address this,
we design a structured prompt that incorporates both the problem statement and its oracle solution,
guiding the model to understand core algorithmic concepts and generate novel yet solvable problems.

Second, we address the challenge of generating reliable and diverse input-output test cases for solution
validation by decoupling the process into two stages. (1) First, we propose a three-step approach
to generate valid test inputs of varying scale and complexity. We prompt GPT-4o to generate two
utility functions for each problem: one for synthesizing semantically valid inputs with exposed
scale-controlling parameters, and another for validating whether the inputs satisfy problem-specific
constraints. We then sample input scale values (100 - 105) for these scale-controlling parameters to
cover a diverse range of complexities. Executing the two utility functions with these sampled scales
yields diverse, constraint-satisfying test inputs. (2) Second, to reliably label outputs, we introduce
a mutual verification mechanism. We sample multiple long-CoT solutions from a strong reasoning
model (QWQ-32B), and accept both the test outputs and solutions if a majority produces consistent
results across all test inputs. This mechanism is effective because incorrect solutions tend to diverge
in errors, while correct solutions converge. Thus, consistent agreement among multiple solutions on
identical outputs across diverse test inputs, particularly those of varying complexity, serves as strong
evidence for the correctness of both the solution logic and the resulting outputs. Our ablation study
demonstrate the effectiveness of this approach, achieving 96.8% accuracy in output labeling.

Finally, we augment curated expert-written problems with verified long-reasoning solutions. While
these problems are of high-quality, their original solutions often lack detailed reasoning steps.
Generating them directly with frontier LLMs is unreliable, as few simple original tests are insufficient
for validation. To address this, we use our test generation method to produce diverse, constraint-aware
inputs. Since curated problems include oracle solutions, we run them to get ground-truth outputs. We
then prompt QWQ-32B for long-reasoning solutions, keeping only those that pass all generated tests.
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Extensive experiments across different-sized LLMs (1.5B-14B) and diverse code reasoning bench-
marks demonstrate the effectiveness of rStar-Coder, consistently improving the code reasoning
capabilities of all base models to state-of-the-art levels, even with significantly smaller sizes. On Live-
CodeBench, rStar-Coder improves the 14B model from 23.3% to 62.5%, surpassing R1-distill-70B
and o3-mini (low) by +5.0% and 3.1%. And even the 1.5B model reaches 40.1%, outperforming both
R1-distill-7B and GPT-4o. On the highly competitive USA Computing Olympiad, rStar-Coder-7B
and rStar-Coder-14B outperform the frontier reasoning model QWQ-32B. Furthermore, rStar-Coder
also generalizes remarkably well on standard code generation tasks like HumanEval and MBPP.

2 Related Works
Instruction Code Data Synthesis. Prior to the rise of reasoning-focused LLMs, code data synthesis
methods [24, 30, 32] primarily targeted scaling instruction data to improve LLMs capabilities to
generate code aligned with use intent. Efforts like Code Alpaca [4], WizardCoder [24], Magicoder
[30] and WaveCoder [32] focused on synthesizing diverse and complex prompts by collecting seed
code snippets and prompting LLMs for generating instructions and solutions. Recently, KodCode [31]
scaled this paradigm by synthesizing 447K prompts from 12 sources using five distinct methods to
ensure diversity and complexity. While effective for improving general instruction-following, these
datasets show limited gains on reasoning-heavy code tasks [31, 16].

Code Reasoning LLMs and Datasets. Recent advances in code reasoning LLMs have garnered
attention, with two main approaches: distilling long-reasoning solutions from frontier models like R1
and o3-mini [26, 2, 1], and applying reinforcement learning to high-difficulty code problems [25, 35].
Both face limitations. Distillation-based methods build datasets [26, 2, 28] by scaling solutions per
problem but suffer diminishing returns due to limited diversity. RL methods struggle with unreliable
evaluation, as comprehensive test cases are often lacking. To our knowledge, no prior work has
systematically scaled algorithmic problem sets while providing robust, verifiable test case generation.

Code Solution Verification. Verifying the correctness of LLM-generated code solutions, especially
for competition-level problems, remains highly challenging. A common approach is using generated
test cases for validation. Prior work often uses the same LLM to produce both solutions and test cases,
relying on self-consistency to select the most agreed-upon output [5, 11, 33], or comparing outputs to
oracle solutions derived via exhaustive brute-force search [34]. However, the validity and diversity of
test cases across difficulty levels have not been extensively explored, yet both are essential for robust
evaluation. Our work addresses this challenge through a three-step input generation method and a
mutual-verification mechanism that reliably labels both solutions and test cases.

3 Methodology

3.1 Collection of Competitive Code Problems

Collection of expert-designed competitive coding problems. We curate a seed dataset from pub-
licly available resources, including programming competition websites and open datasets, where the
problems and test cases are designed by human experts. This includes original problems, reference
solutions, and available test cases from TACO [21], APPS [10], CodeContests [22], CodeContests-
Python-Submission [14], CodeFroces from the OpenR1 project [26], and USA Computing Olympiad
2011-2023 (USACO) [27]. We also gather problems from the International Olympiad Informatics
(IOI) spanning 2002-2023. As IOI problems are published in PDF format, we follow Numina-
Math [19] and use Mathpix to convert them into LaTex. In total, we collect 57,215 problems (see
Table 1). To ensure high quality, we remove duplicate problems across datasets and discard problems
lacking reference solutions, resulting in 37,754 unique problems with at least one reference solution.

Synthesis of new solvable and high-difficulty code problems. Then, we use the 37,754 expert-
written problems as seeds to synthesize new ones. These competitive programming problems
span a wide range of algorithmic topics and data structures, but each type is sparsely represented.
Therefore, unlike prior works that focus on maximizing the diversity between generated and seed
problems [31, 24, 13], our focus is on generating problems that are both solvable and high-difficulty.

However, directly prompting LLMs (e.g., GPT-4o) with seed problems alone often fails to generate
valid new problems, as even GPT-4o struggle to solve competition-level code problems. Without a
deep understanding of the knowledge and reasoning skills being tested, the LLM lacks the necessary
grounding to create problems that preserve both difficulty and solvability. To address this, we
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Table 1: Summary of competitive-level programming problems. In total, we collect 418K verified
problems, including 37.7K expert-designed and 380K synthetic problems.

Source Original Seed Questions Synthesized Questions Total

# Original # Verified # Synthesized # Verified Verified

AIZU 4302 2151 100712 17386 19537
AtCoder 2824 2080 88103 29096 31176
CodeChef 5232 3765 164646 46749 50514
CodeWars 4975 2515 108565 8520 11035
GeeksForGeeks 2680 2680 116809 37060 39740
HackerEarth 3657 1411 166385 48185 49596
HackerRank 860 854 35959 11707 12561
LeetCode 1516 754 32794 2282 3036
CodeForces 30049 20616 706289 170713 191329
International Olympiad Informatics (IOI) 626 444 24760 1767 2211
USA Computing Olympiad (USACO) 484 484 20610 7095 7579

Total 57,215 37,754 1,565,632 380,560 418,314

Input  # [1, 3, 2]

3    # scale: the size of the array 

1 3 2 # elements of the array

Output

YES 

Test case example#1

Input  # [word, localization]

2   # scale: number of words

word  # the string

localization # the string

Output

word

l10n

Test case example#2

Input # [graph, the x-y axes]

2 # scale: number of points 

2 1 # the coordinates of the 1st point

1 2 # the coordinates of the 2nd point

Output

1

Test case example#3

Input  #[graph, 2d-array]

 2 6 # scale: number of rows and cols

 ..S… # location of sheep, wolf

 ..S.W. # location of sheep, wolf

 Output

 Yes # whether can protect all sheep

 ..SD.. # location of dog

 ..SDW. # location of dog

Test case example#4

Figure 2: Examples of standard input-output test case pairs from competitive programming datasets.
The first line indicates the scale of the test input (e.g., the size of 1D array), followed by each
subsequent line representing the specific values for the input elements.

design structured prompts that include both the seed problem, its reference solution, and step-by-step
synthesis instructions. The reference solution helps the LLM internalize the key algorithmic reasoning
concepts involved in the seed problem. Specifically, we instruct the model to: (1) understand the seed
problem and solution; (2) identify the reasoning and core knowledge being tested from the solution;
(3) synthesize a new problem that test similar skills. Full prompt details are in Appendix Fig. 8.

In practice, incorporating reference solutions proves crucial for achieving high-quality synthesis.
Even smaller models such as Qwen2.5-72B-Instruct perform well under this setup, though we adopt
GPT-4o as the main generator to ensure higher reliability and success rates.

In totoal, we synthesize 1,565K new code problems as shown in Table 1. Compared to the original
seeds, the synthesized problems still exhibit novelty by: (1) creating new contexts while maintaining
the original algorithmic strategy (e.g., dynamic programming); (2) modifying or adding constraints
to alter difficulty or computational complexity; (3) changing both context and constraints. These
synthesized problems lack verifiable test cases and reference solutions, and some may be unsolvable.
We address this through test case generation and mutual verification, as detailed in the next sections.

3.2 Test Case Generation

Checking whether a code solution runs without syntax or runtime errors is a straightforward way to
verify correctness, but it’s not sufficient. A correct solution must also be logically sound and bug-free.
The standard approach is to use input-output test cases: given a test input (as shown in Fig. 2), a valid
solution should produce the expected test output exactly. Effective test cases, therefore, should meet
two key criteria. First, test inputs should cover a range of scales and complexities to evaluate both
correctness and efficiency. For example, real-world code competitions often include large inputs (e.g.,
size 105) to test whether a solution satisfies the algorithmic efficiency constraints and runs within
time limits. Second, the test outputs must be accurate to support reliable validation.

However, obtaining such high-quality test cases is highly challenging. Curated datasets, though
sourced from major coding platforms, typically provide only public test cases, which are often too
simple to catch deeper logical errors. Synthetic problems, on the other hand, lack test cases entirely.
Moreover, without ground-truth solutions, it becomes even harder to accurately label outputs, making
reliable test case generation especially difficult. To address these challenges, we decouple the test
case generation process into two stages: input generation and output labeling. Instead of prompting
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Test Input Constraints from Problem Statement: 

The first line contains single integer *n* (1<=≤<=*n*<=≤<=100000) — the size of the array.

The second line contains *n* integers *a*1,<=*a*2... *a**n* (1<=≤<=*a**i*<=≤<=10^9) — the elements of the array.

# usage: print(generate_test_input(5))

# 2 3 5 6 4  ## possible generated test input

from cyaron import *

def generate_test_input(n):   

 # Constraint check 

if not (2 <= n <= 100000):        

     return None    

# Generate an array of size n with values between 1 and 1e9 

a = Vector.random(n, [(1, int(1e9))], mode=1)

flat_a = sum(a, [])  # flatten to list of integers   

# Format input string    

input_lines = [str(n), ' '.join(map(str, flat_a))]    

return "\n".join(input_lines)

# usage: print (validate_test_input("5\n2 3 4 5 6"))  # True

def validate_test_input(input_string):

try:        

   lines = input_string.strip().split('\n')        

   if len(lines) != 2: return False      

   n = int(lines[0])        

   if not (2 <= n <= 100000):   return False         

       a = list(map(int, lines[1].strip().split()))        

   if len(a) != n:    return False         

   if any(x < 1 or x > 10**9 for x in a):     return False     

   return True    

except:        

      return False

Figure 3: An example of LLM-generated utility functions for test input generation and validation.

an LLM to directly produce input-output pairs, we first introduce a three-step input generation method
to create valid and diverse inputs of varying complexity that satisfy the problem’s constraints. We
then use a mutual verification mechanism to reliably label the corresponding test outputs.

3.2.1 Valid Test Input Generation with Varying Complexity

Test case input format. To generate valid test inputs across varying complexities, we first introduce
the typical format of test inputs. As shown in Fig. 2, a test input in competitive programming is
usually a multi-line string. The first line encodes one or more scale-controlling parameters (e.g., array
size or grid dimension), and the following lines specify the actual input content. These strings are
passed directly to the solution code, which must implement custom parsing logic to interpret them.

On top of that, generating valid inputs across different scales, however, is non-trivial due to two
key challenges. First, although all inputs are string-encoded, their structure and semantics vary
significantly across problems. For instance, a string might represent a 1D integer array, a list of
strings, coordinates, or a 2D grid. Without understanding these structures, it is difficult to produce
valid inputs. Moreover, problem statements often include constraints on valid input ranges, making
naive prompting likely to produce invalid test inputs. Second, we aim to generate inputs of different
complexities, yet naive prompting of LLMs tends to result in random and overly simple inputs ( see
Fig. 5). To address these challenges, we propose a three-step approach as illustrated in Algorithm 1.

Step 1: Generating utility functions for input generation and validation. To produce high-quality
test inputs that satisfy both the semantics and constraints of each problem, we prompt a frontier
LLM (GPT-4o) to generate two utility functions per problem: one for test input generation and one
for input validation (Fig. 3). This serves two purposes: (1) automatically producing well-structured
inputs that satisfy problem constraints, and (2) exposing scale-controlling parameters (i.e., the first
string line in Fig. 2) to enable flexible input sizing. Notably, direct LLM generation of input values
often causes hallucinations. To reduce this, we allow GPT-4o to use CYaRon ⋄, a reliable input
data generation toolkit. As shown in Algorithm 1, given the problem description and CYaRon
documentation, the LLM is asked to generate a GENERATE_TEST_INPUT function that uses scale
parameters to call CYaRon for input construction, and a VALIDATE_TEST_INPUT function that parses
the resulting input string and checks for constraint satisfaction. Prompt details are in Appendix Fig. 9.

Step2: Defining input scale ranges. From the scale-controlling parameters exposed by the
GENERATE_TEST_INPUT function in Step 1, we define value scales for each parameter to control
test case difficulty (e.g., 1–9×100 for easy cases, up to 105 for hard cases). For example, in a 1D
array, the scale denotes the number of elements (e.g., 105 means 100K elements); in a 2D grid, it has
two scale-controlling parameters for the number of rows and columns. We instantiate each parameter
across its range and input the values into the generation function.

Step3: Executing utility functions to produce valid test inputs. Finally, for each instantiated
scale-controlling parameters from Step 2, we invoke the GENERATE_TEST_INPUT function to generate
a test input string. We then use the VALIDATE_TEST_INPUT function to verify whether each generated
input string meets the constraints outlined in the corresponding problem statement. Only the inputs
that pass validation are retained as valid test inputs.

⋄https://github.com/luogu-dev/cyaron
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Algorithm 1 Three-Step Test Input Generation Algorithm
Step 1: GPT-4o generates test input and validation functions with applying the CYaRon library.

1: function GENERATE_TEST_INPUT(param1, param2, . . . ) ▷ param1, param2, . . . controls
the input scales

2: return None If parameters do not satisfy the problem constraints
3: Generate input using the CYaRon library
4: return input_string
5: end function
1: function VALIDATE_TEST_INPUT(input_string)
2: Check whether input_string satisfies all constraints in the problem statements.
3: return True if valid; otherwise False
4: end function

Step 2: Define varies input scales
1: for each (param1, param2, . . . , paramn) extracted from GENERATE_TEST_INPUT:
2: C = {1, 2, . . . , 9} ∪ {10i | 0 ≤ i ≤ e}

Step 3: Execute functions to produce valid test inputs
1: for each (param1, param2, . . . , paramn) ∈ C do
2: input_string ← GENERATE_TEST_INPUT(param1, param2, . . . )
3: valid← VALIDATE_TEST_INPUT(input_string)
4: Retain input_string If valid is True
5: end for

Augmenting difficult test inputs for seed problems. In addition to generating test inputs for
synthetic code problems, we also enhance the test inputs for original seed problems, which often
feature either simple public test cases or none at all. By applying the above pipeline, we generate
more diverse and challenging test inputs for these problems.

3.2.2 Mutual Verification for Test Output and Solution Labeling

Test Input₁, Test Input₂,…, Test Inputₙ 

Candidate Solution₁

Candidate Solution₂

Candidate Solutionₘ

Test Inputs 

(varied difficulty levels)

… …

Majority Voting

If majority of solutions agree 

on all outputs

Label {solutions, outputs} 

as correct

Test Output₁₁, Test Output₁₂,…, Test Output₁ₙ 

Test Output₂₁, Test Output₂₂,…, Test Output₂ₙ 

Test Outputₙ₁, Test Outputₙ₂,…, Test Outputₘₙ 

Figure 4: Mutual verification between candidate solutions and test outputs. Given a diverse set of
inputs, if most solutions return the same outputs, both the solution and outputs are considered correct.

The next step is to reliably label each test input with the correct output. Since our synthetic test
inputs come from two sources (i.e., the original seed problems and synthesized problems), we apply
different strategies to achieve optimal labeling reliability for each.

Labeling test output for seed problems. For our augmented test inputs from seed problems, we
simply execute the provided oracle solution on the input. Since the reference solution is assumed
correct, its output serves as a the ground-truth label.

Mutual verification for synthetic problems. However, labeling test outputs for synthetic problems
is quite challenging as there are no oracle solutions. To address this, we propose a simple yet effective
mutual verification mechanism that identifies both correct test outputs and the solutions that produce
them. As illustrated in Fig. 4, for each problem, we first sample 16 long-reasoning candidate solutions
using a frontier reasoning model (QWQ-32B [29]). We then sample a diverse set of at least 50 test
inputs with varying complexities. Each candidate solution is executed on this shared set of test inputs
to generate the corresponding outputs. If a majority of these candidate solutions produce identical
sets of outputs across this entire set of test inputs, then both these consistent sets of outputs and the
candidate solutions that generated them are considered correct.
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The effectiveness of mutual verification stems from the fact that incorrect solutions are more likely
to diverge in errors than to converge on the exact same incorrect answer across multiple test inputs.
If a majority of independently generated solutions produce identical results for a diverse set of
inputs, it suggests they are not just randomly failing or misunderstanding the problem in different
ways. Instead, their consistent agreement indicates successfully solved the problem, providing strong
evidence for the correctness of both the solutions and their generated outputs.

3.3 Augmentation and Post-processing

Seed problems augmentation. Although our seed problems are expert-designed and high quality,
their original oracle solutions often lack detailed reasoning steps. To address this, we rewrite the
solutions to include rich reasoning patterns, such as self-reflection, which are essential for training
advanced code reasoning LLMs. To verify correctness, we augment each seed problem with diverse
test cases generated by our method, which are used for solution verification and filtering. Specifically,
we use QWQ-32B to generate 16 long CoT solutions per problem and retain only those that pass all
tests. For particularly challenging problems where QWQ-32B fails to produce a correct solution, we
follow prior work [26, 2] and retain all generated solutions to include more diverse and potentially
correct intermediate reasoning steps in the training data.

Post-Processing for synthetic data. We also clean the synthetic data to ensure high quality. First,
we remove unsolvable or overly difficult problems, which may result from hallucinated generation
or limitations of the frontier reasoning model. The mutual verification mechanism naturally acts as
an effective filter. Specifically, if fewer than 60% of solutions agree on the outputs, the problem is
discarded. For problems synthesized based on Codeforces problems, we use the original cf_rating
to identify hard problems (cf_rating > 1600) and adjust the threshold to 40% to include harder
problems. This process effectively filters out unreliable problems, as shown in Table 1. After filtering,
we retain 380K verified synthetic problems. For these 380K problems, we initially have 2.25M long
CoT solutions, which are too large for efficient fine-tuning. We reduce this by executing all solutions
and retaining only the fastest one per problem based on CPU execution time.

Decontamination. To ensure fair and unbiased evaluation, we follow prior works [15] and perform
data decontamination by removing any problems that overlap (16-gram) with evaluation benchmarks:
HumanEval, HumanEval+, MBPP, MBPP+, LiveCodeBench, and USACO 2025. We adopt a 16-gram
threshold because shorter n-grams (e.g., 8- or 10-gram) often produce false positives in competitive
programming problems, which naturally share common phrases in I/O descriptions and problem
statements (e.g., “the sum of n overall all test cases”). After decontamination, our dataset
contains 418K problems with extensive test cases, totaling 580K question–solution pairs.

4 Experiments

4.1 Setup

Training setup. Using our 580K dataset, we fine-tune Qwen2.5-Coder instruct models [16] at
1.5B, 7B, and 14B sizes for 6 epochs using the AdamW optimizer, a batch size of 96, and a max
sequence length of 16k. The learning rate is 4e-5 with cosine decay. Training is accelerated with
FlashAttention-2 [7] and DeepSpeed ZeRO-0. Specifically, the 1.5B and 7B models are trained on 8
MI300X AMD GPUs, while the 14B model uses 32 MI300X GPUs.

Evaluation benchmarks. We evaluate on diverse benchmarks, including LiveCodeBench [18] v5,
which features new problems from LeetCode, AtCoder, and Codeforces (2024.8-2025.2), and a
challenging new benchmark from the USA Computing Olympiad 2025 (USACO), containing 12
Olympiad problems across bronze to platinum tiers. These problems test a broad spectrum of algorith-
mic and commonsense reasoning. In addition, we test generalization abilities by evaluating on popular
code generation benchmarks: HumanEval [6], HumanEval+ [23], MBPP [3], and MBPP+ [23].

Baselines and Inference Settings. We compare against two strong baselines: (1) leading frontier
LLMs, including GPT-4o, Claude 3.5 Sonnet, DeepSeek-R1, and QWQ-32B; and (2) state-of-
the-art code reasoning models fine-tuned on large-scale long-CoT code datasets. Specifically, in
addition to DeepSeek-R1 distilled models, we compare with Bespoke-Stratos (fine-tuned on 17k
traces) [28], OpenThinker (114k) [28], OlympicCoder (100k) [26], Nvidia OCR-Owen (736k) [2],
and OpenThinker2 (1M) [28]. Notably, OCR and OpenThinker2 are trained with significantly larger
datasets than ours. For inference, we set temperature to 0.6, maximum output length to 32k tokens.
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Table 2: Results of rStar-Coder and frontier reasoning LLMs on diverse benchmarks. We outperform
on both reasoning-heavy and general code generation tasks with significantly smaller model sizes.
Gray text in ( ) indicates our absolute score improvements over the base model.
Model LiveCodeBench HumanEval HumanEval+ MBPP MBPP+

GPT-4o 30.0 92.7 87.2 87.6 72.2
Claude3.5-Sonnet 32.0 92.1 86 91 74.6
OpenAI o3-mini-2025-01-31 (low) 59.4 - - - -
QWQ-32B 63.4 95.6 89.8 92.2 76.5
OpenAI o1 63.4 - - - -
DeepSeek-R1 65.9 96.3 90.9 95.3 81.2
Gemini-2.5-Pro 69.2 - - - -

1.5B Long-CoT coder reasoning LLMs
DeepSeek-R1-Distill-Qwen-1.5B 16.9 66.3 61.8 57.1 48.5
rStar-Coder-1.5B 40.1 (+33.6) 88.4 (+17.7) 81.7 (+16.5) 74.1 (+8.9) 60.8 (+1.5)

Bespoke-Stratos-7B(Bespoke-Stratos-17k) 16.2 75.1 69.1 73.6 59.8
OpenThinker-7B (OpenThoughts-114k) 25.5 80.5 75.7 80.9 68.2
OpenThinker2-7B (OpenThoughts2-1M) 37.4 92.7 87.8 86.9 73.9
DeepSeek-R1-Distill-Qwen-7B 37.6 89.6 83.7 78.4 66.7
DeepSeek-R1-Distill-LLaMA3-8B 39.6 85.9 79.7 62.7 52.8
OlympicCoder-7B (OpenR1-codeforces-100k) 40.9 82.1 76.9 80.0 66.4
OCR-Qwen-7B-Instruct (OCR-736k) 51.3 - - - -
rStar-Coder-7B 57.3 (+39.9) 95.9 (+7.5) 90.8 (+6.7) 87.9 (+4.4) 74.0 (+2.3)

14B-70B Long-CoT reasoning LLMs
DeepSeek-R1-Distill-Qwen-14B 53.1 96.1 89.8 87.4 74.1
OCR-Qwen-14B-Instruct (OCR-736k) 59.4 - - - -
Bespoke-Stratos-32B 48.9 95.5 89.8 93.8 77.5
DeepSeek-R1-Distill-Qwen-32B 57.2 95.9 89.9 92.8 78.7
OpenThinker-32B (OpenThoughts-114k) 54.1 94.8 89.2 94.1 78.4
OlympicCoder-32B (OpenR1-codeforces-100k) 57.4 90.0 85.2 86.7 71.3
OCR-Qwen-32B-Instruct (OCR-736k) 61.7 - - - -
DeepSeek-R1-Distill-LLaMA-70B 57.5 96.5 90.7 91.9 77.1
rStar-Coder-14B 62.5 (+39.2) 95.9 (+6.3) 89.6 (+2.4) 91.4 (+5.2) 77.3 (+4.5)

To mitigate performance variance inherent in single-run evaluations, we sample 16 solutions per
problem and report the average pass@1 accuracy for all benchmarks.

4.2 Main Results

Results on diverse code benchmarks. Table 2 presents the performance of rStar-Coder compared
to state-of-the-art reasoning models. We highlight three key observations: (1) By scaling with our
high-quality dataset, rStar-Coder significantly improves LLMs code reasoning capabilities, achieving
performance comparable to frontier reasoning LLMs with substantially smaller model size (1.5B-
14B). For instance, Qwen2.5-Coder-1.5B, originally at only 6.5% accuracy on LiveCodeBench,
improved dramatically to 40.1% with rStar-Coder, even outperforming GPT-4o and R1-Distill-Qwen-
1.5B. Moreover, larger models see even greater gains: rStar-Coder-7B achieves 57.3%, surpassing
R1-Distilled-Qwen-32B. rStar-Coder-14B reaches 62.5%, outperforming all open-source baselines,
including OCR-32B and R1-Distill-70B, and even surpass o3-mini by 3.1%. (2) Dataset quality
matters more than size. Though OCR [2] and OpenThinker-2 [28] use much larger datasets (736K
and 1M vs. our 580K), rStar-Coder performs significantly better–by +6% and 19.9% at 7B, and
even surpasses their 32B models at 14B. (3) Despite not being tailored for general code generation,
rStar-Coder generalizes remarkably well. rStar-Coder consistently improves the performance on
HumanEval, HumanEval+, MBPP, and MBPP+ of all base models to state-of-the-art levels. Notably,
rStar-Coder-7B achieves performance on par with Claude3.5-Sonnet, showing that strong reasoning
data can generalize effectively beyond its original domain.

Results on challenging Olympiad programming. We further evaluate on USACO 2025, which
features highly challenging algorithmic problems across four tiers: Bronze to Platinum. Unlike
standard competitive questions, these problems require grounded and often creative reasoning,
especially at the Gold and Platinum levels, where deep algorithmic insight and creativity are essential.
As shown in Table 3, the benchmark is extremely difficult. Even OpenAI o3 scores only 32.03% and
fail on all Platinum problems. Despite the difficulty, our 7B and 14B models perform competitively,
outperforming the QWQ-32B. Notably, QWQ-32B generated the long-reasoning solutions in our
dataset. That even rStar-Coder-7B surpasses it highlights the strength of our data: diverse, competitive
problems and verified high-quality reasoning enable smaller models to rival far larger ones.
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Table 3: rStar-Coder performs competitively on USACO 2025 with much smaller model sizes.
Model Avg. Bronze Silver Gold Platinum
OpenAI-o3 32.03 72.91 28.12 27.08 0
DeepSeek-R1 21.87 58.33 22.91 6.24 0
QWQ-32B 15.62 43.75 12.5 6.25 0

7B-8B Long-CoT coder reasoning LLMs
OpenThinker-7B 0 0 0 0 0
OlympicCoder-7B 0.52 2.08 0 0 0
OpenThinker2-7B 4.16 16.67 0 0 0
DeepSeek-R1-Distill-Qwen-7B 4.68 18.75 0 0 0
rStar-Coder-7B 16.15 47.92 4.17 12.5 0

14B-70B Long-CoT coder reasoning LLMs
DeepSeek-R1-Distill-Qwen-14B 8.85 33.33 2.08 0 0
OpenThinker-32B 9.37 35.42 2.08 0 0
OlympicCoder-32B 9.89 35.42 0 4.17 0
OpenThinker2-32B 14.06 39.58 12.5 4.17 0
DeepSeek-R1-Distill-Qwen-32B 11.98 39.58 4.17 4.17 0
DeepSeek-R1-Distill-LLaMA-70B 13.54 43.75 8.33 2.08 0
rStar-Coder-14B 17.19 47.92 12.50 8.33 0

Table 4: Ablation on curated-only vs. synthetic-only subsets proves the value of each source.

Model LiveCodeBench HumanEval HumanEval+ MBPP MBPP+

DeepSeek-R1-Distill-7B 37.6 89.6 83.7 78.4 66.7

Synthetic-only subset 7B 46.8 89.6 83.6 86.5 72.7
Seed-only subset 7B 49.7 93.7 88.2 91.0 73.7

rStar-Coder-7B 57.3 95.9 90.8 87.9 74.0

4.3 Ablation Study and Analysis

Quality of seed and synthetic data sources. To evaluate the contribution of each data source, we
conduct SFT on 7B scale using only expert-written seed problems and only synthetic problems with
their corresponding solutions. As shown in Table 4, our 7B model finetuned on either the curated or
synthetic subset significantly outperforms the R1-Distill-7B model on both reasoning-intensive and
general code generation benchmarks, showing both sources are highly effective. While each subset
individually underperforms compared to our full dataset, the results indicate that curated and synthetic
data provide complementary benefits, and their combination yields the strongest performance.

Effectiveness of mutual verification. Mutual verification enables reliable labeling of test outputs
without oracle solutions. To evaluate its effectiveness, we randomly sample 64 expert-written seed
problems with oracle solutions and collect all their test inputs (3,150 in total). For each input, we
label test outputs using mutual verification: long CoT solutions from QWQ-32B are executed to
produce outputs, and majority voting is applied to determine the final label. These outputs are then
compared against ground-truth outputs obtained by running the oracle solutions.

As a baseline, we prompt GPT-4o to directly generate input-output pairs, following prior work [31, 12]
(see Prompt in Appendix Fig. 10). As shown in Table 5 (Left), mutual verification achieves 96.8%
accuracy, while the GPT-4o baseline yields only 12.7%, highlighting the reliability from our method.
To further validate scalability, we extend the evaluation to 1,024 problems (27,613 test cases in total),
where mutual verification still maintains 92.8% accuracy, confirming its robustness at larger scales.

Table 5: Ablation study on the reliability of synthetic test cases. Left: Our mutual verification
ensures the high accuracy test output labeling without oracle solutions. Right: Compared to directly
generating test inputs with LLMs, our three-step approach significantly improves input quality.

Method Accuracy

GPT-4o verification 12.7%
Mutual verification 96.8%

Method LiveCodeBench
Average Easy Medium Hard

GPT-4o prompting 42.9 87.3 54.1 10.6
Three-step input generation 44.6 87.7 56.5 12.6

Effectiveness of test input generation. An key component in rStar-Coder is the three-step test
input generation method, which produces constraint-satisfying and diverse inputs critical for mutual
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Figure 5: rStar-Coder generates more diverse and larger-scale test inputs, while directly LLM
prompting yields smaller and simpler cases.

verification and accurate labeling. To evaluate its impact, we sample 150K synthetic problems and
generate inputs using (1) our method and (2) a GPT-4o prompting baseline (Appendix Fig. 11).
We then apply the same mutual verification process and fine-tune Qwen2.5-Coder-7B-Instruct on
both resulting datasets for 3 epochs. As shown in Table 5 (Right), our method yields much higher
results on LiveCodeBench across all difficulty levels, demonstrating the importance of diverse and
complexity-aware inputs for stronger verification, which we further evaluate in the next experiment.

Ablation on the test input scales. To verify the correctness of code solutions, test inputs need to
span a wide range of difficulty. Our three-step generation method explicitly controls input scales
to achieve this. To evaluate the effectiveness, we sample 1K problems from our dataset and plot
the distribution of test input scales. For comparison, we also generate inputs using direct GPT-4o
prompting (Appendix Fig. 11). As shown in Fig. 5, our method produces inputs that evenly cover
the range from easy (100) to very hard (105), while GPT-4o generated inputs are concentrated in the
easier range (100–102), with no input scales exceeding 103. This demonstrates the superiority of our
method in generating more challenging and diverse test cases.

5 Conclusion

In this work, we present rStar-Coder to construct a large-scale, high-quality dataset for advancing
LLMs in competitive code reasoning. By introducing a reliable test case generation method, we
address the core challenge in generating verified solutions for high-difficulty code problems. Built
upon expert-curated seeds, our approach enables large-scale synthesis and augmentation, resulting in
418K verified competitive-level problems and 580K long-reasoning solutions. Extensive experiments
across different-sized LLMs (1.5B-14B) and diverse code reasoning benchmarks demonstrate the
superiority of rStar-Coder, achieving performance comparable to QWQ-32B while consistently
outperforming existing code reasoning models at the same model scale. As future work, we plan to
further expand the dataset by curating more problems and scaling up synthesis and verification.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction of our paper accurately reflect its contribution
and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Appendix A.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all the needed information.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have included the code in the supplementary materials for transparency
and reproducibility. We have open-sourced our dataset at https://huggingface.co/
datasets/microsoft/rStar-Coder.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and inference details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide detailed explanations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the hardware and software information about experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the Code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the limitations in Appendix A.1.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We follow the license and terms.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We don’t release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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A Appendix

A.1 Additional Results and Discussions

Table 6: Ablation on scaling dimensions for the 7B model shows that expanding problem diversity is
more effective and efficient than only increasing the number of solutions per problem.

Dataset Unique Problems Data size LiveCodeBench USACO 2025

Seed Problems× 1 solutions 37.7K 37.7K 40.8 0.52
Seed Problems× 8 solutions 37.7K 302K 51.1 3.64

Seed Problems× 16 solutions 37.7K 603K 54.7 10.41

rStar-Coder dataset 480K 580K 57.3 16.15

Analysis of different scaling dimensions. Most existing code reasoning datasets focus on scaling
the number of long CoT solutions per problem based on a limited set of code problems [2, 26, 28]. In
contrast, rStar-Coder emphasizes not only scaling expert-curated solutions but also expanding the
number of unique code problems. To compare the effectiveness of these two scaling dimensions,
we conduct a controlled experiment using 37.7K expert-designed problems. We vary the number of
long-CoT solutions per problem (1, 8, and 16), while keeping the problem set fixed. The 16-solution
setting yields 603K examples, already surpassing the total size of rStar-Coder-580K.

As shown in Table 6, both scaling solution count and problem diversity improve reasoning perfor-
mance. However, scaling only the number of solutions yields diminishing returns and becomes less
efficient. For example, our 580K dataset, with broader problem coverage, achieves significantly better
results on reasoning-heavy benchmarks like LiveCodeBench and USACO than the 603K dataset
derived from scaling solutions alone. Notably, for training efficiency, rStar-Coder-580K includes
only one solution per synthesized problem, and we plan to scale this further in future work.

Table 7: Ablation on scaling up synthetic data size.

Dataset LiveCodeBench HumanEval HumanEval+ MBPP MBPP+

Seed+50K synthetic 54.0 94.4 88.3 91.2 76.5
Seed+100K synthetic 55.1 94.2 87.9 90.6 75.4
Seed+200K synthetic 56.2 93.8 88.0 89.2 74.5

Seed+all synthetic (rStar-Coder dataset) 57.3 95.9 90.8 87.9 74.0

Scaling the size of synthetic data. We further analyze the impact of scaling the amount of synthetic
data. Specifically, we incrementally add synthesized problems to a fixed set of seed problems while
keeping other factors constant. As shown in Table 7, reasoning performance on LiveCodeBench
improves consistently with larger synthetic datasets, demonstrating the effectiveness and scalability
of our data generation pipeline.

Table 8: Core skills evaluated at each tier of USACO, from https://usaco.guide/.

Difficulty Core Skills Evaluated

Bronze simulation, complete search, sorting, greedy
Silver binary search, comparators, graphs, trees, floodfill, prefix sums, bitwise operators
Gold dynamic programming, disjoint set union, spanning trees, Euler tour, combinatorics

Platinum segment tree, range queries, binary jumping, sweep line, convex hull, flows

USACO 2025 Benchmark. The USA Computing Olympiad (USACO) is a prestigious algorithmic
programming competition for high school students in the United States, consisting of four difficulty
levels: Bronze, Silver, Gold, and Platinum. Each level contains a set of challenging problems that test
algorithmic thinking and implementation skills, making USACO a valuable benchmark for evaluating
the reasoning and problem-solving capabilities of large language models. We adopt the USACO 2025
problem set as a benchmark, which includes 12 problems, with three from each level. Following
[27], we evaluate zero-shot pass@1 for each difficulty level and report the average pass@1 across all
four levels as the final score.

Discussions and Limitations. Our approach relies on substantial GPT resources for synthesizing
code problems and test inputs. Many generated problems are discarded after mutual verification
due to being invalid or unsolvable. Additionally, we have observed that some competition problem
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statements do not explicitly provide constraints but instead imply them through context. Since our
current method primarily depends on frontier LLMs to interpret the problem statements, it is not yet
capable of handling such cases. Furthermore, our pipeline is currently specialized for competitive
programming problems, and adapting it to more open-ended software engineering tasks (e.g., bug
fixing, pull request generation) would likely require additional design and modifications. We leave
these challenges to future work.

Broader Impact. rStar-Coder enables the development of stronger code reasoning models by
providing large-scale, high-difficulty problems with verifiable test cases. This supports progress in
algorithmic reasoning, and AI-assisted programming. However, similar to the other reasoning LLMs,
our rStar-Coder could also generate misleading, harmful or hallucinated outputs. We recommend
careful consideration of potential misuse during training and deployment, and encourage future work
on improving the reliability and safety of code reasoning systems.

A.2 Code Problem Types

According to the input-output format, competitive programming problems can be divided to two
types: standard input-output based problems and function-based problems.

A.2.1 Standard Input-Output Based Problems

Standard Input-Output based problems require the solution code to read from standard input, parse
the actual input content, and write results to standard output. As shown in the example problem 6, the
first line indicates the number of test cases, and each of the subsequent lines contains two integers
representing a single test case.

Code 1 provides an example of evaluation logic for this type of problem, utilizing Python’s
subprocess module to execute the solution code under time and memory constraints. Since the input
is read from standard input, it can be treated as a plain string.

To generate input samples of varying scales for these problems, we employ GPT-4o and DeepSeek-
V3 to synthesize two utility functions—generate_test_input and validate_test_input—using
the prompt shown in 11. The generate_test_input function takes the specified problem scale
as input and produces a formatted input string, which is subsequently checked for validity by
validate_test_input.
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Figure 6: Standard input-ouput based problem example

Standard Input/Output Problem Example

You have two positive integers a and b.
You can perform two kinds of operations:

• a = ⌊a/b⌋
• b = b+ 1

Find the minimum number of operations required to make a = 0.
Input Format
The first line contains a single integer t (1 ≤ t ≤ 100) — the number of test cases.
Each of the following t lines contains two integers a and b (1 ≤ a, b ≤ 109).
Output Format
For each test case, print a single integer: the minimum number of operations required to make
a = 0.
Example Input
6
9 2
1337 1
1 1
50000000 4
991026972 997
1234 5678

Example Output
4
9
2
12
3
1

Solution Code:
t = int(input())
test_cases =[tuple(map(int , input().split())) for _ in range(t)]
def min_operations(a, b):

if b == 1:
b += 1
operations = 1

else:
operations = 0
min_ops = float(’inf’)
for increment in range (100):

current_a = a
current_b = b + increment
current_operations = operations + increment
while current_a > 0:

current_a //= current_b
current_operations += 1
min_ops = min(min_ops , current_operations)

return min_ops

for a, b in test_cases:
print(min_operations(a, b))
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Figure 7: Function-based problem example

Function-based Problem Example

Given a number s (in string form), find the smallest number (without leading zeros) that can
be obtained by rearranging its digits.
Example 1: Input: s = "846903" Output: 304689
Example 2: Input: s = "55010" Output: 10055
Starter Code:

class Solution:
def minimum_Number(self , s):
# Code here

Listing 1: Evaluation for Standard Input/Output Problems
def run_solution(solution_code , input_data ):

try:
def set_cpu_affinity ():

resource.setrlimit(resource.RLIMIT_AS , (MAX_MEMORY , MAX_MEMORY ))
process = subprocess.Popen(

[’python3 ’, ’-c’, solution_code],
stdin=subprocess.PIPE ,
stdout=subprocess.PIPE ,
stderr=subprocess.PIPE ,
text=True ,
preexec_fn=set_cpu_affinity ,
)

stdout ,stderr=process.communicate(input=input_data ,timeout=TIMEOUT)
success = process.returncode == 0
return stdout if success else stderr , success

except:
return "Exception", False

finally:
if process and process.poll() is None:

process.kill()

A.2.2 Function-Based Problems with Starter Code

A.2.3 Function-Based Problems

Function-based problems provide a starter function or class definition as part of the problem statement.
The solution is written by completing the specified function, which is then invoked with deserialized
inputs. As shown in the example problem 7, each test input is represented as a parameter dictionary,
and the expected output is compared against the return value of the function.

Code 2 presents an example of evaluation logic for this type of problem. During evaluation, the input
string—stored in a serialized format—is first deserialized into structured data (e.g., integers, arrays, or
strings), which is then passed as arguments to the solution function through dynamic code execution.
The return value is captured and compared to the expected output to determine correctness.

To generate inputs of varying scales for these problems, we employ GPT-4o and DeepSeek-V3 to
synthesize two utility functions. The generate_test_input function produces a list of arguments
in serialized format, which is then deserialized and validated by validate_test_input to ensure
correctness and consistency.

Listing 2: Evaluation for Function-Based Problems
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from pyext import RuntimeModule
method_name = in_outs["fn_name"]
inputs = [json.loads(line) for line in inputs.split("\n")]

mod = RuntimeModule.from_string("tmp_sol", "", sol)
obj = mod if "class␣Solution" not in test else mod.Solution ()
method = getattr(obj , method_name)
output = method (* inputs)
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B Prompts

Figure 8: New code problem synthesis prompt.

New Code Problem Synthesis Prompt in rStar-Coder

I will provide you with a programming problem along with its solution. Your task is to create a new, transformed
programming problem based on the original one.
You need to complete the following steps:
1. Analyze and understand the original problem and its solution. Identify the reasoning steps (e.g., Step 1, Step
2, Step 3) and summarize the knowledge points tested in the original problem.
2. Design a new problem that is similar to the original one and can be solved using the same knowledge points.
If you reference any conditions or descriptions from the original problem, rewrite them clearly and avoid
phrases like "as in the original problem".

• Provide two example test cases to demonstrate the new problem.
• Ensure that the complexity of the new problem is well-designed by specifying appropriate input

constraints.
Your output should follow this format:
## Part 1: Original Problem and Solution Analysis
Step 1: [Describe the first step of reasoning]
Step 2: [Describe the second step of reasoning]
...
Knowledge Points: [Summarize the knowledge points tested, separated by commas if there are multiple]

## Part 2: New Problem Problem Description: [Describe the new problem clearly in natural language. Ensure
it doesn’t directly copy from the original problem description. Avoid phrases like "as in the original problem".]

Input Format: [Specify the input format]

Output Format: [Specify the output format]

## Part 3: Example Test Cases
Input: [Input for test case 1]
Output: [Expected output for test case 1]

Input: [Input for test case 2]
Output: [Expected output for test case 2]

Given Problem: {question}
Given Solution: {solution}
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Figure 9: Test Input Generation Prompt for Standard Input/Output based Problems
rStar-Coder: Test Input Generation Prompt for Standard Input/Output based Problems

I will provide you with a programming problem description, and your task is to generate standardized
test input samples using the CYaRon library.
You need to complete the following steps:
1. Parse the constraints on the input from the problem description, such as the range of input data,
specific input constraints, etc.
2. Write a function generate_test_input using the CYaRon library to randomly generate test inputs
based on a specified problem size. The function should validate that the parameters fall within the
specified constraints. If any parameter is out of range, the function should return None. If the parameters
are valid, generate a random test input and return an input string (input_string).
3. Write a function validate_test_input to verify whether the generated test input satisfies the
requirements specified in the problem description. This includes checking the input data type and
constraints parsed in step 1, such as range and other conditions. The function should take input_string
as input and return a boolean (True/False).
Part 1: Parse Input Constraints
Specify the input constraints as described in the problem.
Part 2: Code for Test Input Generation
import cy a ro n as cy
def g e n e r a t e _ t e s t _ i n p u t ( < param1 > , <param2 > , . . . ) :

# Check i f p a r a m e t e r s meet c o n s t r a i n t s
i f not ( < c o n d i t i o n 1 >) or not ( < c o n d i t i o n 2 > ) :

re turn None
# Genera te i n p u t u s i n g CYaRon
i n p u t _ d a t a = [

. . .
]
re turn " \ n " . j o i n (map ( s t r , i n p u t _ d a t a ) )

Part 3: Code to Validate Test Input
def v a l i d a t e _ t e s t _ i n p u t ( i n p u t _ s t r i n g ) :

# V a l i d a t i o n l o g i c
re turn < boolean >

Given Problem: {question}

Figure 10: Ablation study: Prompt for directly generating test input-output pairs with GPT-4o
Ablation study: Prompt for directly generating test input-output pairs with GPT-4o

I will provide you with a programming problem description, and your task is to generate test inputs and outputs
for the problem.
You need to generate 50 test inputs and outputs pair that effectively verify the correctness of the core logic
and assess the time complexity of the solution. Ensure that your test cases cover a diverse range of problem
scales, including edge cases, small inputs, and large inputs that push the problem’s constraints.
Your output should follow this JSON format:
{

" t e s t _ i n p u t s " : [
{

" i d x " : 0 ,
" i n p u t _ s t r i n g " : < t e s t input 0 > ,
" o u t p u t _ s t r i n g " : < t e s t o u t p u t 0>

} ,
. . .

] ,
}

Given Problem: {question}
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Figure 11: Ablation study: Prompt for directly generating test input with GPT-4o

Ablation study: Prompt for directly generating test input with GPT-4o

I will provide you with a programming problem description, and your task is to generate test inputs for
the problem.
You need to generate 50 test inputs that effectively verify the correctness of the core logic and assess
the time complexity of the solution. Ensure that your test cases cover a diverse range of problem
scales, including edge cases, small inputs, and large inputs that push the problem’s constraints.
Your output should follow this JSON format:

{
" t e s t _ i n p u t s " : [

{
" i d x " : 0 ,
" i n p u t _ s t r i n g " : < s i m p l e t e s t input 0 > ,

} ,
. . .
] ,

}

Given Problem: {question}

28


	Introduction
	Related Works
	Methodology
	Collection of Competitive Code Problems
	Test Case Generation
	Valid Test Input Generation with Varying Complexity
	Mutual Verification for Test Output and Solution Labeling

	Augmentation and Post-processing

	Experiments
	Setup
	Main Results
	Ablation Study and Analysis

	Conclusion
	Appendix
	Additional Results and Discussions
	Code Problem Types
	Standard Input-Output Based Problems
	Function-Based Problems with Starter Code
	Function-Based Problems


	Prompts

