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Abstract001

Mixture of Experts architectures have emerged002
as a powerful design for large language models,003
offering state-of-the-art performance through004
computational sparsity. Despite improved effi-005
ciency, their high memory demands hinder de-006
ployment on commonly available single-GPU007
systems. Existing approaches to mitigate this is-008
sue, including pruning, distillation, and quanti-009
zation, often sacrifice model quality or increase010
inference latency. Recent MoE-specific strate-011
gies introduce dynamic expert offloading to012
DRAM, significantly reducing memory usage013
without degrading performance.014

We evaluate and compare leading MoE opti-015
mization techniques, analyzing their memory,016
latency, and quality trade-offs. Building on017
these insights, we propose an automated MoE018
serving system that adaptively selects optimal019
configurations to meet diverse deployment con-020
straints. This enables efficient, high-quality021
LLM inference on limited hardware resources.022

1 Introduction023

In recent years, we have observed the success024

of the Mix of Experts (MoE) design in state-of-025

the-art large language models (LLMs), such as026

DeepSeek-v3 (DeepSeek-AI et al., 2025), which027

demonstrate exceptional performance. The sparsity028

of MoE models enhances computational efficiency,029

although the memory requirements remain substan-030

tial. For instance, the medium-sized Mixtral 7x8B031

(Jiang et al., 2024) requires approximately 112GB032

of memory, exceeding the capacities of both the033

RTX 4090 (24GB) and the A6000 (80GB). To al-034

leviate the substantial overhead resulting from the035

extensive memory requirements of MoE LLMs and036

to enable efficient deployment of these models on a037

single GPU, it is crucial to explore effective meth-038

ods for reducing such costs.039

There are various optimization methods that can040

reduce the memory consumption of MoE LLMs.041

Traditionally, techniques such as pruning (Ma et al., 042

2023), model distillation (TheBloke, 2023), and 043

quantization (Dettmers et al., 2022; Wu et al., 2023) 044

have been employed to remove redundant weights 045

or decrease weight precision, thereby lowering 046

memory usage. However, these approaches may 047

result in increased inference time and decreased 048

model quality (Liakopoulos et al., 2025). 049

On the other hand, several state-of-the-art meth- 050

ods specifically designed for MoE architectures 051

have focused on offloading unused experts to 052

DRAM. These methods can reduce the additional 053

memory consumption caused by unused experts 054

by dynamically swapping them based on demand, 055

without negatively impacting the model’s perfor- 056

mance. We plan to evaluate and compare these 057

designs to understand the advantages of each, in- 058

cluding their offloading strategies and performance, 059

and to explore possible trade-offs among these de- 060

signs. 061

By identifying the trade-offs among latency, 062

memory consumption, and output quality, we pro- 063

pose an automated system for MoE LLM serving 064

that integrates comprehensive optimization tech- 065

niques. This system automatically determines the 066

optimal model-serving strategy based on selected 067

parameters, effectively satisfying specific memory, 068

latency, or output quality requirements. 069

2 Background 070

MoE models are well-known for utilizing dif- 071

ferent experts to specialize in various tasks, en- 072

abling a more efficient and scalable approach to 073

complex problems. Recently, combining MoE 074

and LLM has become popular, evidenced by the 075

emergence of high-quality MoE-LLM models. 076

DeepSeek-v3 (DeepSeek-AI et al., 2025) delivers 077

outstanding performance as MoE architectures opti- 078

mize data processing and decision-making in high- 079

dimensional search spaces. However, only a few 080
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experts are invoked in each layer, while many ex-081

perts occupy memory, leading to significant space082

wastage. For example, Mixtral 7x8B (Jiang et al.,083

2024) only uses 2 out of 8 experts, meaning about084

75% of the memory is wasted when serving the085

entire model.086

Current works are focusing on MoE LLM infer-087

ence serving with expert offloading designs. These088

designs aim to load parts of the experts on the089

GPU while leaving others on the CPU to reduce090

the memory requirements of LLM serving. Un-091

used experts can be swapped to DRAM to con-092

serve memory and alleviate the memory bottleneck093

in MoE LLMs. These include (Eliseev and Mazur,094

2023), which uses the next layer gating function095

to prefetch layers; MoE-infinity (Xue et al., 2024),096

which statistically prefetches experts across layers;097

and Fiddler (Kamahori et al., 2025), which uti-098

lizes the CPU for computation. AdapMoE (Zhong099

et al., 2025) skips unimportant experts, utilizes an100

expert cache, and employs a learnable prefetcher101

to reduce computational cost and expert miss-hit102

overhead. They also incorporate, or leave space for103

incorporating, traditional LLM memory optimiza-104

tion techniques such as int8 (Dettmers et al., 2022),105

int4 (Wu et al., 2023) quantization, and model dis-106

tillation (TheBloke, 2023), creating an even larger107

exploration space.108

3 Methodology109

3.1 Techniques Under Evaluation110

We focus on evaluating the Mixtral-8x7B (Jiang111

et al., 2024) model, a MoE LLM distinguished by112

its robust capabilities across a broad range of appli-113

cations, including real-time language translation,114

advanced image recognition, and predictive analyt-115

ics. These features make it well-suited for complex116

tasks across diverse industries. However, despite117

its versatility, the model’s substantial size presents118

challenges, particularly its significant memory re-119

quirements, which often exceed the capacity of120

conventional hardware.121

To address these limitations, it is critical to ex-122

plore multiple optimization strategies. One ap-123

proach is model distillation: by scaling down the124

Mixtral-8x7B model to a smaller Mixtral-7x4 vari-125

ant, the memory footprint becomes more manage-126

able. Another technique involves reducing numer-127

ical precision, such as converting model weights128

to INT8 format, thereby significantly decreasing129

memory consumption.130

Quantization is a particularly effective method 131

for managing model size and resource demands. 132

However, it can affect output quality. For instance, 133

quantization of a float16 tensor Xf16 to int8 can be 134

expressed as follows (Dettmers et al., 2022). 135

Beyond simple quantization, modular expert 136

models—such as those available through GitHub 137

projects like Mixtral Offloading (Eliseev and 138

Mazur, 2023), Fiddler (Kamahori et al., 2025), 139

and MoE-Infinity (Xue et al., 2024)—leverage 140

Mixture-of-Experts techniques to balance perfor- 141

mance and resource efficiency. We explore multi- 142

ple expert offloading methods, including Mixtral 143

Offloading, which combines quantization and the 144

prefetching of a fixed number of experts. In partic- 145

ular, Mixtral offloading uses the Highly-Quantized 146

Quantization method (Badri and Shaji, 2023). 147

MoE-Infinity further extends expert offloading 148

by introducing statistical-based expert prefetching 149

and caching techniques, offering an advanced opti- 150

mization framework. Meanwhile, Fiddler adopts 151

an alternative strategy: in addition to expert offload- 152

ing, it dynamically estimates and compares the time 153

to load an offloaded expert onto the GPU versus 154

the computation time on the CPU, enabling more 155

informed scheduling and improved performance. 156

3.2 End-to-end MoE LLM Serving Analysis 157

The end-to-end performance of LLM serving is crit- 158

ical; therefore, we systematically evaluate the in- 159

ference performance and output quality of various 160

MoE LLMs using a range of techniques, including 161

quantization, distillation, general offloading, and 162

expert offloading. To ensure comparability, we uti- 163

lize publicly available methods described in related 164

research papers and design a series of controlled 165

experiments to evaluate these techniques and their 166

respective implementations. In addition to directly 167

applying these methods as-is, we also identify tun- 168

able parameters that can affect memory usage and 169

latency for each technique, such as the number of 170

offloaded experts in Mixtral Offloading and the 171

total memory reserved for the model and expert 172

cache in MoE-Infinity. We record key metrics such 173

as GPU memory consumption, inference latency, 174

and output quality. 175

Inference latency. For modern decoder-only 176

LLMs (including all MoE models evaluated), in- 177

ference latency is largely determined by the use of 178

KV-cache, which avoids recomputation of previ- 179

ous tokens and ensures consistent latency for each 180

newly generated token. Accordingly, LLM infer- 181
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ence latency can be formally decomposed into the182

time to first token (TTFT), the time per output to-183

ken (TPOT), and the total output length, as follows:184

L = TTFT + output_length× TPOT (1)185

Memory consumption. The memory consumption186

of models incorporating offloading may include187

GPU memory usage, DRAM usage, and disk stor-188

age used for offloaded experts (Xue et al., 2025)189

or additional weights (Rajbhandari et al., 2020).190

All evaluations are conducted in a single-GPU en-191

vironment. Given our focus on the high cost of192

GPU memory, we report the peak GPU memory us-193

age observed during inference, which is measured194

using the nvidia-smi command.195

Output quality. To assess output quality, we eval-196

uate model perplexity. Specifically, we feed each197

model the first 262,144 tokens (split into sequences198

of length 1,024) from the WikiText-2 dataset and199

compute perplexity. Techniques such as quantiza-200

tion, distillation, and selective expert activation can201

affect the resulting output quality.202

Using these three-dimensional metrics, we can203

illustrate the complex trade-off space introduced204

by various LLM MoE serving techniques.205

4 Results206

GPU Model Memory RAM Disk
RTX 4060 Mobile 8GB 32GB SSD
RTX 4070 Mobile 8GB 32GB SSD

RTX 4090 24GB 64GB SSD
RTX A6000 48GB 1024GB SSD

RTX A6000*3 144GB 1024GB SSD

Table 1: GPU specifications and machine info.

4.1 Testbed207

In this work, we implement and evaluate several208

techniques on Mixtral-8x7B, including quantiza-209

tion (Dettmers et al., 2022), model pruning (The-210

Bloke, 2023), and Mixtral offloading on the ma-211

chines listed in Table 1, using a variety of input212

prompts. We assess metrics such as memory con-213

sumption and execution time. Besides the specified214

mentions, the evaluation is conducted on a single215

RTX A6000.216

4.2 MoE performance on various devices.217

From Figure 1, we observe the inference latency218

of the MoE model with various input sizes across219

Figure 1: Latency by GPUs and Quantizations for gen-
erating 50 output tokens using Mixtral 7x8B.

different GPUs and quantization formats. Given 220

that the Mixtral 7x8 model requires approximately 221

112GB of memory when loaded with Float16 222

(FP16), all GPUs—except for the configuration us- 223

ing 3×RTX A6000 with pipeline parallelism—are 224

unable to fit the entire model in memory. As a 225

result, these systems must offload some model 226

weights to DRAM, or even to disk if DRAM ca- 227

pacity is insufficient. For example, our RTX 4060 228

machine has only 40GB of memory, making disk 229

offloading unavoidable. 230

In our setup, we use PyTorch’s default offload- 231

ing policy, which is not optimized for MoE models. 232

This leads to significant overhead from offloading, 233

which diminishes the performance gap between dif- 234

ferent GPUs. For instance, the latency on a single 235

RTX A6000 is approximately 44× higher than with 236

3×RTX A6000, and the RTX 4060 shows nearly 237

the same latency as the RTX 4070. Interestingly, 238

although INT8 quantization is generally slower for 239

pure GPU inference, we observe up to a 1.48× la- 240

tency improvement when offloading parameters to 241

memory. This is because INT8 reduces the vol- 242

ume of data that needs to be swapped in and out of 243

memory. 244

4.3 MoE performance on various techniques. 245

Table 2 summarizes the inference performance of 246

Mixtral 8x7B model variants on an A6000 48GB 247

GPU using quantization, distillation, and expert 248

offloading techniques. Quantization to INT8 sig- 249

nificantly reduces time-to-first-token (TTFT) but 250

slightly increases per-token inference time (TPOT) 251

and memory usage, maintaining high output qual- 252

ity. Distillation (4x7B) drastically reduces latency 253

and memory usage but at the cost of significantly 254

higher perplexity, indicating lower output quality. 255

Mixtral-Offloading techniques effectively reduce 256

both latency and GPU memory usage, demonstrat- 257

ing considerable memory efficiency with only mod- 258
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Table 2: Inference Performance Comparison of Mixtral 8x7B Variants on the A6000 48GB GPU

Method TTFT (s) TPOT (s) Perplexity GPU Memory (MiB)

Baseline 4.54 3.41 4.06 44556
Quantization INT8 1.13 4.01 4.07 45840
Distillation 4x7B 0.39 0.34 17.61 44374
Mixtral-Offloading (expert = 2) 0.65 0.26 4.82 15912
Mixtral-Offloading (expert = 4) 1.04 0.36 4.82 11964
Mixtral-Offloading (expert = 6) 1.39 0.48 4.82 8068
Fiddler 41.39 3.49 - 5198
MoE-Infinity (mem = 0.95) 8.14 0.90 4.06 47456
MoE-Infinity (mem = 0.75) 8.87 0.99 4.06 37888
MoE-Infinity (mem = 0.50) 8.88 1.20 4.06 25614
MoE-Infinity (mem = 0.25) 8.29 1.32 4.06 13704

erate degradation in perplexity. MoE-Infinity con-259

figurations show optimal perplexity, closely match-260

ing baseline output quality while allowing scalable261

memory utilization. These results highlight the262

trade-offs between latency, memory consumption,263

and output quality inherent in each optimization264

approach.265

Figure 2: 3D trade-off between memory, latency, and
perplexity.

Figure 2 visualizes the complex trade-off space266

between memory usage, latency, and perplexity.267

Each optimization technique has distinct advan-268

tages: MoE-Infinity excels at optimizing perplex-269

ity, while Mixtral-Offloading provides significant270

memory savings through quantization and offload-271

ing strategies. Furthermore, each technique con-272

tains hyperparameters that offer internal trade-offs.273

This complexity highlights that MoE LLM serving274

optimization entails navigating a multidimensional275

and intricate search space.276

5 Automated MoE-LLM serving system 277

To navigate the complex trade-offs between la- 278

tency, memory usage, and output quality, we pro- 279

pose an automated selection system that formu- 280

lates MoE LLM serving as a multi-objective opti- 281

mization problem. The system systematically pro- 282

files available serving techniques—including quan- 283

tization, distillation, and expert offloading—under 284

varying hyperparameter configurations (e.g., num- 285

ber of active experts, memory budgets, cache sizes). 286

It records key performance metrics across these 287

three dimensions to construct a comprehensive 288

configuration-performance landscape. 289

Given user-defined deployment objectives (e.g., 290

minimize latency under 16GB memory, or maxi- 291

mize quality within 2s/token), the system searches 292

this landscape to select the optimal configuration. 293

This enables automatic adaptation to diverse hard- 294

ware constraints and application demands, reduc- 295

ing the need for manual tuning and trial-and-error 296

experimentation. 297

6 Conclusion 298

In this work, we evaluate key MoE-LLM serving 299

techniques—quantization, distillation, and expert 300

offloading—highlighting their trade-offs across la- 301

tency, memory usage, and output quality. To 302

streamline deployment under diverse hardware and 303

performance constraints, we propose an automated 304

system that profiles these methods and selects op- 305

timal configurations based on user-defined objec- 306

tives. Our findings enable efficient, high-quality 307

inference on resource-limited devices and offer 308

practical guidance for MoE-LLM deployment in 309

real-world scenarios. 310

4



Limitations311

While our study provides a comprehensive eval-312

uation of MoE-LLM serving techniques, several313

limitations remain. First, our experiments are con-314

ducted primarily on the Mixtral-8x7B model; al-315

though the findings may generalize, we do not val-316

idate them across other MoE architectures. More317

advanced MoE-LLMs and multimodal MoE mod-318

els may exhibit different characteristics, which re-319

main to be explored. Second, our use of perplexity320

as a measure of output quality is relatively lim-321

ited; more comprehensive benchmarks should be322

employed to better evaluate the performance of323

MoE-LLMs. Finally, the proposed automated sys-324

tem may face challenges such as high profiling325

costs, dependency constraints, and potential errors,326

which warrant further investigation and validation327

in real-world deployment scenarios.328
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