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Abstract

Large language models optimized with tech-001
niques like RLHF have achieved good align-002
ment in being helpful and harmless. However,003
post-alignment, these language models often004
exhibit overconfidence, where the expressed005
confidence does not accurately calibrate with006
their correctness rate. In this paper, we de-007
compose the language model confidence into008
the Uncertainty about the question and the Fi-009
delity to the answer generated by language010
models. Then, we propose a plug-and-play011
method, UF Calibration, to estimate the con-012
fidence of language models. Our method has013
shown good calibration performance by con-014
ducting experiments with 6 RLHF-LMs on four015
MCQA datasets. Moreover, we propose two016
novel metrics, IPR and CE, to evaluate the cal-017
ibration of the model, and we have conducted018
a detailed discussion on Truly Well-Calibrated019
Confidence for large language models. Our020
method could serve as a strong baseline, and021
we hope that this work will provide some in-022
sights into the model confidence calibration.023

1 Introduction024

Large language models (LLMs) acquire vast world025

knowledge and demonstrate powerful capabilities026

through pre-training (Brown et al., 2020; OpenAI,027

2023; Bubeck et al., 2023). With technologies like028

RLHF (Ouyang et al., 2022) and RLAIF (Bai et al.,029

2022; Lee et al., 2023), large language models can030

become more helpful and harmless to align with031

human preferences (Askell et al., 2021). However,032

how to build a more honest system has not yet been033

fully discussed. An honest model should have a034

certain understanding of the boundary of its knowl-035

edge, that is, knowing what it does not know (Yin036

et al., 2023; Yang et al., 2023b; Zhou et al., 2024).037

A plausible method is utilizing the calibrated confi-038

dence to estimate the knowledge boundary of lan-039

guage models. For pre-trained language models,040

the per-token logit can already be considered a041

Figure 1: In four different MCQA datasets, our method
has demonstrated good calibration effects, meaning it is
sufficiently close to the y = x curve. The experimental
data is derived from GPT-3.5-Turbo.

well-calibrated confidence score, which implies 042

that pre-trained language models (mostly) know 043

what they know (Kadavath et al., 2022). 044

However, recent studies have indicated that 045

language models optimized with techniques like 046

RLHF will exhibit issues of overconfidence (Lin 047

et al., 2022a; Kadavath et al., 2022; OpenAI, 2023; 048

He et al., 2023; Zhao et al., 2023; Tian et al., 2023; 049

Xiong et al., 2023). This issue could be reflected 050

in Multiple-Choice Question Answering (MCQA) 051

tasks, where the probability of RLHF-LMs gen- 052

erating a token and the likelihood of that token 053

being the correct answer are not well-calibrated. 054

For example, an answer provided by RLHF-LMs 055

with 95% confidence does not mean that there is 056

a 95% probability that the answer is correct. This 057

phenomenon may be due to the optimization objec- 058

tive of RLHF, which is to make the model generate 059

responses aligned with human preferences rather 060

than fitting answers that appear more frequently in 061

the corpus during the pre-training stage. 062

To alleviate the issue of miscalibration, previous 063

work focuses on two perspectives: the logit-based 064

method and the verbalization-based method. Logit- 065
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based methods are usually post-hoc. We need066

to find a higher temperature (usually above 2.0),067

known as Temperature-Tuning (Guo et al., 2017),068

to make the distribution of the model’s token logit069

smoother for mitigating overconfidence (Kadavath070

et al., 2022; He et al., 2023). The verbalization-071

based method usually requires prompt engineering072

to elicit the model’s confidence, and it also necessi-073

tates the model to have strong Self-Awareness (Lin074

et al., 2022a; Tian et al., 2023; Yin et al., 2023). Ag-075

gregating the model’s logit-based and verbalization-076

based confidence can also calibrate the model con-077

fidence to some extent (Xiong et al., 2023).078

As shown in Figure 2 and Appendix Tabel 5,079

by replacing the model’s answer with “All other080

options are wrong.”, we can assess whether the081

model had high fidelity to its previously given an-082

swer. Inspired by this phenomenon, we decompose083

the language model confidence into two dimen-084

sions: the Uncertainty about the question and the085

Fidelity to the answer generated by language mod-086

els. First, if the answers provided by language087

model are consistent under multiple samplings, it088

indicates that language model has lower uncertainty089

regarding that question. Thus, we could utilize090

the information entropy of the frequency distribu-091

tion of sampled answers to calculate the model’s092

uncertainty about a question. Second, we design093

a novel method to estimate the model’s fidelity094

to each of its sampled answers. Last, the uncer-095

tainty regarding question Q and the fidelity to the096

answer ai together determine the model’s confi-097

dence. As shown in Figure 1, our proposed UF098

Calibration achieved good calibration across differ-099

ent MCQA datasets. Meanwhile, UF Calibration100

does not require knowledge of the model’s per-101

token log-probability, making it broadly applicable102

to various Black-box RLHF-LMs, which do not103

provide the per-token log-probability.104

To have a closer look at the calibration of model105

confidence, we propose two novel metrics for evalu-106

ating and observation: 1) Inverse Pair Ratio (IPR),107

which is the proportion of inverse pairs in the Reli-108

ability Diagram. This metric could reflect whether109

the model is well-calibrated from the perspective110

of the monotonicity of the Reliability Diagram. If111

the reliability diagram is monotonic, it indicates112

that the average accuracy of low-confidence an-113

swers is always lower than that of high-confidence114

answers. 2) As shown in Table 10, we find that115

as the number of model parameters increases, lan-116

guage models still tend to consistently express un-117

certainty within certain fixed ranges. Thus, we 118

design the Confidence Evenness (CE) to observe 119

to the uniformity of the density of each bar in the 120

reliability diagram. Our experimental results indi- 121

cate that, after calibration, even within the same 122

dataset, there is a significant difference in the confi- 123

dence of the answers provided by language models 124

for different questions. We summarize our main 125

contributions as follows: 126

1) Our proposed method could be viewed as a 127

strong baseline for eliciting model confidence, 128

where answer set is known. And the calibrated 129

confidence could be viewed as a soft label. 130

2) We propose two new metrics, IPR and CE, to 131

evaluate the calibration of LM’s confidence. 132

3) We conduct a detailed discussion of a research 133

question: “What kind of Confidence is Truly 134

Well-Calibrated?”, and we hope our discussion 135

can bring some insights to the community. 136

2 Related Work 137

Recent work has focused on LLM calibration (Lin 138

et al., 2022a; Kadavath et al., 2022; OpenAI, 2023). 139

In this section, we will briefly introduce two main- 140

stream methods for eliciting the confidence from 141

language models, namely the Logit-based Method 142

and the Verbalization-based Method. 143

2.1 Logit-based Method 144

When we can obtain the per-token logits from lan- 145

guage models, we can directly use the probability 146

of generating candidate answers as its confidence. 147

Conf(ai) =
exp(logitai/t)∑|A|
j=1 exp(logitaj/t)

, (1) 148

where t is the sampling temperature of language 149

models and |A| is the size of candidate answer set 150

A. Recent studies indicate that good calibration 151

can be achieved by adjusting the temperature of 152

RLHF-LMs (Kadavath et al., 2022; He et al., 2023). 153

However, temperature-scaling (Guo et al., 2017) 154

often requires higher temperatures, such as above 155

2.0 (Kadavath et al., 2022), which might cause the 156

outputs of the language models to become too ran- 157

dom. When the probabilities for model-generated 158

tokens are inaccessible, a straightforward solution 159

is to deploy sampling and use the frequency of the 160

sampled result to estimate the probability of gen- 161

erating this token. For instance, given a question 162

Q, we could sample K times to acquire a set of 163
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Question: A revolving door is convenient for two direction 

travel, but it also serves as a security measure at a what?

Options:

A. bank

B. library

C. department store

D. All other options are wrong.

E. new york

Answer:

Question: A revolving door is convenient for two direction 

travel, but it also serves as a security measure at a what?

Options:

A. bank

B. library

C. department store

D. mall

E. new york

Answer:

Response from LLM: 
D

Response from LLM: D
High Fidelity

Response from LLM: A
Low Fidelity

LLM

LLM

Figure 2: If the model’s choice of answer changes after
replacing the content of its previous selected option with
“All other options are wrong”, it could be considered
that the model’s fidelity to its previous answer is not
high enough.

answersA containing N distinct answers, and each164

answer with an associated frequency ni. The prob-165

ability of the model generating answer ai can be166

estimated by ni
K . Therefore, we could estimate the167

confidence of language models by Psampled(ai).168

Recently, Kumar et al. (2023) also propose to uti-169

lize the conformal prediction to calibrate the confi-170

dence of LLMs.171

Conf(ai) = Psampled(ai) =
ni

K
, ai ∈ A (2)172

2.2 Verbalization-based Method173

However, some commercial models, such as Chat-174

GPT and Claude, usually do not provide per-175

token logits. Benefiting from instruction fine-176

tuning(Chung et al., 2022; Zhang et al., 2023),177

language models could generate responses corre-178

sponding to the input instructions. Another intu-179

itive method is to prompt large language models180

to provide their verbalized confidence along with181

their responses as follows (Jiang et al., 2021; Lin182

et al., 2022a; Tian et al., 2023):183

(Answer, Conf) = LLM(Question), (3)184

This method requires the model to have a strong185

ability to follow instructions and strong self-186

awareness (know whether it knows something or187

not (Yin et al., 2023)). Accordingly, verbalized 188

confidence can be a floating-point number between 189

0 and 1, i.e., ‘0.8’. And it can be linguistic ex- 190

pressions, i.e., ‘Almost Certain’, ‘About Even’, 191

‘Unlikely’. Although this method is quite easy 192

to implement, we find various different LMs al- 193

ways tend to output some fixed high confidence 194

expressions, as show in Table 10. 195

3 Methodology 196

In this section, we will introduce the method we 197

propose. Our method does not require any knowl- 198

edge of the per-token logit of language models or 199

trivial prompt engineering to make the language 200

model output its confidence in a specified format. 201

3.1 Sampling 202

Firstly, as shown in the first step from Figure 3, for 203

question Q, by sampling K times, we can obtain 204

a set of candidate answers A. We take the most 205

frequently occurring answer as the final answer. 206

Meanwhile, we can obtain the frequency distribu- 207

tion Psampled of candidate answers. 208

3.2 Eliciting the Fidelity of Answers 209

As shown in Figure 2, for question Q and a can- 210

didate answer (ai, oi), where the option index is 211

ai and the content is oi, we simply replace oi with 212

“All other options are wrong.”, and then query the 213

model again. If the model has high fidelity to the 214

previously selected answer (ai, oi), it should select 215

(ai, “All other options are wrong.”) in the subse- 216

quent round of inquiry rather than any other option. 217

If language models select other options, we remove 218

the newly selected option to ensure that there is 219

only one “All other options are wrong” in candi- 220

date options. By repeating this process until the 221

model selects “All other options are wrong”, we 222

can establish a hierarchical fidelity chain C, such 223

as "A→C→D". This implies that when all options 224

are available, the model will prefer to select option 225

A. However, if option A is excluded, the model 226

will tend to choose option C, which indicates that 227

the model’s fidelity to option A is not high enough. 228

Accordingly, if the chain C has only one element, 229

such as “A”, this suggests that the model’s fidelity 230

to option A is high enough, which can, to a cer- 231

tain extent, reflect the model’s confidence. Corre- 232

spondingly, for a hierarchical fidelity chain C, we 233

assign a fidelity weight to each element from right 234

to left. For example, for the ith element di from 235

the right, we simply set its weight as τ i. Therefore, 236
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Greedy Decoding

LLM

Consistency-Based Answer: D

Answer Set: 
(D, A, C)

Frequency 
Distribution

Psample

Uncertainty

D

A

C

LLM

D->A->C

A->D->C

C->A->D

1) Sampling

2) Eliciting the Fidelity

3) 
Uncertainty Estimation

4) Confidence Estimation

Fidelity of
Each Answer

Question: A revolving door is
convenient for two direction
travel, but it also serves as a
security measure at a what?

Options:
A. bank
B. library
C. department store
D. mall
E. new york
Answer:

D

D

D

A

A

C

Confidence(Question, D) = 
(1-Uncertainty)·Fidelity(D)

Figure 3: Our proposed UF Calibration, which requires at most two phases to invoke the model. In the Sampling
phase, for black-box models, similar to the Sampled method, we need to sample 10 times. For white-box models, a
single invocation is sufficient. In the eliciting the fidelity phase, the model needs to be invoked approximately 2 to 3
times to generate a fidelity chain, as show in Table 8.

the normalized fidelity of the ith element ai can be237

calculated as follows:238

FidelityC(ai) =
τ i∑|C|
i=1 τ

i
, (4)239

where we usually set τ as 2. As shown in Figure 3,240

the answer set A might include multiple different241

answers. Consequently, we sequentially replace242

the candidate answer in A with “All other options243

are wrong.” to elicit different hierarchical fidelity244

chains, as depicted in the second step of Figure 3.245

The fidelity score of each element ai in every hierar-246

chical fidelity chain Cj can be calculated using (4).247

Thus, the model’s fidelity of answer ai can be calcu-248

lated by the weighted average fidelity score across249

different hierarchical chains. Since the hierarchi-250

cal fidelity chain is elicited by greedy decoding,251

the frequency of occurrence of different chains is252

consistent with the frequency of occurrence of the253

first element a|C| from left to right. Therefore, the254

frequency Psampled(a|C|) can be viewed as a proxy255

for the probability Psampled(Cj) of different hierar-256

chical fidelity chains to calculate the overall fidelity257

score F(·) of each answer.258

F(ai) =

|A|∑
j=1

Psampled(Cj) · FidelityCj (ai), (5)259

3.3 Uncertainty Estimation 260

As shown in Section 3.1, through sampling, we 261

can obtain the frequency of each answer generated 262

by the model and use it to estimate the genera- 263

tion probability of each answer token. Previous 264

works (Kadavath et al., 2022; OpenAI, 2023) have 265

revealed that RLHF-LMs often exhibit overconfi- 266

dence in token generation probability, especially 267

in the temperature range we commonly use, such 268

as between 0 and 1.0. However, these probabili- 269

ties could still reveal, to some extent, the model’s 270

confidence regarding the current question Q. For 271

instance, if the distribution of Psampled is flatter, 272

it indicates that the language model has more sig- 273

nificant uncertainty regarding the question Q. An 274

intuitive method is calculating the information en- 275

tropy of the distribution Psampled to estimate the 276

model’s uncertainty about question Q as follows: 277

Uncertainty(Q) = −
∑M

i=1 pi · log pi
logM

, (6) 278

where M is the option number of questionQ. Since 279

the range of the information entropy for Psampled 280

is from 0 to logM, we normalize the information 281

entropy using logM. 282

3.4 Confidence Estimation 283

Given the model’s Uncertainty for a given question 284

Q and the fidelity F(·) among different candidate 285
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ARC-Challenge MMLU CommonSenseQA TruthfulQA

Method ECE10 ↓ IPR10 ↓ CE10 ↑ Acc ↑ ECE10 ↓ IPR10 ↓ CE10 ↑ Acc ↑ ECE10 ↓ IPR10 ↓ CE10 ↑ Acc ↑ ECE10 ↓ IPR10 ↓ CE10 ↑ Acc ↑

GPT-3.5-TURBO

Verb 0.069 0.200 0.681 75.597 0.138 0.200 0.795 59.028 0.087 0.178 0.660 71.253 0.215 0.178 0.792 57.405
Ling 0.083 0.464 0.451 75.683 0.197 0.472 0.441 56.019 0.109 0.250 0.451 71.499 0.271 0.667 0.669 59.241
Sampled 0.095 0.067 0.793 79.266 0.120 0.022 0.922 63.151 0.135 0.067 0.782 74.590 0.147 0.044 0.901 59.333

Ours 0.112 0.139 0.897 79.266 0.088 0.083 0.812 63.151 0.073 0.083 0.812 74.590 0.074 0.133 0.775 59.333

GPT-4-TURBO

Verb 0.080 0.400 0.642 92.833 0.045 0.095 0.706 81.25 0.083 0.111 0.713 83.210 0.056 0.044 0.598 83.109
Ling 0.040 0.036 0.520 89.505 0.066 0.083 0.627 78.762 0.056 0.071 0.637 83.702 0.059 0.139 0.635 79.437
Sampled 0.067 0.200 0.221 92.833 0.153 0.311 0.536 80.324 0.121 0.133 0.541 83.866 0.091 0.178 0.478 87.515

Ours 0.127 0.083 0.757 92.833 0.089 0.083 0.906 80.324 0.109 0.083 0.925 83.866 0.042 0.044 0.764 87.515

Table 1: Experimental results derived from GPT-3.5-Turbo and GPT-4-Turbo. For each column in the table, the
closer the color is to blue, the better the calibration. And the closer it is to orange, the worse the performance. We
also have bolded the best results, and for the second-best results, we have added an underline beneath them.

ARC-Challenge MMLU CommonSenseQA TruthfulQA

Method ECE10 ↓ IPR10 ↓ CE10 ↑ Acc ↑ ECE10 ↓ IPR10 ↓ CE10 ↑ Acc ↑ ECE10 ↓ IPR10 ↓ CE10 ↑ Acc ↑ ECE10 ↓ IPR10 ↓ CE10 ↑ Acc ↑

Verb. 0.135 0.178 0.752 58.191 0.199 0.178 0.802 45.891 0.107 0.083 0.806 59.214 0.373 0.133 0.874 26.928
Ling 0.298 0.286 0.613 50.853 0.399 0.333 0.709 30.921 0.097 0.222 0.771 60.770 0.594 0.571 0.681 23.990
Sampled 0.121 0.044 0.890 67.702 0.162 0.067 0.919 52.315 0.110 0.044 0.857 70.762 0.236 0.133 0.891 34.517
Token 0.064 0.067 0.521 67.235 0.135 0.067 0.647 54.803 0.064 0.022 0.477 71.007 0.176 0.133 0.577 34.761

Ours 0.063 0.028 0.887 67.702 0.076 0.028 0.829 52.315 0.051 0.056 0.886 70.762 0.080 0.028 0.704 34.517

Table 2: Experimental results derived from Baichuan2-13B-Chat.

answers, the confidence of the model in its answer286

ai for question Q is defined as follows:287

Conf(Q, ai) =
(
1−Uncertainty(Q)

)
· F(ai),

(7)
288

4 Experiments289

To validate the effectiveness of our pro-290

posed method, we conducted experi-291

ments on different RLHF-LMs such as292

GPT-3.5-Turbo1, GPT-4-Turbo (OpenAI,293

2023), LLaMA2-Chat (Touvron et al., 2023) and294

Baichuan2-13B-Chat (Yang et al., 2023a). To295

mitigate the influence of the sampling algorithm,296

unless specifically stated otherwise, we use297

hyper-parameters with a temperature of 1.0 and set298

top_p as 1.0.299

4.1 Experimental Setting300

Dataset. We have conducted experiments on301

four MCQA datasets to verify the effectiveness302

of our proposed confidence estimation method.303

ARC (Clark et al., 2018) is a dataset of 7,787304

grade-school-level questions. We use the test split305

of the ARC-Challenge with 1,172 questions for306

our experiments. MMLU (Hendrycks et al., 2021)307

is a dataset designed to measure knowledge ac-308

quired during pretraining and covers 57 subjects.309

To reduce the cost of API calls, we sampled 1
8 of310

the data for testing for each subject. Common-311

SenseQA (Talmor et al., 2019) is a dataset for com-312

monsense question answering, and we use the vali-313

1https://openai.com/chatgpt

dation split with 1,221 questions for experiments. 314

TruthfulQA (Lin et al., 2022b) is a dataset that con- 315

tains 817 questions designed to evaluate language 316

models’ preference to mimic some human false- 317

hoods. All the experiments are conducted under a 318

0-shot setting. 319

Metrics. We utilize multiple metrics to evaluate. 320

We bin the predictions from the model by their con- 321

fidence and report the ECE (expected calibration 322

error). We also report the Brier Score of different 323

methods in Table 7. In this paper, we also defines 324

two novel metrics to evaluate the calibration. The 325

first one is IPR (Inverse Pair Ratio), which is used 326

to measure the monotonicity of the reliability di- 327

agram. If the reliability diagram is monotonic, it 328

indicates that the average accuracy of answers with 329

low confidence is lower than the average accuracy 330

of answers with high confidence. 331

IPRM =
IP

C2
K

, (8) 332

where IP is the inverse pair number in the reliable 333

diagram, and K is the bin number with a density 334

larger than 0. We found that as the number of 335

model parameters increases, the accuracy of the 336

model improves across various datasets. However, 337

language models still tend to consistently express 338

uncertainty within certain fixed ranges, and ECE 339

cannot clearly reflect this phenomenon. Therefore, 340

we suggest using the CE (Confidence Evenness) 341

to evaluate the uniformity of the density of each 342

bar in the reliability diagram. 343
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ARC-Challenge MMLU CommonSenseQA TruthfulQA

Method ECE10 ↓ IPR10 ↓ CE10 ↑ Acc ↑ ECE10 ↓ IPR10 ↓ CE10 ↑ Acc ↑ ECE10 ↓ IPR10 ↓ CE10 ↑ Acc ↑ ECE10 ↓ IPR10 ↓ CE10 ↑ Acc ↑

LLAMA2-7B-CHAT

Verb 0.294 0.083 0.482 45.904 0.325 0.267 0.531 41.551 0.208 0.267 0.516 52.662 0.499 0.200 0.626 21.787
Ling 0.452 0.333 0.283 44.625 0.478 0.357 0.315 38.542 0.385 0.250 0.275 51.597 0.647 0.607 0.406 24.113
Sampled 0.329 0.156 0.781 50.683 0.316 0.222 0.900 43.056 0.294 0.178 0.765 54.627 0.389 0.133 0.875 27.540
Token 0.161 0.156 0.430 50.256 0.224 0.333 0.593 42.419 0.148 0.133 0.417 54.791 0.234 0.289 0.484 27.417

Ours 0.073 0.111 0.921 50.683 0.102 0.167 0.890 43.056 0.053 0.167 0.903 54.627 0.121 0.083 0.762 27.540

LLAMA2-13B-CHAT

Verb 0.198 0.143 0.495 57.594 0.286 0.214 0.572 45.614 0.204 0.278 0.497 56.260 0.443 0.167 0.732 27.138
Ling 0.327 0.333 0.393 57.301 0.448 0.333 0.378 45.040 0.316 0.133 0.449 56.692 0.627 0.733 0.508 26.864
Sampled 0.297 0.200 0.653 60.239 0.351 0.267 0.788 47.251 0.287 0.156 0.717 58.722 0.461 0.422 0.798 29.131
Token 0.135 0.178 0.408 59.898 0.225 0.244 0.502 47.512 0.142 0.222 0.403 57.007 0.238 0.200 0.429 30.845

Ours 0.069 0.111 0.886 60.239 0.070 0.083 0.852 47.251 0.043 0.083 0.883 58.722 0.121 0.083 0.762 29.131

LLAMA2-70B-CHAT

Verb 0.071 0.286 0.369 70.819 0.236 0.194 0.351 53.183 0.069 0.222 0.286 70.680 0.311 0.028 0.522 43.452
Ling 0.223 0.333 0.119 67.833 0.375 0.333 0.096 51.794 0.189 0.067 0.117 70.106 0.507 0.400 0.289 36.597
Sampled 0.220 0.311 0.475 72.867 0.325 0.289 0.289 56.308 0.212 0.089 0.551 72.809 0.351 0.156 0.622 51.897
Token 0.091 0.200 0.315 73.208 0.190 0.378 0.378 56.597 0.093 0.178 0.339 72.645 0.173 0.267 0.352 52.020

Ours 0.085 0.111 0.908 72.867 0.066 0.083 0.898 56.308 0.094 0.111 0.918 72.809 0.093 0.089 0.804 51.897

Table 3: Experimental results derived from LLaMA-2-Chat.

CEM = −
∑M

i=1 pi · log pi
logM

, (9)344

In this paper, we adopt 10 equal-size bins to calcu-345

late ECE10, IPR10 and CE10. We also report the346

accuracy on these benchmarks to measure whether347

calibration reduces the accuracy.348

Baselines. We compared our approach with dif-349

ferent baselines for eliciting the confidence of lan-350

guage model. First, we reproduced the Verb and351

Ling method proposed by Tian et al. (2023). The352

Verb method involves prompting the model to353

output a floating-point number between 0 and 1354

to represent its confidence immediately after pro-355

viding an answer (Tian et al., 2023; Lin et al.,356

2022a). The Ling method entails having the lan-357

guage model express its confidence level in natural358

language (Tian et al., 2023). Since commercial359

models like ChatGPT do not provide per-token log-360

its, we employed a sampling technique to estimate361

the probability of token generation, referred to as362

the Sampled method. Unless otherwise specified,363

the Sampled method involves sampling 10 times.364

For open-source models like LLaMA2-Chat, we di-365

rectly use the probability of token generation as366

the measure of the language model’s confidence,367

which we refer to as the Token method. We also368

compare the Conformal Prediction Baseline pro-369

posed by Kumar et al. (2023) with our UF calibra-370

tion in Appendix B.1. All the prompt templates we371

use are shown in Appendix E.372

4.2 Main Results373

Tables 1–3 show our experimental re-374

sults on GPT-3.5-Turbo, GPT-4-Turbo,375

Baichuan2-13B-Chat, and LLaMA2-Chat. 376

Based on the experimental results, the following 377

conclusions can be drawn: 378

1) Our proposed method demonstrates a clear im- 379

provement over the various baselines in terms of 380

three metrics: ECE10, IPR10, and CE10, which 381

demonstrates the effectiveness of our method. 382

2) The Verb and Ling methods might, to some 383

extent, impair the language model’s accuracy 384

on multiple-choice question answering tasks, 385

which might be caused by more complicated in- 386

structions. Additionally, since the Ling method 387

is more complex, it has a greater impact on the 388

overall accuracy than the Verb method. 389

3) Similar to the conclusion from Tian et al. (2023), 390

the calibration of the Verb method tends to be 391

better than that of the Ling method. This is be- 392

cause the linguistic expressions used in the Ling 393

method are based on human psychology. How- 394

ever, the confidence represented by the same 395

expression may have a gap between humans and 396

models and among different models and differ- 397

ent sentences might mean the same thing (Kuhn 398

et al., 2023). 399

4) The CE10 of the Verbalization-based Method 400

is relatively low, which suggests that language 401

models tends to prefer outputting expressions of 402

certain confidence, such as ‘Highly Likely’, 403

0.8 and 0.9. This phenomenon can also ex- 404

plain why the ECE10 of the Verbalization-based 405

Method improves when the overall average ac- 406

curacy of the model is between 70-90%. 407

4.3 Ablation Study 408

As shown in Table 4, removing Uncertainty and 409

only relying on Fidelity to estimate the model’s 410
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Figure 4: Our proposed method achieved well-calibrated results across all temperatures. The experimental results
are derived from LLaMA2-13B-Chat. The results from Baichuan2-13B-Chat are presented in Appendix Figure 7.

Figure 5: The experimental results are derived from LLaMA2-Chat.

confidence, we can also achieve comparatively411

better calibration than other methods. This phe-412

nomenon indicates that our proposed method re-413

flects the language model’s Fidelity to its an-414

swers very well. Meanwhile, it is difficult to es-415

timate the model’s confidence only depending on416

Uncertainty. As mentioned in 3.3, Uncertainty417

is designed for measuring the model’s uncertainty418

regarding the questionQ, rather than its confidence419

for a particular answer. In the section 3.2, we utilize420

(4) to calculate the language model’s normalized421

fidelity in a hierarchical fidelity chain, where τ422

is a hyper-parameter. The larger the value of τ ,423

the lower the estimated fidelity for answers closer424

to the end of the fidelity chain. Our experiments425

in Table 4 indicate that setting τ to around 2 is a426

relatively appropriate choice for the fidelity estima-427

tion process. If τ is too large, the ECE10 will also428

increase, which will cause the issue of overconfi-429

dence of our estimated confidence.430

Method ARC MMLU CSQA TruthfulQA Avg.

Ours 0.069 0.070 0.043 0.121 0.076

w/o. Uncertainty 0.122 0.184 0.115 0.202 0.156
w/o. Fidelity 0.675 0.614 0.704 0.677 0.668

τ = 1.5 0.103 0.064 0.066 0.082 0.079
τ = 2.0 (Default) 0.069 0.070 0.043 0.121 0.076
τ = 2.5 0.067 0.089 0.040 0.142 0.085
τ = 3.0 0.074 0.107 0.050 0.155 0.097
τ = 4.0 0.085 0.138 0.075 0.165 0.116
τ = 5.0 0.102 0.158 0.094 0.183 0.134

Best Result (Others) 0.135 0.225 0.142 0.238 0.185

Table 4: Ablation study of our method. The results
(ECE10) are derived from LLaMA2-13B-Chat.

5 Analysis and Discussion 431

To take a closer look at the difference between dif- 432

ferent calibration methods tailored for language 433

models, in this section, we verify the robustness of 434

our method from two aspects: Temperature-Scaling 435

and Parameter-Scaling. Meanwhile, we also con- 436

ducted a detailed discussion of a research question: 437

What kind of Confidence is Truly Well-Calibrated? 438

Temperature-Scaling In the main experiments, 439

we evaluate various methods using a constant tem- 440

perature of 1.0. In this section, we will explore 441

the influence of sampling temperature on the per- 442

formance of different methods. As illustrated in 443

Figures 4 and 7, our proposed calibration method 444

consistently achieves the lowest expected calibra- 445

tion error across all temperatures, showing remark- 446

able robustness to temperature variations. This is 447

because, in eliciting model fidelity, our method 448

always employs Greedy Decoding rather than Sam- 449

pling. Thus, the hierarchical chains we obtain are 450

usually consistent across different sampling temper- 451

atures. In contrast, the expected calibration error of 452

Logit-based Methods is usually affected by temper- 453

ature. For the Sampling method with limited sam- 454

pling budgets, the lower the temperature, the more 455

significantly the diversity of the sampled results 456

will decrease, exacerbating the overconfidence of 457

language models. For the Token Method, the im- 458

pact of temperature on its calibration shows a trend 459

of “first increasing and then remaining relatively 460
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Figure 6: Reliability diagrams of Baichuan2-13B-Chat on ARC-Challenge. In these diagrams, the darker the color,
the higher the density. The reliability diagrams of other models we evaluated are shown in Appendix Figures 8–13.

stable” or ”first increasing and then decreasing“.461

This is because we could directly utilize (1) to es-462

timate the confidence of each option, and if the463

temperature is too low (i.e., 0.1), it will lead to the464

confidence of a large number of options approach-465

ing zero. This phenomenon might contribute to466

reducing expected calibration error, but it does not467

necessarily indicate that the model’s confidence is468

well-calibrated. The Verbalization-based method469

is less affected by temperature, which indicates470

that the expressions which language models prefer471

to output are relatively consistent across different472

temperatures.473

Parameter-Scaling As shown in Figure 5, we474

evaluate the calibration of various methods at dif-475

ferent parameter scales on the LLaMA2-Chat series476

models. Our proposed method exhibits good cali-477

bration across different amounts of model parame-478

ters. With the size of model parameters increasing,479

the calibration of the Verbalization-based method480

and the Logit-based method is improving. This481

phenomenon indicates that as the scale of model pa-482

rameters increases, the model’s Self-Awareness is483

improving. However, the relatively high expected484

calibration error suggests that language models still485

have issues with overconfidence.486

Truly Well-Calibrated Confidence Previous487

work mainly evaluates the calibration of language488

models through ECE. This section will discuss the489

research question: “What Kind of Confidence is490

Truly Well-Calibrated?”. Figure 6 demonstrates the491

calibration of various methods. From the calibra-492

tion perspective, we hope that the confidence and493

accuracy relationship is close to the curve y = x.494

Thus, we need to reduce the ECE by calibrating495

confidence. Meanwhile, we hope that the reliabil-496

ity diagram should be as monotonic as possible to497

ensure that the accuracy of the results generated498

with low confidence is lower than that of the results499

with high confidence. Therefore, we propose the500

Inverse Pair Ratio (IPR) to evaluate monotonicity.501

From the perspective of building a more honest502

system, we hope the model’s confidence should 503

be distributed across different confidence intervals. 504

For example, if a language model has an overall 505

accuracy of 75% on the TruthfulQA dataset and 506

the confidence of each question from the language 507

model is always 75%, its ECE and IPR would be 0. 508

And we find that different models tend to express 509

confidence within a fixed interval. In this case, we 510

think that the confidence may not necessarily be a 511

truly well-calibrated confidence because we could 512

not exclude some low-confidence results based on 513

the confidence from the language model. Although 514

the prior distribution of the model’s confidence is 515

unknown, our confidence estimation method finds 516

that language models have different confidence 517

for different questions. Thus, we propose a met- 518

ric called Confidence Evenness (CE) to measure 519

whether the model confidence always is located 520

in a fixed interval. We believe ECE, IPR, and CE 521

evaluate calibration from different perspectives and 522

there is a trade-off between these three metrics. We 523

suggest that truly well-calibrated confidence should 524

achieve a balance among ECE, IPR, and CE, rather 525

than over-optimizing any of them. 526

6 Conclusion 527

In this paper, we decompose the language model 528

confidence into the Uncertainty about the question 529

and the Fidelity to the answer generated by lan- 530

guage models. Through the decomposition, we 531

propose a plug-and-play method, UF CALIBRA- 532

TION, to calibrate the confidence of language mod- 533

els. Through experiments with 6 RLHF-LMs on 4 534

multiple-choice question answering benchmarks, 535

our method exhibits good calibration. Besides, we 536

propose two novel metrics, IPR and CE, to eval- 537

uate the calibration of language models. Finally, 538

we conduct a detailed discussion on Truly Well- 539

Calibrated Confidence. We believe our method can 540

serve as a strong baseline, and we hope that this 541

work could provide some insights into the language 542

model confidence calibration. 543
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Limitations544

Although our method has shown good calibration,545

it is mainly applicable to scenarios where the set546

of answers is known, i.e., multiple-choice question547

answering, text classification, sentiment classifica-548

tion, and preference labeling in RLHF. Eliciting549

the model’s fidelity in open-ended generation sce-550

narios is a direction worth exploring. Meanwhile,551

our method involves multiple invocations of lan-552

guage models, and how to estimate the probability553

distribution of tokens generated by the language554

model with as few callings as possible remains to555

be studied.556
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A Algorithm 779

The pseudo code of our proposed method is shown 780

in Algorithm 1. It should be clarified that, as long 781

as a candidate answer ai appears in the answer set 782

A or the Fidelity chain set S , we could estimate its 783

confidence through (7). 784

Algorithm 1 Algorithm

Require: Input question Q, Option list O, An-
swer set A = ∅, Sampling budget K, RLHF-
LM LM, o∗ is “All other options are wrong.”,
Fidelity chain set S, U(·) refers to (6).

1: t← 0
2: while t < K do
3: ai ← LM(Q,O) ▷ Sampling answer
4: A ← A∪ {ai}
5: Psampled(ai)← Psampled(ai) + 1
6: t← t+ 1 ▷ Continue sampling
7: end while
8: Psampled(ai)← Psampled(ai)/K
9:

10: Uncertainty(Q) = U(Psampled)
▷ Get uncertainty

11: i← 0
12: while |A| > 0 do
13: A ← A \ {ai} ▷ Select a answer
14: O∗ ← (O \ {oi}) ∪ o∗ ▷ Replace option
15: Ci = ai ▷ Init a fidelity chain
16: while |O∗| > 0 do
17: a∗ ← LM(Q,O∗) ▷ Greedy decoding
18: if a∗ ̸= ai then ▷ Low fidelity
19: O∗ ← O∗ \ {oi} ▷ Delete option
20: ai = a∗

21: Ci = (Ci → a∗) ▷ Add element
22: else
23: break ▷ High fidelity
24: end if
25: end while
26: S ← S ∪ Ci
27: i← i+ 1
28: end while
29:

30: F(ai) =
∑|A|

j=1 Psampled(Cj) ·FidelityCj (ai)
▷ Get fidelity

31: Conf(Q, ai) = (1 − Uncertainty(Q)) ·
F(ai) ▷ Get confidence

32: return Conf(Q, ai)
▷ Return the confidence of answer ai
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Model Is the answer chosen in the first round correct? Choose "All other options are wrong." after replacing Do not choose "All other options are wrong." after replacing

GPT-3.5-TURBO True 25.99% 33.27%
False 5.85% 34.88%

Acc. 81.61% 48.82%

GPT-4-TURBO True 70.75% 16.83%
False 3.00% 9.42%

Acc. 95.93% 64.10%

BAICUAN2-13B-CHAT True 5.14% 29.40%
False 4.22% 61.24%

Acc. 54.90% 32.43%

LLAMA2-7B-CHAT True 3.92% 23.50%
False 4.83% 67.75%

Acc. 44.76% 25.75%

LLAMA2-13B-CHAT True 3.55% 25.64%
False 2.82% 67.99%

Acc. 55.77% 27.39%

LLAMA2-70B-CHAT True 13.59% 38.43%
False 3.98% 44.00%

Acc. 77.35% 46.62%

Table 5: We found that if the option chosen by the model in the first round is replaced with "All other options are
wrong," the model then chooses "All other options are wrong" in the second round. In this case, the accuracy of the
model’s first-round choice is significantly higher compared to when it chooses other options in the second round.
The results are derived from TruthfulQA.

B Additional Results785

B.1 Compared with Conformal Prediction786

We reproduce Conformal Prediction for RLHF-787

LMs (Kumar et al., 2023) in our dataset and set-788

ting. Specifically, for each dataset, we select 50%789

samples as the calibration set and the other sam-790

ples as the test set. We also set the error rate to791

α = 0.1 meaning the prediction answer set has a792

90% probability of containing the correct answer.793

We then calculate the conformal scores in the cali-794

bration set, where the specific calculation formula795

is Score = 1−maxSoftmaxScore. For the test796

set, we take the 1 − α quantile of the conformal797

scores from the calibration set as the threshold q.798

During the testing stage, for a given sample, it is799

only added to the prediction set if its generated800

probability is greater than or equal to 1 − q. For801

each sample in the prediction set, we consider its802

confidence to be (1 − α) · (SoftmaxScore). as803

shown in the following table 6, our proposed UF804

Calibration still demonstrates good calibration com-805

pared to conformal prediction for RLHF-LMs. It806

is also important to note that conformal prediction807

requires a calibration set to determine a threshold808

to build a prediction set. However, our method is809

a plug-and-play approach that can accurately esti-810

mate the model’s confidence without requiring any811

prior knowledge.812

B.2 Brier Score813

Besides the ECE metric, the Brier Score is also814

commonly used as an evaluation criterion for model815

calibration. 816

BrierScore =
1

N

N∑
t=1

(ft − ot)
2, (10) 817

where ft is the probability and ot is the label. Ac- 818

cordingly, ft can be referred to as the model’s con- 819

fidence, while ot represents whether it is the correct 820

answer (0 indicating an incorrect answer, 1 indicat- 821

ing a correct answer). In Table 7, we present the 822

Brier Scores of various baselines and our proposed 823

method. It can be seen that our method still exhibits 824

good calibration, especially for closed-source mod- 825

els such as GPT-3.5-Turbo, GPT-4 Turbo. 826

C Why could CE be used as a metric? 827

As mentioned in section 4.2, we found that Lan- 828

guage models tend to prefer outputting expressions 829

of certain confidence, such as ’Highly Likely’, 0.8, 830

and 0.9. In the table 10, we have counted the oc- 831

currence of different confidence levels for various 832

models on different datasets to demonstrate the 833

model’s preference for certain confidence levels 834

when using the Verb and Ling method. 835

We also notice that as the model parameters 836

increased, the accuracy of the model improved, 837

but the language model’s preference for certain 838

confidence levels do not change and even became 839

stronger. Therefore, we introduced the Confidence 840

Evenness to assess whether the model’s confidence 841

is overly concentrated in certain intervals. 842

Can existing metrics (such as ECE) capture this 843

phenomenon? There is an example: on Common- 844

SenseQA, as the parameters of Llama2-Chat in- 845

creasing, the accuracy rises from 51% to 70%, 846
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Model Dataset Method ECE10 ↓ BS ↓ CE10 ↑ IPR10 ↓

GPT-3.5-TURBO MMLU Conformal Prediction 0.086 0.189 0.897 0.111
Ours 0.088 0.170 0.812 0.083

TruthfulQA Conformal Prediction 0.115 0.197 0.884 0.028
Ours 0.074 0.153 0.775 0.133

CommonSenseQA Conformal Prediction 0.079 0.173 0.699 0.139
Ours 0.073 0.139 0.812 0.083

ARC Conformal Prediction 0.039 0.142 0.670 0.143
Ours 0.112 0.141 0.897 0.139

GPT-4-TURBO MMLU Conformal Prediction 0.084 0.164 0.482 0.472
Ours 0.089 0.142 0.906 0.083

TruthfulQA Conformal Prediction 0.046 0.112 0.425 0.222
Ours 0.042 0.102 0.764 0.044

CommonSenseQA Conformal Prediction 0.040 0.130 0.509 0.194
Ours 0.109 0.134 0.925 0.083

ARC Conformal Prediction 0.084 0.026 0.000 0.000
Ours 0.127 0.095 0.757 0.083

BAICHUAN2-13B-CHAT MMLU Conformal Prediction 0.130 0.218 0.888 0.056
Ours 0.076 0.193 0.829 0.028

TruthfulQA Conformal Prediction 0.209 0.239 0.865 0.250
Ours 0.080 0.149 0.704 0.028

CommonSenseQA Conformal Prediction 0.056 0.162 0.801 0.056
Ours 0.051 0.153 0.886 0.056

ARC Conformal Prediction 0.061 0.173 0.848 0.028
Ours 0.063 0.166 0.887 0.028

LLAMA2-7B-CHAT MMLU Conformal Prediction 0.253 0.290 0.864 0.361
Ours 0.102 0.214 0.890 0.167

TruthfulQA Conformal Prediction 0.353 0.361 0.825 0.361
Ours 0.121 0.186 0.762 0.083

CommonSenseQA Conformal Prediction 0.234 0.283 0.655 0.333
Ours 0.053 0.181 0.907 0.167

ARC Conformal Prediction 0.260 0.308 0.701 0.083
Ours 0.073 0.204 0.921 0.111

LLAMA2-13B-CHAT MMLU Conformal Prediction 0.279 0.317 0.740 0.250
Ours 0.070 0.196 0.852 0.083

TruthfulQA Conformal Prediction 0.429 0.416 0.728 0.611
Ours 0.121 0.180 0.762 0.083

CommonSenseQA Conformal Prediction 0.220 0.274 0.647 0.250
Ours 0.043 0.166 0.883 0.111

ARC Conformal Prediction 0.212 0.260 0.611 0.361
Ours 0.069 0.178 0.886 0.111

LLAMA2-70B-CHAT MMLU Conformal Prediction 0.260 0.305 0.592 0.250
Ours 0.066 0.189 0.898 0.083

TruthfulQA Conformal Prediction 0.281 0.301 0.558 0.306
Ours 0.093 0.162 0.804 0.089

CommonSenseQA Conformal Prediction 0.156 0.221 0.479 0.333
Ours 0.094 0.156 0.908 0.111

ARC Conformal Prediction 0.118 0.189 0.427 0.361
Ours 0.085 0.154 0.908 0.111

Table 6: Comparing calibration results of Conformal Prediction of RLHF-LMs (Kumar et al., 2023) and our
proposed method.
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Figure 7: The Impact of Temperature on Different Methods. Our proposed method achieved well-calibrated results
across all temperatures. The experimental results are derived from Baichuan2-13B-Chat.

Model Method ARC-Challenge MMLU CommonSenseQA TruthfulQA Avg.

GPT-3.5-TURBO Verb 0.181 0.247 0.189 0.274 0.223
Ling 0.197 0.278 0.204 0.318 0.249

Sampled 0.157 0.202 0.216 0.206 0.195
Conformal 0.142 0.189 0.173 0.197 0.175

Ours 0.141 0.170 0.139 0.153 0.151

GPT-4-TURBO Verb 0.181 0.247 0.204 0.274 0.227
Ling 0.198 0.278 0.216 0.318 0.253

Sampled 0.074 0.174 0.147 0.112 0.127
Conformal 0.026 0.164 0.130 0.112 0.108

Ours 0.095 0.142 0.134 0.102 0.118

BAICHUAN2-13B-CHAT Verb 0.257 0.294 0.239 0.363 0.288
Ling 0.336 0.407 0.235 0.553 0.383

Sampled 0.196 0.236 0.186 0.262 0.220
Token 0.095 0.168 0.092 0.198 0.138

Conformal 0.173 0.218 0.162 0.239 0.198
Ours 0.166 0.193 0.153 0.149 0.165

LLAMA2-7B-CHAT Verb 0.332 0.348 0.283 0.449 0.353
Ling 0.451 0.471 0.396 0.609 0.4821

Sampled 0.358 0.350 0.323 0.411 0.360
Token 0.171 0.238 0.158 0.246 0.203

Conformal 0.308 0.290 0.283 0.361 0.311
Ours 0.204 0.214 0.181 0.186 0.196

LLAMA2-13B-CHAT Verb 0.277 0.320 0.272 0.394 0.316
Ling 0.352 0.448 0.343 0.599 0.435

Sampled 0.318 0.374 0.317 0.470 0.370
Token 0.141 0.233 0.150 0.242 0.192

Conformal 0.260 0.317 0.274 0.416 0.317
Ours 0.178 0.196 0.166 0.180 0.180

LLAMA2-70B-CHAT Verb 0.206 0.297 0.208 0.332 0.261
Ling 0.267 0.390 0.240 0.496 0.348

Sampled 0.236 0.347 0.237 0.360 0.295
Token 0.094 0.196 0.098 0.174 0.141

Conformal 0.189 0.305 0.221 0.301 0.254
Ours 0.154 0.189 0.156 0.162 0.165

Table 7: The Brier Score of different methods from six RLHF-Models on four MCQA datasets.

and the ECE using the Ling method decrease from847

0.385 to 0.189. But the 70B model shows a stronger848

preference for outputting a confidence of 0.9. Fo-849

cusing solely on the ECE metric cannot fully ob-850

serve the changes in model preferences. Fortu-851

nately, this phenomenal could be reflected by the852

CE metrics.853

Another extreme case is if models of varying854

parameter sizes always output a 0.9 confidence855

level, and as the model size increases, the aver- 856

age accuracy just shifts from 70% to 90%, then 857

the ECE would drop to 0. If we only use exist- 858

ing metrics for observation, we might conclude 859

that the model with the largest parameters has the 860

strongest self-awareness. However, by evaluating 861

the CE metric across different models, we can iden- 862

tify a potential preference in how models express 863

confidence. Its ECE becoming 0 might just coin- 864
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cidentally be because the average accuracy on a865

certain dataset equals the confidence level it prefers866

to output. Therefore, we believe the CE metric867

provides a new perspective for observing model868

confidence calibration.869

Finally, it should be noted that we believe an870

over-concentration of model confidence in a par-871

ticular value or interval is not conducive to using872

model confidence as a simple metric to filter out873

low-confidence answers.874

D The Computation Cost of Eliciting875

Fidelity876

In this section, we will display the average length877

of the fidelity chains for different models across878

various datasets in the Table 8. Since we deploy879

greedy decoding during the process of eliciting880

fidelity,the average length of the fidelity chain is881

equal to the average number of requests. At the882

same time, it should be noted that, when eliciting883

the Fidelity Chain, only 1 token needs to be gener-884

ated. Therefore, the average length of the fidelity885

chain can also be regarded as the average number886

of tokens generated.887

Model ARC-Challenge MMLU CommonSenseQA TruthfulQA Avg.

GPT-3.5-TURBO 2.774 2.984 3.052 3.275 3.021
GPT-4-TURBO 1.492 1.915 2.157 1.616 1.795
BAICHUAN2-13B-CHAT 2.830 2.820 2.889 4.345 3.221
LLAMA2-7B-CHAT 2.467 2.631 2.771 3.944 2.953
LLAMA2-13B-CHAT 2.725 2.875 2.956 4.100 3.164
LLAMA2-70B-CHAT 2.384 2.563 2.455 3.284 2.671

Table 8: The average length of the fidelity chains for
different models across various datasets

E Prompt Templates888

We use the prompt template from Tian et al. (2023)889

for a fair comparison. The prompt template for890

each baseline is provided in Table 11. The question891

is substituted for the variable ${THE_QUESTION} in892

each prompt. Table 9 shows the linguistic expres-893

sion list of confidence we used for the Ling Method,894

which originates from Fagen-Ulmschneider (2023).895

F Reliability Diagram896

We provide the reliability diagrams of all the RLHF-897

LMs we evaluated in Figures 8-13. In a reliability898

diagram, the darker the color of the bar, the greater899

its density is, which indicates a preference for the900

confidence the language models express. Although901

the average accuracy of various RLHF-LMs is quite902

different, these model always prefer to express their903

confidence about 70-90% in verbalized methods.904

Linguistic Expression Confidence Score

‘Certain’ 1.0
‘Almost Certain’ 0.95
‘Highly Likely’ 0.9

‘Very Good Chance’ 0.8
‘We Believe’ 0.75
‘Probably’ 0.7
‘Probable’ 0.7
‘Likely’ 0.7

‘Better than Even’ 0.6
‘About Even’ 0.5
‘Probably Not’ 0.25
‘We Doubt’ 0.2
‘Unlikely’ 0.2

‘Little Chance’ 0.1
‘Chances are Slight’ 0.1

‘Improbable’ 0.1
‘Highly Unlikely’ 0.05
‘Almost No Chance’ 0.02

‘Impossible’ 0.0

Table 9: The EXPRESSION_LIST we used for the Ling
Method.
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Dataset Method Model 0.0 0.02 0.05 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1.0 ECE10 ↓ CE10 ↑ Acc ↑

CSQA Verb LLAMA2-7B-CHAT 3 0 0 1 25 0 23 5 78 10 309 727 19 0 21 0.208 0.516 52.662
LLAMA2-13B-CHAT 11 0 0 0 9 0 1 29 7 112 108 851 61 0 32 0.204 0.497 56.260
LLAMA2-70B-CHAT 6 0 0 2 2 0 3 3 1 23 221 955 2 0 3 0.069 0.286 70.680

Ling LLAMA2-7B-CHAT 11 0 21 0 3 0 0 0 1 5 2 13 1020 75 70 0.385 0.275 51.597
LLAMA2-13B-CHAT 18 1 11 0 6 0 0 0 0 0 3 194 892 96 0 0.316 0.449 56.692
LLAMA2-70B-CHAT 0 0 26 0 0 0 0 0 0 1 2 2 1172 2 16 0.189 0.117 70.106

MMLU Verb LLAMA2-7B-CHAT 14 0 0 3 46 0 21 16 65 44 488 981 26 0 24 0.325 0.531 41.551
LLAMA2-13B-CHAT 23 0 0 0 41 0 0 54 7 227 278 1056 18 0 24 0.286 0.572 45.614
LLAMA2-70B-CHAT 1 0 0 0 7 0 3 1 2 9 518 1159 1 0 27 0.236 0.351 53.183

Ling LLAMA2-7B-CHAT 47 0 101 0 21 0 0 0 6 4 7 12 1408 77 45 0.478 0.315 38.542
LLAMA2-13B-CHAT 81 1 15 0 4 2 0 0 0 0 4 84 1261 261 11 0.448 0.378 45.040
LLAMA2-70B-CHAT 3 0 31 0 0 0 0 0 0 6 2 5 1673 1 7 0.375 0.096 51.794

ARC Verb LLAMA2-7B-CHAT 4 0 0 0 26 0 13 6 53 5 216 800 20 0 29 0.294 0.482 45.904
LLAMA2-13B-CHAT 1 0 0 0 31 0 0 13 13 68 129 851 18 0 47 0.198 0.495 57.594
LLAMA2-70B-CHAT 3 0 0 0 11 0 3 0 2 6 288 836 3 0 20 0.071 0.369 70.819

Ling LLAMA2-7B-CHAT 3 0 24 0 10 0 0 0 0 0 5 10 1023 53 44 0.452 0.283 44.625
LLAMA2-13B-CHAT 1 0 5 0 5 0 0 0 0 0 1 76 914 162 8 0.327 0.393 57.301
LLAMA2-70B-CHAT 3 0 27 1 0 0 0 0 0 3 1 1 1121 2 13 0.223 0.119 67.833

TruthfulQA Verb LLAMA2-7B-CHAT 10 0 0 1 23 0 8 2 125 18 167 406 17 0 40 0.499 0.626 21.787
LLAMA2-13B-CHAT 11 0 0 1 11 0 0 56 34 145 116 369 26 0 48 0.443 0.732 27.138
LLAMA2-70B-CHAT 3 0 0 0 7 0 4 4 4 22 320 404 9 0 30 0.311 0.522 43.452

Ling LLAMA2-7B-CHAT 30 0 53 0 10 0 0 0 8 4 4 15 611 43 39 0.647 0.406 24.113
LLAMA2-13B-CHAT 39 2 19 0 4 0 0 0 0 0 4 40 526 177 6 0.627 0.508 26.864
LLAMA2-70B-CHAT 10 0 31 0 0 0 0 0 0 3 0 9 718 12 31 0.507 0.289 36.597

Table 10: Language models tend to prefer outputting expressions of certain confidence, such as 0.8, and 0.9.

Method Prompt Template

Verb (Tian et al., 2023) Provide your best guess and the probability that it is correct (0.0 to 1.0) for
the following question. Give ONLY the guess and probability, no other words or
explanation. For example:\nGuess: <most likely option, without any extra commentary
whatsoever; just the option>\nProbability: <the probability between 0.0 and 1.0
that your guess is correct, without any extra commentary whatsoever; just the
probability!>\nThe question is: {question}\nOptions:\n{choices}Answer:

Ling (Tian et al., 2023) Provide your best guess for the following question, and describe how likely it is
that your guess is correct as one of the following expressions: {EXPRESSION_LIST}.
Give ONLY the guess and your confidence, no other words or explanation. For
example:\n\n Guess: <most likely guess, as short as possible; not a complete
sentence, just the guess!>\n Confidence: <description of confidence, without any
extra commentary whatsoever; just a short phrase!>\n The question is: {question}\n
Options:\n{choices}Answer:

Sampled Provide the option you agree with most for the following question. Give ONLY
the option of the answer, no other words or explanation. For example:\nAnswer:
<most likely option, without any extra commentary whatsoever; just the option>\nThe
question is: {question}\nOptions:\n{choices}Answer:

Token Provide the option you agree with most for the following question. Give ONLY
the option of the answer, no other words or explanation. For example:\nAnswer:
<most likely option, without any extra commentary whatsoever; just the option>\nThe
question is: {question}\nOptions:\n{choices}Answer:

Ours Provide the option you agree with most for the following question. Give ONLY
the option of the answer, no other words or explanation. For example:\nAnswer:
<most likely option, without any extra commentary whatsoever; just the option>\nThe
question is: {question}\nOptions:\n{choices}Answer:

Table 11: Prompt templates for each method evaluated.
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Figure 8: The experimental results are derived from GPT-3.5-Turbo on 4 MCQA datasets.

Figure 9: The experimental results are derived from GPT-4-Turbo on 4 MCQA datasets.
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Figure 10: The experimental results are derived from Baichuan2-13B-Chat on 4 MCQA datasets.

Figure 11: The experimental results are derived from LLaMA2-7B-Chat on 4 MCQA datasets.
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Figure 12: The experimental results are derived from LLaMA2-13B-Chat on 4 MCQA datasets.

Figure 13: The experimental results are derived from LLaMA2-70B-Chat on 4 MCQA datasets.
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