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ABSTRACT

Visualization of the feature space has gained attention in recent years, especially with the growing
importance of explainability in AI. When processing high-dimensional datasets, a common pre-
processing step is feature selection. Filter-based feature selection algorithms are not tailored to
a specific classification method, but rather rank the relevance of each feature with respect to the
target and the task. The Jeffries-Matusita (JM) distance is a measure for separability between two
distributions that has been used for filter based feature selection. It calculates for each feature the
separability strength between pairs of classes. In this work, a low-dimensional representation of
the JM measures for the feature space is formed by diffusion map. Diffusion maps organizes the
features by their class separation abilities. Moreover, feature elimination is performed based on
the distribution of the points in the low-dimensional space. Experimental results are provided for 3
public datasets and compared with known filter-based feature selection techniques.

1 INTRODUCTION

Geometric based representation and manifold learning techniques have been shown to be a valuable tool for model-
ing and visualization of complex data (Meyer & Barth, 2016; [Moon & Krishnaswamy., 2017; Wang & Lin, 2020).
Commonly, manifolds learning techniques are applied to the data of the sample space for revealing its underlying
latent factors (Singer & Coitman, [2009} [Comeau & Majda, [2017)). Nevertheless, graph-based approached for feature
visualization and selection have also been proposed and applied in differed domains (Das & Chakraborty} 2017} Roffo
& Vinciarelli, [2017; [Hashemi & Nezamabadi-pour, 2020). Two notable domains of interest, which typically process
datasets of high-dimension for supervised multi-class learning problems, are remote sensing (Georganos & Wolff,
2018 |Tagkin & Bruzzone} 2017)) and gene expression data (Dutta & Gulati, 2019; |Swarnkar & Mitra, 2015)).

In this work, we focus on filter feature selection methods using graph-based techniques. In filter methods the selection
of features is independent of the classifier used. Other known feature selection techniques are wrapper methods that
perform an iterative search for finding the best subset of features (Jovi¢ & Bogunovic}|2015) and embedded methods,
in which the feature selection procedure is an integrated into the learning algorithm (Monteiro & Murphy). How-
ever wrapper methods are less suitable for processing high-dimensional datasets because of their high computational
complexity (Ghosh & Abrahaml [2019).

The Jeffries-Matusita (JM) distance, which improves the Bhattacharya distance (Guorong & Minhui, [1996), is a mea-
sure for separability between two distributions. It has been successfully tested for feature selection in remote sensing
and hyperspectral datasets (Wei & Gao, [2017; Jung & Ehlers, 2016). Given a multi-class problem, the JM based fea-
ture separation is coded by symmetric matrix that holds the class separability strength of each feature. The separation
coefficients between two classes take values between 0 and 2, where 2 stands for two classes that are highly separated
by the inspected feature. One way to choose the best features is to calculate the average value of the JM matrix for each
feature, and leave the features with the highest averaged separation scores (Khosravi & Homayouni, [2018). However,
this elimination approach may ignore some features that do not have the highest averaged separation but contribute to
specific class-separation pairs. In order to study the JM based feature space, a manifold learning algorithm, diffusion
maps (Coifman & Lafon| 20006), is utilized.

Diffusion maps is well known manifold learning technique. It starts by representing the data points as a weighted
graph. The spectral decomposition of the graph is used to embed the data into a low-dimensional space. The associate
diffusion distance metric ensures that the geometric structure of the data is kept in the low-dimensional space, where
Euclidean distances correspond to the diffusion distance in the original space. Application of diffusion maps to the



feature space, where each feature is represented by a JM distance matrix, provides a visual description of the feature
distribution with respect to class separability. Furthermore, feature with similar JM distance matrices lie close to one
another in the low-dimensional space, thus, feature elimination can be determined based on Euclidean distance in the
compact representation.

Graph-based feature visualization and selection is proposed by combining the JM distance and diffusion maps. This
follows ideas from (Zeng & Wu| 2018)) and (Khosravi & Homayouni, [2018)) that propose improved versions of the
JM feature selection techniques by considering both separability and redundancy between the features. In (Zeng
& Wu, [2018)), this redundancy is calculated using the Pearson correlation. In (Khosravi & Homayouni, |2018) the
features come from two different modalities, radar and optic instruments. Features from the first modality that have an
averaged JM value that is larger than a pre-defined threshold are kept. Then, features from the second modality that
have a large correlation coefficient with the features selects from the first modality, are eliminated. Here, we propose
to eliminate features that are represented by JM distance matrices based on their distribution in the low-dimensional
space. Results are demonstrated on three high-dimensional datasets and are compared with known filter methods for
feature selection, the fisher score (Duda & Stork, |2001)), RelifF (Robnik-Sikonja & Kononenko, 2003 and Correlation-
based feature selection (CFS , |[Hall| (1999)). We show that the proposed geometric-based elimination often results in
higher classification accuracy than the other techniques, while also providing a visual representation of the feature
space.

2 METHODS

This section reviews the Jeffries-Matusita (JM) distance measure and diffusion maps. Denote the learned dataset by
X ={x1,...,xN}, where N is the number of samples, and z; € RP, where D is the dimension of the feature space.

2.1 JEFFRIES-MATUSITA DISTANCE FOR FEATURE SELECTION

Given a feature x; € X and a set of classes that are associated with the classification task, ¢ = 1,2, ..., C, the IM
distance computations result a in matrix of size C' x C, in which the separability between two classes ¢ and ¢ is defined
by

IMi(e,6) =2 (1 - e P9, (1)
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is the Bhattacharyya distance. The values p. ;, (t,; and o, ;, 0z ; are the mean and variance values of two given classes
c and ¢ from the feature x;.

For the propose of this work, each feature z; € RP? is replaced by its associated JM matrix of size C' x C, denoted by
JM;. Thus the input set for the diffusion maps algorithm may be denoted by X = {J M, ..., JMy}. The size of X
is N x C2.

2.2 DIFFUSION MAPS

Diffusion maps (DM) allows to model high-dimensional that lie on a non-linear manifold. Here, the input data is
comprised of symmetric matrices, that are flattened into vectors of size 1 x C?. This set is denoted by X, and it is the
input for the DM algorithm.

A graph G = (X, W) is constructed from X, where the points in X are the vertices of G and a kernel matrix
W 2w (JM;,J M;), of size N x N, holds the graph’s weighted edges. W should satisfy the following properties.
Symmetric, positive-preserving, and positive semi-definite (see Coifman & Lafon|(2006)) for details).
The Gaussian kernel
—lam; -2

sz(JMi,JMj):e 2e 3)
is a common choice for the weight matrix of G. The scale of the kernel e defines the local neighborhood around each
data point in the original space. The value of e should be adapted to the density distribution of the data.



By introducing a scale parameter «, the effect of the non-uniformed data distribution may be controlled. A general
normalized form of the kernel is given by

W(JMl,JMJ)
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a(IM;) = Y w(IM;, IM;). (4)
JM;eX
Here, we set & = 1, which results in an approximation of K to the Laplace-Beltrami operator (Coifman & Lafon|

2000), and it allows to recover the geometry of the data points, regardless of their distribution. A second normalization
is performed for generating a Markov transition matrix K from W, This results in

K=D"1'W,, D=dJM;JM;) = Z Wo (JM;, IM;) . (5)
IM;eX

Computing the spectral decomposition of K results in embedding coordinates for the dataset X. Denote the eigenval-
ues of K by {)\l}l]\; L ! and the left and right eigenvectors by {(;Sl}l]i o} and {%}fi ', respectively. Although K is not
a symmetric matrix, it is conjugate to a symmetric matrix, thus the two sets of eigenvectors {¢; };- 61 and {¢; }1% 61 ,
are biorthonormal (¢,,,, ¢;) = ;. Therefor, each element in K can be computed by
N-1
k(JM;, JM;) = > N (T M;) oy (JM;). (6)
1=0

The matrix K has a decaying spectrum, \; — 0 as [ grows. This allows to approximate the entries of K in equation 6]
by considering a small number of terms d in the sum. Finally, the diffusion maps coordinates are defined by

W(JIM;) = (M1 (IM;), Aatha (IM;), Agtpg (M), - - ) . (N
The first d < C? diffusion maps coordinates are considered, thus the space is reduced.

2.3  FEATURE CLUSTERING AND ELIMINATING IN THE EMBEDDED SPACE

The diffusion maps coordinates provide a reduced and compact space that organizes the features by their underlying
class separability properties. When using the Gaussian kernel (see equation [3), features with high separability values
will be close to one another. Thus, a simple k-means clustering algorithm may be applied in the reduced space and
create clusters of features with similar averaged JM separability. Clusters that include features with low averaged
separability may then be eliminated.

Another elimination approach is based on the density distribution of the JM matrices in the diffusion maps space. Two
points that lie close to each other in the embedded space correspond to two features with similar JM matrices. By
setting a scale parameter € and a multiplication factor a, one of the two points may be eliminated. In particular, we
start with the first embedded point ¥(JM;) and eliminate all other points that satisfy

|W(JMy) —W(IM)| <a-&  forall  {W(JM;)}Y,. (8)

The distances are the Euclidean distances in the low-dimensional space. The value for £ is set as the average of the
minimal distances between each point and its closest neighbor in the embedding space. Then, the elimination process
continues by setting the next point ¥(.JM>) in equation [8| (assuming that it was not eliminated in the previous step).
The process continues by scanning all of the embedded features.

3 DATASETS

Three public datasets (UCI) belonging to multi-class classification tasks are considered.

1. Isolet: The dataset holds 617 features extracted from voice recordings of 150 subjects, who spoke out each
of the English alphabets. The task is to classify the correct letter, hence there are 26 classes.

2. Crop: The data holds bi-temporal optical-radar data for cropland agricultural classification. The full dataset
includes 174 features and seven crop type classes.

3. Obesity: The data is used for the estimation of obesity levels in individuals from the countries of Mexico,
Peru and Colombia, based on their eating habits and physical condition. It includes 16 features and seven
obesity type classes.



4 RESULTS

The datasets were first split into train and test sets. In Obesity and Isolet the train-test split was 70% - 30%. In the
Crop dataset, 3361 samples were randomly chosen for training and 1441 for test. Classification on the test datasets
was performed by application of multi-class SVM, KNN and random forests. Experiments were repeated three times.
The features from the train sets of the three datasets were first replaced by their associated JM matrices, as explained in
Section[2.1] This resulted in a dataset denoted by X. Then, diffusion maps was applied to X and feature elimination
was performed. The eliminated feature set from the train data was fed into the classifiers, and the class of the test
samples was predicted based on these features.

Table[T|presents the results for the Isolet dataset. The first row considers all of the features. The second and third rows,
named high-cluster and high + medium cluster consider features that were selected after application of k-means, with
k = 3 in the low-dimensional space. Each of the resulted clusters was associated with the mean average JM separation
strength of its embedded points. Next, points were eliminated by application of equation[8] once with @ = 1 and once
with a = 2 in the 2-dimensional space. The last rows plot the classification results of fisher score and reliefF features
selections, once by keeping 50% of the features and once by keeping 30% of the features. The last row shows the
classification results after application of CFS. The columns hold the averaged accuracy from 3 test runs for each type
of classifier. It can be seen that DM based eliminate with a = 2 mostly achieved higher accuracy than the fisher score
and reliefF with 30%, these all hold approximately the same number of features. In addition, DM based eliminate with
a = 2 performs better than reliefF with 50% of the features and it is quite comparable to the fisher score with 50% of
the features. Note the in these two cases the number of features for DM eliminate with ¢ = 2 is much smaller than
fisher and reliefF. Visualization of the feature space is plotted in Figure(l|in the Appendix.

Table 1: Classification results for the Isolet dataset

Method Num. of features SVM KNN Random Forests
All features 617 0.962 0.87 0.899814736
High cluster (DM) 103 0.656 0.588 0.601
High+Med. cluster (DM) 235 0.896 0.813 0.822
Eliminate (DM, a=1) 367 0.963 0.89  0.895
Eliminate (DM, a=2) 190 0.952 0.891 0.875
Fisher-score (50%) 309 0.955 0.903 0.886
Fisher-score (30%) 185 0933 0.884 0.877

reliefF (50%) 309 0949 0.86 0.856
reliefF (30%) 185 0.936 0.837 0.826

CFS 27 0.688 0.638 0.692

The results and low-dimensional plots for the Crop and Obesity dataset are detailed in the Appendix. In both of these
cases the DM elimination approach resulted in high accuracy rates and a relatively small number of features.

5 CONCLUSIONS

In multi-class classification tasks, the JM index provides an informative measure about the class separation strength of
a feature. However, it is not intuitive to analyze the C' x C matrices that are calculated, especially when the number
of features and C' are large. Embedding of the JM matrices by diffusion maps in a low-dimensional space provides
a visualization of the feature space. In addition, it allows to perform a geometric-based elimination approach, which
results in competitive classification performance when compared to known feature selection techniques. In future
work we plan to test different kernel types and to improve the elimination procedure by choosing the best embedding
dimension.
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A APPENDIX

Figure[I] plots the two-dimensional JM feature representation from the Isolet dataset. The points are colored by their
average JM values. It can be seen that the first diffusion coordinate captures this property, however, there are other
factor that differentiate between the JM matrices, which are captured in the second diffusion coordinate.
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Figure 1: Embedding of the feature space of the Isolet dataset by the first two diffusion maps coordinates.

The 174 computed and embedded JM features from the Crop dataset are presented in Figure 2] (left). The features of
the Obesity dataset, represented by the first two diffusion maps coordinates are presented in Figure [2] (right). In both
sub-figures the x-axis corresponds to A1, and the y-axis to Ast)s.

Table[2]plots the classification results for the Crop dataset. Like in the Isolet example, it can be seen that DM-eliminate
with a = 2 leaves approximately a third of the original features, performs equal or better than fisher and reliefF with
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Figure 2: Embedding of the feature space of the Crop dataset (left) and the Obesity dataset (right) by the first two
diffusion maps coordinates.

30% and quite similar to fisher and reliefF with 50%. A similar advantage of the DM-eliminate method with a = 2 is

seen for the Obesity dataset, in Table E[

Table 2: Classification results for the Crop dataset

Method Num. of features SVM KNN Random Forests
All features 174 0.985 0981 0.978
High cluster (DM) 41 0.938 0.956 0.954
High+Med. cluster (DM) 84 0.976 0982 0974
Eliminate (DM, a=1) 117 0.984 0983 0974
Eliminate (DM, a=2) 59 0983 0979 0974
Fisher-score (50%) 87 0.984 0983 0.973
Fisher-score (30%) 52 0.978 0.978 0.969
reliefF (50%) 87 0.986 0981 0974
reliefF (30%) 52 0.983 0975 097
CFS 12 093 0935 00951

Table 3: Classification results for the Obesity dataset

Method Num. of features SVM KNN Random Forests
All features 16 0.87 0.806 0.922
High cluster (DM) 5 0.689 0.731 0.754
High+Med. cluster (DM) 9 0.804 0.788 0.867
Eliminate (DM, a=1) 10 0.826 0.806 0.904
Eliminate (DM, a=2) 6 0.905 0.896 0.937
Fisher-score (50%) 8 0.874 0.853 0.928
Fisher-score (30%) 5 0.74  0.799 0.834
reliefF (50%) 8 0.896 0.793 00911
reliefF (30%) 5 0.906 0.847 0.934
CFS 11 0.876 0.801 0.927



	Introduction
	Methods
	Jeffries-Matusita distance for feature selection
	Diffusion maps
	Feature clustering and eliminating in the embedded space

	Datasets
	Results
	Conclusions
	Appendix

