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Abstract

Mixture of Experts architectures have emerged
as a powerful design for large language models,
offering state-of-the-art performance through
computational sparsity. Despite improved effi-
ciency, their high memory demands hinder de-
ployment on commonly available single-GPU
systems. Existing approaches to mitigate this is-
sue, including pruning, distillation, and quanti-
zation, often sacrifice model quality or increase
inference latency. Recent MoE-specific strate-
gies introduce dynamic expert offloading to
DRAM, significantly reducing memory usage
without degrading performance.

We evaluate and compare leading MoE opti-
mization techniques, analyzing their memory,
latency, and quality trade-offs. Building on
these insights, we propose an automated MoE
serving system that adaptively selects optimal
configurations to meet diverse deployment con-
straints. This enables efficient, high-quality
LLM inference on limited hardware resources.

1 Introduction

In recent years, we have observed the success
of the Mix of Experts (MoE) design in state-of-
the-art large language models (LLMs), such as
DeepSeek-v3 (DeepSeek-Al et al., 2025), which
demonstrate exceptional performance. The sparsity
of MoE models enhances computational efficiency,
although the memory requirements remain substan-
tial. For instance, the medium-sized Mixtral 7x8B
(Jiang et al., 2024) requires approximately 112GB
of memory, exceeding the capacities of both the
RTX 4090 (24GB) and the A6000 (80GB). To al-
leviate the substantial overhead resulting from the
extensive memory requirements of MoE LLMs and
to enable efficient deployment of these models on a
single GPU, it is crucial to explore effective meth-
ods for reducing such costs.

There are various optimization methods that can
reduce the memory consumption of MoE LLMs.

Traditionally, techniques such as pruning (Ma et al.,
2023), model distillation (TheBloke, 2023), and
quantization (Dettmers et al., 2022; Wu et al., 2023)
have been employed to remove redundant weights
or decrease weight precision, thereby lowering
memory usage. However, these approaches may
result in increased inference time and decreased
model quality (Liakopoulos et al., 2025).

On the other hand, several state-of-the-art meth-
ods specifically designed for MoE architectures
have focused on offloading unused experts to
DRAM. These methods can reduce the additional
memory consumption caused by unused experts
by dynamically swapping them based on demand,
without negatively impacting the model’s perfor-
mance. We plan to evaluate and compare these
designs to understand the advantages of each, in-
cluding their offloading strategies and performance,
and to explore possible trade-offs among these de-
signs.

By identifying the trade-offs among latency,
memory consumption, and output quality, we pro-
pose an automated system for MoE LLM serving
that integrates comprehensive optimization tech-
niques. This system automatically determines the
optimal model-serving strategy based on selected
parameters, effectively satisfying specific memory,
latency, or output quality requirements.

2 Background

MOoE models are well-known for utilizing dif-
ferent experts to specialize in various tasks, en-
abling a more efficient and scalable approach to
complex problems. Recently, combining MoE
and LLLM has become popular, evidenced by the
emergence of high-quality MoE-LLM models.
DeepSeek-v3 (DeepSeek-Al et al., 2025) delivers
outstanding performance as MoE architectures opti-
mize data processing and decision-making in high-
dimensional search spaces. However, only a few



experts are invoked in each layer, while many ex-
perts occupy memory, leading to significant space
wastage. For example, Mixtral 7x8B (Jiang et al.,
2024) only uses 2 out of 8 experts, meaning about
75% of the memory is wasted when serving the
entire model.

Current works are focusing on MoE LLM infer-
ence serving with expert offloading designs. These
designs aim to load parts of the experts on the
GPU while leaving others on the CPU to reduce
the memory requirements of LLM serving. Un-
used experts can be swapped to DRAM to con-
serve memory and alleviate the memory bottleneck
in MoE LLMs. These include (Eliseev and Mazur,
2023), which uses the next layer gating function
to prefetch layers; MoE-infinity (Xue et al., 2024),
which statistically prefetches experts across layers;
and Fiddler (Kamahori et al., 2025), which uti-
lizes the CPU for computation. AdapMoE (Zhong
et al., 2025) skips unimportant experts, utilizes an
expert cache, and employs a learnable prefetcher
to reduce computational cost and expert miss-hit
overhead. They also incorporate, or leave space for
incorporating, traditional LLM memory optimiza-
tion techniques such as int8 (Dettmers et al., 2022),
int4 (Wu et al., 2023) quantization, and model dis-
tillation (TheBloke, 2023), creating an even larger
exploration space.

3 Methodology

3.1 Techniques Under Evaluation

We focus on evaluating the Mixtral-8x7B (Jiang
et al., 2024) model, a MoE LLM distinguished by
its robust capabilities across a broad range of appli-
cations, including real-time language translation,
advanced image recognition, and predictive analyt-
ics. These features make it well-suited for complex
tasks across diverse industries. However, despite
its versatility, the model’s substantial size presents
challenges, particularly its significant memory re-
quirements, which often exceed the capacity of
conventional hardware.

To address these limitations, it is critical to ex-
plore multiple optimization strategies. One ap-
proach is model distillation: by scaling down the
Mixtral-8x7B model to a smaller Mixtral-7x4 vari-
ant, the memory footprint becomes more manage-
able. Another technique involves reducing numer-
ical precision, such as converting model weights
to INT8 format, thereby significantly decreasing
memory consumption.

Quantization is a particularly effective method
for managing model size and resource demands.
However, it can affect output quality. For instance,
quantization of a float16 tensor X f1¢ to int8 can be
expressed as follows (Dettmers et al., 2022).

Beyond simple quantization, modular expert
models—such as those available through GitHub
projects like Mixtral Offloading (Eliseev and
Mazur, 2023), Fiddler (Kamahori et al., 2025),
and MoE-Infinity (Xue et al., 2024)—leverage
Mixture-of-Experts techniques to balance perfor-
mance and resource efficiency. We explore multi-
ple expert offloading methods, including Mixtral
Offloading, which combines quantization and the
prefetching of a fixed number of experts. In partic-
ular, Mixtral offloading uses the Highly-Quantized
Quantization method (Badri and Shaji, 2023).

MoE-Infinity further extends expert offloading
by introducing statistical-based expert prefetching
and caching techniques, offering an advanced opti-
mization framework. Meanwhile, Fiddler adopts
an alternative strategy: in addition to expert offload-
ing, it dynamically estimates and compares the time
to load an offloaded expert onto the GPU versus
the computation time on the CPU, enabling more
informed scheduling and improved performance.

3.2 End-to-end MoE LLM Serving Analysis

The end-to-end performance of LLM serving is crit-
ical; therefore, we systematically evaluate the in-
ference performance and output quality of various
MoE LLMs using a range of techniques, including
quantization, distillation, general offloading, and
expert offloading. To ensure comparability, we uti-
lize publicly available methods described in related
research papers and design a series of controlled
experiments to evaluate these techniques and their
respective implementations. In addition to directly
applying these methods as-is, we also identify tun-
able parameters that can affect memory usage and
latency for each technique, such as the number of
offloaded experts in Mixtral Offloading and the
total memory reserved for the model and expert
cache in MoE-Infinity. We record key metrics such
as GPU memory consumption, inference latency,
and output quality.

Inference latency. For modern decoder-only
LLMs (including all MoE models evaluated), in-
ference latency is largely determined by the use of
KV-cache, which avoids recomputation of previ-
ous tokens and ensures consistent latency for each
newly generated token. Accordingly, LLM infer-



ence latency can be formally decomposed into the
time to first token (TTFT), the time per output to-
ken (TPOT), and the total output length, as follows:

L =TTFT + output_length x TPOT (1)

Memory consumption. The memory consumption
of models incorporating offloading may include
GPU memory usage, DRAM usage, and disk stor-
age used for offloaded experts (Xue et al., 2025)
or additional weights (Rajbhandari et al., 2020).
All evaluations are conducted in a single-GPU en-
vironment. Given our focus on the high cost of
GPU memory, we report the peak GPU memory us-
age observed during inference, which is measured
using the nvidia-smi command.
Output quality. To assess output quality, we eval-
uate model perplexity. Specifically, we feed each
model the first 262,144 tokens (split into sequences
of length 1,024) from the WikiText-2 dataset and
compute perplexity. Techniques such as quantiza-
tion, distillation, and selective expert activation can
affect the resulting output quality.

Using these three-dimensional metrics, we can
illustrate the complex trade-off space introduced
by various LLM MOoE serving techniques.

4 Results
GPU Model Memory | RAM | Disk
RTX 4060 Mobile 8GB 32GB | SSD
RTX 4070 Mobile 8GB 32GB | SSD
RTX 4090 24GB 64GB | SSD
RTX A6000 48GB 1024GB | SSD
RTX A6000*3 144GB | 1024GB | SSD

Table 1: GPU specifications and machine info.

4.1 Testbed

In this work, we implement and evaluate several
techniques on Mixtral-8x7B, including quantiza-
tion (Dettmers et al., 2022), model pruning (The-
Bloke, 2023), and Mixtral offloading on the ma-
chines listed in Table 1, using a variety of input
prompts. We assess metrics such as memory con-
sumption and execution time. Besides the specified
mentions, the evaluation is conducted on a single
RTX A6000.

4.2 MoE performance on various devices.

From Figure 1, we observe the inference latency
of the MoE model with various input sizes across
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Figure 1: Latency by GPUs and Quantizations for gen-
erating 50 output tokens using Mixtral 7x8B.

different GPUs and quantization formats. Given
that the Mixtral 7x8 model requires approximately
112GB of memory when loaded with Floatl6
(FP16), all GPUs—except for the configuration us-
ing 3xRTX A6000 with pipeline parallelism—are
unable to fit the entire model in memory. As a
result, these systems must offload some model
weights to DRAM, or even to disk if DRAM ca-
pacity is insufficient. For example, our RTX 4060
machine has only 40GB of memory, making disk
offloading unavoidable.

In our setup, we use PyTorch’s default offload-
ing policy, which is not optimized for MoE models.
This leads to significant overhead from offloading,
which diminishes the performance gap between dif-
ferent GPUs. For instance, the latency on a single
RTX A6000 is approximately 44x higher than with
3xRTX A6000, and the RTX 4060 shows nearly
the same latency as the RTX 4070. Interestingly,
although INTS quantization is generally slower for
pure GPU inference, we observe up to a 1.48x la-
tency improvement when offloading parameters to
memory. This is because INTS8 reduces the vol-
ume of data that needs to be swapped in and out of
memory.

4.3 MoE performance on various techniques.

Table 2 summarizes the inference performance of
Mixtral 8x7B model variants on an A6000 48GB
GPU using quantization, distillation, and expert
offloading techniques. Quantization to INTS sig-
nificantly reduces time-to-first-token (TTFT) but
slightly increases per-token inference time (TPOT)
and memory usage, maintaining high output qual-
ity. Distillation (4x7B) drastically reduces latency
and memory usage but at the cost of significantly
higher perplexity, indicating lower output quality.
Mixtral-Offloading techniques effectively reduce
both latency and GPU memory usage, demonstrat-
ing considerable memory efficiency with only mod-



Table 2: Inference Performance Comparison of Mixtral 8x7B Variants on the A6000 48GB GPU

Method TTFT (s) TPOT (s) Perplexity GPU Memory (MiB)
Baseline 4.54 3.41 4.06 44556
Quantization INT8 1.13 4.01 4.07 45840
Distillation 4x7B 0.39 0.34 17.61 44374
Mixtral-Offloading (expert = 2) 0.65 0.26 4.82 15912
Mixtral-Offloading (expert = 4) 1.04 0.36 4.82 11964
Mixtral-Offloading (expert = 6) 1.39 0.48 4.82 8068
Fiddler 41.39 3.49 - 5198
MOoE-Infinity (mem = 0.95) 8.14 0.90 4.06 47456
MoE-Infinity (mem = 0.75) 8.87 0.99 4.06 37888
MoE-Infinity (mem = 0.50) 8.88 1.20 4.06 25614
MoE-Infinity (mem = 0.25) 8.29 1.32 4.06 13704

erate degradation in perplexity. MoE-Infinity con-
figurations show optimal perplexity, closely match-
ing baseline output quality while allowing scalable
memory utilization. These results highlight the
trade-offs between latency, memory consumption,
and output quality inherent in each optimization
approach.
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Figure 2: 3D trade-off between memory, latency, and
perplexity.

Figure 2 visualizes the complex trade-off space
between memory usage, latency, and perplexity.
Each optimization technique has distinct advan-
tages: MoE-Infinity excels at optimizing perplex-
ity, while Mixtral-Offloading provides significant
memory savings through quantization and offload-
ing strategies. Furthermore, each technique con-
tains hyperparameters that offer internal trade-offs.
This complexity highlights that MoE LLM serving
optimization entails navigating a multidimensional
and intricate search space.

S Automated MoE-LLM serving system

To navigate the complex trade-offs between la-
tency, memory usage, and output quality, we pro-
pose an automated selection system that formu-
lates MoE LLM serving as a multi-objective opti-
mization problem. The system systematically pro-
files available serving techniques—including quan-
tization, distillation, and expert offloading—under
varying hyperparameter configurations (e.g., num-
ber of active experts, memory budgets, cache sizes).
It records key performance metrics across these
three dimensions to construct a comprehensive
configuration-performance landscape.

Given user-defined deployment objectives (e.g.,
minimize latency under 16GB memory, or maxi-
mize quality within 2s/token), the system searches
this landscape to select the optimal configuration.
This enables automatic adaptation to diverse hard-
ware constraints and application demands, reduc-
ing the need for manual tuning and trial-and-error
experimentation.

6 Conclusion

In this work, we evaluate key MoE-LLM serving
techniques—quantization, distillation, and expert
offloading—highlighting their trade-offs across la-
tency, memory usage, and output quality. To
streamline deployment under diverse hardware and
performance constraints, we propose an automated
system that profiles these methods and selects op-
timal configurations based on user-defined objec-
tives. Our findings enable efficient, high-quality
inference on resource-limited devices and offer
practical guidance for MoE-LLM deployment in
real-world scenarios.



Limitations

While our study provides a comprehensive eval-
uation of MoE-LLM serving techniques, several
limitations remain. First, our experiments are con-
ducted primarily on the Mixtral-8x7B model; al-
though the findings may generalize, we do not val-
idate them across other MoE architectures. More
advanced MoE-LLMs and multimodal MoE mod-
els may exhibit different characteristics, which re-
main to be explored. Second, our use of perplexity
as a measure of output quality is relatively lim-
ited; more comprehensive benchmarks should be
employed to better evaluate the performance of
MoE-LLMs. Finally, the proposed automated sys-
tem may face challenges such as high profiling
costs, dependency constraints, and potential errors,
which warrant further investigation and validation
in real-world deployment scenarios.
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