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ABSTRACT

We present a novel view on principal component analysis (PCA) as a competitive
game in which each approximate eigenvector is controlled by a player whose
goal is to maximize their own utility function. We analyze the properties of
this PCA game and the behavior of its gradient based updates. The resulting
algorithm—which combines elements from Oja’s rule with a generalized Gram-
Schmidt orthogonalization—is naturally decentralized and hence parallelizable
through message passing. We demonstrate the scalability of the algorithm with
experiments on large image datasets and neural network activations. We discuss
how this new view of PCA as a differentiable game can lead to further algorithmic
developments and insights.

1 INTRODUCTION

The principal components of data are the vectors that align with the directions of maximum variance.
These have two main purposes: a) as interpretable features and b) for data compression. Recent
methods for principal component analysis (PCA) focus on the latter, explicitly stating objectives to
find the k-dimensional subspace that captures maximum variance (e.g., (Tang, 2019)), and leaving
the problem of rotating within this subspace to, for example, a more efficient downstream singular
value (SVD) decomposition step1. This point is subtle, yet critical. For example, any pair of two-
dimensional, orthogonal vectors spans all of R2 and, therefore, captures maximum variance of any
two-dimensional dataset. However, for these vectors to be principal components, they must, in
addition, align with the directions of maximum variance which depends on the covariance of the data.
By learning the optimal subspace, rather than the principal components themselves, objectives focused
on subspace error ignore the first purpose of PCA. In contrast, modern nonlinear representation
learning techniques focus on learning features that are both disentangled (uncorrelated) and low
dimensional (Chen et al., 2016; Mathieu et al., 2018; Locatello et al., 2019; Sarhan et al., 2019).

It is well known that the PCA solution of the d-dimensional dataset X ∈ Rn×d is given by the
eigenvectors of X>X or equivalently, the right singular vectors of X . Impractically, the cost of
computing the full SVD scales with O(min{nd2, n2d})-time and O(nd)-space (Shamir, 2015; Tang,
2019). For moderately sized data, randomized methods can be used (Halko et al., 2011). Beyond this,
stochastic—or online—methods based on Oja’s rule (Oja, 1982) or power iterations (Rutishauser,
1971) are common. Another option is to use streaming k-PCA algorithms such as Frequent Directions
(FD) (Ghashami et al., 2016) or Oja’s algorithm2 (Allen-Zhu and Li, 2017) with storage complexity
O(kd). Sampling or sketching methods also scale well, but again, focus on the top-k subspace (Sarlos,
2006; Cohen et al., 2017; Feldman et al., 2020).

In contrast to these approaches, we view each principal component (equivalently eigenvector) as
a player in a game whose objective is to maximize their own local utility function in controlled
competition with other vectors. The proposed utility gradients are interpretable as a combination of
Oja’s rule and a generalized Gram-Schmidt process. We make the following contributions:

• A novel formulation of PCA as finding the Nash equilibrium of a suitable game,

• A sequential, globally convergent algorithm for approximating the Nash on full-batch data,

1After learning the top-k subspace V ∈ Rd×k, the rotation can be recovered via an SVD of XV .
2FD approximates the top-k subspace; Oja’s algorithm approximates the top-k eigenvectors.

1



Published as a conference paper at ICLR 2021

• A decentralized algorithm with experiments demonstrating the approach as competitive with
modern streaming k-PCA algorithms on synthetic and real data,
• In demonstration of the scaling of the approach, we compute the top-32 principal components

of the matrix of RESNET-200 activations on the IMAGENET dataset (n ≈ 106, d ≈ 20 ·106).

Each of these contributions is important. Novel formulations often lead to deeper understanding of
problems, thereby, opening doors to improved techniques. In particular, k-player games are in general
complex and hard to analyze. In contrast, PCA has been well-studied. By combining the two fields
we hope to develop useful analytical tools. Our specific formulation is important because it obviates
the need for any centralized orthonormalization step and lends itself naturally to decentralization.
And lastly, theory and experiments support the viability of this approach for continued research.

2 PCA AS AN EIGEN-GAME

We adhere to the following notation. Vectors and matrices meant to approximate principal components
(equivalently eigenvectors) are designated with hats, v̂ and V̂ respectively, whereas true principal
components are v and V . Subscripts indicate which eigenvalue a vector is associated with. For
example, vi is the ith largest eigenvector. In this work, we will assume each eigenvalue is distinct. By
an abuse of notation, vj<i refers to the set of vectors {vj |j ∈ {1, . . . , i− 1}} and are also referred
to as the parents of vi (vi is their child). Sums over indices should be clear from context, e.g.,∑
j<i =

∑i−1
j=1. The Euclidean inner product is written 〈u, v〉 = u>v. We denote the unit sphere by

Sd−1 and simplex by ∆d−1 in d-dimensional ambient space.

Outline of derivation As argued in the introduction, the PCA problem is often mis-interpreted as
learning a projection of the data into a subspace that captures maximum variance (equiv. maximizing
the trace of a suitable matrix R introduced below). This is in contrast to the original goal of learning
the principal components. We first develop the intuition for deriving our utility functions by (i)
showing that only maximizing the trace of R is not sufficient for recovering all principal components
(equiv. eigenvectors), and (ii) showing that minimizing off-diagonal terms in R is a complementary
objective to maximizing the trace and can recover all components. We then consider learning only the
top-k and construct utilities that are consistent with findings in (i) and (ii), equal the true eigenvalues
at the Nash of the game we construct, and result in a game that is amenable to analysis.

Derivation of player utilities. The eigenvalue problem for a symmetric matrix X>X = M ∈
Rd×d is to find a matrix of d orthonormal column vectors V (implies V is full-rank) such that
MV = V Λ with Λ diagonal. Given a solution to this problem, the columns of V are known as
eigenvectors and corresponding entries in Λ are eigenvalues. By left-multiplying by V > and recalling
V >V = V V > = I by orthonormality (i.e., V is unitary), we can rewrite the equality as

V >MV = V >V Λ
unitary

= Λ. (1)

Let V̂ denote a guess or estimate of the true eigenvectors V and define R(V̂ )
def
= V̂ >MV̂ . The PCA

problem is often posed as maximizing the trace of R (equiv. minimizing reconstruction error):

max
V̂ >V̂=I

{∑
i

Rii = Tr(R) = Tr(V̂ >MV̂ ) = Tr(V̂ V̂ >M) = Tr(M)
}
. (2)

Surprisingly, the objective in (2) is independent of V̂ , so it cannot be used to recover all (i.e., k = d)
the eigenvectors of M—(i). Alternatively, Equation (1) implies the eigenvalue problem can be
phrased as ensuring all off-diagonal terms of R are zero, thereby ensuring R is diagonal—(ii):

min
V̂ >V̂=I

∑
i6=j

R2
ij . (3)

It is worth further examining the entries of R in detail. Diagonal entries Rii = 〈v̂i,Mv̂i〉 are
recognized as Rayleigh quotients because ||v̂i|| = 1 by the constraints. Off-diagonal entries Rij =
〈v̂i,Mv̂j〉 measure alignment between v̂i and v̂j under a generalized inner product 〈·, ·〉M .
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Figure 1: Each player i’s utility function depends on its parents represented here by a directed acyclic
graph. Each parent must broadcast its vector, “location”, down the hierarchy in a fixed order.

So far, we have considered learning all the eigenvectors. If we repeat the logic for the top-k
eigenvectors with k < d, then by Equation (1), R must still be diagonal. V is not square, so
V V > 6= I , but assuming V is orthonormal as before, we have V V > = P is a projection matrix.
Left-multiplying Equation (1) by V now reads (PM)V = V Λ so we are solving an eigenvalue
problem for a subspace of M .

If we only desire the top-k eigenvectors, maximizing the trace encourages learning a subspace
spanned by the top-k eigenvectors, but does not recover the eigenvectors themselves. On the other
hand, Equation (3) places no preference on recovering large over small eigenvectors, but does enforce
the columns of V̂ to actually be eigenvectors. The preceding exercise is intended to introduce
minimizing the off-diagonal terms of R as a possible complementary objective for solving top-k
PCA. Next, we will use these two objectives to construct utility functions for each eigenvector v̂i.

We want to combine the objectives to take advantage of both their strengths. A valid proposal is

max
V̂ >V̂=I

∑
i

Rii −
∑
i6=j

R2
ij . (4)

However, this objective ignores the natural hierarchy of the top-k eigenvectors. For example, v̂1 is
penalized for aligning with v̂k and vice versa, but v̂1, being the estimate of the largest eigenvector,
should be free to search for the direction that captures the most variance independent of the locations
of the other vectors. Instead, first consider solving for the top-1 eigenvector, v1, in which case
R = [〈v̂1,Mv̂1〉] is a 1× 1 matrix. In this setting, Equation (3) is not applicable because there are no
off-diagonal elements, so maxv̂>1 v̂1=1〈v̂1,Mv̂1〉 is a sensible utility function for v̂1.

If considering the top-2 eigenvectors, v̂1’s utility remains as before, and we introduce a new utility
for v̂2. Equation (3) is now applicable, so v̂2’s utility is

max
v̂>2 v̂2=1,v̂>1 v̂2=0

〈v̂2,Mv̂2〉 −
〈v̂2,Mv̂1〉2

〈v̂1,Mv̂1〉
(5)

where we have divided the off-diagonal penalty by 〈v1,Mv1〉 so a) the two terms in Equation (5) are
on a similar scale and b) for reasons that ease analysis. Additionally note that the constraint v̂>1 v̂2 = 0
may be redundant at the optimum (v̂∗1 = v1, v̂

∗
2 = v2) because the second term, 〈v̂∗2 ,Mv̂∗1〉2 =

〈v2,Mv1〉2 = Λ2
11〈v2, v1〉2, already penalizes such deviations (Λii is the ith largest eigenvector).

These reasons motivate the following set of objectives (utilities), one for each vector i ∈ {1, . . . , k}:

max
v̂>i v̂i=1

{
ui(v̂i|v̂j<i) = v̂>i Mv̂i −

∑
j<i

(v̂>i Mv̂j)
2

v̂>j Mv̂j
= ||Xv̂i||2 −

∑
j<i

〈Xv̂i, Xv̂j〉2

〈Xv̂j , Xv̂j〉

}
(6)

where the notation ui(ai|b) emphasizes that player i adjusts ai to maximize a utility conditioned on b.

It is interesting to note that by incorporating knowledge of the natural hierarchy (see Figure 1), we
are immediately led to constructing asymmetric utilities, and thereby, inspired to formulate the PCA
problem as a game, rather than a direct optimization problem as in Equation (4).

A key concept in games is a Nash equilibrium. A Nash equilibrium specifies a variable for each
player from which no player can unilaterally deviate and improve their outcome. In this case, V̂ is a
(strict-)Nash equilibrium if and only if for all i, ui(v̂i|v̂j<i) > ui(zi|v̂j<i) for all zi ∈ Sd−1.
Theorem 2.1 (PCA Solution is the Unique strict-Nash Equilibrium). Assume that the top-k
eigenvalues of X>X are positive and distinct. Then the top-k eigenvectors form the unique strict-
Nash equilibrium of the proposed game in Equation (6).3 The proof is deferred to Appendix L.

Solving for the Nash of a game is difficult in general. Specifically, it belongs to the class of PPAD-
complete problems (Gilboa and Zemel, 1989; Daskalakis et al., 2009). However, because the game
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is hierarchical and each player’s utility only depends on its parents, it is possible to construct a
sequential algorithm that is convergent by solving each player’s optimization problem in sequence.

3 METHOD

Utility gradient. In Section 2, we mentioned that normalizing the penalty term from Equation (5)
had a motivation beyond scaling. Dividing by 〈v̂j ,Mv̂j〉 results in the following gradient for player i:

∇v̂iui(v̂i|v̂j<i) = 2M
[
v̂i −

∑
j<i

v̂>i Mv̂j
v̂>j Mv̂j

v̂j︸ ︷︷ ︸
generalized Gram-Schmidt

]
= 2X>

[
Xv̂i −

∑
j<i

〈Xv̂i, Xv̂j〉
〈Xv̂j , Xv̂j〉

Xv̂j

]
. (7)

The resulting gradient with normalized penalty term has an intuitive meaning. It consists of a single
generalized Gram-Schmidt step followed by the standard matrix product found in power iteration
and Oja’s rule. Also, notice that applying the gradient as a fixed point operator in sequence (v̂i ←
1
2∇v̂iui(v̂i|v̂j<i)) on M = I recovers the standard Gram-Schmidt procedure for orthogonalization.

v1 v2

v3

True PCs

Figure 2: EigenGame guides each
v̂i along the unit-sphere from to
in parallel; M = diag([3, 2, 1]).

A sequential algorithm. Each eigenvector can be learned by
maximizing its utility. The vectors are constrained to the unit
sphere, a non-convex Riemannian manifold, so we use Riemma-
nian gradient ascent with gradients given by Equation (7). In
this case, Riemannian optimization theory simply requires an
intermediate step where the gradient,∇v̂i , is projected onto the
tangent space of the sphere to compute the Riemannian gradient,
∇Rv̂i . A more detailed illustration can be found in Appendix J.
Recall that each ui depends on v̂j<i. If any of v̂j<i are being
learned concurrently, then v̂i is maximizing a non-stationary
objective which makes a convergence proof difficult. Instead,
for completeness, we prove convergence assuming each v̂i is
learned in sequence. Algorithm 1 learns v̂i given fixed parents v̂j<i; we present the convergence
guarantee in Section 4 and details on setting ρi and α in Appendix O.

Algorithm 1 EigenGameR-Sequential
Given: matrix X ∈ Rn×d, maximum error
tolerance ρi, initial vector v̂0

i ∈ Sd−1, learned
approximate parents v̂j<i, and step size α.
v̂i ← v̂0

i

ti = d 5
4 min(||∇v̂0i ui||/2, ρi)

−2e
for t = 1 : ti do

rewards← Xv̂i
penalties←

∑
j<i

〈Xv̂i,Xv̂j〉
〈Xv̂j ,Xv̂j〉Xv̂j

∇v̂i ← 2X>
[
rewards− penalties

]
∇Rv̂i ← ∇v̂i − 〈∇v̂i , v̂i〉v̂i
v̂′i ← v̂i + α∇Rv̂i
v̂i ← v̂′i

||v̂′i||
end for
return v̂i

Algorithm 2 EigenGameR (EigenGame—update
with∇v̂i instead of∇Rv̂i )

Given: stream, Xt ∈ Rm×d, total iterations T ,
initial vector v̂0

i ∈ Sd−1, and step size α.
v̂i ← v̂0

i
for t = 1 : T do

rewards← Xtv̂i
penalties←

∑
j<i

〈Xtv̂i,Xtv̂j〉
〈Xtv̂j ,Xtv̂j〉Xtv̂j

∇v̂i ← 2X>t

[
rewards− penalties

]
∇Rv̂i ← ∇v̂i − 〈∇v̂i , v̂i〉v̂i
v̂′i ← v̂i + α∇Rv̂i
v̂i ← v̂′i

||v̂′i||
broadcast(v̂i)

end for
return v̂i

A decentralized algorithm. While Algorithm 1 enjoys a convergence guarantee, learning every
parent v̂j<i before learning v̂i may be unnecessarily restrictive. Intuitively, as parents approach their
respective optima, they become quasi-stationary, so we do not expect maximizing utilities in parallel
to be problematic in practice. To this end, we propose Algorithm 2 visualized in Figure 2.

3Unique up to a sign change; this is expected as both vi and −vi represent the same principal component.
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Figure 3: (a) The longest streak of consecutive vectors with angular error less than π
8 radians is

plotted versus algorithm iterations for a matrix M ∈ R50×50 with a spectrum decaying from 1000
to 1 linearly and exponentially. Average runtimes are reported in milliseconds next to the method
names5. We omit Krasulina’s as it is only designed to find the top-k subspace. Both EigenGame
variants and GHA achieve similar asymptotes on the linear spectrum. (b) Longest streak and subspace
distance on MNIST with average runtimes reported in seconds. (a,b) Learning rates were chosen from
{10−3, . . . , 10−6} on 10 held out runs. Solid lines denote results with the best performing learning
rate. Dotted and dashed lines denote results using the best learning rate × 10 and 0.1. All plots show
means over 10 trials. Shading highlights ± standard error of the mean for the best learning rates.

In practice we can assign each eigenvector update to its own device (e.g. a GPU or TPU). Systems
with fast interconnects may facilitate tens, hundreds or thousands of accelerators to be used. In such
settings, the overhead of broadcast(v̂i) is minimal. We can also specify that the data stream is
co-located with the update so v̂i updates with respect to its own Xi,t. This is a standard paradigm for
e.g. data-parallel distributed neural network training. We provide further details in Section 6.

Message Passing on a DAG. Our proposed utilities enforce a strict hierarchy on the eigenvectors.
This is a simplification that both eases analysis (see Appendix M) and improves convergence4,
however, it is not optimal. We assume vectors are initialized randomly on the sphere and, for instance,
v̂k may be initialized closer to v1 than even v̂1 and vice versa. The hierarchy shown in Figure 1
enforces a strict graph structure for broadcasting information of parents to the childrens’ utilities.

To our knowledge, our utility formulation in Equation (6) is novel. One disadvantage is that stochastic
gradients of Equation (7) are biased. This is mitigated with large batch sizes (further discussion in
Appendix I).

4 CONVERGENCE OF EIGENGAME

Here, we first show that Equation (6) has a simple form such that any local maximum of ui is also
a global maximum. Player i’s utility depends on its parents, so we next explain how error in the
parents propagates to children through mis-specification of player i’s utility. Using the first result and
accounting for this error, we are then able to give global, finite-sample convergence guarantees in the
full-batch setting by leveraging recent non-convex Riemannian optimization theory.

The utility landscape and parent-to-child error propagation. Equation (6) is abstruse, but we
prove that the shape of player i’s utility is simply sinusoidal in the angular deviation of v̂i from the
optimum. The amplitude of the sinusoid varies with the direction of the angular deviation along the
unit-sphere and is dependent on the accuracy of players j < i. In the special case where players j < i
have learned the top-(i− 1) eigenvectors exactly, player i’s utility simplifies (see Lemma N.1) to

ui(v̂i, {vj<i}) = Λii − sin2(θi)
(

Λii −
∑
l>i

zlΛll

)
(8)

where θi is the angular deviation and z ∈ ∆d−1 parameterizes the deviation direction. Note that sin2

has period π instead of 2π, which simply reflects the fact that vi and −vi are both eigenvectors.

4EigenGame sans order learns max 1 PC and sans order+normalization 5 PCs on data in Figure 3a.
5EigenGame runtimes are longer than those of EigenGameR in the synthetic experiments despite strictly

requiring fewer FLOPS; apparently this is due to low-level floating point arithmetic specific to the experiments.
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An error propagation analysis reveals that it is critical to learn the parents to a given degree of accuracy.
The angular distance between vi and the maximizer of player i’s utility with approximate parents has
tan−1 dependence (i.e., a soft step-function; see Lemma N.5 and Figure 13 in Appendix N).
Theorem 4.1 (Global convergence). Algorithm 1 achieves finite sample convergence to within θtol
angular error of the top-k principal components, independent of initialization. Furthermore, if each
v̂i is initialized to within π

4 of vi, Algorithm 1 returns the components with angular error less than θtol

in T =
⌈
O
(
k
[

(k−1)!
θtol

k∏
i=1

(
16Λ11

gi

)]2)⌉
iterations. Proofs are deferred to Appendices O.4 and O.5.

Angular error is defined as the angle between v̂i and vi: θi = sin−1(
√

1− 〈vi, v̂i〉2). The first k in
the formula for T appears from a naive summing of worst case bounds on the number of iterations
required to learn each v̂j<k individually. The constant 16 arises from the error propagation analysis;
parent vectors, v̂j<i, must be learned to under 1/16th of a canonical error threshold, gi

(i−1)Λ11
, for the

child v̂i where gi = Λii − Λi+1,i+1. The Riemannian optimization theory we leverage dictates that
1
ρ2 iterations are required to meet a O(ρ) error threshold. This is why the squared inverse of the error
threshold appears here. Breaking down the error threshold itself, the ratio Λ11/gi says that more
iterations are required to distinguish eigenvectors when the difference between them (summarized
by the gap gi) is small relative to the scale of the spectrum, Λ11. The (k − 1)! term appears because
learning smaller eigenvectors requires learning a much more accurate v̂1 higher up the DAG.

Lastly, the utility function for each v̂i is sinusoidal, and it is possible that we initialize v̂i with initial
utility arbitrarily close to the trough (bottom) of the function where gradients are arbitrarily small.
This is why the global convergence rate depends on the initialization in general. Note that Algorithm 1
effectively detects the trough by measuring the norm of the initial gradient (∇v̂0i ui) and scales the
number of required iterations appropriately. A complete theorem that considers the probability of
initializing v̂i within π

4 of vi is in Appendix O, but this possibility shrinks to zero in high dimensions.

We would also like to highlight that these theoretical findings are strong relative to some other claims.
For example, the exponential convergence guarantee for Matrix Krasulina requires the initial guess at
the eigenvectors capture the top-(k − 1) subspace (Tang, 2019), unlikely when d � k. A similar
condition is required in (Shamir, 2016b). These guarantees are given for the mini-batch setting
while ours is for the full-batch, however, we provide global convergence without restrictions on
initialization.

5 RELATED WORK

PCA is a century-old problem and a massive literature exists (Jolliffe, 2002; Golub and Van Loan,
2012). The standard solution to this problem is to compute the SVD, possibly combined with
randomized algorithms, to recover the top-k components as in (Halko et al., 2011) or with Frequent
Directions (Ghashami et al., 2016) which combines sketching with SVD.

In neuroscience, Hebb’s rule (Hebb, 2005) refers to a connectionist rule that solves for the top
eigenvector of a matrix M using additive updates of a vector v as v ← v + ηMv. Likewise, Oja’s
rule (Oja, 1982; Shamir, 2015) refers to a similar update v ← v + η(I − vv>)Mv. In machine
learning, using a normalization step of v ← v/||v|| with Hebb’s rule is somewhat confusingly referred
to as Oja’s algorithm (Shamir, 2015), the reason being that the subtractive term in Oja’s rule can be
viewed as a regularization term for implicitly enforcing the normalization. In the limit of infinite step
size, η →∞, Oja’s algorithm effectively becomes the well known Power method. If a normalization
step is added to Oja’s rule, this is referred to as Krasulina’s algorithm (Krasulina, 1969). In the
language of Riemannian manifolds, v/||v|| can be recognized as a retraction and (I − vv>) as
projecting the gradient Mv onto the tangent space of the sphere (Absil et al., 2009).

Many of the methods above have been generalized to the top-k components. Most generalizations
involve adding an orthonormalization step after each update, typically accomplished with a QR
factorization plus some minor sign accounting (e.g., see Algorithm 3 in Appendix A.1). An extension
of Krasulina’s algorithm to the top-k setting, termed Matrix Krasulina (Tang, 2019), was recently
proposed in the machine learning literature. This algorithm can be recognized as projecting the
gradient onto the Stiefel manifold (the space of orthonormal matrices) followed by a QR step to
maintain orthonormality, which is a well known retraction.
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Maintaining orthonormality via QR is computationally expensive. Amid and Warmuth (2019) propose
an alternative Krasulina method which does not require re-orthonormalization but instead requires
inverting a k × k matrix; in a streaming setting restricted to minibatches of size 1 (Xt ∈ Rd),
Sherman-Morrison (Golub and Van Loan, 2012) can be used to efficiently replace the inversion
step. Raja and Bajwa (2020) develop a data-parallel distributed algorithm for the top eigenvector.
Alternatively, the Jacobi eigenvalue algorithm explicitly represents the matrix of eigenvectors as a
Givens rotation matrix using sin’s and cos’s and rotates M until it is diagonal (Golub and Van der
Vorst, 2000).

In contrast, other methods extract the top components in sequence by solving for the ith component
using an algorithm such as power iteration or Oja’s, and then enforcing orthogonality by removing
the learned subspace from the matrix, a process known as deflation. Alternatively, the deflation
process may be intertwined with the learning of the top components. The generalized Hebbian
algorithm (Sanger, 1989) (GHA) works this way as do Lagrangian inspired formulations (Ghojogh
et al., 2019) as well as our own approach. We make the connection between GHA and our algorithm
concrete in Prop. K.1. Note, however, that the GHA update is not the gradient of any utility (Prop. K.2)
and therefore, lacks a clear game interpretation.

Of these, Oja’s algorithm has arguably been the most extensively studied (Shamir, 2016a; Allen-Zhu
and Li, 2017)6 Note that Oja’s algorithm converges to the actual principal components (Allen-Zhu and
Li, 2017) and Matrix Krasulina (Tang, 2019) converges to the top-k subspace. However, neither can be
obviously decentralized. GHA (Sanger, 1989) converges to the principal components asymptotically
and can be decentralized (Gang et al., 2019). Each of these is applicable in the streaming k-PCA
setting.

6 EXPERIMENTS

We compare our approach against GHA, Matrix Krasulina, and Oja’s algorithm7. We present both
EigenGame and EigenGameR which projects the gradient onto the tangent space of the sphere each
step. We measure performance of methods in terms of principal component accuracy and subspace
distance. We measure principal component accuracy by the number of consecutive components,
or longest streak, that are estimated within an angle of π

8 from ground truth. For example, if the
angular errors of the v̂i’s returned by a method are, in order, [θ1, θ2, θ3, . . .] = [ π16 ,

π
4 ,

π
10 , . . .], then

the method is credited with a streak of only 1 regardless of the errors θi>2. For Matrix Krasulina,
we first compute the optimal matching from v̂i to ground truth before measuring angular error. We
present the longest streak as opposed to “# of eigenvectors found” because, in practice, no ground
truth is available and we think the user should be able to place higher confidence in the larger
eigenvectors being correct. If an algorithm returns k vectors, k2 of which are accurate components
but does not indicate which, this is less helpful. We measure normalized subspace distance using
1− 1

k · Tr(U∗P ) ∈ [0, 1] where U∗ = V V † and P = V̂ V̂ † similarly to Tang (2019).

Synthetic data. Experiments on synthetic data demonstrate the viability of our approach (Figure 3a).
Oja’s algorithm performs best on synthetic experiments because strictly enforcing orthogonalization
with an expensive QR step greatly helps when solving for all eigenvectors. EigenGame is able to
effectively parallelize this over k machines and the advantage of QR diminishes in Figure 3b. The
remaining algorithms perform similarly on a linearly decaying spectrum, however, EigenGame
performs better on an exponentially decaying spectrum due possibly to instability of Riemannian
gradients near the equilibrium (see Appendix J for further discussion). GHA and EigenGameR are
equivalent under specific conditions (see Proposition K.1).

Figure 4a shows EigenGame solves for the eigenvectors up to a high degree of accuracy π
32 , i.e. the

convergence results in Figure 3a are not the result of using a loose tolerance of π8 . With the lower
tolerance, all algorithms take slightly more iterations to learn the eigenvectors of the linear spectrum;
it is difficult to see any performance change for the exponential spectrum. Although Theorem 4.1
assumes distinct eigenvalues, Figure 4b supports the claim that EigenGame does not require distinct
eigenvalues for convergence. We leave proving convergence in this setting to future work.

6See Table 1 in (Allen-Zhu and Li, 2017).
7A detailed discussion of Frequent Directions (Ghashami et al., 2016) can be found in Appendix H.
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(a) Synthetic data: Stricter Tolerance
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(b) Synthetic: Repeated Eigenvalues

Figure 4: (a) Repeats analysis of Figure 3a but for a lower angular tolerance of π
32 . (b) Repeats

analysis of Figure 3a with an angular tolerance of π8 as before, but with eigenvalues 10− 19 of the
ordered spectrum overwritten with λ10 of the original spectrum. We compute angular error for the
eigenvectors on either side of this “bubble" to show that EigenGame finds these eigenvectors despite
repeated eigenvalues in the spectrum; note 40/50 is optimal in this experiment.
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(b) Block-1 Mean Filter Maps

Figure 5: (a) Top-8 principal components of the activations of a RESNET-200 on IMAGENET ordered
block-wise by network topology (dimension of each block on the right y-axis). Block 1 is closest to
input and Block 5 is the output of the network. Color coding is based on relative variance between
blocks across the top-8 PCs from blue (low) to red (high). (b) Block 1 mean activation maps of the
top-32 principal components of RESNET-200 on IMAGENET computed with EigenGame.

MNIST handwritten digits. We compare EigenGame against GHA, Matrix Krasulina, and Oja’s
algorithm on the MNIST dataset (Figure 3b). We flatten each image in the training set to obtain a
60, 000× 784 dimensional matrix. EigenGame is competitive with Oja’s in a high batch size regime
(1024 samples per mini-batch). The performance gap between EigenGame and the other methods
shrinks as the mini-batch size is reduced (see Appendix I), expectedly due to biased gradients.

The principal components of RESNET-200 activations on IMAGENET are edge filters. A pri-
mary goal of PCA is to obtain interpretable low-dimensional representations. To this end we present
an example of using EigenGame to compute the top-32 principal components of the activations of a
pretrained RESNET-200 on the IMAGENET dataset. We concatenate the flattened activations from
the output of each residual block resulting in a d ≈ 20M dimensional vector representation for each
of the roughly 1.2M input images. It is not possible to store the entire 195TB matrix in memory, nor
incrementally compute the Gram/covariance matrix.

We implemented a data-and-model parallel version of EigenGame in JAX (Bradbury et al., 2018)
where each v̂i is assigned to it’s own TPU (Jouppi et al., 2017). Each device keeps a local copy
of the RESNET parameters and the IMAGENET datastream. Sampling a mini-batch (of size 128),
computing the network activations and updating v̂i are all performed locally. The broadcast(v̂i)
step is handled by the pmap and lax.all_gather functions. Computing the top-32 principal
components takes approximately nine hours on 32 TPUv3s.

Figure 5a shows the top principal components of the activations of the trained network organized
by network topology (consisting of five residual blocks). Note that EigenGame is not applied
block-wise, but on all 20M dimensions. We do not assume independence between blocks and the
eigenvector has unit norm across all blocks. We observe that Block 1 (closest to input) of PC 1 has
very small magnitude activations relative to the other PCs. This is because PC 1 should capture
the variance which discriminates most between the classes in the dataset. Since Block 1 is mainly

8
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concerned with learning low-level image filters, it stands to reason that although these are important
for good performance, they do not necessarily extract abstract representations which are useful for
classification. Conversely, we see that PC 1 has larger relative activations in the later blocks.

We visualize the average principal activation in Block 18 in Figure 5b. The higher PCs learn distinct
filters (Gabor filters, Laplacian-of-Gaussian filters c.f. (Bell and Sejnowski, 1997)).

7 CONCLUSION It seems easier to train a bi-directional LSTM with attention
than to compute the SVD of a large matrix. –Chris Re
NeurIPS 2017 Test-of-Time Award, Rahimi and Recht

(Rahimi and Recht, 2017).

In this work we motivated PCA from the perspective of a multi-player game. This inspired a
decentralized algorithm which enables large-scale principal components estimation. To demonstrate
this we used EigenGame to analyze a large neural network through the lens of PCA. To our knowledge
this is the first academic analysis of its type and scale (for reference, (Tang, 2019) compute the top-6
PCs of the d = 2300 outputs of VGG). EigenGame also opens a variety of research directions.

Scale. In experiments, we broadcast across all edges in Figure 1 every iteration. Introducing lag or
broadcasting with dropout may improve efficiency. Can we further reduce our memory footprint by
storing only scalars of the losses and avoiding congestion through online bandit or reinforcement
learning techniques? Our decentralized algorithm may have implications for federated and privacy
preserving learning as well (Heinze et al., 2016; Heinze-Deml et al., 2018; Bonawitz et al., 2019).

Games. EigenGame has a unique Nash equilibrium due to the fixed DAG structure, but vectors are
initialized randomly so v̂k may start closer to v1 than v̂1 does. Adapting the DAG could make sense,
but might also introduce spurious fixed points or suboptimal Nash. Might replacing vectors with
populations accelerate extraction of the top principal components?

Core ML. EigenGame could be useful as a diagnostic or for accelerating training (Desjardins et al.,
2015; Krummenacher et al., 2016); similarly, spectral normalization has shown to be a valuable tool
for stabilizing GAN training (Miyato et al., 2018).

Lastly, GANs (Goodfellow et al., 2014) recently reformulated learning a generative model as a
two-player zero-sum game. Here, we show how another fundamental unsupervised learning task can
be formulated as a k-player game. While two-player, zero-sum games are well understood, research
on k-player, general-sum games lies at the forefront in machine learning. We hope that marrying a
fundamental, well-understood task in PCA with the relatively less understood domain of many player
games will help advance techniques on both ends.
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