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Abstract: Image and video generative models that are pre-trained on Internet-1

scale data can increase the generalization capacity of robot learning systems.2

These models can function as high-level planners, generating intermediate sub-3

goals for low-level goal-conditioned policies to reach. However, the performance4

of these systems can be bottlenecked by the interface between generative mod-5

els and low-level controllers. Generative models may predict photorealistic yet6

physically infeasible frames. Low-level policies may also be sensitive to sub-7

tle visual artifacts in generated goal images. This paper addresses these facets8

of generalization, providing an interface to “glue together” language-conditioned9

image or video prediction models with low-level goal-conditioned policies. Our10

method, Generative Hierarchical Imitation Learning-Glue (GHIL-Glue), filters11

out subgoals that do not lead to task progress and improves the robustness of goal-12

conditioned policies to generated subgoals with harmful visual artifacts. GHIL-13

Glue achieves a new state-of-the-art on the CALVIN simulation benchmark for14

policies using observations from a single RGB camera. GHIL-Glue also outper-15

forms other generalist robot policies across 3/4 language-conditioned manipula-16

tion tasks testing zero-shot generalization on a physical robot. Additional details17

are available at https://generative-hierarchical-glue.github.io.18

Keywords: Hierarchical Imitation Learning, Image Generation, Video Prediction19

1 Introduction20

As Internet-scale foundation models achieve success in computer vision and natural language pro-21

cessing, a central question arises for robot learning: how can Internet-scale models enable embodied22

behavior generalization? While one approach is to collect increasingly large action-labeled robot23

manipulation training datasets [1, 2, 3], video datasets (without actions) from the Internet are vastly24

larger. However, while videos may be useful for inferring the steps in a task, such as how the objects25

should be moved, or which parts of an object to manipulate (e.g., grabbing a cup by the handle), they26

are less useful for learning details about low-level control. For example, it is difficult to infer the27

actions for controlling a robot’s fingers from videos of humans performing manipulation tasks. One28

promising solution to this challenge is to employ a hierarchical approach [4, 5]: infer high-level sub-29

goal images using models trained on Internet-scale videos, and then fill in the fine-grained motions30

with low-level policies trained on robot data (see appendix A for a discussion of related work).31

While this general approach has seen success in prior robotic manipulation work [6, 4, 7, 5, 8, 9],32

the interface between the high-level planner generating subgoals and the low-level policy that must33

reach these subgoals can be brittle. First, generative models may occasionally sample subgoals that34

do not progress towards completing a given language instruction. If one such “off-task” subgoal is35

followed, it can have a compounding errors effect, leading to subsequent subgoals being increasingly36

“off-task.” Second, even if the generated subgoals lead to task progress, they can contain subtle37

visual artifacts that degrade the performance of a naively trained low-level policy.38
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Figure 1: GHIL-Glue. We consider language-conditioned image and video prediction models that can gen-
erate multiple subgoals. GHIL-Glue has two components: augmentation de-synchronization (top) and subgoal
filtering (bottom). Subgoal filtering: We train a classifier to identify which subgoal is most likely to progress
towards completing the language instruction. This subgoal and the image observation are then passed to the
low-level policy to choose a robot action. Augmentation de-synchronization: The distribution shift between
subgoals sampled from the robot dataset during training and those sampled from the generative model during
inference can degrade low-level policy and subgoal classifier performance. To robustify the low-level policy
and subgoal classifier to artifacts in generated subgoals, we explicitly de-synchronize the image-augmentations
applied to the current state (State Aug) and the sampled goal (Subgoal Aug).

To address these issues, we propose Generative Hierarchical Imitation Learning-Glue (GHIL-Glue)39

(fig. 1), a method to robustly “glue” together image or video generative models to a low-level robotic40

control policy. First, we filter out “off-task” subgoals that are physically inconsistent with the com-41

manded language instruction. We do this by training a subgoal classifier to predict the likelihood42

of the transition between the current state and a given subgoal resulting in progress towards com-43

pleting the provided language instruction. We then sample a number of candidate subgoals from the44

generative model and choose the subgoal with the highest classifier ranking. Second, we identify45

a simple yet non-obvious data augmentation practice to robustify the low-level policy and subgoal46

classifier to visual artifacts in the generated subgoals. While image augmentations are ubiquitous in47

robot learning methods, our key finding is that the standard way of applying image augmentations48

does not make low-level policies robust to visual artifacts in generated subgoal images. Experiments49

on the CALVIN [10] simulation benchmark and four language-conditioned tasks on the Bridge V250

physical robot platform [11] suggest that GHIL-Glue improves upon prior SOTA methods for zero-51

shot generalization while adding minimal additional algorithmic complexity.52

2 GHIL-Glue53

2.1 Subgoal Filtering54

The image and video generative models we consider are first pre-trained on general Internet-scale55

image and video data, and then fine-tuned on a modest amount of robot data (see appendix B for56

a detailed description of the problem setting we consider). A common failure mode we observe57

across different models is that, while executing a task, the model begins to go “off-task,” generating58

subgoals that are consistent with the current image observation but that do not progress towards com-59

pleting the language instruction l. We hypothesize that this is due to the distribution shift between60

the Internet image and video pre-training data and the robot data they are fine-tuned on.61

To address this challenge, we train a subgoal classifier fθ(s, g, l) on a language-conditioned dataset62

of trajectories Dl that predicts the probability that the transition between the current image ob-63

servation s and the next subgoal g makes progress towards completing language instruction l.64

During training, we sample positive examples of state-goal transitions for l from the set of tra-65

jectories that successfully complete the instruction. We construct negative examples in the fol-66

lowing three ways: 1) Wrong Instruction: (s, g, l′) where l′ is sampled from a different transi-67

tion than s and g, 2) Wrong Goal Image: (s, g′, l) where g′ is sampled from a different tran-68

sition than s and l, and 3) Reverse Direction: (g, s, l), where the order of the current image69

observation and the subgoal image have been switched. We refer to this dataset of negative ex-70

amples constructed from Dl as D−
l . We then train the subgoal classifier by minimizing the bi-71

nary cross entropy loss between the positive examples and the constructed negative examples:72
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J (θ) = E(s,g,l)∼Dl
[log (fθ(s, g, l))] + E(s−,g−,l−)∼D−

l
[log (1− fθ(s

−, g−, l−))] . At inference,73

given a set of K subgoals predicted by the image or video model, GHIL-Glue selects the subgoal74

with the highest classifier ranking to the low-level policy for conditioning.75

2.2 Image Augmentation De-Synchronization76

For both the low-level goal-conditioned policy and the subgoal classifier, each training sample in-77

cludes two images: the current state s and the corresponding goal g. Applying image augmentation78

procedures during training is a standard approach in image-based robot learning methods [12] to79

improve the robustness of learned models to distribution shifts between their training and evaluation80

domains. Standard practice is to sample augmentation parameters ϕ̂ and apply them to all images81

in a given training sample [4, 13], which corresponds to applying the same ϕ̂ to both s and g. In82

a non-hierarchical policy setting, this makes sense, because at inference time s and g will both be83

sampled from the camera observations of the current environment instantiation. However, when84

using an image or video prediction model for subgoal generation, at inference time the observations85

will come from the environment, but the goals will be generated by the image or video prediction86

model. There will often be differences in the visual artifacts between a camera observation s and the87

corresponding generated subgoal image g, such as differences in color, contrast, blurriness, and the88

shapes of objects, which can degrade the performance of low-level policies and subgoal classifiers.89

To encourage robustness to this distribution shift, we sample separate augmentation parameters for90

s and g, denoted by ϕ̂s and ϕ̂g (i.e., we de-synchronize the image augmentations applied to s and91

g). Concretely, for each s and g pair sampled during training, a different random crop, brightness,92

contrast, saturation, and hue shift are applied to s than are applied to g. This forces the low-level93

policy and the subgoal classifier to be robust to differences in visual artifacts between s and g. See94

appendix C for additional discussion of image augmentation de-synchronization.95

3 Experiments96

3.1 Experimental Domains97

Simulation Experiment Setup: Simulation experiments are performed in the CALVIN [10] bench-98

mark, which focuses on long-horizon language-conditioned robot manipulation. We follow the same99

protocol as in [4], and train on data from three environments (A, B, and C) and test policies on a100

fully unseen environment (D). The held-out environment (D) contains unseen desk and object colors,101

positions, and shapes. See appendix D for a visualization of the CALVIN environment.102

Physical Experiment Setup: Physical experiments are performed with the Bridge V2 [11] ex-103

periment setup with a WidowX250 robot. We use the same datasets as in [4] for training both the104

high-level image prediction model and the low-level goal-conditioned policy. The Bridge V2 dataset105

contains 45K language-annotated trajectories, which are used for the language-labeled robot dataset106

Dl,a. The remaining 15K trajectories are used for the action-only dataset Da. As in [4], we use a107

filtered version of the Something-Something V2 dataset [14] with the same filtering scheme as in [4]108

(resulting in 75K video clips) as our video-only dataset Dl. We test our policies on four tasks on four109

different cluttered table top scenes (fig. 2) on the Bridge V2 physical robot platform. These environ-110

ments require generalizing to novel scenes, with novel objects, and with novel language commands111

that are not seen in the Bridge V2 dataset. See appendix D for visualizations of the evaluation set-up.112

3.2 Comparison Algorithms113

We study the impact of applying GHIL-Glue to two SOTA hierarchical imitation learning algo-114

rithms: SuSIE [4] and UniPi [5]. We use either 4 or 8 candidate subgoals for subgoal filtering (see115

appendix J for details). We also compare GHIL-Glue to a flat language-conditioned diffusion policy116

(LCBC Diffusion Policy). Finally, we consider ablations where we separately study the impact of117

each of our proposed contributions: subgoal filtering (section 2.1) and de-synchronizing augmen-118
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tations (section 2.2). For physical experiments, we additionally compare to OpenVLA [15], which119

is trained on the Open X-Embodiment dataset [2] (which includes the Bridge V2 dataset). See120

appendix E for a detailed description of each of these algorithms.121

3.3 Experimental Results122

Tasks completed in a row
Method 1 2 3 4 5 Avg. Len.

LCBC Diffusion Policy 68.5% 43.0% 22.5% 11.0% 6.8% 1.52
SuSIE [4] 89.8% 75.0% 57.5% 41.8% 29.8% 2.94
GHIL-Glue (SuSIE) - Aug De-sync Only 95.2% 84.0% 69.5% 56.0% 46.2% 3.51
GHIL-Glue (SuSIE) - Subgoal Filtering Only 88.5% 75.5% 56.2% 43.0% 32.5% 2.96
GHIL-Glue (SuSIE) 95.2% 88.5% 73.2% 62.5% 49.8% 3.69
UniPi [5] 56.8% 28.3% 12.0% 3.5% 1.5% 1.02
GHIL-Glue (UniPi) - Aug De-sync Only 60.2% 29.5% 12.5% 5.5% 1.8% 1.1
GHIL-Glue (UniPi) - Subgoal Filtering Only 69.5% 40.0% 15.8% 6.5% 4.2% 1.36
GHIL-Glue (UniPi) 75.2% 44.8% 19.7% 11.2% 5.5% 1.56

Table 1: CALVIN: Simulation Results. Success rates on the validation tasks from the held-out D environ-
ment of the CALVIN zero-shot generalization challenge averaged across 4 random seeds. Applying GHIL-
Glue to SuSIE and UniPi significantly improves performance over their respective base methods. GHIL-Glue
(SuSIE) significantly outperforms all other methods, achieving a new state-of-the-art on the CALVIN bench-
mark for policies using observations from a single RGB camera.

Task OpenVLA [15] SuSIE [4] GHIL-Glue (SuSIE)

Scene A Put Sushi On Towel 22/30 19/30 28/30
Scene B Put Red Bell Pepper in Bowl 14/30 12/30 16/30
Scene C Open Drawer 23/30 19/30 22/30
Scene D Put Sushi in Bowl 15/30 15/30 18/30

Table 2: Bridge V2 Physical Experiments Results. Success rates across four tasks on four physical robot
scenes (pictured in fig. 2) that test zero-shot generalization to novel objects, novel language commands, and
novel scene configurations. GHIL-Glue applied to SuSIE outperforms SuSIE across all tasks and outperforms
OpenVLA on 3 out of 4 tasks.

Simulation Experiments: We present results on the CALVIN benchmark in table 1. Applying123

GHIL-Glue yields significant improvements for SuSIE and UniPi, increasing the average successful124

task sequence length from 2.94 to 3.69 for SuSIE and from 1.02 to 1.56 for UniPi. GHIL-Glue125

(SuSIE) achieves a new SOTA on CALVIN for policies that use single RGB camera observations.126

See appendix F for additional discussion these of results.127

Physical Experiments: We present results (table 2) comparing GHIL-Glue (SuSIE) to OpenVLA128

and SuSIE across four environments on the Bridge V2 robot platform that require interacting with129

a number of objects on a cluttered table (fig. 2). GHIL-Glue applied to SuSIE outperforms SuSIE130

across all tasks and outperforms OpenVLA, a 7-billion parameter SOTA VLA, on 3 out of 4 tasks.131

Significantly, the baseline SuSIE implementation does not outperform OpenVLA on a single task,132

whereas GHIL-Glue (SuSIE) outperforms OpenVLA on 3 out of 4 tasks, demonstrating that hi-133

erarchical goal conditioned architectures with well-tuned interfaces between the high and low-level134

policies can outperform SOTA VLA methods on zero-shot generalization tasks. See appendix F for135

additional discussion of results and appendix I for qualitative analysis of success and failure cases.136

4 Conclusion137

We present GHIL-Glue, a method for better aligning image and video prediction models and low-138

level control policies for hierarchical imitation learning. Our key insight is that while image and139

video foundation models can generate highly realistic subgoals for goal-conditioned policy learn-140

ing, when generalizing to novel environments, the generated images are prone to containing visual141

artifacts and can be inconsistent with the task the robot is commanded to perform. GHIL-Glue pro-142

vides two simple ideas to address these challenges, significantly improving zero-shot generalization143

performance over prior work in the CALVIN simulation benchmark and in physical experiments.144
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J. Hejna, J. Booher, J. Tompson, J. Yang, J. Salvador, J. J. Lim, J. Han, K. Wang, K. Rao,162

K. Pertsch, K. Hausman, K. Go, K. Gopalakrishnan, K. Goldberg, K. Byrne, K. Oslund,163

K. Kawaharazuka, K. Black, K. Lin, K. Zhang, K. Ehsani, K. Lekkala, K. Ellis, K. Rana,164

K. Srinivasan, K. Fang, K. P. Singh, K.-H. Zeng, K. Hatch, K. Hsu, L. Itti, L. Y. Chen, L. Pinto,165

L. Fei-Fei, L. Tan, L. J. Fan, L. Ott, L. Lee, L. Weihs, M. Chen, M. Lepert, M. Memmel,166

M. Tomizuka, M. Itkina, M. G. Castro, M. Spero, M. Du, M. Ahn, M. C. Yip, M. Zhang,167

M. Ding, M. Heo, M. K. Srirama, M. Sharma, M. J. Kim, N. Kanazawa, N. Hansen, N. Heess,168

N. J. Joshi, N. Suenderhauf, N. Liu, N. D. Palo, N. M. M. Shafiullah, O. Mees, O. Kroemer,169

O. Bastani, P. R. Sanketi, P. T. Miller, P. Yin, P. Wohlhart, P. Xu, P. D. Fagan, P. Mitrano,170

P. Sermanet, P. Abbeel, P. Sundaresan, Q. Chen, Q. Vuong, R. Rafailov, R. Tian, R. Doshi,171

R. Mart’in-Mart’in, R. Baijal, R. Scalise, R. Hendrix, R. Lin, R. Qian, R. Zhang, R. Men-172

donca, R. Shah, R. Hoque, R. Julian, S. Bustamante, S. Kirmani, S. Levine, S. Lin, S. Moore,173

S. Bahl, S. Dass, S. Sonawani, S. Song, S. Xu, S. Haldar, S. Karamcheti, S. Adebola, S. Guist,174

S. Nasiriany, S. Schaal, S. Welker, S. Tian, S. Ramamoorthy, S. Dasari, S. Belkhale, S. Park,175

S. Nair, S. Mirchandani, T. Osa, T. Gupta, T. Harada, T. Matsushima, T. Xiao, T. Kollar, T. Yu,176

T. Ding, T. Davchev, T. Z. Zhao, T. Armstrong, T. Darrell, T. Chung, V. Jain, V. Vanhoucke,177

W. Zhan, W. Zhou, W. Burgard, X. Chen, X. Chen, X. Wang, X. Zhu, X. Geng, X. Liu,178

X. Liangwei, X. Li, Y. Pang, Y. Lu, Y. J. Ma, Y. Kim, Y. Chebotar, Y. Zhou, Y. Zhu, Y. Wu,179

Y. Xu, Y. Wang, Y. Bisk, Y. Dou, Y. Cho, Y. Lee, Y. Cui, Y. Cao, Y.-H. Wu, Y. Tang, Y. Zhu,180

Y. Zhang, Y. Jiang, Y. Li, Y. Li, Y. Iwasawa, Y. Matsuo, Z. Ma, Z. Xu, Z. J. Cui, Z. Zhang,181

Z. Fu, and Z. Lin. Open X-Embodiment: Robotic learning datasets and RT-X models. 2024.182

[3] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany,183

M. K. Srirama, L. Y. Chen, K. Ellis, P. D. Fagan, J. Hejna, M. Itkina, M. Lepert, Y. J. Ma,184

P. T. Miller, J. Wu, S. Belkhale, S. Dass, H. Ha, A. Jain, A. Lee, Y. Lee, M. Memmel, S. Park,185

I. Radosavovic, K. Wang, A. Zhan, K. Black, C. Chi, K. B. Hatch, S. Lin, J. Lu, J. Mer-186

cat, A. Rehman, P. R. Sanketi, A. Sharma, C. Simpson, Q. Vuong, H. R. Walke, B. Wulfe,187

T. Xiao, J. H. Yang, A. Yavary, T. Z. Zhao, C. Agia, R. Baijal, M. G. Castro, D. Chen, Q. Chen,188

T. Chung, J. Drake, E. P. Foster, J. Gao, D. A. Herrera, M. Heo, K. Hsu, J. Hu, D. Jackson,189

C. Le, Y. Li, K. Lin, R. Lin, Z. Ma, A. Maddukuri, S. Mirchandani, D. Morton, T. Nguyen,190

A. O’Neill, R. Scalise, D. Seale, V. Son, S. Tian, E. Tran, A. E. Wang, Y. Wu, A. Xie, J. Yang,191

P. Yin, Y. Zhang, O. Bastani, G. Berseth, J. Bohg, K. Goldberg, A. Gupta, A. Gupta, D. Ja-192

yaraman, J. J. Lim, J. Malik, R. Martı́n-Martı́n, S. Ramamoorthy, D. Sadigh, S. Song, J. Wu,193

M. C. Yip, Y. Zhu, T. Kollar, S. Levine, and C. Finn. Droid: A large-scale in-the-wild robot194

manipulation dataset. 2024.195

5



[4] K. Black, M. Nakamoto, P. Atreya, H. Walke, C. Finn, A. Kumar, and S. Levine. Zero-196

shot robotic manipulation with pretrained image-editing diffusion models. arXiv preprint197

arXiv:2310.10639, 2023.198

[5] Y. Du, S. Yang, B. Dai, H. Dai, O. Nachum, J. Tenenbaum, D. Schuurmans, and P. Abbeel.199

Learning universal policies via text-guided video generation. Advances in Neural Information200

Processing Systems, 36, 2024.201

[6] I. Kapelyukh, V. Vosylius, and E. Johns. Dall-e-bot: Introducing web-scale diffusion models202

to robotics. IEEE Robotics and Automation Letters, 2023.203

[7] Y. Du, M. Yang, P. Florence, F. Xia, A. Wahid, B. Ichter, P. Sermanet, T. Yu, P. Abbeel, J. B.204

Tenenbaum, et al. Video language planning. arXiv preprint arXiv:2310.10625, 2023.205

[8] A. Ajay, S. Han, Y. Du, S. Li, A. Gupta, T. Jaakkola, J. Tenenbaum, L. Kaelbling, A. Srivastava,206

and P. Agrawal. Compositional foundation models for hierarchical planning. Advances in207

Neural Information Processing Systems, 36, 2024.208

[9] J. Gao, K. Hu, G. Xu, and H. Xu. Can pre-trained text-to-image models generate visual goals209

for reinforcement learning? Advances in Neural Information Processing Systems, 36, 2024.210

[10] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard. Calvin: A benchmark for language-211

conditioned policy learning for long-horizon robot manipulation tasks. In IEEE Robotics and212

Automation Letters (RAL), 2021.213

[11] H. Walke, K. Black, A. Lee, M. J. Kim, M. Du, C. Zheng, T. Zhao, P. Hansen-Estruch,214

Q. Vuong, A. He, V. Myers, K. Fang, C. Finn, and S. Levine. Bridgedata v2: A dataset215

for robot learning at scale. In Conference on Robot Learning (CoRL), 2023.216

[12] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization for217

transferring deep neural networks from simulation to the real world. International Conference218

on Intelligent Robots and Systems, 2017.219

[13] C. Zheng, B. Eysenbach, H. Walke, P. Yin, K. Fang, R. Salakhutdinov, and S. Levine. Stabi-220

lizing contrastive rl: Techniques for offline goal reaching. arXiv preprint arXiv:2306.03346,221

2023.222

[14] R. Goyal, S. E. Kahou, V. Michalski, J. Materzynska, S. Westphal, H. Kim, V. Haenel, I. Fru-223

end, P. Yianilos, M. Mueller-Freitag, and et al. The” something something” video database for224

learning and evaluating visual common sense. In IEEE international conference on computer225

vision (ICCV), 2017.226

[15] M. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair, R. Rafailov, E. Foster,227

G. Lam, P. Sanketi, Q. Vuong, T. Kollar, B. Burchfiel, R. Tedrake, D. Sadigh, S. Levine,228

P. Liang, and C. Finn. Openvla: An open-source vision-language-action model. arXiv preprint229

arXiv:2406.09246, 2024.230

[16] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learn-231

ing using nonequilibrium thermodynamics. In International conference on machine learning,232

pages 2256–2265. PMLR, 2015.233

[17] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural234

information processing systems, 33:6840–6851, 2020.235

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-236

sukhin. Attention is all you need. Advances in neural information processing systems, 30,237

2017.238

6



[19] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-239

man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv240

preprint arXiv:2212.06817, 2022.241

[20] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:242

Visuomotor policy learning via action diffusion. arXiv preprint arXiv:2303.04137, 2023.243

[21] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,244

A. Dubey, C. Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to245

robotic control. arXiv preprint arXiv:2307.15818, 2023.246

[22] Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna,247

C. Xu, J. Luo, T. Kreiman, Y. Tan, L. Y. Chen, P. Sanketi, Q. Vuong, T. Xiao, D. Sadigh,248

C. Finn, and S. Levine. Octo: An open-source generalist robot policy. In Proceedings of249

Robotics: Science and Systems, Delft, Netherlands, 2024.250

[23] R. Doshi, H. Walke, O. Mees, S. Dasari, and S. Levine. Scaling cross-embodied learning:251

One policy for manipulation, navigation, locomotion and aviation. In Conference on Robot252

Learning, 2024.253

[24] M. Zawalski, W. Chen, K. Pertsch, O. Mees, C. Finn, and S. Levine. Robotic control via254

embodied chain-of-thought reasoning. In Conference on Robot Learning, 2024.255

[25] Z. Mandi, H. Bharadhwaj, V. Moens, S. Song, A. Rajeswaran, and V. Kumar. Cacti:256

A framework for scalable multi-task multi-scene visual imitation learning. arXiv preprint257

arXiv:2212.05711, 2022.258

[26] Z. Chen, S. Kiami, A. Gupta, and V. Kumar. Genaug: Retargeting behaviors to unseen situa-259

tions via generative augmentation. arXiv preprint arXiv:2302.06671, 2023.260

[27] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh, C. Tan, J. Peralta,261

B. Ichter, et al. Scaling robot learning with semantically imagined experience. arXiv preprint262

arXiv:2302.11550, 2023.263

[28] A. Stone, T. Xiao, Y. Lu, K. Gopalakrishnan, K.-H. Lee, Q. Vuong, P. Wohlhart, S. Kirmani,264

B. Zitkovich, F. Xia, et al. Open-world object manipulation using pre-trained vision-language265

models. arXiv preprint arXiv:2303.00905, 2023.266

[29] A. Peng, I. Sucholutsky, B. Z. Li, T. R. Sumers, T. L. Griffiths, J. Andreas, and J. A. Shah.267

Learning with language-guided state abstractions. arXiv preprint arXiv:2402.18759, 2024.268

[30] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners: Ex-269

tracting actionable knowledge for embodied agents. In International Conference on Machine270

Learning, pages 9118–9147. PMLR, 2022.271

[31] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,272

Y. Chebotar, et al. Inner monologue: Embodied reasoning through planning with language273

models. arXiv preprint arXiv:2207.05608, 2022.274

[32] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Irpan, E. Jang,275

R. Julian, et al. Do as i can, not as i say: Grounding language in robotic affordances. In276

Conference on robot learning, pages 287–318. PMLR, 2023.277

[33] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg. Text2motion: From natural language278

instructions to feasible plans. Autonomous Robots, 47(8):1345–1365, 2023.279

[34] Z. Wang, S. Cai, G. Chen, A. Liu, X. Ma, and Y. Liang. Describe, explain, plan and select:280

Interactive planning with large language models enables open-world multi-task agents. arXiv281

preprint arXiv:2302.01560, 2023.282

7



[35] S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning without explo-283

ration. In International conference on machine learning, pages 2052–2062. PMLR, 2019.284

[36] S. K. S. Ghasemipour, D. Schuurmans, and S. S. Gu. Emaq: Expected-max q-learning operator285

for simple yet effective offline and online rl. In International Conference on Machine Learning,286

pages 3682–3691. PMLR, 2021.287

[37] H. Chen, C. Lu, C. Ying, H. Su, and J. Zhu. Offline reinforcement learning via high-fidelity288

generative behavior modeling. arXiv preprint arXiv:2209.14548, 2022.289

[38] P. Hansen-Estruch, I. Kostrikov, M. Janner, J. G. Kuba, and S. Levine. Idql: Implicit q-learning290

as an actor-critic method with diffusion policies. arXiv preprint arXiv:2304.10573, 2023.291

[39] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,292

J. Hilton, R. Nakano, et al. Training verifiers to solve math word problems. arXiv preprint293

arXiv:2110.14168, 2021.294

[40] H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman,295

I. Sutskever, and K. Cobbe. Let’s verify step by step. arXiv preprint arXiv:2305.20050, 2023.296

[41] A. Hosseini, X. Yuan, N. Malkin, A. Courville, A. Sordoni, and R. Agarwal. V-star: Training297

verifiers for self-taught reasoners. arXiv preprint arXiv:2402.06457, 2024.298

[42] W. Liu, Y. Du, T. Hermans, S. Chernova, and C. Paxton. Structdiffusion: Language-guided299

creation of physically-valid structures using unseen objects. arXiv preprint arXiv:2211.04604,300

2022.301

[43] W. Huang, F. Xia, D. Shah, D. Driess, A. Zeng, Y. Lu, P. Florence, I. Mordatch, S. Levine,302

K. Hausman, et al. Grounded decoding: Guiding text generation with grounded models for303

robot control. arXiv preprint arXiv:2303.00855, 2023.304

[44] A. Z. Ren, J. Clark, A. Dixit, M. Itkina, A. Majumdar, and D. Sadigh. Explore until confident:305

Efficient exploration for embodied question answering. In Robotics Science and Systems (RSS),306

2024.307

[45] Robots that ask for help: Uncertainty alignment for large language model planners. arXiv308

preprint arXiv:2307.01928, 2023.309

[46] S. Nair, E. Mitchell, K. Chen, B. Ichter, S. Savarese, and C. Finn. Learning language-310

conditioned robot behavior from offline data and crowd-sourced annotation. Conference on311

Robot Learning (CoRL), 2021.312

[47] L. P. Kaelbling. Learning to achieve goals. In IJCAI, volume 2, pages 1094–8. Citeseer, 1993.313

[48] T. Schaul, D. Horgan, K. Gregor, and D. Silver. Universal value function approximators. In314

International conference on machine learning, pages 1312–1320. PMLR, 2015.315

[49] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. To-316

bin, O. Pieter Abbeel, and W. Zaremba. Hindsight experience replay. Advances in neural317

information processing systems, 30, 2017.318

[50] S. Tellex, N. Gopalan, H. Kress-Gazit, and C. Matuszek. Robots that use language. Annual319

Review of Control, Robotics, and Autonomous Systems, 3:25–55, 2020.320

[51] S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and H. Ben Amor. Language-321

conditioned imitation learning for robot manipulation tasks. Advances in Neural Information322

Processing Systems, 33:13139–13150, 2020.323

[52] O. Mees, L. Hermann, and W. Burgard. What matters in language conditioned robotic imitation324

learning over unstructured data. IEEE Robotics and Automation Letters (RA-L), 7(4):11205–325

11212, 2022.326

8



[53] O. Mees, J. Borja-Diaz, and W. Burgard. Grounding language with visual affordances over327

unstructured data. In Proceedings of the IEEE International Conference on Robotics and Au-328

tomation (ICRA), London, UK, 2023.329

[54] C. Lynch and P. Sermanet. Language conditioned imitation learning over unstructured data.330

arXiv preprint arXiv:2005.07648, 2020.331

[55] A. Mandlekar, F. Ramos, B. Boots, S. Savarese, L. Fei-Fei, A. Garg, and D. Fox. Iris: Implicit332

reinforcement without interaction at scale for learning control from offline robot manipulation333

data. In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages334

4414–4420. IEEE, 2020.335

[56] S. Park, D. Ghosh, B. Eysenbach, and S. Levine. Hiql: Offline goal-conditioned rl with latent336

states as actions. Advances in Neural Information Processing Systems, 36, 2024.337

[57] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for tem-338

poral abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.339

[58] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the AAAI340

conference on artificial intelligence, volume 31, 2017.341

[59] J. Schmidhuber. Learning to generate sub-goals for action sequences. In Artificial neural342

networks, pages 967–972, 1991.343

[60] P. Dayan and G. E. Hinton. Feudal reinforcement learning. Advances in neural information344

processing systems, 5, 1992.345

[61] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum. Hierarchical deep reinforce-346

ment learning: Integrating temporal abstraction and intrinsic motivation. Advances in neural347

information processing systems, 29, 2016.348

[62] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and349

K. Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In International350

conference on machine learning, pages 3540–3549. PMLR, 2017.351

[63] A. Levy, G. Konidaris, R. Platt, and K. Saenko. Learning multi-level hierarchies with hindsight.352

arXiv preprint arXiv:1712.00948, 2017.353

[64] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.354

Advances in neural information processing systems, 31, 2018.355

[65] O. Nachum, S. Gu, H. Lee, and S. Levine. Near-optimal representation learning for hierarchical356

reinforcement learning. arXiv preprint arXiv:1810.01257, 2018.357

[66] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving358

long-horizon tasks via imitation and reinforcement learning. arXiv preprint arXiv:1910.11956,359

2019.360

[67] A. Ajay, A. Kumar, P. Agrawal, S. Levine, and O. Nachum. Opal: Offline primitive discovery361

for accelerating offline reinforcement learning. arXiv preprint arXiv:2010.13611, 2020.362

[68] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning363

latent plans from play. In Conference on Robot Learning (CoRL), pages 1113–1132. PMLR,364

2020.365

[69] E. Rosete-Beas, O. Mees, G. Kalweit, J. Boedecker, and W. Burgard. Latent plans for task-366

agnostic offline reinforcement learning. In Conference on Robot Learning, pages 1838–1849.367

PMLR, 2023.368

9



[70] T. Zhang, S. Guo, T. Tan, X. Hu, and F. Chen. Generating adjacency-constrained subgoals in369

hierarchical reinforcement learning. Advances in neural information processing systems, 33:370

21579–21590, 2020.371

[71] K. Pertsch, Y. Lee, and J. Lim. Accelerating reinforcement learning with learned skill priors.372

In Conference on robot learning, pages 188–204. PMLR, 2021.373

[72] E. Chane-Sane, C. Schmid, and I. Laptev. Goal-conditioned reinforcement learning with imag-374

ined subgoals. In International Conference on Machine Learning, pages 1430–1440. PMLR,375

2021.376

[73] N. Savinov, A. Dosovitskiy, and V. Koltun. Semi-parametric topological memory for naviga-377

tion. arXiv preprint arXiv:1803.00653, 2018.378

[74] B. Eysenbach, R. R. Salakhutdinov, and S. Levine. Search on the replay buffer: Bridging379

planning and reinforcement learning. Advances in neural information processing systems, 32,380

2019.381

[75] S. Nair and C. Finn. Hierarchical foresight: Self-supervised learning of long-horizon tasks via382

visual subgoal generation. arXiv preprint arXiv:1909.05829, 2019.383

[76] S. Nasiriany, V. Pong, S. Lin, and S. Levine. Planning with goal-conditioned policies. Ad-384

vances in Neural Information Processing Systems, 32, 2019.385

[77] Z. Huang, F. Liu, and H. Su. Mapping state space using landmarks for universal goal reaching.386

Advances in Neural Information Processing Systems, 32, 2019.387

[78] C. Hoang, S. Sohn, J. Choi, W. Carvalho, and H. Lee. Successor feature landmarks for long-388

horizon goal-conditioned reinforcement learning. Advances in neural information processing389

systems, 34:26963–26975, 2021.390

[79] J. Kim, Y. Seo, and J. Shin. Landmark-guided subgoal generation in hierarchical reinforcement391

learning. Advances in neural information processing systems, 34:28336–28349, 2021.392

[80] L. Zhang, G. Yang, and B. C. Stadie. World model as a graph: Learning latent landmarks393

for planning. In International conference on machine learning, pages 12611–12620. PMLR,394

2021.395

[81] D. Shah, B. Eysenbach, G. Kahn, N. Rhinehart, and S. Levine. Rapid exploration for open-396

world navigation with latent goal models. arXiv preprint arXiv:2104.05859, 2021.397

[82] K. Fang, P. Yin, A. Nair, and S. Levine. Planning to practice: Efficient online fine-tuning by398

composing goals in latent space. In 2022 IEEE/RSJ International Conference on Intelligent399

Robots and Systems (IROS), pages 4076–4083. IEEE, 2022.400

[83] J. Li, C. Tang, M. Tomizuka, and W. Zhan. Hierarchical planning through goal-conditioned401

offline reinforcement learning. IEEE Robotics and Automation Letters, 7(4):10216–10223,402

2022.403

[84] J. Kim, Y. Seo, S. Ahn, K. Son, and J. Shin. Imitating graph-based planning with goal-404

conditioned policies. arXiv preprint arXiv:2303.11166, 2023.405

[85] K. Fang, P. Yin, A. Nair, H. R. Walke, G. Yan, and S. Levine. Generalization with lossy406

affordances: Leveraging broad offline data for learning visuomotor tasks. In Conference on407

Robot Learning, pages 106–117. PMLR, 2023.408

[86] T. Brooks, A. Holynski, and A. A. Efros. Instructpix2pix: Learning to follow image editing409

instructions. In Conference on Computer Vision and Pattern Recognition (CVPR), 2023.410

10



[87] J. Xing, M. Xia, Y. Zhang, H. Chen, W. Yu, H. Liu, X. Wang, T.-T. Wong, and Y. Shan.411

Dynamicrafter: Animating open-domain images with video diffusion priors. arXiv preprint412

arXiv:2310.12190, 2023.413

[88] J. Ho and T. Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,414

2022.415

[89] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based gen-416

erative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456,417

2020.418

[90] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. Advances in neural419

information processing systems, 34:8780–8794, 2021.420

[91] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image syn-421

thesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer422

vision and pattern recognition, pages 10684–10695, 2022.423

[92] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville. Film: Visual reasoning with424

a general conditioning layer. In Proceedings of the AAAI conference on artificial intelligence,425

volume 32, 2018.426

11



A Related work427

Generative Models for Robotic Control: Prior works have explored diverse ways to leverage428

generative models, such as diffusion models [16, 17] and Transformers [18], for robotic control.429

They have employed highly expressive generative models, potentially pre-trained on Internet-scale430

data, for low-level control [19, 20, 21, 22, 23, 24], data augmentation [25, 26, 27], object detec-431

tion [28, 29], semantic planning [30, 31, 32, 33, 34], and visual planning [6, 4, 7, 5, 8, 9]. Among432

them, our work is most related to prior works that employ image or video prediction models to gen-433

erate intermediate subgoal images for the given language task [6, 4, 7, 5, 8, 9]. These works use434

diffusion models to convert language instructions into visual subgoal plans, which are then fed into435

low-level subgoal-conditioned policies to produce actions. While sensible, this configuration leads436

to failures due to the misalignment of the generative models and the low-level policies that control437

the robot behavior, as shown in our experiments (section 3).438

Rejection Sampling: One of our key ideas in this paper is based on rejection sampling, where we439

sample multiple subgoal proposals from an image or video prediction model and pick the best one440

based on a learned subgoal classifier. The idea of test-time rejection sampling has been widely used441

in diverse areas of machine learning, such as filtering-based action selection in offline reinforcement442

learning (RL) [35, 36, 37, 38], response verification in natural language processing [39, 40, 41], and443

planning and exploration in robotics [42, 32, 33, 43, 44]. Previous works in robotics have proposed444

several ways to filter out infeasible plans generated by pre-trained foundation models [42, 32, 33, 43,445

45]. Unlike these works, we focus on filtering visual subgoals instead of language plans [32, 43, 45],446

and do not involve any planning procedures [33] or structural knowledge [42]. While the subgoal447

classifier we train resembles the classifier from [46], our classifier differs in two key ways. First, we448

use our classifier to filter out “off-task” subgoals, whereas the classifier in [46] is used as a reward449

function for training downstream policies. Second, the classifier from [46] is conditioned on the450

initial state s0 and the current state s, whereas our classifier is conditioned on the current state s and451

a generated subgoal g.452

Goal-Conditioned Policy Learning: Our method is broadly related to goal-conditioned policy453

learning [47, 48, 49], language-conditioned policy learning [50, 51, 52, 53, 54], and hierarchical454

control [4, 5, 55, 56, 57, 58]. Most prior works in hierarchical policy learning either train a high-455

level policy from scratch that produces subgoals or latent skills [59, 60, 61, 62, 63, 64, 65, 66, 67, 68,456

69, 70, 71, 72, 56] or employ subgoal planning [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 69, 85].457

Unlike these works, we do not train a high-level subgoal prediction model from scratch nor involve458

a potentially complex planning procedure. Instead, we sample multiple potential subgoals from a459

pre-trained (or potentially fine-tuned) image or video prediction model and pick the best one based460

on a trained subgoal classifier. Among hierarchical policy methods, perhaps the closest work to461

ours is IRIS [55], which trains a conditional variational autoencoder to generate subgoal proposals462

and selects the best subgoal that maximizes the task value function. While conceptually similar,463

our method differs from IRIS in that we do not assume access to a reward function in order to train464

a value function. Our classifier is trained on trajectories consisting only of images and language465

descriptions.466

Diffusion Model Guidance: The generative models we consider in our paper [86, 87] are diffusion-467

based models trained using classifier-free guidance (CfG) [88]. Although we use a large value for468

the language-prompt guidance parameter at inference in our experiments, we find that producing469

“off-task” subgoals is still a common failure mode that is not solved by increasing this parameter470

alone.471

Classifier guidance [16, 89, 90] is also a plausible alternative to rejection sampling, but there are472

some practical challenges in training a subgoal classifier for this purpose. First, the diffusion models473

we consider use latent diffusion [91], and therefore would require training the subgoal classifier to474

operate in the latent space of the diffusion model. Second, the subgoal classifier would need to be475

trained on noised data in order to guide the diffusion denoising process of the generative model.476

Nevertheless, classifier guidance is a potentially appealing direction for future work.477
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B Preliminaries478

We consider the same problem setting as [4], where the goal is for a robot to perform a task de-479

scribed by some previously unseen language command l. To do this, we consider the same three480

dataset categories as in [4]: (1) language-labeled video clips Dl which contain no robot actions; (2)481

language-labeled robot data Dl,a that includes both language labels and robot actions; (3) unlabeled482

robot data that only includes actions Da. The dataset Dl,a consists of a set of trajectory and task483

language pairs, {(τn, ln)}Nn=1, and a trajectory contains a sequence of state, snt ∈ S, and action,484

ant ∈ A, pairs, τn = (sn0 , a
n
0 , s

n
1 , a

n
1 , . . .). Given these datasets, we assume access to two learned485

modules:486

1. a subgoal generation module from which we can sample multiple possible future sub-487

goals. This can be trained on Dl and Dl,a.488

2. a low-level goal-reaching policy that chooses actions to reach generated subgoals. This489

can be trained on Da and/or Dl,a.490

Our contribution is a set of approaches to robustify the interface between these two modules.491

While GHIL-Glue can be applied to any hierarchical imitation learning method consisting of the492

two components mentioned above, in this work we apply GHIL-Glue to two specific algorithms: (1)493

UniPi [5], in which a high-level model generates a subgoal video, and a low-level inverse-dynamics494

model predicts the actions needed to “connect” the images in the video, and (2) SuSIE [4], in which495

a high-level model generates a subgoal image by “editing” the current image observation, and a496

goal-conditioned policy predicts actions to achieve the subgoal image. We define subgoals, g ∈ G,497

as video or image samples from the high-level models used in these algorithms.498

C Additional Discussion of Image Augmentation De-Synchronization499

Generated subgoals can contain visual artifacts that degrade the performance of both the low-level500

control policy and the subgoal classifier. This performance degradation results from the distribution501

shift between the subgoal images seen by the policy during training, which come from the robot502

dataset, and the subgoal images seen during inference, which come from the generative model.503

Ideally, the low-level policy and subgoal classifier would be trained on the same distribution of504

generated subgoal images that they will see at inference time. However, due to the high degree of505

variance in sampling images from a generative model, there is not a clear way to obtain generated506

subgoal images that match the actual future states reached in trajectories in the training data. To507

address this issue, we identify a simple yet non-obvious data augmentation practice to train the low-508

level policy and subgoal classifier on goals from the robot dataset while also robustifying them to509

visual artifacts in generated subgoals.510

Applying image augmentation procedures such as random cropping or color jitter during training is a511

standard approach in image-based robot learning methods [12] to improve the robustness of learned512

models to distribution shifts between their training and evaluation domains. More formally, let ϕ513

be the set of image augmentation parameters to be randomly sampled from space Φ, pΦ(·) be some514

probability distribution over Φ, and let ϕ̂ ∼ pΦ(·) be some realization of augmentations sampled515

from pΦ(·). Typically, for each training sample, a different value ϕ̂ is applied during training to516

make a model robust to any augmentation in the space Φ.517

For both the low-level goal-conditioned policy and the subgoal classifier, each training sample in-518

cludes two images: the current state s and the corresponding goal g. Standard practice is to sample519

augmentation parameters ϕ̂ and apply them to all images in a given training sample [4, 13], which520

corresponds to applying the same ϕ̂ to both s and g. In a non-hierarchical policy setting, this makes521

sense, because at inference time s and g will both be sampled from the camera observations of the522

current environment instantiation. However, when using an image or video prediction model for523

subgoal generation, at inference time the low-level policy and subgoal classifier will see states from524
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the camera observations, but the goals will be generated by the image or video prediction model.525

There will often be differences in the visual artifacts between a camera observation s and the cor-526

responding generated subgoal image g, such as differences in color, contrast, blurriness, and the527

shapes of objects, which can degrade the performance of low-level policies and subgoal classifiers.528

To encourage robustness to this distribution shift, we sample separate augmentation parameters for529

s and g, denoted by ϕ̂s and ϕ̂g (i.e., we de-synchronize the image augmentations applied to s and530

g). Random cropping, brightness shifts, contrast shifts, saturation shifts, and hue shifts comprise531

our space of augmentations. Concretely, for each s and g pair sampled during training, a different532

random crop, brightness, contrast, saturation, and hue shift are applied to s than are applied to g.533

This forces the low-level policy and the subgoal classifier to learn to make accurate predictions on534

(s, g) pairs that have differences in visual artifacts.535

While image augmentations are ubiquitous in robot learning methods, our experiments show that536

the standard way of applying image augmentations for goal-conditioned policies and classifiers is537

deficient for the hierarchical policy methods that we consider. We also note that augmentation de-538

synchronization is applied not only to the policy, but also to the subgoal classifier (section 2.1),539

which has a significant impact on overall performance (section 3).540

D Experimental Domains541

We study the degree to which GHIL-Glue improves existing hierarchical imitation learning algo-542

rithms across a number of tasks in simulation and physical experiments that assess zero-shot gen-543

eralization. We evaluate our method on the CALVIN [10] simulation benchmark and the Bridge544

V2 [11] physical experiment setup with a WidowX250 robot. The experimental domains are visual-545

ized in fig. 2.546

Figure 2: Experimental Domains. Simulation Environments (Left): Train/test environments in the CALVIN
simulation benchmark. The environments each have different table textures, furniture positions, and initial con-
figurations of the colored blocks. Each environment contains 34 tasks, each with an associated language instruc-
tion. To test zero-shot generalization, environment D is held out for evaluation. Physical Environments (Right):
We consider four test scenes in the Bridge V2 robot platform with four total language instructions. To test zero-
shot generalization, these test scenes contain novel objects, language commands, and object configurations not
seen in the training data.

E Comparison Algorithms547

A detailed description of the comparison algorithms referenced in section 3.2 is provided below:548

1. LCBC Diffusion Policy: Low-level language-conditioned behavior cloning diffusion pol-549

icy [20] trained only on robot trajectories with language annotations. We use the same550

implementation as in [4].551

14



2. OpenVLA [21]: A SOTA language-conditioned vision-language-action model (VLA)552

trained on the Open X-Embodiment dataset [2] (which includes the entirety of the Bridge553

V2 dataset).554

3. SuSIE [4]: A method which fine-tunes InstructPix2Pix [86], an image-editing diffusion555

model, to generate subgoal images given the current image observation. Low-level control556

is performed using a goal-conditioned policy. For SuSIE and all methods that build on it,557

we predict subgoals 20 steps in the future as in the original paper.558

4. UniPi [5]: A method which fine-tunes a language-conditioned video prediction model559

on robot data and then uses an inverse dynamics model for low-level goal reaching. For560

UniPi and all methods that build on it, we predict video sequences of 16 frames. As the561

original UniPi model is not publicly available, we re-implement UniPi by fine-tuning the562

video model from [87].563

5. GHIL-Glue (SuSIE / UniPi): GHIL-Glue applied on top of either SuSIE or UniPi. For564

all experiments we implement the subgoal filtering step by sampling four to eight subgoals565

from the high-level video prediction model and selecting amongst them. We directly filter566

the subgoal images generated by the SuSIE model. We filter the video sequences generated567

by the UniPi model based on the final frame of each sequence.568

6. GHIL-Glue (SuSIE / UniPi) - Subgoal Filtering Only: GHIL-Glue applied to SuSIE or569

UniPi using subgoal filtering but without augmentation de-synchronization.570

7. GHIL-Glue (SuSIE / UniPi) - Aug De-sync Only: GHIL-Glue applied to SuSIE or UniPi571

using augmentation de-synchronization but without subgoal filtering.572

F Discussion of Results573

Simulation Experiments: We present results on the CALVIN benchmark in table 1. Applying574

GHIL-Glue yields significant performance increases for SuSIE and UniPi, increasing the average575

successful task sequence length from 2.94 to 3.69 for SuSIE and from 1.02 to 1.56 for UniPi. GHIL-576

Glue (SuSIE) achieves a new SOTA on CALVIN for policies that use observations from a single577

RGB camera. The two components of GHIL-Glue (subgoal filtering and image augmentation de-578

synchronization) improve performance when applied individually, but, when applied together, these579

components build on each other, leading to a performance increase greater than the sum of the580

individual benefits. Specifically, for SuSIE, image augmentation de-synchronization and subgoal581

filtering individually yield increases in sequence length of 0.56 and 0.02 respectively, whereas when582

applied together they yield an increase of 0.75. Similarly, for UniPi, the individual improvements583

yield increases in sequence length of 0.08 and 0.34 respectively, compared to an increase of 0.54584

when applied together.585

When applied alone, image augmentation de-synchronization increases the average successful task586

sequence length from 2.94 to 3.51 for SuSIE and from 1.02 to 1.1 for UniPi. We hypothesize587

that augmentation de-synchronization improves performance a large amount with SuSIE because588

its low-level policy is conditioned on a camera observation image s from the environment and a589

subgoal image g generated by the image model. When generalizing to the held-out test environment590

D, the SuSIE image model generates subgoal images with visual discrepancies from the camera591

observation images. In contrast, the UniPi video model predicts a sequence of frames as opposed to a592

single subgoal image. The UniPi low-level policy functions as an inverse dynamics model, choosing593

actions to link between the frames of the generated subgoal video, and is therefore conditioned on594

an s and g that both come from the predicted subgoal video.595

When applied alone, subgoal filtering has a small effect on SuSIE, while on UniPi it increases the596

average successful task sequence length from 1.02 to 1.36. This suggests that unless the SuSIE597

low-level policy is made robust to visual artifacts in generated subgoals, simply selecting the most598

task relevant subgoal is insufficient to improve performance. As discussed previously, the SuSIE599
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low-level policy is more sensitive to visual artifacts in generated subgoals than is the UniPi inverse600

dynamics model.601

Physical Experiments: We present results (table 2) comparing GHIL-Glue (SuSIE) to OpenVLA602

and SuSIE across four environments on the Bridge V2 robot platform that require interacting with603

a number of objects on a cluttered table (fig. 2). These environments require generalizing to novel604

scenes, with novel objects, and with novel language commands that are not seen in the Bridge V2605

dataset. GHIL-Glue applied to SuSIE outperforms SuSIE across all tasks and outperforms Open-606

VLA, a 7-billion parameter SOTA VLA, on 3 out of 4 tasks. Significantly, the baseline SuSIE607

implementation does not outperform OpenVLA on a single task, whereas GHIL-Glue (SuSIE) out-608

performs OpenVLA on 3 out of 4 tasks, demonstrating that hierarchical goal conditioned architec-609

tures with well-tuned interfaces between the high and low-level policies can outperform SOTA VLA610

methods on zero-shot generalization tasks.611

G Classifier Training612

Training objective: The classifier is trained using binary cross-entropy loss:613

J (θ) = E
(s,g,l)∼Dl

[log(fθ(s, g, l))] + E
(s′,g′,l′)∼N(Dl)

[1− log(fθ(s
′, g′, l′))],

where Dl is the language-annotated dataset that consists of trajectory and language task pairs, and614

N is a function for generating negative examples from the dataset. Given a dataset Dl, N generates615

negatives from Dl in the following ways:616

1. Wrong Instruction: (s, g, l′) where l′ is sampled from a different transition than s and g.617

2. Wrong Goal Image: (s, g′, l) where g′ is sampled from a different transition than s and l.618

3. Reverse Direction: (g, s, l), where the order of the current image observation and the619

subgoal image have been switched.620

Across all our experiments, we sample 50% of each training batch to be positive examples and621

50% of each training batch to be negative examples. Of the negative examples, 40% are “wrong622

instruction”, 40% are “reverse direction”, and 20% are “wrong goal image”.623

Goal sampling: In a given training tuple (st, g, l), g is sampled by taking the goal image from the624

st+k, where k is a uniformly sampled integer from 16 to 24.625

Network architecture and training hyperparameters: The classifier network architecture consists626

of a ResNet-34 encoder from [11], followed by a two-layer MLP with layers of dimension 256.627

Separate encoders are used to encode the image observations and the goal images (parameters are628

not shared between the two). Both of these encoders use FiLM conditioning [92] after each residual629

block to condition on the language instruction. Classifier networks are trained using a learning rate630

of 3× 10−4 and a batch size of 256 for 100, 000 gradient steps. A dropout rate of 0.1 is used.631

H Image Augmentations632

During training of low-level policy networks and classifier networks, we apply the following aug-633

mentations to the image observations and the goal images, in the following order:634

1. Random Resized Crop:635

• scale: (0.8, 1.0)636

• ratio:(0.9, 1.1)637

2. Random Brightness Shift:638

• shift ratio: 0.2639
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3. Random Contrast:640

• Contrast range: (0.8, 1.2)641

4. Random Saturation:642

• Saturation range: (0.8, 1.2)643

5. Random Hue:644

• shift ratio: 0.1645

Figure 3 visualizes examples from the Bridge dataset before and after augmentations are applied:646

Figure 3: Image augmentation examples Examples of images from the Bridge dataset before and after having
the image augmentations applied to them that are used during policy and classifier training.

I Qualitative Analysis647

I.1 Effect of subgoal filtering648

Although we use classifier-free guidance (CfG) [88] on the image or video generative model with649

respect to the language-prompt at inference in our experiments, we find that producing “off-task”650

subgoals is still a common failure mode that is not solved by increasing the guidance parameter651

alone. In fig. 4, we visualize how subgoal filtering can prevent “off-task” subgoals generated by the652

image or video model from being passed to the low-level control policy.653

I.2 Classifier rankings654

We show examples of how the classifier network ranks generated goal images on tasks from Scene D655

of our physical experimental domain. Figures 5a, 5b, 5c show examples of the classifier correctly656

ranking the generated goal images (highly ranked images correspond to making progress towards657

correctly completing the language instruction), while fig. 5d shows an example of the classifier658

erroneously giving high rankings to goal images that do not make progress towards completing the659

language instruction. Note that while the classifier scores can be close across various goal images,660

so long as the relative ranking of the generated goal images is correct, then incorrect subgoal images661

will be rejected and correct subgoal images will be passed to the low-level policy.662
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Figure 4: GHIL-Glue Subgoal Filtering. We visualize policy rollouts of SuSIE without subgoal filtering
vs. GHIL-Glue SuSIE with subgoal filtering. We show the states reached every 20 timesteps (top row) and
the corresponding predicted subgoals (bottom row). Without subgoal filtering, the subgoal at t = 60 is not
consistent with making progress towards placing the pepper in the bowl, causing the robot to dither and drop
the pepper. When subgoal filtering is used, the selected subgoals make iterative progress towards a successful
task completion.

Figure 5: Classifier ranking examples Examples of the classifier network rankings on 8 generated candidate
subgoals given an observation from Scene D of the physical experiments and a language instruction. Note that
during GHIL-Glue inference, only the first-ranked subgoal is passed to the low-level policy.

(a) Correct Example of Classifier Filtering The classifier correctly ranks the subgoal images where the robot
is grasping the sushi higher than the subgoal images where the robot is grasping the drawer handle.
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(b) Correct Example of Classifier Filtering The classifier correctly ranks the subgoal images where the robot
moves to place the grasped sushi into the bowl higher than the subgoal images where the robot moves its gripper
towards the drawer handle. It ranks the subgoal image with the hallucinated blue bowl-like artifact last.

(c) Correct Example of Classifier Filtering The classifier correctly ranks the subgoal image highest that shows
the robot completing the correct task – only a single generated subgoal image shows the robot placing the sushi
into the bowl, while all other generated subgoal images show the robot placing the sushi into the drawer.

(d) The classifier incorrectly ranks the subgoal images higher where the robot is placing the banana into the
bowl than it ranks the subgoal images where the robot is placing the banana into the drawer. This could be due
to there being a strong bias for placing objects in bowls in the Bridge V2 training data.
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I.3 Trajectory Visualizations663

We show examples of rollouts of GHIL-Glue (SuSIE) on our physical experiment set up. These664

examples showcase when GHIL-Glue successfully filters out off-task subgoal images (Figure 6a),665

as well as an instance of when GHIL-Glue nearly causes a failure (Figure 6b).666

Figure 6: GHIL-Glue (SuSIE) Trajectory Visualization Visualization of a rollout of GHIL-Glue (SuSIE) on
Scene D in the physical experiments set up. The top row shows the current image observation at every timestep
at which the video prediction model is queried. The second and third rows show the highest and lowest ranked
generated subgoal images out of the 8 generated subgoal images, as ranked by the classifier. Note that during
GHIL-Glue inference, only the first-ranked subgoal is passed to the low-level policy.

(a) “Put the sushi into the bowl.” This rollout shows two examples of the classifier filtering preventing the
policy from going off-task: at t = 0, the lowest ranked generated subgoal shows the gripper grasping the drawer
handle instead of moving to grasp the sushi; at t = 30, the lowest ranked generated subgoal shows the gripper
moving towards the drawer handle instead of towards placing the sushi into the bowl. Note the hallucinated
objects and artifacts visible in the goal images at t = 15, 30, 45. Augmentation de-synchronization helps to
make the low-level policy and classifier robust to hallucinated artifacts such as these.
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(b) “Put the banana into the drawer.” In this rollout, classifier filtering fails and causes a near-miss. At
t = 15, the classifier ranks a subgoal image highest that shows the robot placing the banana into the bowl
instead of the drawer. However, at t = 30, when the robot reaches the state specified by this subgoal image, the
subsequent generated subgoals all show the robot correctly placing the banana into the drawer. Although, as in
this example, the classifier network can occasionally rank incorrect subgoal images higher than correct subgoal
images, such errors occur infrequently as GHIL-Glue (SuSIE/UniPI) outperforms base-SuSIE/UniPi across all
of our physical and simulated experiments.
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I.4 Qualitative Analysis of Augmentation De-synchronization667

Figure 7: Generated Subgoal Image on CALVIN A subgoal im-
age generated by the SuSIE video model on the unseen environ-
ment D of the CALVIN benchmark. The colors and shapes of ob-
jects are different in each of the four CALVIN environments, and
since the model was not trained on data from environment D, it
often generates images with incorrect shapes and colors. Augmen-
tation de-synchronization is important for the low-level policy and
classifier to be able to handle these mismatches between image ob-
servations and corresponding generated subgoal images.

We see that when applying aug-668

mentation de-synchronization, the669

number of failures due to low-670

level policy errors (missed grasps,671

dropping held objects, etc.) de-672

creases, indicating that augmentation673

de-synchronization is important for674

the low-level policy to be able to cor-675

rectly interpret and follow the sub-676

goal images generated by the video677

prediction model. This is particularly678

important in domains where there is679

a large visual generalization gap be-680

tween the training data and the eval-681

uation tasks. For example, in the682

CALVIN benchmark, the colors and683

shapes of objects differ between the684

training and evaluation scenes. This685

difference causes the subgoals gener-686

ated by the video prediction model to687

often contain objects with incorrect shapes and colors (Figure 7). Augmentation de-synchronization688

seems to be critical to allowing the low-level policy to be robust to these hallucinations and artifacts.689

J Number of Candidate Subgoals690

We conduct an ablation over the number of candidate subgoals used for subgoal filtering in GHIL-691

Glue (SuSIE) in the CALVIN benchmark. We find that GHIL-Glue (SuSIE) achieves similar per-692

formance whether 4, 8, or 16 candidate subgoals are used. In our main results (section 3.3), we693

report the performance of GHIL-Glue (SuSIE) on the CALVIN benchmark when using 8 candidate694

subgoals for filtering. For GHIL-Glue (UniPi) on the CALVIN benchmark, we use 4 candidate sub-695

goals for filtering, due to the increased computation burden of generating video subgoals with the696

UniPi video model vs. generating image subgoals with the SuSIE image model. In our physical697

experiments, we run GHIL-Glue (SuSIE) using 4 candidate subgoals for filtering.698

Tasks completed in a row
Method 1 2 3 4 5 Avg. Len.

GHIL-Glue (SuSIE) - 4 samples 95.2% 86.0% 71.2% 60.5% 50.0% 3.63
GHIL-Glue (SuSIE) - 8 samples 95.2% 88.5% 73.2% 62.5% 49.8% 3.69
GHIL-Glue (SuSIE) - 16 samples 95.0% 86.5% 72.8% 60.8% 48.0% 3.63

Table 3: Effect of Number of Candidate Goal Images Sampled in GHIL-Glue (SuSIE) Success rates on the
validation tasks from environment D of the CALVIN Challenge when using GHIL-Glue (SuSIE) when using
4, 8, or 16 candidate goal images with classifier filtering. Results are averaged across 4 random seeds. Results
are similar across all numbers of samples, with 8 samples performing the best by a slight margin.
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