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ABSTRACT

Graph Neural Networks have achieved tremendous success in (semi-)supervised tasks for
which task-specific node labels are available. However, obtaining labels is expensive in
many domains, specially as the graphs grow larger in size. Hence, there has been a growing
interest in the application of self-supervised techniques, in particular contrastive learning
(CL), to graph data. In general, CL methods work by maximizing the agreement between
encoded augmentations of the same example, and minimizing agreement between encoded
augmentations of different examples. However, we show that existing graph CL methods
perform very poorly on graphs with heterophily, in which connected nodes tend to belong
to different classes. First, we show that this is attributed to the ineffectiveness of existing
graph augmentation methods. Then, we leverage graph filters to directly generate aug-
mented graph views for graph CL under heterophily. In particular, instead of explicitly
augmenting the graph topology and encoding the augmentations, we use a high-pass filter
in the encoder to generate node representations only based on high-frequency graph sig-
nals. Then, we contrast the high-pass filtered representations with their low-pass counter-
parts produced by the same encoder, to generate representations. Our experimental results
confirm that our proposed method, HLCL, outperforms state-of-the-art CL methods on
benchmark graphs with heterophily, by up to 10%.

1 INTRODUCTION

Graph neural networks (GNNs) are powerful tools for learning graph-structured data in various domains,
including social networks, biological compound structures, and citation networks (Kipf & Welling, 2016;
Hamilton et al., 2017; Veličković et al., 2017). In general, GNNs leverage the graph’s adjacency matrix to
update the node representations by aggregating information from their neighbors. This can be seen as a low-
pass filter that smooths the graph signals and produces similar node representations (Nt & Maehara, 2019).
GNNs have achieved great success in supervised and semi-supervised learning, where task-specific labels
are available. However, obtaining high-quality labels is very expensive in many domains, specially as graphs
grow larger in size. This has motivated a recent body of work on self-supervised learning on graphs that learn
the representations in an unsupervised manner (Velickovic et al., 2019; Peng et al., 2020; Qiu et al., 2020;
Hassani & Khasahmadi, 2020; Zhu et al., 2020b). Among self-supervised methods, Contrastive Learning
(CL) has shown a great success by achieving comparable performance with its supervised counterparts (Chen
et al., 2020). Contrastive learning obtains representations by maximizing the mutual information between
different augmented views of the same example, and minimizing agreement between differently augmented
views of different examples. Despite being successful on graphs with homophily, where neighboring nodes
tend to share the same label, existing graph CL methods cannot learn high-quality representations for graphs
with heterophily, where connected nodes often belong to different classes Zhu et al. (2020b).

State-of-the-art graph CL methods work by contrasting the encoded node representations in two explicitly
augmented graph views, generated by altering the graph topology or node features (Zhu et al., 2020c; 2021b;
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Figure 1: Our proposed HLCL framework leverages a high-pass graph filter in the encoder to generate a
non-smooth graph view, and contrast it with its smooth counterparts generated by the same encoder.

Velickovic et al., 2019; Thakoor et al., 2021). Specifically, topology augmentation methods alter the graph
structure by removing or adding nodes or edges. Feature augmentation methods alter the node features by
masking particular columns, dropping features at random, or randomly shuffling the node features. The
choice of the augmentation strategy has been shown to have a great influence on the performance of graph
CL methods (Zhang & Ma, 2022; Zhu et al., 2021b). In particular, topology augmentations such as edge
dropping that produce sparser graphs are the most effective for graphs with homophily (Zhu et al., 2021b).

In this work, we first study the effect of existing graph augmentation methods on the performance of graph
CL under heterophily. We show that topology and feature augmentation methods that can effectively boost
the performance of graph CL under homophily do not provide any considerable advantage under heterophily.
In particular, we experimentally confirm that for graphs with homophily, topology augmentation effectively
decreases the homophily ratio, and feature augmentation changes the variance of features in a neighborhood.
Hence, explicit graph augmentation techniques enable the low-pass GNN encoder to better distinguish the
smooth node representations—that are similar in a neighborhood—by adding more diversity to the graph.
However, such methods cannot effectively diversify and alter the homophily ratio or variance of features in
graphs with heterophily. Indeed, for such graphs, incorporating the graph structure is crucial for generating
high-quality representations that can distinguish dissimilar nodes from their neighborhood.

Next, we address the above shortcoming by proposing an effective augmentation strategy for CL on graphs
with heterophily, while ensuring high-quality representation learning on graphs with homophily. The key
idea of our proposed method, HLCL, is to leverage a high-pass graph filter in a typical GNN encoder
to directly generate non-smooth node representations, and contrast them with their smooth counterparts
generated by the same encoder. More specifically, we use the normalized Lapcalian matrix as the high-pass
filter in the GNN encoder to aggregate the node representations. The Laplacian matrix magnifies the
differences in the node features in a neighborhood and makes the representations distinct. This is crucial
for learning high-quality representation under heterophily. In contrast, a typical GNN encoder uses
the normalized adjacency matrix as a low-pass filter to aggregate the node features with those of their
neighbors, and enforce similar representations for the nodes in the same neighborhood. Maximizing the
mutual information between the high-pass and low-pass filtered representations enables the encoder to learn
rich representations on graphs with heterophily. Importantly, our method is complementary to explicit graph
augmentation techniques, and such methods can be applied to further boost the performance, particularly
on graphs with homophily. This allows our framework to achieve state-of-the-art under heterophily and
comparable performance under homophily as we confirm by our experiments.

We show the effectiveness of our HLCL framework through extensive experiments on graphs with het-
erophily and homophily for unsupervised representations learning under the linear evaluation protocol. Our
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results demonstrate that, on five popular public benchmark datasets, our framework can outperform existing
graph CL methods by up to 10% for representation learning on graphs with heterophily, while ensuring a
comparable performance to state-of-the-art graph CL methods on graphs with homophily.

2 RELATED WORK

(Semi-)supervised learning on graphs. In recent years, GNNs have become one of the most prominent
tools for processing graph-structured data. In general, GNNs utilize the adjacency matrix to learn the node
representations, by aggregating information within every node’s neighborhood (Defferrard et al., 2016; Kipf
& Welling, 2016). Existing variants, including GraphSAGE (Hamilton et al., 2017), Graph Attention (GAT)
(Veličković et al., 2017), MixHop (Abu-El-Haija et al., 2019), SGC (Nt & Maehara, 2019), GAT (Velickovic
et al., 2019), and GIN (Xu et al., 2018), learn a more general class of neighborhood mixing relationships, by
aggregating weighted information within a multi-hop neighborhood of every node. GNNs can be generally
seen as applying a fix, or a parametric and learnable (e.g. GAT) low-pass graph filter to graph signals. Those
with trainable parameters can adapt to a wider range of frequency levels on different graphs. However, they
still have a higher emphasis on lower-frequency signals and discard the high-frequency signals in a graph.
While the aggregation operation makes GNNs powerful tools for semi-supervised learning, it often leads to
over-smoothing issue, i.e., the learned node representations become indistinguishable in a neighborhood (Nt
& Maehara, 2019). As a result, typical GNNs and their variants have been long criticized on their inability
to capture graph heterophily and poor generalization performance on heterogeneous dataset (Balcilar et al.,
2020), where most connected nodes are from different classes.

(Semi-)supervised learning under heterophily. To address over-smoothing issue of GNNs, recent meth-
ods propose to use other types of aggregation that better fit graphs with heterophily. Geom-GCN uses geo-
metric aggregation in place of the typical aggregation (Pei et al., 2020), H2GCN uses several special model
designs including separate aggregation and higher-neighborhood aggregation to train the model for handling
graphs with heterophily, and CPGNN trains a compatibility matrix to model the heterophily level (Zhu et al.,
2020a). More recently, Wang et al. (2019) proposed to learn an aggregation filter for every graph from a
set of based filters designed based on different ways of normalizing the adjacency matrix. Most recently,
GGCN introduced degree corrections and signed message passing on GCN to address both oversmoothing
problems and the model’s poor performances on heterophily graphs (Yan et al., 2021). Zhu et al. (2021a)
analyzed and designed a uniform framework for GNNs propagations and proposed GNN-LF and GNN-HF
that preserve information of different frequency separately by using different filtering kernels with learnable
weights. FAGCN (Bo et al., 2021) and FBGNN (Luan et al., 2020) also leveraged the Laplacian matrix to
capture the non-smooth signals discarded in typical GNNs. Two separate encoders are trained to capture the
high-pass and low-pass graph signals separately, and the two outputs are combined with learnable parame-
ters to balance their importance. Such methods achieve a superior performance under heterophily. However,
learning how to combine the encoder outputs is highly sensitive to having high-quality labels. This makes
such methods highly impractical for unsupervised contrastive learning.

Contrastive learning on graphs. Self-supervised contrastive learning methods learn representations of
data points by maximizing the mutual information between different views of the same data point, and
minimizing agreement between differently augmented views of different examples (Bachman et al., 2019;
Ye et al., 2019; Wu et al., 2018; Chen et al., 2020; Sohn et al., 2020). For graphs, global graph-level and
local node-level data are augmented and contrasted in different ways. DGI (Velickovic et al., 2019) and
GMI (Peng et al., 2020) contrast graph and node representations within one augmented view of the original
graph. More recent methods contrast global and local representations in two augmented views. GRAPHCL
generates graph augmentations by subgraph sampling, node dropping, and edge perturbation and contrasts
the augmented graph representations. GCC samples and contrasts subgraphs of the original graph (Qiu
et al., 2020). MVGRL leverages node diffusion to augment the graph and contrasts the node representations
(Hassani & Khasahmadi, 2020). More recently, contrasting the local node representations has been shown to
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achieve state-of-the-art. GRACE contrasts the node representations in two graph views augmented with fea-
ture masking and edge removal (Zhu et al., 2020c). GCA extends this by dropping the less important edges
and features, based on node centrality and feature importance metrics (Zhu et al., 2021c). A thorough empir-
ical study on the combinatorial effect of different augmentations has been conducted by Zhu et al. (2021b).
Due to the complexity of collecting negative samples in graph data, negative-samples-free contrastive ob-
jectives have been also studied. Among existing methods, BGRL that uses the Bootstrapping Latent loss
(Thakoor et al., 2021), and GBT uses Barlow Twins loss (Bielak et al., 2021) are the most successful. Exist-
ing graph CL methods explicitly augment the input graph and contrast the augmented graph representations
obtained with low-pass GNN-based encoders. Hence, they perform poorly on graphs with heterophily. In
contrast, we leverage low-pass and high-pass graph filters to directly obtain different graph views, without
relying on explicit graph augmentation. This allows achieving state-of-the-art under heterophily.

3 CONTRASTIVE LEARNING VIA GRAPH FILTERS

Here, we introduce our proposed contrastive learning pipeline, HLCL. The key idea of our method is to gen-
erate a non-smooth augmented representation and contrast it with the smooth representation generated using
the same encoder. A typical GNN filters smooth graph frequencies by aggregating the node representations
with those of their neighbors. Hence, it results in similar representations for the nodes in a neighborhood. In
contrast, the high-pass filter only preserves the high-pass frequencies. In doing so, it magnifies the dissim-
ilarities between the nodes and diversifies the representations of nodes in a neighborhood. Contrasting the
two filtered representations results in learning rich representations, particularly under heterophily.

3.1 PRELIMINARIES

We denote by G = (V, E) an undirected graph, where V = {v1, v2, . . . , vN} represents the node set, and
E ⊆ V ×V represents the edge set. We denote by AAA ∈ {0, 1}N×N the symmetric adjacency matrix of graph
G. That is, AAAij = 1 if and only if (vi, vj) ∈ E , and AAAij = 0 otherwise. We also denote the feature matrix
by XXX , where XXXi. ∈ Rm is the feature vector of the ith node, and xxx ∈ RN is a column of the matrix and
represents a graph signal. DDD is the degree matrix of the graph, withDDDii =

∑
j AAAij , and Ni = {j : AAAij = 1}

is the neighborhood of node i. LLL is the Laplacian matrix of the graph, defined asLLL =DDD−AAA. The normalized
Laplacian matrix is denoted by LLLsym = DDD− 1

2LDLDLD− 1
2 , and the normalized adjacency matrix is defined in a

similar fashion: AAAsym = DDD− 1
2ADADAD− 1

2 . Here, we use the renormalized version of the adjacency matrix
Â̂ÂAsym = D̃̃D̃D− 1

2 Ã̃ÃAD̃̃D̃D− 1
2 as introduced in (Kipf & Welling, 2016), where Ã̃ÃA = AAA + III , D̃̃D̃D = DDD + III . Similarly,

the renormalized Laplacian matrix is defined as L̂̂L̂Lsym = III − Â̂ÂAsym. L̂̂L̂Lsym is a real symmetric matrix, with
orthonormal eigenvectors {uuui}nl=1 ∈ Rn, and corresponding eigenvalues λi ∈ [0, 2) (Chung, 1997). For
Â̂ÂAsym we have λi(Â̂ÂAsym) ∈ (−1, 1]

High-pass and Low-pass graph filters. Multiplication of Laplacian with a graph signal L̂̂L̂Lsymxxx =∑
i λiuuuiuuu

T
i xxx, acts as a filtering operation over xxx, adjusting the scale of the components of xxx in the frequency

domain. The entries of every eigenvector, uuui aligns with a cluster of connected nodes in the graph. For the
Laplacian matrix, a smaller eigenvalue λi corresponds to a smoother eigenvector uuui, and corresponds to a
larger cluster of connected nodes. On the other hand, a larger λi corresponds to non-smooth eigenvectors
uuui, which identify smaller clusters of closely connected nodes in the graph. A Laplacian filter magnifies the
part of the signal that aligns well with basis functions corresponding to large eigenvalues λi ∈ (1, 2) and
suppresses the part the signal that aligns with basis functions corresponding to small eigenvalues λi ∈ [0, 1].
That means, for the small clusters of nodes that have a large alignment with uuui corresponding to λi > 1,
the projection λiuuuiuuu

T
i xxxamplifies xxx within the cluster and consequently magnifies the difference in xxx among

the nodes within that cluster. On the other hand, for the larger clusters that align well with uuui corresponding
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to λi < 1, the projection λiuuuiuuu
T
i xxx suppresses xxx within the cluster and reduces the differences in xxx among

the nodes within that cluster. Hence the Laplacian matrices can be generally regarded as high-pass filters
(Ekambaram, 2014), that enlarge the differences in node features over small clusters, and smooths out the
differences over larger clusters in the graph. On the other hand, affinity matrices, such as the normalized
adjacency matrix, can be treated as low-pass filters (Nt & Maehara, 2019), which suppress and filter out
non-smooth components of the signals. This is because all of the eigenvalues of the affinity matrices are
smaller than 1, i.e., λi ∈ (−1, 1].

On the node level, left multiplying L̂̂L̂Lsym and Â̂ÂAsym filters with xxx can be understood as diversification and
aggregation operations, respectively (Luan et al., 2020):

(L̂̂L̂Lsymxxx)i =
∑
j∈Ni

1

DDDii
(xxxi − xxxj), (Â̂ÂAsymxxx)i =

∑
j∈Ni

1

DDDii
xxxj . (1)

High-pass filters highlight the differences between the nodes and their neighbors, making them distinguish-
able. On the other hand, low-pass filters aggregate the features of the nodes in a neighborhood and make
them similar. Since L̂̂L̂Lsym + Â̂ÂAsym = III , both filters capture complementary information and their combina-
tion allow learning richer representations.

Homophily Ratio. To quantify how likely nodes with similar labels are connected in the graph, homophily
ratio, β, is proposed (Pei et al., 2020), as follows:

β =
1

|V |
∑
v∈V

Number of v’s neighbors who have the same label as v
Number of v’s neighbors

For larger values of β, it is more likely that nodes with the same labels are connected together. As the nodes
belonging to different classes often have different features, graphs with higher β are generally smoother.

3.2 GENERATING GRAPH VIEWS VIA GRAPH FILTERS

As discussed, the key idea of our HLCL framework is to leverages a high-pass filter to generate a diverse
set of node representations, and contrast them with smooth and similar node representations generated by a
low-pass filter. To do so, we leverage the normalized Laplacian matrix L̂̂L̂Lsym and adjacency matrix Â̂ÂAsym as
the diversification and aggregation operations in Eq. (1). We note that other types of high-pass and low-pass
filters can be used in a similar way in our framework.

More specifically, we input the graphXXX into a graph encoder, and apply a high-pass filterFFFHP = L̂̂L̂Lsym and
a low-pass filter FFFLP = Â̂ÂAsym to the encoder to generate high-pass node representations HHHH and low-pass
node representations HHHL as follows:

HHH l
H = σ(FFFHPHHH

l−1
H WWW l−1), HHH l

L = σ(FFFLPHHH
l−1
L WWW l−1), HHH0

L =HHH0
H =XXX. (2)

where HHH l
L, and HHH l

H are the low-pass filtered and high-pass filtered representations at layer l of the encoder,
WWW l ∈ Rdl×dl−1 is the weight matrix in layer l of the encoder, and σ is the activation function.

The high-pass filter FFFH filters out the low-frequency signals and preserves the high-frequency signals. In
doing so, it captures the difference between features of every node with the features of the nodes in its
neighborhood. Using a high-pass encoder within a multi-layer encoder iteratively captures the difference
between features of the nodes in a multi-hop neighborhood of a node. Hence, it makes the representations
of nodes that have different features from their neighbors distinct in their multi-hop neighborhood.

On the other hand, the low-pass filter,FFFL, resembles a typical GNN, which only preserves the low-frequency
signals by aggregating every node’s features with the features of nodes in its immediate neighborhood.
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Algorithm 1 Contrastive Learning with Graph Filters (HLCL)
1: for epoch=1,2,3,... do
2: Input graph G into the shared graph Encoder f(·)
3: Generate high-frequency-signal node embeddings: HHHl

H =σ(FFFHPHHH
l−1
H WWW l−1)

4: Generate low-frequency-signal node embeddings: HHH l
L = σ(FFFLPHHH

l−1
L WWW l−1)

5: Compute the contrastive objective L with Eq. (5)
6: Update parameters by applying stochastic gradient ascent to maximize L
7: end for

Using the low-pass filter within a multi-layer graph encoder, it iteratively aggregates features in a multi-hop
neighborhood of every node to learn its representation. Hence, it smooths out the node representations and
produces similar representations for the nodes within the same multi-hop neighborhood.

While the low-pass filter is essential for learning good representations in smooth graphs, it cannot produce
distinguished representations for graphs that are non-smooth, specially under heterophily. For such graphs,
the high-pass filter is crucial to provide distinct representations. The combinations of both filters provides
complementary information and allows learning both smooth and non-smooth components of the graphs
simultaneously. Hence, it enables learning richer representations, particularly under heterophily.

The high-pass and low-pass filtered representations can be obtained through message passing, according to
Eq. (1). In particular, the high-pass filtered representations can be obtained by iteratively differentiating the
representations of a node and those of its neighbors, and the low-pass filtered representations can be obtained
by aggregating the node’s representation with those of its neighbors. Formally:

ĥ̂ĥhl
i = σ(WWW l−1hhhl−1

i ), (hhhl
i)L = Σj∈{Ni∪{i}}(ĥ̂ĥh

l
i + ĥ̂ĥhl

j), (hhhl
i)H = Σj∈{Ni∪{i}}(ĥ̂ĥh

l
i − ĥ̂ĥhl

j). (3)

Explicit graph augmentation. We note that the graph XXX can be optionally explicitly augmented before
entering the encoder. While explicit augmentation do not provide a considerable benefit and can even be
harmful under heterophily, it is crucial for graphs with homophily. We will study in details the effect of
explicit augmentation under homophily and heterophily, in our experiments.

Our HLCL framework is demonstrated in Fig. 1. In Appendix, we study the effect of filters on a toy example.

3.3 THE CONTRASTIVE LEARNING FRAMEWORK

After generating the low-pass and high-pass filtered graph views, we pass them through a shared non-linear
projection head and employ a contrastive objective that enforces the filtered representations of each node in
the two views to agree with each other and can be discriminated from representations of other nodes.

Non-linear projection head. Before contrasting the high-pass and low-pass filtered representations, we
pass them to a non-linear projection head g(·), which maps the filtered views to another latent space where
the contrastive loss is calculated. This has been shown to improve the performance (Chen et al., 2020; You
et al., 2020; Zhu et al., 2020c;a), and we also confirm its effect in our experiment. In our setting, we use
a two-layer perceptron network to obtain zzzh = g(HHHH) and zzzl = g(HHHL). We use the projection head only
during the contrastive training, and use the low-pass filtered representations HHHL in the downstream task.

Contrastive loss. For every node i, its projected representation generated by the low-pass filter, zzzil , is
treated as the anchor, and the one generated by the high-pass filter, zzzil , is treated as the corresponding
positive sample. The other projected representations in the two views are treated as the negative samples.
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For the contrastive loss function, we use InfoNCE proposed in (Van den Oord et al., 2018). Formally:

l(zzzil, zzz
i
h) = log

esim(zzzi
l ,zzz

i
h)/τ

esim(zzzi
l ,zzz

i
h)/τ +

∑
k∈[N ],
k ̸=i

esim(zzzi
l ,zzz

k
h)/τ +

∑
k∈[N ],
k ̸=i

esim(zzzi
l ,zzz

k
l )/τ

, (4)

in which sim(zzzil, zzz
i
h) is the cosine similarity between zzzil and zzzih, and τ is a temperature parameter. The

second term in the denominator,
∑

k ̸=i e
sim(zzzi

l ,zzz
k
h), represents the inter-view negative pairs, i.e., between the

low-pass view zzzil of node i and the high-pass views of all the other nodes, and
∑

k ̸=i e
sim(zzzi

h,zzz
k
h) represents

the intra-view negative pairs within the low-pass view. Since two views are symmetric, the loss for another
view, l(zzzih, zzz

i
l), is defined in a similar fashion. The overall objective to be maximized is then defined as the

average over all positive pairs. Formally, we maximize:

L =
1

2N

N∑
i=1

[l(zzzil, zzz
i
h) + l(zzzih, zzz

l
h)]. (5)

Effectively, maximizing the agreement between the low-pass and high-pass views pulls away the represen-
tation of nodes with different features from their neighborhood, and allows them to be distinguished from
their neighbors. The pseudocode is illustrated in Alg. 1.

4 EXPERIMENTS

In this section, we first study and show the ineffectiveness of existing graph augmentation methods under
heterophily. Then, we evaluate our proposed framework for node representation learning under linear probe.

Datasets. We conduct experiments on five widely-used public benchmark datasets with different levels of
homophily ratios, β. For graphs with homophily, we use the citation networks including Cora and Citeseer
(Yang et al., 2016). For graphs with heterophily, we use the Wikipideia network and the web page networks
including Chameleon, Squirrel, and Texas (Rozemberczki et al., 2021; Pei et al., 2020). Table 4 shows β, and
the number of nodes, edges, and classes for the above datasets. We also report our results on a large-scale
social network, namely Penn94 (Lim et al., 2021). Details can be found in Tables 4 and 5 of the Appendix.

HLCL setup. We employ a two-layer GCN (Kipf & Welling, 2016) as our low-pass encoder, and consider
an additional high-pass channel with L̂̂L̂Lsym as the message passing filter to capture the high-frequency signals
from the graphs. The high-pass channel generates augmented node representations to be contrasted with
those encoded by the GCN. The high-pass channel shares the same weight parameters with the GCN, but
generate embedding with different filters. The final embedding is generated by the GCN encoder.

4.1 GRAPH AUGMENTATION UNDER HETEROPHILY

First, we study existing data augmentation methods and their effectiveness for graph CL under heterophily.
We use InfoNCE loss defined in Eq. (5) to contrast node representations in augmented graphs, using a stan-
dard 2-layer GCN as the graph encoder. We consider topology augmentation methods including Edge Re-
moving (ER), Node Dropping (ND), Edge Adding (EA), Subgraph with Random Walk (RWS), and Personal-
ized PageRank (PPR), as well as feature augmentation method including Feature Masking (FM) and Feature
Dropping (FD) for generating different graph augmentations. We compare these methods with HLCL. Ex-
cept for the proposed high-pass augmentation methods, we do not use any other explicit graph augmentation.
We train the model 10 times with early-stopping, and report the average accuracy as the final result. For each
run, we randomly select 10% nodes for training, 10% nodes for validation, 80% nodes for testing.

Table 1 shows that our method achieves a remarkable boost of up to 10% compared to the best graph aug-
mentation method. This confirms the necessity of utilizing the non-smooth graph components under het-
erophily. Note that even though topology and feature augmentation methods benefit the homophily graphs,
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Table 1: Existing graph augmentation methods are highly ineffective for graph CL under heterophily. In
contrast, our HLCL method achieves up to 10% improvement over the best graph augmentation method.

Chameleon Squirrel Texas

Ours HLCL (no-aug) 48.03 ±3.1 33.44 ±1.7 64.21 ±11.2

Topo

ER 34.23 ±3.8 25.14 ±2.3 52.63 ±10.7
ND 36.02 ±1.9 26.70 ±1.8 50.53 ±12.2
EA 38.20 ±3.1 26.92 ±1.6 54.73 ±9.7

RWS 35.63 ±3.3 24.59 ±13.5 56.84 ±11.7
PPR 34.14 ±3.5 24.43 ±2.9 50.00 ±6.7

Feat FM 37.55 ±3.6 25.58 ±1.1 58.42 ±14.21
FD 36.81 ±3.9 25.75 ±2.7 50.52 ±6.7

they are highly ineffective for graph CL under heterophily. This can be explained from the perspective
of Homophily ratio (β) and graph smoothness, which is represented here as neighborhood feature variance
(α).As shown in figure 2, augmentation methods that remove or add edges (ER, EA) decrease β of the graphs
under homophily. On Cora with homophily, β drops rapidly given its initial high value, so it can generate

Figure 2: Left: Homophily ratio drops with the in-
creasing edge removing ratio and edge adding ratio
with Cora under homophily and stays approximately the
same with Chameleon under heterophily. Right: neigh-
borhood feature variance drops with the increasing fea-
ture masking ratio, with both Cora under homophily and
Chameleon under heterophily, with the decrease more
rapid on Chameleon.

a more diverse graph structures for aggrega-
tions among nodes that are more beneficial
for the contrastive framework. However, for
Chameleon with heterophily, β does not con-
siderably change, diminishing the benefits of
explicit augmentation. Similarly, for Feature
augmentation methods that zero out feature
entries, α decreases for both heterophily and
homophily graphs, smoothing out the graphs.
For homophily graphs that have smooth node
neighborhoods, the change is not as rapid, and
the masked features serve as dropout on the
input layer, which improves the performance
accordingly Zhu et al. (2021b). On the other
hand, feature masking decreases α greatly on
Chameleon with heterophily.It smoothes out its
non-smooth graph features in a deteriorated manner, hence outweights its benefits as a dropout layer.

4.2 SELF-SUPERVISED REPRESENTATION LEARNING

Next, we evaluate HLCL for self-supervised learning under linear probe We follow the evaluation protocol
used in (Zhu et al., 2020c). Models are first trained in a self-supervised manner without labels. Then, we fed
the final node embeddings into a l2-regularized logistic regression classifier to fit the labeled data. We train
the model 10 times with early-stopping, and report the average accuracy as the final result. For each run, we
randomly select 10% nodes for training, 10% nodes for validation, and 80% nodes for testing. We consider
traditional representation learning methods like DeepWalk (Perozzi et al., 2014), deep learning methods
including DGI (Velickovic et al., 2019), BGRL (Thakoor et al., 2021), and GRACE (Zhu et al., 2020c),
and other popular representation learning baselines like Raw Features and DeepWalk + Raw Features
as baselines. We also include MixHop (Abu-El-Haija et al., 2019) in our experiments as the supervised
learning baseline. Table 2 compares the performance of HLCL when used on its own, HLCL (no-aug), and
when it is applied to the graphs that are augmented with Edge Removing (ER) on the graphs with homophily
and Feature Masking (FM) on the graphs with heterophily. We see that HLCL shows a significant boost on
graphs with heterophily and a comparable performance on the graphs with homophily. Even without explicit
augmentation, HLCL surpasses other baselines on graphs with heterophily, which confirms the effectiveness
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Table 2: HLCL achieves state-of-the-art under heterophily, and a comparable performance under homophily
when combined with explicit graph augmentation.

Homophily Heterophily

Cora CiteSeer Chameleon Squirrel Texas

HLCL 82.34 ±2.7 71.35 ±1.4 49.78 ±1.8 34.11 ±1.9 65.26 ±7.8
HLCL(no-aug) 77.09 ±1.7 64.34 ±1.5 48.04 ±3.1 33.44 ±1.7 64.21 ±11.2

Raw feature 64.8 64.6 31.61 24.43 52.63
DeepWalk 75.7 ±1.7 50.5 ±1.6 27.51 ±3.1 25.47 ±2.4 40.00 ±15.9

DeepWalk + features 73.1 ±2.3 47.6 ±1.5 36.21 ±4.6 26.23 ±1.8 53.68 ±10.2
DGI 82.60 ±0.4 68.80 ±0.7 40.48 ±1.9 27.95 ±0.9 60.00 ±10.8

BGRL 74.67 ±0.6 64.25 ±2.4 38.20 ±1.4 26.03 ±0.9 61.05 ±11.1
GRACE 83.30 ±0.4 72.10 ±0.5 37.37 ±0.6 28.67 ±0.9 62.6 ±7.2

MixHop 85.34 ±0.4 73.23 ±0.5 46.84 ±3.5 36.42 ±3.4 62.15 ±2.5

of the high-pass channel. Importantly, applying HLCL to graphs that are explicitly augmented achieves
a comparable performance under homophily. Thus, the high-pass filter does not harm the performance on
such graphs. Comparing to supervised learning model such as MixHop trained in an end-to-end manner,
HLCL achieves a comparable or superior performances. This, demonstrates the effectiveness of our design.

4.3 ABLATION STUDIES: HLCL WITH EXPLICIT AUGMENTATION

Table 3: Combining HLCL with different graph view augmentations. LP represents augmentation on low-
pass channel only, HL represents augmentation on both channels. Both topology and feature augmentations
are included. The full table 6 presented in the Appendix. Worst results are highlighted in gray.

Homophily Heterophily

Cora CiteSeer Chameleon Squirrel Texas

HLCL (no-aug) 77.09 ±1.7 64.34 ±1.5 48.03 ±3.1 33.44 ±1.7 64.21 ±11.2

LP Feat FM 78.46 ±2.4 66.68 ±1.7 49.78 ±1.8 34.11 ±1.9 65.26 ±7.8
FD 78.42 ±2.7 67.75 ±1.7 47.46 ±3.2 33.65 ±1.7 63.15 ±7.4

HL Topo ER 82.34 ±2.7 71.35 ±1.4 37.29 ±2.6 25.60 ±1.6 57.37 ±8.3

ND 76.10 ±2.6 65.90 ±2.6 35.81 ±1.8 25.39 ±1.5 61.58 ±8.8

EA 81.02 ±2.5 70.02 ±3.6 37.46 ±1.8 26.12 ±1.7 60.53 ±7.9

HL Feat FM 78.60 ±2.3 66.08 ±2.0 49.52 ±3.6 33.90 ±1.5 63.68 ±8.9
FD 77.50 ±3.0 66.59 ±1.7 48.42 ±4.0 33.49 ±1.8 63.68 ±6.8

To investigate the interactions between traditional graph augmentations and HLCL on graphs with different
β, we perform ablation studies on explicit graph augmentation methods applied to both high-pass and the
typical low-pass GCN channels. We include Edge Removing (ER), Node Dropping (ND), Edge Adding
(EA), Feature Masking (FM), and Feature Dropout (FD) as graph augmentation methods. Table 3 shows
that combined with HLCL, feature and topology augmentations considerably benefit the performance on
graphs with homophily. Topology augmentation, however, may not be helpful under heterophily.

5 CONCLUSION

We proposed HLCL, a contrastive learning framework that leverages a high-pass graph filter to generate non-
smooth augmented representations to be contrasted with their smooth counterparts, generated using the same
encoder. This is particularly beneficial for graphs with heterophily, where existing graph CL methods are
highly ineffective. Through extensive experiments, we demonstrated that our proposed framework achieves
up to 10% boost in the performance for representation learning under the linear probe, for various graphs
under heterophily. At the same time, it provides a comparable performance on graphs with homophily.
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A APPENDIX

A.1 BENCHMARK DATASETS

We conduct our experiments on five widely-used public benchmark datasets with different level of ho-
mophily ratios, β. We shows the specific statistics of the datasets including β, the number of nodes, edges,
and classes, in table 4 In addition, to illustrate the scalability of our model, we run our models on realistic
dataset like Penn94, proposed by Lim et al. (2021). We train the model 3 times with early-stopping, and
report the average accuracy as the final result. For each run, we randomly select 10% nodes for training,
10% nodes for validation, and 80% nodes for testing. We present our result in table 5. As shown, our method
works better in large-scale dataset than other self-supervised learning methods as well.

Table 4: Statistics for our datasets
Datasets Cora CiteSeer Chameleon Squirrel Texas Penn94

Hom. ratio (β) 0.83 0.71 0.25 0.22 0.06 0.47
Nodes 2708 3327 2277 5201 183 41,554
Edges 5278 4676 31421 198493 295 1,362,229

Classes 6 7 5 5 5 2

Table 5: HLCL achieves a noticeably higher accuracy on realistic large-scale dataset comparing to other
GCL methods. HLCL outperforms SOTA by 8%.

Penn94

HLCL 70.97 ±0.5

DGI 62.85 ±0.3
BGRL 56.57 ±0.8

GRACE 62.53 ±0.1

A.2 ABLATION STUDIES: HLCL WITH EXPLICIT AUGMENTATION

To investigate the interactions between traditional graph augmentations and HLCL on graphs with different
β, we perform ablation studies on explicit graph augmentation methods applied to both high-pass and the
typical low-pass GCN channels. We include Edge Removing (ER), Node Dropping (ND), Edge Adding
(EA), Feature Masking (FM), and Feature Dropout (FD) as graph augmentation methods. We present our
result in table 6.
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Table 6: The result on combining HLCL with different graph view augmentations. HP represents aug-
mentation on high-pass channel only, LP represents augmentation on low-pass channel only, HL represents
augmentation on both channels. Both topology and feature augmentations are included in the experiments.

Homophily Heterophily

Cora CiteSeer Chameleon Squirrel Texas

HLCL (no-aug) 77.09 ±1.7 64.34 ±1.5 48.03 ±3.1 33.44 ±1.7 64.21 ±11.2

HP Topo ER 80.80 ±3.0 71.20 ±1.3 36.11 ±4.1 26.26 ±2.3 57.36 ±8.9
ND 78.42 ±2.0 70.24 ±2.0 35.80 ±2.7 26.79 ±1.6 61.05 ±12.0
EA 74.04 ±2.9 65.75 ±3.2 35.81 ±3.3 26.79 ±2.0 60.53 ±7.9

HP Feat FM 77.13 ±2.9 64.67 ±1.3 49.08 ±3.8 33.80 ±1.7 62.63 ±9.8
FD 77.94 ±2.6 66.05 ±1.8 47.07 ±4.0 32.71 ±2.0 61.57 ±6.2

LP Topo ER 77.94 ±3.1 65.18 ±1.9 37.07 ±3.4 25.36 ±2.0 57.37 ±7.6
ND 75.66 ±1.6 61.28 ±2.6 36.15 ±2.0 26.53 ±1.6 59.47 ±8.5
EA 80.73 ±2.2 68.35 ±2.0 39.08 ±2.0 26.75 ±1.5 61.05 ±11.8

LP Feat FM 78.46 ±2.4 66.68 ±1.7 49.78 ±1.8 34.11 ±1.9 65.26 ±7.8
FD 78.42 ±2.7 67.75 ±1.7 47.46 ±3.2 33.65 ±1.7 63.15 ±7.4

HL Topo ER 82.34 ±2.7 71.35 ±1.4 37.29 ±2.6 25.60 ±1.6 57.37 ±8.3
ND 76.10 ±2.6 65.90 ±2.6 35.81 ±1.8 25.39 ±1.5 61.58 ±8.8
EA 81.02 ±2.5 70.02 ±3.6 37.46 ±1.8 26.12 ±1.7 60.53 ±7.9

HL Feat FM 78.60 ±2.3 66.08 ±2.0 49.52 ±3.6 33.90 ±1.5 63.68 ±8.9
FD 77.50 ±3.0 66.59 ±1.7 48.42 ±4.0 33.49 ±1.8 63.68 ±6.8

A.3 ABLATION STUDIES: OUTPUT ENCODER WITH DIFFERENT GRAPH FILTERS

In our experiments, we use low-pass graph filter in our GNN encoder as the final representation encoder.
It is important to note that the encoder that is trained with contrasting with the high-pass view does not
suffer from the over-smoothing problem, even without using the high-pass filter during the inference. This is
because the parameters of the encoder are learned by contrasting the low-pass representation with high-pass
representations. Hence, we do not need to rely on the high-pass filter during the inference. To illustrate the
effectiveness of our structural design, we present an ablation study on using different filters or combinations
of filters in our final encoder. The result is shown in table 7. We see that on most datasets low-pass encoder
achieves the highest accuracy with a large gap, and variation involving the high-pass encoder has worse
performances across all datasets except Texas, which has a very low homophily ratio. This demonstrates the
ineffectiveness of using high-pass filter directly in the representation encoder.

Table 7: HLCL with different graph filters in the final encoder. HP represents high-pass filter; LP represents
low-pass filter; HP Concat LP represents using both high-pass filters and concatenate the output representa-
tions; HP Aggre LP represents using both high-pass filters and aggregate the output representations

Homophily Heterophily

Cora CiteSeer Chameleon Squirrel Texas

LP 77.09 ±1.7 64.34 ±1.5 48.04 ±3.1 33.44 ±1.7 64.21 ±11.2
HP 51.94 ±2.9 36.22 ±2.5 35.58 ±3.1 29.83 ±1.6 65.26 ±10.3

HP Concat LP 66.47 ±3.6 55.96 ±2.6 41.09 ±3.6 30.86 ±1.9 65.21 ±9.4
HP Aggre LP 65.33 ±2.8 53.47 ±3.1 38.77 ±3.4 28.00 ±1.5 63.15 ±11.7
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Table 8: Swapping low-pass encoders in GCL methods to high-pass encoders. Significant performance
drops are highlighted in gray.

Homophily Heterophily

Cora CiteSeer Chameleon Squirrel Texas

HLCL 82.34 ±2.7 71.35 ±1.4 49.78 ±1.8 34.11 ±1.9 65.26 ±7.8

DGI:low 82.60 ±0.4 68.80 ±0.7 40.48 ±1.9 27.95 ±0.9 60.00 ±10.8

DGI:high 31.95 ±2.8 30.54 ±1.7 38.38 ±3.5 29.57 ±1.2 62.11 ±10.2

BGRL:low 74.67 ±0.6 64.25 ±2.4 38.20 ±1.4 26.03 ±0.9 61.05 ±11.1

BGRL:high 29.63 ±2.8 24.99 ±3.1 35.41 ±3.4 29.57 ±1.1 65.26 ±8.2

GRACE:low 83.30 ±0.4 72.10 ±0.5 37.37 ±0.6 28.67 ±0.9 62.6 ±7.2

GRACE:high 32.46 ±2.0 26.55 ±3.1 39.65 ±2.9 33.05 ±2.1 72.63 ±9.3

A.4 ABLATION STUDIES: OTHER GCL METHODS WITH DIFFERENT ENCODERS

In this section, we illustrate the importance of our contrastive structure. We show that the main accuracy
gains on heterophily datasets are from contrasting the low- and high-pass filtered graph views, instead of
the introduction of the high-pass filter alone. The high-pass filter alone cannot provide high-quality repre-
sentations under heterophily. For different graphs, different combinations of low-pass and high-pass filters
are required to provide good representations. Having access to labels, the best combination can be learned.
However, this is indeed not possible without labels. We have shown that contrasting the low- and high-pass
filtered graph views can provide high-quality representations in the unsupervised scenario. Here, We conduct
a new ablation study by swapping the encoders from other graph CL methods with a high-pass encoder. The
result is presented in 8. By replacing low-pass filter with high-pass filter, grph CL methods are able to achieve
an better accuracy on some heterophily datasets like Squirrel and Texas. However, their performances de-
teriorate significantly under homophily cases, where aggregation among neighborhoods are desired. Our
results show that when using high-pass or low-pass alone, the model cannot achieve good performance.

A.5 ILLUSTRATION EXAMPLES ON HP AND LP FILTER UNDER DIFFERENT HOMOPHILY RATIOS

To explain the effect of high-pass and low-pass filters and motivates using both filters in a contrastive way,
we construct a simple graph with seven nodes. Nodes are separated into two classes, labeled as red and
green as shown in the figure. First, we generate features vectors with 200 dimensions for nodes from red
and green classes based on two Gaussian distributions, centered at -5 and 5 respectively with a standard
deviation of 1. Then, we do graph aggregation or diversification with low- and high-pass filters separately,
following Eq. (1). For clearer illustration, we do not project the feature vectors into other dimensions.

We considered three different homophily ratios and ran the node features through high-pass and low-pass
filters for a few iterations. We see that: (1) for high homophily ratio graph (Fig. 3), the low-pass filter reduces
the variance of the features and pulls different classes towards each other, while the high-pass filter increases
their variance and eventually pulls the classes away from each other. Hence, contrasting the two filtered
representations prevents over-smoothing. The figure illustration is shown at Fig. 4 (2) for lower homophily
ratio graph, where a part of the graph has homogeneous labels and the other part has heterogeneous labels
(Fig. 5), the low-pass filter mainly reduces the variance of the features for the label-homogeneous part, while
the high-pass filter unnecessarily mixes the class features. At the same time, the high-pass filter increases
the variance of features for the label-heterogeneous part and pushes them away from the other class, while
the low-pass filter unnecessarily mixes the class features. In this case, contrasting the two filters is crucial
for learning good-quality representations. The figure illustration is shown at Fig. 6 (3) Finally, for very low
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homophily ratio graph (Fig. 7), the low-pass filter reduces the variance of the distributions and mixes the
distributions of the features in the two classes, making them indistinguishable. On the other hand, the high-
pass filter pushes away the distributions of the features in different classes. By contrasting the high-pass and
low-pass filtered features, HLCL is able to distinguish the feature distributions under heterophily. The figure
illustration is shown at Fig. 8

Figure 3: Case 1: High homophily ratio graph

Figure 4: The change of distributions of node 2 (green class) in Fig. 3, at iterations 1, 3, and 6.

Figure 5: Case 2: A mixture of homophily and heterophily components
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Figure 6: The change of distributions of node 2 (top row) and node 4 (bottom row) in Fig. 5, at iterations 1,
3, and 6. Node 2 is at a heterogeneous neighborhoods, while node 4 is at a homogeneous neighborhoods

Figure 7: Case 3: Very low homophily ratio

Figure 8: The change of distributions of node 2 (green class) in Fig. 7, at iterations 1, 3, and 6.
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