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Abstract—We propose OpenVLM-Nav, a training-free frame-
work for zero-shot object-goal navigation using open-source
vision—-language models. Using CLIP [1], BLIP [2], and Qwen3-
VL-2B [3], the agent interprets object descriptions directly from
images without task-specific training. Qwen3-VL-2B performs
the best, and we further study two extensions: a history module
for temporal context and a depth module for geometric cues.
Depth provides the most significant gain, improving the Success
Rate (SR) from 0.08 to 0.14 and reducing the Distance-to-
Goal (DTG) from 7.824 to 7.567. History gives minor, but
consistent improvements. These results demonstrate that simple,
training-free VLM-based navigation can be enhanced through
the incorporation of temporal reasoning and depth information.
Related codes will be made public.

Index Terms—Zero-Shot Navigation, Object Goal Navigation,
Embodied AI, Habitat.

I. INTRODUCTION

Robotics, an interdisciplinary field, deals with autonomous
agents capable of performing repetitive tasks with precision
and accuracy. Al has played a crucial role in the wide
acceptance of robots/autonomous agents. Embodied Al is a
field where Al agents are trained to perceive their environment
and make informed decisions. Although simulators such as
Gazebo and Unity remain valuable, Habitat [4] is a preferred
choice for embodied Al research.

When an agent successfully moves from point A to point
B, we refer to it as navigation; similarly, when it does so
by sensing its environment, it is referred to as embodied
navigation. In object goal navigation, the agent attempts to
navigate towards a specific object category. Zero-shot object
goal navigation is an arena where models trained on a different
downstream capability are utilized for object goal navigation
tasks. Few papers [5], [6] have attempted zero-shot object goal
navigation, leveraging models trained on embodied navigation,
image goal navigation, and pixel goal navigation. In zero-
shot navigation, when deploying a model trained on task A
to another task B, VLMs are used to bridge the gap between
the two. We primarily see researchers using ChatGPT [7],
which is a paid solution [6], [8]. Even though they offer
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Fig. 1. The proposed methodology is depicted here. The Observations from
the actor in the habitat simulator are preprocessed and passed to the Scene
Captioning module and the Goal Reasoning module, along with the history
and goal category as prompts. The directions returned by the agent are passed
to the agent to act. State is used to compute the metrics.

better qualitative results, the cost incurred in each iteration
makes it less feasible. Training a new VLM from scratch
requires compute, data, and time. Through this work, we
aim to explore the capabilities of various open-source VLMs
trained on open data in relation to ZSON. Thus, we introduce
a training-free ZSON framework for embodied navigation,
built on generalized open-source VLMs. We also attempt to
examine the impact of history and depth on the decision-
making capabilities of these VLMs, particularly in the context
of embodied navigation.

II. METHODOLOGY
A. VLM guided Navigation

1) Prompt Engineering: We employ a two-stage prompting
pipeline for zero-shot object navigation using a VLM. First,
the model generates a structured spatial caption that describes
objects, free space, and navigable cues (left/center/right). This
caption, together with the raw image and goal category, is
used in a second prompt that constrains the model to select
a discrete action (FORWARD, LEFT, RIGHT, STOP). Addi-
tional prompt rules (directional priors and opening preference)
stabilize navigation and improve exploration consistency.



prompt = (

f"You are a navigation agent. Combine the RGB image and the depth map to describe the scene and where a {goal} might be. "
“Warmer colors in the depth map indicate closer objects. Cooler colers indicate farther objects. "
“Mention: whether the goal appears visible, which direction (forward/left/right) ™

"has more open space, and any nearby obstacles or doorways. "

“Keep answer concise: 1-2 sentences, but include clear directional hints like ‘open to the left’ or ‘obstacle ahead’."

)

prompt = (

f"You are a navigation controller trying to find and reach a {goal}.\n\n"

f"{history_str}in\n"
f"Current scene description:\n{caption}\n\n"

f"Your task: Navigate to the {goal}. Based on the scene caption and RGB image, choose ONE action: FORWARD, LEFT, RIGHT, or STOP.\n\n"

“Rules:\n"

f"- FORWARD: if there is a clear path or open space ahead that might lead to the {goal}\n"
"~ LEFT/RIGHT: if there is a door, opening, or clear passage to the respective side that might have the {goal}\n"
f"- STOP: ONLY if you can clearly see the {goal} directly in front and very close\n\n"

“Reply with exactly ONE WORD: FORWARD, LEFT, RIGHT, or STOP."

Fig. 2. Prompt templates for the VLM: (upper prompt is used to generate scene captions, while the lower prompt is used to predict navigation actions)

2) History and Depth Aware VLM guided Navigation:
We incorporate a concise history of the recent actions and
scene captions to provide the VLM with a limited form of
temporal context. This design enables the model to reason
not only over the current frame but also over how the agent
has navigated in recent steps. Depth cues, encoded as a heat
map, where warmer colours indicate nearby objects and cooler
colours represent open spaces, provide the VLM with explicit
distance information. This helps it better understand spatial
layout, avoid obstacles, and perform safer navigation actions.

III. RESULTS AND DISCUSSIONS

We conducted experiments to assess the applicability of

open-source VLMs (without domain-specific knowledge) for
zero-shot object-goal navigation. All experiments were per-
formed using Habitat sim [4] on the MP3D [9] dataset.
Results from a few models trained on embodied navigation,
which were extended to zero-shot object goal navigation, are
taken. Pretrained VLMs, like CLIP, BLIP, and Qwen3-VL-2B,
were selected for our experiments. Models were evaluated for
50 episodes on an RTX 3060 GPU. During CLIP-based textual
reasoning, the Phi-3 LLM is used to support the process.
Scene descriptions generated by the VLM are fed back into
the model to predict the next actions. The prompts used in our
experiments are shown in Figure 2.
For the best-performing candidate, we extended the inputs
to include the depth map along with the history of scene
descriptions and actions from the last N(=3) steps. Each of
these inputs individually improved Success Rate (SR), Success
weighted Path Length (SPL), and Distance to Goal (DTG).
We therefore examined whether combining them would yield
further performance gains.

A sample successful episode is depicted visually in Figure
3. All resultant metrics are also included in Table I. From the
numbers, it is evident that Qwen3 achieves a competitive zero-
shot baseline on ZSON. Across settings, adding depth and/or
history improves navigation performance. Depth provides the
highest performance gains in terms of SR, whereas adding
history alone yields moderate improvements, and combining
both maintains the high SR. Depth forces the VLM to make an
informed trade-off between describing the scene and avoiding
obstacles. The low SPL in the case of added depth and history

TABLE I
ZERO-SHOT OBJECT NAVIGATION PERFORMANCE COMPARISON ON THE
MP3D DATASET.

Model Type Model SR (1) | SPL (1) | DTG ({)
Models trained ZSON: Zero-Shot | 0.1467 0.0637 4.68
on embodied Object-Goal Navigation
navigation using _Mullimodal Goal
task Embeddings [5]
RGB PixNav with BLIP [10] | 0.0526 0.0312 5.03
Depth PixNav with BLIP [10] | 0.0421 0.0059 4.84
Ensemble (RGB + Depth) | 0.0600 0.00275 7.03
PixNav with BLIP [10]
Open-source CLIP + Phi-3 0 0 9.484
VIMs BLIP 0 0 7.990
(no domain
knowledge) Qwen3-VL-2B 0.08 0.061 7.824
Effect of depth Qwen3-VL-2B with history 0.10 0.0867 7.728
and history on Qwen3-VL-2B with depth 0.14 0.0755 7.567
VLMs Qwen3-VL-2B with history + | 0.14 0.0556 7.569
depth

Fig. 3. Top down map view (top) and the observations seen by the agent
(bottom) during a successful episode.

modality is mostly due to confusion when making an informed
choice with a lot of prior information.

IV. CONCLUSIONS

Our experiments demonstrate that open-source VLMs
trained without domain knowledge can serve as viable agents
for zero-shot object goal navigation. With Qwen3 and depth,
we got an inference time of ~200s for an episode with
around 80 steps. This shows that the approach is low-cost and
lightweight, making it feasible for local inference and edge-
computing deployments. Minor modifications to the prompts
lead to substantial changes in performance. This highlights the
importance of prompt design and suggests a clear direction for
future work on prompt tuning.
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