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Abstract
Graph Edit Distance (GED) is a widely used met-
ric for measuring similarity between two graphs.
Computing the optimal GED is NP-hard, leading
to the development of various neural and non-
neural heuristics. While neural methods have
achieved improved approximation quality com-
pared to non-neural approaches, they face signifi-
cant challenges: (1) They require large amounts
of ground truth data, which is itself NP-hard to
compute. (2) They operate as black boxes, offer-
ing limited interpretability. (3) They lack cross-
domain generalization, necessitating expensive
retraining for each new dataset. We address these
limitations with GRAIL, introducing a paradigm
shift in this domain. Instead of training a neural
model to predict GED, GRAIL employs a novel
combination of large language models (LLMs)
and automated prompt tuning to generate a pro-
gram that is used to compute GED. This shift from
predicting GED to generating programs imparts
various advantages, including end-to-end inter-
pretability and an autonomous self-evolutionary
learning mechanism without ground-truth super-
vision. Extensive experiments on seven datasets
confirm that GRAIL not only surpasses state-of-
the-art GED approximation methods in prediction
quality but also achieves robust cross-domain gen-
eralization across diverse graph distributions.

1. Introduction and Related Work
Graph Edit Distance (GED) quantifies the dissimilarity be-
tween two graphs as the minimum number of edits required
to transform one graph into another. An edit may com-
prise adding or deleting nodes and edges or replacing node

*Equal contribution 1Yardi School of Artificial Intelligence, IIT
Delhi, India 2Department of Computer Science and Engineering,
IIT Delhi, India 3Google DeepMind, Montreal, Canada. Corre-
spondence to: Samidha Verma < samidha.verma@scai.iitd.ac.in>,
Arushi Goyal <cs5200418@iitd.ac.in>, Ananya
Mathur <cs5200416@iitd.ac.in>, Ankit Anand <anan-
dank@google.com>, Sayan Ranu <sayanranu@iitd.ac.in>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Figure 1. Illustration of edit path from g1 to g2 with GED 3.

and edge labels. Fig. 1 presents an example. Computing
GED is NP-hard (Ranjan et al., 2022) and APX-hard (Fan
et al., 2020; Bommakanti et al., 2024a). Owing to its nu-
merous applications (Blumenthal, 2019; Ranu et al., 2014;
Bommakanti et al., 2024b), polynomial-time heuristics are
designed in practice.

1.1. Existing Works and their Limitations
Existing heuristics to approximate GED can be broadly
grouped into two paradigms: non-neural and neural.

Non-Neural Methods: Computing GED exactly or approx-
imating it within provable bounds is challenging, leading to
the development of various heuristic approaches (Blumen-
thal et al., 2020). These methods utilize techniques such
as transformations to the linear sum assignment (NODE
(Justice & Hero, 2006), BRANCH-TIGHT (Blumenthal &
Gamper, 2018)), mixed integer programming (MIP) (LP-
GED-F2 (Lerouge et al., 2017a), ADJ-IP (Justice & Hero,
2006), COMPACT-MIP (Blumenthal & Gamper, 2020)), and
local search methods (IPFP (Leordeanu et al., 2009)).

Unlike black-box neural methods, these approaches not only
approximate GED but also provide the edit path, offering in-
sights into structural modifications. However, their approxi-
mation quality is often inferior to neural approaches (Ranjan
et al., 2022; Bai et al., 2019), driving the shift toward neural
architectures. Additionally, these methods often involve
solving complex optimization problems, such as MIP, to
derive node alignments between graphs.

Neural Methods: Recent advancements favor graph neural
networks (GNNs) for GED approximation due to their supe-
rior accuracy over non-neural methods (Ranjan et al., 2022;
Zhang et al., 2021; Bai et al., 2019; Piao et al., 2023; Wang
et al., 2021; Zhuo & Tan, 2022; Jain et al., 2024; Bai et al.,
2020; Doan et al., 2021; Li et al., 2019). These models take
pairs of graphs with known GED values as input and are
trained to predict GED distances. However, since computing
true GED is NP-hard, training these models efficiently for
large graphs or datasets remains a significant challenge.
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Name End-to-end interpretable Cross-domain
generalization

Non-reliant on NP-hard
supervision

Accurate

GREED (Ranjan et al., 2022) X X X ✔
GEDGNN (Piao et al., 2023) O X X ✔
H2MN (Zhang et al., 2021) X X X ✔
ERIC (Zhuo & Tan, 2022) X X X ✔
GRAPHEDX (Jain et al., 2024) X X X ✔
GRAPHOTSIM (Doan et al., 2021) X X X ✔
GRAPHSIM (Bai et al., 2020) X X X ✔
TAGSIM (Bai & Zhao, 2021) X X X ✔
GMN (Li et al., 2019) X X X ✔
GENN-A* (Wang et al., 2021) O X X ✔
SIMGNN (Bai et al., 2019) X X X ✔
Non-neural approaches (Blumenthal et al., 2020) O ✔ ✔ X
GRAIL ✔ ✔ ✔ ✔

Table 1. Summary of the drawbacks of existing algorithms and the proposed algorithm GRAIL. ✔ indicates satisfaction of a desirable
property, X indicates non-satisfaction, and O indicates partial satisfaction. While GEDGNN, GENN-A*, and traditional non-neural
approaches achieve partial interpretability by providing edit paths corresponding to the GED, they do not explain the semantic reasoning
behind these paths. In contrast, GRAIL achieves end-to-end interpretability through its code-based output, where each decision can be
traced to its underlying logical reasoning. Non-neural approaches utilize unsupervised learning, enabling cross-domain generalization.
However, their approximation errors are significantly higher on average than neural approaches, as demonstrated in § 5.

Among the leading algorithms, GREED (Ranjan et al., 2022)
employs siamese GNNs with an inductive bias to learn
GED while preserving its metric properties. H2MN (Zhang
et al., 2021) utilizes a hierarchical hypergraph matching
network for graph similarity learning. Other state-of-the-art
approaches, such as (Piao et al., 2023), ERIC (Zhuo & Tan,
2022), and GraphEdX (Jain et al., 2024), further explore
GNN-based architectures for GED prediction. Despite supe-
rior approximation quality, these methods suffer from key
limitations given below.

• Lack of interpretability: Most neural methods only pre-
dict the GED and not the corresponding edit path. The edit
path is essential for various applications such as identify-
ing functions of protein complexes (Singh et al., 2008),
image alignment (Conte et al., 2003), and uncovering
gene-drug regulatory pathways (Chen et al., 2019). Few
neural methods that predict the edit path (Piao et al., 2023;
Wang et al., 2021) rely on expensive ground truth compu-
tation, which can only be attained for very small graphs
(≈ 10 nodes). For larger graphs, random edits are made
to synthetic graphs to generate the training samples.

• NP-hard training data: The training dataset for neural
methods consists of graph pairs and their true GED. GED
computation is NP-hard. Therefore, generating this train-
ing data is prohibitively expensive and restricted to small
graphs only. Hence, approximation error deteriorates on
larger graphs. (Ranjan et al., 2022)

• Lack of generalization: Neural GED approximators
struggle to generalize across datasets. For datasets from
different domains (e.g., chemical compounds vs. function-
call graphs), the node label sets often differ. Since the
number of parameters in a GNN depends on the feature
dimensions of the nodes, GNNs fail to generalize across
domains. Even within the same domain, as demonstrated
later in §5, distribution shifts in structural and node label

distributions lead to increased approximation error. This
limitation necessitates generating ground-truth data and
training separate models for each dataset. Given that gen-
erating training data is NP-hard, this pipeline becomes
highly resource-intensive.

1.2. Contributions
We address the above-outlined limitations through GRAIL:
Graph Edit Distance and Node Alignment using LLM-
Generated Code. GRAIL introduces a paradigm shift in
the domain of GED approximations through the following
novel innovations.
• Problem formulation: We shift the learning objective

from approximating GED to learning a program that ap-
proximates GED. This reformulation provides end-to-end
interpretability, as each algorithmic decision can be traced
to its underlying logical reasoning. Moreover, by elevat-
ing the output to a higher level of abstraction through code
generation, we achieve superior generalization across
datasets, domains, graph sizes, and label distributions.

• LLM-guided program discovery: The algorithmic
framework of GRAIL is grounded on three novel design
choices. First, we map the problem of approximating
GED to maximum weight bipartite matching, where the
weights of the bipartite graph are computed using an LLM-
generated program. Second, the prompt provided to the
LLM is tuned through an evolutionary algorithm (Romera-
Paredes et al., 2024). Third, our prompt-tuning method-
ology eliminates the need for ground-truth GED data by
designing a prediction framework where the prediction is
guaranteed to be an upper bound to the true GED. Hence,
minimizing the upper-bound is equivalent to minimizing
the approximation error, thereby overcoming a critical
bottleneck of existing neural approaches.

• Comprehensive Empirical Evaluation: Through ex-
tensive experiments across 6 datasets, we demonstrate
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that GRAIL discovers foundational code-based heuristics.
Specifically, these heuristics not only surpass the state-of-
the-art methods in GED computation but also exhibit gen-
eralization across diverse datasets and domains. This cru-
cial feature eliminates the need for costly dataset-specific
training, thereby addressing a significant limitation of
existing neural algorithms.

2. Preliminaries and Problem Formulation
Definition 1 (Graph). We represent a node-labeled undi-
rected graph as G(V, E ,L) where V = {v1, · · · , v|V|} is the
set of nodes, E ⊆ V ×V is the edge set and L : V → Σ is a
labeling function that maps nodes to labels, where Σ is the
set of all labels.

In unlabeled graphs, all nodes are assigned the same label.
Definition 2 (Node Mapping). A node mapping between
two graphs G1 and G2, each consisting of n nodes, refers
to a bijection π : V1 → V2, where every node v ∈ V1 is
uniquely mapped to a node π(v) ∈ V2.
Extension to graphs of different sizes: When dealing with
two graphs G1 and G2 with different numbers of nodes, n1

and n2 respectively, such that n1 < n2, the smaller graph
G1 can be extended to match the size of G2 by introducing
n2 −n1 additional isolated dummy nodes. These new nodes
are labeled with a unique identifier, ϵ, indicating that they
are placeholders with no connections. From this point on-
ward, we assume that any pair of graphs in consideration
have an equal number of nodes, with smaller graphs being
augmented by dummy nodes as necessary.
Definition 3 (GED under a node mapping π). Given a node
mapping π, the cost function for calculating graph edit
distance between graphs G1(V1, E1,L1) and G2(V2, E2,L2)
is expressed as:

GEDπ(G1,G2) =
∑

v1∈V1

I (L1(v1) ̸= L2(π(v1)))

+
1

2

∑
v1∈V1

∑
v2∈V1

I (e1(v1, v2) ̸= e2(π(v1), π(v2)))

where,
• ei(u, v) returns 1 if the edge (u, v) ∈ Ei in graph Gi, 0

otherwise.
• I(A) is the indicator function, which is 1 if the condition
A holds, and 0 otherwise.

Interpretation of edit path from node mapping: The
first part of the equation captures node mismatches where it
evaluates the label differences between nodes in G1 and G2.
Mapping a dummy node to a real node (or vice versa) results
in a label mismatch, reflecting the insertion or deletion of
a node, while a mismatch between real nodes denotes a
substitution. The second part of the equation captures edge
mismatches. Specifically, if an existing edge in G1 (i.e.,
e1(v1, v2) = 1) is mapped to a non-existing edge in G2

(i.e., e2(π(v1), π(v2)) = 0) or vice versa, the cost is 1
representing edge deletion and insertion, respectively.

Definition 4 (Graph edit distance (GED)). The GED be-
tween graphs G1 and G2 is the minimum GED across all
possible node mappings.

GED(G1,G2) = min
∀π∈M

{GEDπ(G1,G2)} (1)

Here, M denotes the universe of all possible mappings.

The problem is hard (NP-hard and APX-hard) since the
cardinality of M is n!, where n = max{|V1|, |V2|}.

The problem of learning to code for approximating GED is
defined as follows.

Problem 1 (Learning to code for GED). Given a set of train-
ing graph pairs T = {⟨G1,G′

1⟩, ⟨G2,G′
2⟩, · · · , ⟨Gn,G′

n⟩},
learn a program P : (Gt,G′

t) → Z+ that takes as input a
graph pair ⟨Gt,G′

t⟩ ∈ T, and outputs a non-negative inte-
gral distance that minimizes

n∑
t=1

|P (Gt,G′
t)− GED(Gt,G′

t)| (2)

Note that our training set consists solely of graph pairs,
without requiring their true GED, which is computationally
prohibitive due to its NP-hardness. As we will elaborate in
the next section, we identify polynomial-time computable
upper bounds for the true GED and reformulate the opti-
mization objective to minimize this upper bound. This au-
tonomous self-evolutionary learning mechanism overcomes
a significant limitation of neural GED approximators.

3. Approximation Strategy
The true GED corresponds to the minimum distance across
all possible node mappings (Def. 4). However, enumerating
all such mappings is computationally infeasible due to its
factorial complexity relative to graph size. To overcome this
challenge, we approximate the GED by evaluating a small
subset of mappings (e.g., 15) and selecting the minimum
distance among them. These mappings are generated by
programs derived from the LLM, as detailed in § 4. Impor-
tantly, this approximated GED serves as an upper bound to
the true GED, as it considers only a subset of all possible
node mappings.

3.1. Node Mappings through Bipartite Matching
The task of mapping nodes between two graphs can be
approximated as Maximum Weight Bipartite Matching.

Definition 5 (Maximum Weight Bipartite Matching). Given
a weighted bipartite graph B(V,U , E ,W) with node sets
V and U , and a weighted edge set E : V × U → R where
W : E → R assigns weights to edges, find a subset of edges
E∗ ⊆ E that (1) induces a bijection between nodes in V
and nodes in U , and (2) maximizes the total weight of the
mapped edges, i.e.,

∑
e∈E∗ W(e). Here, W(e) represents

the weight of edge e.
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Figure 2. Pipeline of GRAIL.

Maximum weight bipartite matching can be solved op-
timally in polynomial time using the Hungarian algo-
rithm (Kuhn, 1955). Additionally, several heuristics
have been proposed, such as the Hopcroft–Karp Algo-
rithm (Hopcroft & Karp, 1973), the Neighbor-biased map-
per (He & Singh, 2006), or greedy selection of the highest-
weight edges while maintaining the one-to-one mapping
constraint. We use the notation π(B) to denote the node
mapping obtained from B.

To use maximum weight bipartite matching for ap-
proximating GED, for given graphs G1(V1, E1,L1) and
G2(V2, E2,L2), we construct a fully connected, weighted
bipartite graph B(V1,V2, E ,W) where edge set E =
{(v1, v2) | v1 ∈ V1, v2 ∈ V2}1. The weight of an edge
(v1, v2) is set based on some policy, which should ideally
reflect the probability of v1 being mapped to v2 in the opti-
mal GED mapping. Maximum weight bipartite matching is
then performed on B using any standard algorithm, and the
GED is computed based on the mapping π(B).

The quality of the mapping with respect to approximating
GED, therefore, rests on the edge weights in the bipartite
graph. We will use an LLM to learn the policy, in the form
of a program, with the following minimization objective.

Problem 2 (Weight Matrix Generation). Given train set
T = {⟨G1,G′

1⟩, · · · , ⟨Gn,G′
n⟩}, generate a program P that

takes as input each pair ⟨Gt,G′
t⟩ ∈ T and outputs a corre-

sponding weight matrix Wt ∈ R|Vt|×|V′
t| minimizing

n∑
t=1

GEDπ(P )(Gt,G′
t) (3)

Here, Wt[i, j] denotes the weight of edge (vi, vj) where
vi ∈ Vt to node vj ∈ V ′

t. π(P ) denotes the mapping
generated by maximum weight bipartite matching on the
bipartite graph formed by P .

1Recall, we assume the smaller graph is padded with dummy
nodes to ensure |V1| = |V2|.

3.2. Budget-constrained Selection of Node Maps
Let D = {P1, · · · , Pm} be the set of programs generated
by the LLM and π(Pi) denote the mapping produced by pro-
gram Pi ∈ D. From Def. 4, we know GEDπ(Pi)(G1,G2) ≥
GED(G1,G2), i.e., each program provides an upper bound
on the true GED. The smaller the upper bound, the closer we
are to the true GED. Our goal is to select a subset A∗ ⊆ D
of b programs that minimize the cumulative upper bounds
across all train graph pairs. b ≪ |D| denotes the maximum
number of mappings we are allowed to evaluate. These b
programs will finally be used during inference for unseen
graph pairs. Formally, this presents us with the following
optimization problem.

Problem 3 (Map Selection). Given programs D =
{P1, · · · , Pm}, select A∗ such that:

A∗ = arg min
∀A⊆D, |A|=b

{J (A)} (4)

J (A) =
∑

⟨G1,G2⟩∈T

min
P∈A

{
GEDπ(P )(G1,G2)

}
(5)

J (A) quantifies the quality of the subset of mappings in A.

Theorem 3.1. Prob. 3 is NP-hard.

Proof. The proposed optimization problem reduces to the
Set Cover problem (Cormen et al., 2009), rendering it NP-
hard. For the formal proof, please refer to App. A.2.1.

Owing to NP-hardness, finding the optimal subset of
mappings A∗ is not feasible in polynomial time. We
establish that J (A) is monotonic and submodular (refer
App. A.2.2). This enables us to use the greedy hill-climbing
algorithm (Alg. 1) to select a sub-optimal but reasonable
subset of programs, Agreedy.

4. GRAIL: Proposed Methodology
In § 6, we decompose Prob. 1 into two subproblems:
weight selection in a bipartite graph (Prob. 2) and budget-

4



GRAIL: Graph Edit Distance and Node Alignment using LLM-Generated Code

constrained map selection (Prob. 3). Prob. 3 is solved (ap-
proximately) using Alg. 1. Hence, to complete our approxi-
mation scheme, we need to solve Prob. 2.

Fig. 2 presents the pipeline of GRAIL. The process begins
with an initial prompt that specifies a trivial program for
weight selection, and the LLM is tasked with improving
this program for GED computation via bipartite matching
(details in § 4.1). Each newly generated program is veri-
fied for syntactic correctness and must terminate within a
predefined time limit. If these criteria are met, the program
is evaluated on the training set of graph pairs and added
to the program pool along with its score, which reflects
its marginal contribution to J (Agreedy). A new prompt is
then constructed by sampling the highest-scoring programs
from the current pool. The LLM refines these programs,
generating new candidates to further enhance performance.
These newly generated programs are evaluated and added
to the pool following the same procedure. This iterative
process continues until J (Agreedy) converges, ensuring
that improvements stabilize across iterations. The following
sections detail each step of this process.

4.1. Prompt Specification
The prompt is a computer program consisting of three
distinct components: (1) the problem description, (2) the
task specification, and (3) the top-k programs generated
so far based on a scoring function. A sample prompt is
provided in Fig. 4 in the Appendix. Here, k is set to 2.

Problem Description: The problem description includes
the definition of GED, which is embedded as a comment
within the program (refer to Fig. 4).

Task Specification: The LLM’s task is defined through a
comment specifying the inputs it should expect and the
required output. The output is a weight matrix W ∈
R|V1|×|V2| for the bipartite graph, where W[i, j] quantifies
the strength of mapping node vi ∈ V1 to node vj ∈ V2 in the
context of GED computation. The input includes the graph
pair represented by their adjacency matrices and an initial
weight matrix W0 ∈ R|V1|×|V2| with the same dimensions
and semantics as the output. During execution, the input
weight matrix W0 is initialized such that W0[i, j] = 1 if

Algorithm 1 The greedy approach

Require: Train data T = {T1, · · · , Tn} where Tt = ⟨Gt,G′t⟩ is
a pair of graphs, budget b.

Ensure: solution set Agreedy , |Agreedy| = b
1: Agreedy ← ∅
2: while size(Agreedy) ≤ b (within budget) do
3: P ∗ ← argmaxP∈D\Agreedy

{J (Agreedy ∪ {P}) −
J (Agreedy)}

4: Agreedy ← Agreedy ∪ {P ∗}
5: Return Agreedy

the corresponding nodes share the same label, i.e., L1(vi) =
L2(vj) for vi ∈ V1 and vj ∈ V2, and W0[i, j] = 0 other-
wise. Additionally, the header of the function that the LLM
needs to generate is explicitly provided.

Top-k Programs: The initial prompt includes a trivial pro-
gram where ∀vi ∈ V1, vj ∈ V2,W[i, j] = 0. In subsequent
iterations, k high-scoring programs are sampled for inclu-
sion in the prompt, where k is a hyper-parameter. The
scoring and sampling methodology are described in § 4.2.

4.2. Prompt Tuning
Filter: After a program is generated, it undergoes a filtering
step to verify that it executes and terminates on training
graph pairs within a predefined time limit. Programs that
fail this filter are discarded. For those that pass, we compute
their score and add them to our program database D.

Score computation: In Prob. 3, we take the minimum
GED across all selected mappings in the answer set. A
program’s utility, therefore, depends on how it complements
other programs in the answer set. Hence, we define its
score as the marginal contribution to the objective function
J (Agreedy). Specifically, we execute Alg. 1 on the current
pool of programs, where A = {P1, . . . , Pi} represents the
subset of programs selected up to iteration i. If program P
is added in the i+1-th iteration due to providing the highest
marginal contribution, its score is computed as:

score(P ) = J (A ∪ {P})− J (A), (6)

Evolutionary program selection: The next stage involves
selecting programs from the pool to be included in the next
prompt. We use the evolutionary algorithm proposed in
Funsearch (Romera-Paredes et al., 2024) for evolving our
programs generated by LLM. Since the programs evolve
through mutations introduced by the LLM, the selection
mechanism optimizes two distinct objectives. First, the
sampled programs should have high scores. Second, the
sampled programs should have smaller length improving
the interpretability of generated programs.

The evolutionary algorithm follows the islands model (Gor-
don & Whitley, 1993). Specifically, the population of ex-
isting programs is partitioned into s islands, where s is a
hyperparameter. Initially, all islands are empty. When a
program is added to the pool, it is randomly assigned to
an island. Subsequently, to decide which k programs are
included in the prompt, we randomly choose an island. Sim-
ilar to Funsearch, the programs within each island are then
split into clusters depending on score. After selecting the
island, clusters are selected based on softmax distribution
on score. Within a clusters, the programs are selected based
on length (smaller is better). Hence, the program selection
mechanism for the next prompt favors higher scores and
shorter lengths. More details of the process can be found in
Romera-Paredes et al. (2024). The LLM is then tasked with
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further improving these programs.

With this design, each island evolves independently. To
enable cross-fertilization among islands, we periodically
discard half of the islands which have the lowest score. The
discarded islands are replaced by iterating over each of the
surviving islands, and selecting its best program to seed the
replacement population.

4.3. Training and Inference
Training: As illustrated in Fig. 2, each iteration involves
generating a program, scoring it, and assigning it to an
island before constructing and executing a new prompt. The
quality of the program pool is measured by J (Agreedy),
serving as an analog to a loss function in our framework.
This iterative process continues until J (Agreedy) converges,
defined as its improvement over the last i iterations falling
below a predefined threshold, akin to the patience parameter
in neural model training.

Overall, GRAIL seeks to minimize the upper bound of GED.
With this strategy, we bypass the need for ground-truth GED
data, a key bottleneck in training neural approaches. This
unique design is not feasible in neural pipelines since the
prediction can err on either side of the true distance.

Inference: During inference, we directly return J (Agreedy)
for the given input graph pair. Note that since the output
of the training phase is executable code, inference is CPU-
bound, enabling it to operate in low-resource environments.

5. Experiments
In this section, we benchmark GRAIL and establish that:

• Approximation Error: GRAIL achieves low approxi-
mation errors and consistently ranks among the top al-
gorithms across all six datasets. Notably, unlike neural
approximators, it achieves this performance without rely-
ing on extensive NP-hard ground-truth GED training data.

• Foundational heuristics: GRAIL breaks new ground
by generating heuristics that generalize across diverse
datasets, including those featuring unseen node labels and
varying graph sizes. This exceptional adaptability sets
GRAIL apart, as no existing neural GED approximators
have demonstrated such versatility.

The codebase of GRAIL and the programs generated for
the various datasets are available at https://github.
com/idea-iitd/Grail.

5.1. Experiment Setup
Gemini-1.5 Pro has been used for all experiments. Fur-
ther details of the software and hardware environments and
hyper-parameters used for GRAIL are listed in App. A.3.1.
Datasets: Table 2 summarizes the datasets used in this study.
A detailed description of the data semantics is included in
App. A.4. While AIDS, Linux and IMDB are obtained from

Table 2. Datasets used for benchmarking GRAIL.
Name # Graphs Avg |V | Avg |E| # labels Domain

ogbg-molhiv 39650 24 52 119 Molecules
ogbg-molpcba 436313 26 56 119 Molecules
ogbg-code2 139468 37 72 97 Software
AIDS 700 9 9 29 Molecules
Linux 1000 8 7 Unlabeled Software
IMDB 1500 13 65 Unlabeled Movies
ogbg-ppa 39650 243.4 2226.1 Unlabeled Protein

Morris et al. (2020), the other four datasets are made avail-
able by Hu et al. (2021).
Benchmark Algorithms: The recent baselines are listed
in Table 1. From this set, we benchmark GRAIL against
GREED (Ranjan et al., 2022), GEDGNN (Piao et al., 2023),
ERIC (Zhuo & Tan, 2022), GRAPHEDX (Jain et al., 2024)
and H2MN (Zhang et al., 2021). We omit SIMGNN,
GRAPHOTSIM, GMN, GRAPHSIM, TAGSIM and GENN-
A*, since they have been outperformed by the considered
baselines of GREED, GRAPHEDX, GEDGNN and ERIC.
Details of setup are provided in App. A.1.

Among non-neural baselines we include the best-performing
heuristics from the benchmarking study in Blumenthal et al.
(2020): namely, LP-GED-F2, COMPACT-MIP, ADJ-IP,
BRANCH-TIGHT, NODE and IPFP.

GRAIL-MIX is a variant of GRAIL trained on a mixture of
graph pairs from multiple datasets, while maintaining the
same training set size as GRAIL. The programs discovered
by GRAIL-MIX are used for inference across all datasets
to assess whether a single training instance can generalize
across domains, eliminating dataset-specific training.

Train-Validation-Test Split: To construct the test set for
a particular dataset, we select 1000 graph pairs uniformly
at random and compute their true GED. The procedure for
computing the ground truth GED is discussed in App. A.4.1.
The training and validation sets depend on the algorithm.

• Neural Algorithms: All neural approaches are trained on
10,000 graph pairs per dataset. This training time exceeds
15 days for certain datasets (see Fig. 6a).

• GRAIL and GRAIL-MIX: GRAIL is trained with only
1,000 graph pairs per dataset. As discussed already,
GRAIL does not require ground-truth GED. In GRAIL-
MIX, we choose 166 graph pairs from each of the datasets
listed in Table 2 except ogbg-ppa. Both GRAIL and
GRAIL-MIX do not use a validation set.

• Non-Neural Baselines: These unsupervised algorithms
do not require any training or validation datasets.

Metrics: We employ two metrics: Root Mean Squared Error
(RMSE) and Exact Match Ratio (EMR). EMR quantifies the
proportion of test graph pairs for which the predicted GED
exactly matches the true GED. (See App. A.4.2 for details.)
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Table 3. RMSE Comparison: The top-3 lowest RMSEs per dataset are highlighted in green shades, with darker shades denoting better
RMSE. An asterisk (*) marks the better value when additional decimal places resolve ties after rounding to two decimal places.

Type Methods AIDS Linux IMDB ogbg-molhiv ogbg-code2 ogbg-molpcba Avg. Rank

LLM GRAIL 0.57 0.13 0.55 2.96* 4.22 3.18 2
GRAIL-MIX 0.64 0.11 0.53 2.96 4.10 3.40 2.17

Neural

GREED 0.61 0.41 4.8 3.02 5.52 2.48 3.5
GEDGNN 0.92 0.29 4.43 1.75 16.68 4.58 5
ERIC 1.08 0.30 42.44 3.56 17.55 2.79 6.5
H2MN 1.14 0.60 57.8 12.01 11.96 5.50 8.33
GRAPHEDX 0.78 0.27 32.36 14.14 21.46 10.01 8.33

Non Neural

ADJ-IP 0.85 0.50 42.18 10.21 14.94 8.06 7.33
NODE 2.71 1.24 61.03 4.97 8.34 4.94 8.17
LP-GED-F2 1.96 0.23 55.26 12.86 16.03 10.30 8.83
BRANCH 3.31 2.45 7.36 9.86 12.64 11.31 9.33
COMPACT-MIP 2.69 0.44 65.88 10.88 19.46 8.81 10
IPFP 4.18 2.29 69.45 13.69 15.19 10.02 11.5

Table 4. EMR Comparison: The top-3 highest EMRs per dataset are highlighted in green shades, with darker shades denoting better
EMRs. The EMR values for GRAIL are in App. (Table 9). We omit them here as GRAIL-MIX performs similarly across datasets. For a
focused comparison, we only include the top-3 baselines from Table 3, since the remaining do not provide competitive performance. For
ties after rounding to two decimals, an asterisk (*) marks the higher value. Values in (0.99, 1) are shown as ≈ 1.

Methods AIDS Linux IMDB ogbg-molhiv ogbg-code2 ogbg-molpcba Avg. Rank

GRAIL-MIX 0.80 ≈ 1 ≈ 1 0.20 0.12 0.12 1.83
GREED 0.58 0.79 0.17 0.23 0.09 0.21 2.17
ERIC 0.37 0.92 0.08 0.21 0.01 0.18 2.83
GEDGNN 0.35 0.85 0.07 0.57 0.01* 0.09 3.17

Budget b

(a) ogbg-ppa (b) AIDS (c) AIDS

Figure 3. (a) GRAIL-MIX at scale: Performance of GRAIL-MIX on the ogbg-ppa dataset when compared to the top-3 non-neural
baselines on the basis of average rank in Table 3. (b) Impact of function budget on upper bound. (c) Impact of greedy submodular
optimization on performance on test set.

6. Approximation Strategy
6.1. Empirical Analysis of Approximation Errors
Tables 3 and 4 benchmark GRAIL in terms of RMSE and
EMR. Several important observations emerge.

First, GRAIL and GRAIL-MIX comprehensively outperform
the baselines despite not using any ground truth for training.
This is a critical advantage as it saves time in expensive
ground truth computation (Refer to Fig. 6a). The improve-
ment is the highest in the IMDB dataset, which we specifi-
cally analyze in § 6.4

Second, the efficacy of GRAIL-MIX across datasets demon-
strates that the discovered programs are universally appli-
cable on multiple datasets and can be called as foundation

functions. These foundation functions eliminate the need
for dataset-specific training.

Third, GRAIL-MIX outperforms GRAIL in three datasets,
indicating positive cross-dataset knowledge transfer.

Fourth, we inspected why GRAIL significantly underper-
formed in comparison to GREED for ogbg-molpcba dataset.
We observed that adapting the neighborhood depth used
for computing node similarities can substantially improve
performance. GREED leverages jumping knowledge to com-
bine node embeddings from depths 1 to 7, allowing an MLP
to learn which depth is most effective for GED approxima-
tion. In Tables 3 and 4 GRAIL uses a fixed topological depth
across all nodes. When GRAIL adopts a similar strategy of
computing GEDs across multiple depths and selecting the

7
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Table 5. Intra-Domain Generalizability: RMSE of the best neural method, GREED, and GRAIL. Off-diagonal entries represent cross-
dataset performance. NA symbolizes that it’s not possible to train a single model covering the train-test combination.

AIDS ogbg-molhiv ogbg-molpcba
Test set \Train Set GREED GRAIL GREED GRAIL GREED GRAIL

AIDS 0.61 0.57 5.71 0.64 4.58 0.59
ogbg-molhiv NA 3.02 3.02 2.96 3.86 2.89

ogbg-molpcba NA 3.59 2.16 3.54 2.48 3.18

Table 6. Inter-Domain Generalizability: Generalization of GRAIL across domains, dataset sizes, and node label distributions by training
on one dataset and measuring RMSE on others. Off-diagonal entries represent cross-dataset performance. The best two results for each
test set(row) have been highlighted in shades of green, with darker being better.

Test set \Train set AIDS IMDB Linux ogbg-molhiv ogbg-code2 ogbg-molpcba

AIDS 0.57 0.63 0.65 0.64 0.62 0.59
IMDB 0.88 0.55 0.88 0.78 0.74 0.87
Linux 0.18 0.22 0.13 0.24 0.16 0.24

ogbg-molhiv 3.02 2.93 3.08 2.96 2.96 2.89
ogbg-code2 4.44 4.32 4.74 4.07 4.22 4.5

ogbg-molpcba 3.59 3.63 3.61 3.54 3.64 3.18

minimum as the final estimate, its RMSE improves from
3.18 (depth 1) to 2.68 (depths 1,2,3), becoming competitive
with GREED ’s RMSE of 2.48. This suggests that dynami-
cally adapting neighborhood depth can further improve the
approximation quality of GRAIL.

As an extended experiment, we compare our method with an
ensemble of 15 non-neural methods from (Blumenthal et al.,
2020) and show that GRAIL performs better in both RMSE
and EMR metrics while being 168x faster. The detailed
results are provided in App. A.5.1.

We compare the minimum, maximum, and average RMSE
of individual functions discovered by GRAIL and non-neural
heuristics in App. A.5.2. GRAIL achieves better average
and maximum RMSE across all datasets, while the non-
neural ensemble has better minimum RMSE in 4 out of 6
datasets. This is expected, as GRAIL focuses on learning
diverse, complementary heuristics via a submodular loss,
rather than optimizing for a single best function.

6.2. Generalizability
An intrinsic requirement of all machine learning methods is
that the training and test data are sampled from the same dis-
tribution. Thus, the neural baselines depend on training data
tailored to the test dataset, limiting their ability to transfer
knowledge due to reliance on dataset-specific features. In
contrast, GRAIL learns symbolic logical rules in the form of
programs, facilitating out-of-domain and out-of-distribution
generalization. We now evaluate this capability.
Intra-domain: Neural models are limited by feature di-
mensionality, making zero-shot generalization infeasible.
However, for domains such as chemical compounds, a uni-
form feature space allows training a single model. We re-
train the best neural baseline, GREED, and compare its
intra-domain generalizability with GRAIL in Table 5. Note
that the AIDS dataset has a smaller feature dimension than

the ogbg datasets, making it impossible to derive a com-
mon feature space. GRAIL generalizes well across all train-
test dataset pairs, while GREED struggles except for ogbg-
molhiv and ogbg-molpcba. This is because both datasets
are adopted from the same parent dataset MoleculeNet (Wu
et al., 2018; Hu et al., 2020) with similar topological fea-
tures (Table 2).
Inter-domain: Table 6 showcases the ability of the func-
tions discovered by dataset-specific training of GRAIL to
generalize across other datasets. We do not observe a signif-
icant increase in RMSE on the off-diagonal entries, which
showcases positive knowledge transfer and an ability not
seen in neural approximators.
Generalization to graph size: In this experiment, we eval-
uate GRAIL-MIX on the ogbg-ppa dataset, which has been
omitted from prior benchmarking due to the large size of its
graphs (See Table 2). Given the computational infeasibility
of ground-truth GED computation for these graphs, neural
approximators cannot be trained on this dataset. To assess
the generalization capability of GRAIL-MIX, we compare
the upper bound provided by its programs against the top-3
non-neural heuristics (based on Table 3). The results are
illustrated in Fig. 3a. We observe that GRAIL-MIX provides
30% to 45% tighter upper bounds. Fig. 7 in the appendix
further substantiates that GRAIL generalizes better to large
graphs than neural baselines.

6.3. Ablation Study and Parameters
GRAIL comprises of two main components: the GED Ap-
proximation Module that reduces GED approximation to
bipartite matching and learns weights of the bipartite graph
using an LLM (Refer § 3) and Prompt-Tuning via evolu-
tionary program selection (Refer § 4.1). In this section,
we conduct an ablation study to assess the utility of each
component and the impact of the budget parameter.
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Table 7. Ablation Study: Comparison of GRAIL with variants without GED Approximation Module (“Direct fns (15)”) and Evolutionary
Prompt Selection (Random). The best performing method has been highlighted in green.

Metric Method AIDS Linux IMDB ogbg-molhiv ogbg-code2 ogbg-molpcba

RMSE GRAIL 0.57 0.13 0.55 2.96 4.22 3.18
Direct fns (15) 7.95 2.81 112.64 7.47 25.68 9.71

Random 0.94 0.38 0.93 3.48 4.42 4.19

EMR GRAIL 0.83 ≈ 1 0.99 0.18 0.11 0.12
Direct fns (15) 0.01 0.14 0.09 0.02 0 0.02

Random 0.67 0.97 0.97 0.14 0.10 0.07

Utility of GED Approximation Module: Here, we investi-
gate whether the reduction to bipartite matching is necessary.
Specifically, we directly prompt the LLM to generate code
for computing GED, bypassing the intermediate step of
predicting weights for a bipartite graph. To ensure a fair
comparison, we adopt the same setup as GRAIL, using an
ensemble of 15 heuristics and selecting the minimum pre-
dicted value across each graph pair as the final GED. As
shown in Table 7, performance deteriorates significantly
under this setting.

Impact of Evolutionary Prompt Selection: We assess the
impact of the genetic evolution as described in § 4.1, by
randomly selecting programs from the program pool for the
prompt instead of using the genetic algorithm. The RMSE
increases by 2 to 3 times on average, as shown in Table 7.

Impact of Submodularity: What happens if, instead of
selecting the top-b functions using greedy submodular opti-
mization, we evolve and score functions individually based
on their upper bounds (Eq. 3) and select the top-b solely
based on this criterion? Fig. 3b illustrates the impact on
RMSE across training iterations (LLM calls). While select-
ing the top-b functions through submodular optimization
shows a clear trend of decreasing RMSE on the test set, inde-
pendently choosing the top-b functions based on individual
scores results in significantly higher RMSE, with a progres-
sive worsening trend indicative of overfitting to the training
set. This result underscores the importance of submodular-
ity in selecting functions that complement one another and
perform well collectively (See Fig. 8 for additional metrics).

Impact of budget b: For the true GED, all possible map-
pings (factorial in the graph size) must be considered. In-
stead, GRAIL restricts this to b mappings, where each map-
ping is generated by a program. In Fig. 3c, we plot how b
affects the upper bound. As shown, the upper bound con-
verges at ≈ 15 functions. Similar trends are observed in
other datasets (see Fig. 5).

6.4. Interpretability: Case Study on IMDB
To shed light on the superior performance of GRAIL over
GNN-based neural approximators, we analyze a graph pair
from the IMDB dataset, where GRAIL shows the highest
improvement over all baselines (Table 3). Figures 9 and

10 in the Appendix illustrate the graph structures, the edits
made by GRAIL and its closest competitor GEDGNN, and
the node similarity matrices generated by these algorithms.
The program discovered by GRAIL-MIX, shown in Fig. 11,
achieves the ground truth GED of 4, while GEDGNN pre-
dicts a GED of 20. This program assigns node similarity
scores based on degree similarity and that of their neigh-
bors. Since IMDB is unlabeled, feature similarity does not
influence the results.

Examining GEDGNN’s similarity matrix reveals a different
score distribution compared to GRAIL. For instance, node 1
in Graph 1 has the second-highest similarity to nodes 2 and
9 in GRAIL-MIX, but GEDGNN assigns low similarity to
these nodes, favoring nodes 0 and 6 instead. GRAIL-MIX’s
decision aligns with the similarity in their degrees (degree of
9 for node 1 in Graph 1 versus 7 for nodes 2 and 9 in Graph
2). In contrast, GEDGNN, as a neural network, operates as
a black box. We hypothesize that the poor performance of
GEDGNN and other GNN-based algorithms in IMDB is due
to the dataset’s unlabeled nature and high density, leading
to oversquashing. (Giovanni et al., 2024).

We also qualitatively compare the GRAIL’s heuristics with
non-neural ones, and reason why GRAIL outperforms them
in App. A.5.3.

7. Conclusions and Future Directions
This paper introduced a new paradigm of computing GED
by leveraging LLMs to autonomously generate programs.
Unlike traditional methods that rely on neural networks and
require computationally expensive, NP-hard ground truth
data, our method employs a self-evolutionary strategy to dis-
cover programs without any ground truth data. Remarkably,
these programs not only surpass state-of-the-art methods on
average but are also interpretable and demonstrate strong
transferability across various datasets and domains. While
our approach is demonstrated on GED computation, we be-
lieve it is generalizable to other combinatorial problems with
similar constraints, both within and beyond graph-related
tasks. An interesting direction for future work is to criti-
cally analyze the programs discovered by our method with
domain experts and to develop mechanisms that facilitate
closer cooperation between human and LLM agents.
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A. Appendix
A.1. Neural GED Approximation Methods

• GREED (Ranjan et al., 2022): GREED utilizes a Siamese Graph Neural Network (GNN) to generate embeddings for
graph pairs and learns to approximate the GED by preserving its metric properties. This is achieved by minimizing the
RMSE between the norm of the embedding difference and the ground truth GED.

We use the default hyperparameters used by the authors. Training uses a learning rate of 1e-3, weight decay of 1e-3, with
a cyclic learning rate schedule (step size up/down = 2000) and early stopping patience of 5 cycles. The authors use an
8-layer Graph Isomorphism Network (GIN) (Xu et al., 2019). The hidden layer dimension is set to 64.

• GEDGNN (Piao et al., 2023): GEDGNN learns graph embeddings using a GNN followed by two computation heads,
a cross matrix module that predicts the matching. Further, a combination of a cross matrix module and a neural tensor
network, combined with the predicted matching matrix, is used to predict the GED value. GEDGNN does post-processing
with a k-best matching algorithm for producing the edit path. Using this algorithm, they prune out bad matchings that
have a larger edit path, enabling them to lower the bound for the GED estimate.

We have used the parameter values as described by the authors. We use a 3-layered GIN with hidden dimensions 128,
64, and 32, respectively. 16 parameter matrices with size 32 x 32 are used in each cross matrix module. The default
value of k used during testing i.e. 100. Model training was done for 20 epochs, i.e., when the loss becomes smaller
than 0.001. During training, the dropout rate is set to 0.5, the learning rate to 0.001, and the weight decay to 0.0005.
GEDGNN employs a loss function that combines the matching loss and the GED value loss, with the latter weighted by a
hyperparameter λ. As specified in the paper, λ is set to 10 for the AIDS and Linux datasets and to 1 for the remaining
datasets, which we adhere to in our implementation.

• ERIC (Zhuo & Tan, 2022): ERIC is a graph similarity model that learns node alignment implicitly through a regularizer,
removing the need for a separate alignment module. It computes similarity using a Neural Tensor Network and MLP
on graph-level embeddings, which are formed by concatenating outputs from a 5-layer GIN with 10-dimensional node
embeddings. The model is trained using a combined loss that integrates both the regularizer and the similarity prediction.
Training is performed using the Adam optimizer (learning rate 0.001, weight decay 0.0005), with a batch size of 256 and
early stopping with a patience of 100 epochs.

• H2MN (Zhang et al., 2021): H2MN involves converting each input graph into a hypergraph to capture high-order structural
relationships. It performs subgraph-level matching using hyperedges as subgraphs, coarsens the hypergraphs with a
hyperedge pooling operator that is based on Personalized PageRank (Haveliwala, 2002). Then it employs a subgraph
matching module, which compares important hyperedges from two graphs to capture fine-grained structural similarities.
Finally embeddings are aggregated via a readout function and passed through an MLP to get the predicted GED value.

We use the default hyperparameters used by the authors. All datasets use 3 hypergraph neural networks (HGNN) layers,
100-dimensional node embeddings, and a weight decay of 0.0005. Learning rate is set to 0.0001. Subgraph construction is
based on a random walk of length 5 and a 2-hop neighborhood. The restart ratio for PageRank is 0.1, and the number of
power iterations is 10. Each model is trained for 10,000 epochs with early stopping triggered if validation loss does not
improve for 100 consecutive epochs.

• GRAPHEDX (Jain et al., 2024) : GRAPHEDX is composed of two main components: EMBEDθ and PERMNETϕ.
EMBEDθ includes a GNN module with 5 message-passing layers that generate 10-dimensional node embeddings
using a GRU-based update function and a Linear-ReLU-Linear structure. After propagation, a separate Linear-ReLU-
Linear network, computes 20-dimensional edge embeddings from the combined node features and adjacency indicators.
PERMNETϕ then takes the final node embeddings from two graphs and processes them through a Linear-ReLU-Linear
network to map them to a fixed size (10 for Linux, 20 for others). A similarity matrix is computed using L1 distance, and
20 iterations of Sinkhorn normalization with temperature τ = 0.01 are applied to generate a soft permutation matrix P ,
which is used to compute the final soft edge alignment matrix S.

13



GRAIL: Graph Edit Distance and Node Alignment using LLM-Generated Code

A.2. Proofs

A.2.1. NP-HARDNESS OF EQ. 4

Reduction to Prove NP-Hardness
We reduce the Set Cover problem to the given problem in polynomial time to demonstrate its NP-hardness.

Given a universe of elements U = {e1, e2, . . . , en}, a collection of sets S = {S1, S2, . . . , Sm} where Si ⊆ U , and a budget
b, the set cover problem seeks to determine if there exist b sets S1, . . . , Sb ∈ S whose union covers all elements of U .

Given an instance of the set cover problem, we construct a bipartite graph B = (V,U , E ,W), where V = S , U = U , and an
edge (Si, ej) ∈ E exists if and only if Si covers ej . Each edge (Si, ej) has a weight:

w(Si, ej) =

{
1 if Si covers ej ,
1 + ∆ if Si does not cover ej .

where ∆ > 0.

The objective is to select b nodes from V (representing sets S) such that Eq. 4 is minimized on graph B.

If a Set Cover of size b exists, then all n elements can be covered by b sets. This means if we select the corresponding nodes
A∗ ⊆ V , then every node in U will have at least one edge of weight 1 from some node in A∗ incident on it. Hence, J (A∗)
will return a cumulative sum of n.

Conversely, if no Set Cover of size b exists, then some elements will not be covered by the selected sets, and their
corresponding nodes in U will have only edges of edge weights 1 + ∆ from nodes in A∗.

Therefore, a solution to the Set Cover problem exists iff selecting the corresponding nodes A∗ ⊆ V leads to J (A∗) = n.
Conversely, if J (A∗) > n, it implies that no b-set cover exists.

A.2.2. MONOTONICITY AND SUBMODULARITY

Lemma 1. Monotonicity: J (A) ≤ J (A′) if A ⊇ A′.

Proof. Since J (A′) computes minimum over all available mappings in A′, the minimum can only reduce when additional
mappings are added to form A.

Lemma 2. Submodularity: J (A ∪ {P})− J (A) ≤ J (A′ ∪ {P})− J (A′).

Proof. We seek to show that the marginal reduction in J (A) when a program (mapping) P is added to A is atmost as large
as adding P to its subset A′. We establish this through proof by contradiction.

Let us assume
∃A ⊇ A′, J (A ∪ {P})− J (A) > J (A′ ∪ {P})− J (A′) (7)

Due to the min operator in Eq. 5, Eq. 7 implies that the additional number of graph pairs where P contributes to the
minimum mapping is higher when added to A than when added to A′. This creates a contradiction, since if P contributes to
the minimum of a graph pair in A ∪ {P}, then it guaranteed to contribute to the minimum for the same pair in A′ ∪ {P} as
well.

A.3. Experiments

A.3.1. SETUP

All experiments ran on a machine equipped with an Intel Xeon Gold 6142 CPU @1GHz and a GeForce GTX 1080 Ti GPU.
While non-neural methods and GRAIL run on the CPU, neural baselines exploit the GPU. For the LLM, we use Gemini 1.5
Pro. In particular, we have used the initial stable version of Gemini 1.5 Pro, i.e., gemini-1.5-pro-001, which was released on
May 24, 2024.

Hyper-parameters: Table H lists the hyper-parameters used for GRAIL. k stands for the number of functions per response
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Figure 4. Example of an input prompt to GRAIL

generated by the LLM and b is the function budget employed for submodularity while training. We decided to use k as
2, since with greater values of k, we observed no significant improvement in quality metrics. This was also observed in
FunSearch (Romera-Paredes et al., 2024). For the function budget b, we observed that a value of 15 was good enough for
most datasets (Refer Fig. 5).

A.4. Datasets

The semantics of these datasets are as follows:

• ogbg-molhiv and ogbg-molpcba: These are chemical compound datasets, with each graph representing a molecule.

Hyper-parameter Value

k 2
b 15
number of islands 5
temperature 0.99
Algorithm for bipartite matching Neighbor-biased mapper (He & Singh, 2006)

Table H. Hyper-parameters used for GRAIL
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Figure 5. Avg. Upper Bound vs function budget (b) for submodular greedy selection

Nodes in these graphs correspond to atoms and are labeled with their atomic numbers, while edges denote the chemical
bonds between atoms. These datasets vary in size and complexity, with a rich diversity of molecular structures, enabling
us to test the robustness and generalizability of our method.

• ogbg-code2: This dataset comprises a vast collection of Abstract Syntax Trees (ASTs) generated from nearly 450,000
Python method definitions. Each graph in this dataset represents an AST, with nodes labeled from a predefined set of 97
categories, capturing various syntactic constructs within the methods. These graphs are considered undirected, simplifying
the representation while preserving structural relationships.

• ogbg-ppa: This dataset includes undirected protein association neighborhoods extracted from protein-protein interaction
networks of 1,581 species(Szklarczyk et al., 2019) across 37 diverse taxonomic groups. To build these neighborhoods,
100 proteins were randomly selected from each species, and 2-hop protein association neighborhoods were constructed
around each selected protein(Zitnik et al., 2019). In these graphs, proteins are represented as nodes, and edges indicate
biologically relevant associations between them.

• AIDS: This dataset is a collection of graphs sourced from the AIDS antiviral screen database, each graph representing a
chemical compound’s molecular structure. These graphs are labeled, capturing meaningful properties of the compounds,
and are compact in size, containing no more than 10 nodes.

• Linux: A collection of program dependence graphs where nodes correspond to statements and edges indicate dependencies
between statements. The graph sizes in this dataset are also limited to 10 nodes. This dataset is unlabeled and was
introduced in (Wang et al., 2012).

• IMDB: This dataset consists of ego-networks of actors and actresses who have shared screen time in movies. Each graph
represents an ego-network where the nodes correspond to individuals (actors or actresses), and the edges denote shared
appearances in films. This dataset is unlabeled and was introduced in (Yanardag & Vishwanathan, 2015).

A.4.1. GROUND-TRUTH DATA GENERATION

We employ MIP-F2 (Lerouge et al., 2017b) to generate ground truth GED. MIP-F2 returns the lower and upper bounds of
GED. We compute these bounds with a time limit of 600 seconds per pair. Pairs with equal lower and upper bounds are
included in the ground truth.

A.4.2. METRICS

We use the following two metrics to quantify accuracy:

• RMSE: Evaluates the prediction accuracy by measuring the disparities between actual and predicted values. For n graph
pairs, it is defined as: √

1
n

∑n
i=1(true-gedi − pred-gedi)2
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• Exact Match Ratio: Represents the proportion of graph pairs where the predicted GED exactly matches the actual GED.
For n graph pairs, it is defined as:

1
n

∑n
i=1 I

(
true-gedi = pred-gedi

)
where I(·) is an indicator function that returns 1 if the condition inside is true, and 0 otherwise. A higher Exact Match
Ratio indicates better predictive accuracy at the individual graph pair level.

Method AIDS Linux IMDB ogbg-molhiv ogbg-code2 ogbg-molpcba

GRAIL 0.83 ≈ 1 0.99 0.18 0.11 0.12

Table 9. EMR results of GRAIL for all datasets. Values in the range (0.99,1) are denoted as ≈ 1

A.5. GRAIL vs. Non-neural Methods

A.5.1. COMPARISON OF GRAIL WITH ENSEMBLE OF NON-NEURAL METHODS

Similar to GRAIL, several non-neural heuristics also consider multiple solutions. Specifically, branch-and-bound methods
(e.g., BRANCH) and MIP approaches (LP-GED-F2, ADJ-IP, COMPACT-MIP) explore multiple candidate solutions that
satisfy the given constraints, selecting the one with the tightest upper bound.

In this experiment, we compare GRAIL with an ensemble of non-neural GED approximators. Specifically, we select the 15
non-neural heuristics from (Blumenthal et al., 2020), based on their tightness of upper bounds. The set of 15 heuristics
used in the ensemble includes, ADJ-IP, NODE, LP-GED-F2, BRANCH-TIGHT, COMPACT-MIP, IPFP, BRANCH-CONST,
BRANCH-COMPACT, BRANCH-FAST, BP-BEAM, BRANCH, K-REFINE, STAR, REFINE, and F1

For each graph pair, we apply all 15 non-neural heuristics and choose the minimum computed distance. As shown in Table
10, GRAIL continues to outperform this ensemble approach. It should also be noted that GRAIL is approximately 168x faster
than the ensemble.

Method AIDS LINUX IMDB ogbg-
molhiv

ogbg-code2 ogbg-
molpcba

Non-Neural Ensemble 0.73 0.23 0.72 3.13 7.10 3.66
GRAIL 0.57 0.13 0.55 2.96 4.22 3.18

Table 10. RMSE of non-neural ensemble and GRAIL across datasets. The best RMSE has been highlighted with green color

A.5.2. COMPARISON OF INDIVIDUAL FUNCTIONS’ PERFORMANCE

In Table 11, we report the best, worst, and average RMSE for the 15 heuristics identified by GRAIL, denoted as Min, Max,
and Avg, respectively. Similarly, we provide the Min, Max, and Avg RMSEs for the ensemble of non-neural heuristics as
specified in section A.5.1.

Notably, the best non-neural heuristic outperforms the best function identified by GRAIL in 4 out of 6 datasets. However,
this result aligns with our expectations, as GRAIL does not aim to find a single optimal function with the lowest RMSE.
Instead, leveraging a submodular loss function, it seeks a diverse set of complementary heuristics that collectively minimize
RMSE across the training set of graph pairs.

A.5.3. QUALITATIVE COMPARISON OF DISCOVERED HEURISTICS VS. EXISTING NON-NEURAL HEURISTICS

The heuristics discovered by GRAIL are fundamentally different from the top-performing heuristics in (Blumenthal et al.,
2020). Specifically:

• NODE and BRANCH transform GED into a linear sum assignment problem.
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Method / Datasets AIDS Linux IMDB ogbg-molhiv ogbg-code2 ogbg-molpcba

Min GRAIL 1.90 0.49 3.19 6.23 6.48 6.61
Max GRAIL 3.33 1.32 7.48 8.27 17.97 9.40
Avg. GRAIL 2.57 0.96 5.04 7.16 12.10 7.96

Min Non-Neural 0.85 0.23 3.90 4.50 8.34 4.94
Max Non-Neural 15.23 6.72 69.45 24.97 92.67 29.22
Avg Non-Neural 7.62 4.08 16.99 16.52 39.24 19.37

Table 11. RMSE of individual functions discovered by GRAIL compared to non-neural methods across datasets. The best Min. RMSE has
been highlighted with green color

• LP-GED-F2, ADJ-IP, and COMPACT-MIP use mixed integer programming.

• IPFP reduces GED to the quadratic assignment problem (QAP), which is also NP-hard and relies on heuristics to
approximate the QAP.

In contrast, GRAIL’s discovered heuristics compute similarity between all node pairs across the two graphs followed bipartite
matching. This similarity is determined by measuring the distance between various vertex invariants—such as node labels,
degree, etc.—within their l-hop neighborhoods. The heuristics differ in their choice of vertex invariants, distance functions,
and l.

The heuristics discovered by GRAIL can, in principle, replace those used by NODE or BRANCH. Qualitatively, NODE does
not consider edge information, and the cost matrix is primarily constructed based on the cost of node relabelling, insertion,
or deletion. BRANCH, on the other hand, takes the node labels and the labels of the edge end points into consideration when
constructing the cost matrix.

In contrast, the heuristics discovered by GRAIL are more general. They consider the label information of nodes and edge
end points as well as compute the cost based on vertex invariants such as the degree distributions of the nodes to be matched
and their k-hop neighborhoods. Finally, normalization and weighing factors are also introduced while constructing the cost
matrix, as seen in Fig. 11. Thus, the cost matrix is perhaps more rich in terms of assessing the cost of aligning two nodes
from a graph pair.

The complete repository of discovered heuristics is available at https://github.com/idea-iitd/Grail inside
src/discovered programs.

A.6. Efficiency Analysis

The training and inference time analysis is shown in Fig. 6.

Training Time: From Fig. 6a, we observe that GRAIL is significantly more efficient than the neural baselines. Neural
methods require NP-hard ground truth training data, which involves extensive computation times of up to 15 days.
Additionally, note that GRAIL-MIX requires training only once while performing on par with GRAIL and neural baselines in
terms of approximation error (see Table 3).

Inference Time: We compare the inference time of GRAIL with the top three neural and non-neural methods from Table 3,
as shown in Fig. 6b. At the onset, we point out that while GRAIL infers on CPUs and provides the node mapping in
addition to the predicted GED, neural baselines rely on GPUs and only provide the GED. Hence, neural methods have
a lower computational workload while having access to more powerful computational resources. Results indicate that
GRAIL achieves faster inference times than neural baselines for smaller and sparser datasets, such as AIDS and Linux.
However, inference times increase for larger and denser datasets, such as IMDB and ogbg, due to the computational overhead
of computing mappings. The maximum recorded inference time is 94.6 seconds for 968 graph pairs in the ogbg-code2
dataset (∼ 0.1 seconds per pair), which remains reasonable considering the various advantages of GRAIL, including its
independence from ground truth data, one-time training for GRAIL-MIX, and strong generalization capabilities. Furthermore,
the efficiency of GRAIL’s programs can be further improved through human intervention or translation to more efficient
languages, such as C.
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(a) Training Time

(b) Inference Time

Figure 6. (a) Training Time: Comparison of GRAIL with the top-3 neural methods in Table 3. (b) Inference Time: Comparison of GRAIL

with the top-3 neural and non-neural methods in Table 3. The top-3 methods have been selected based on avg. ranks.
Note: Ground truth generation time is the same for a dataset (9 hrs 43 min : AIDS, 3 hrs 25 min : Linux, 124 hrs 25 min : IMDB, 379 hrs
19 min : ogbg-molhiv, 21 hrs 42 min : ogbg-code2, 414 hrs 30 min : ogbg-molpcba) for all neural methods, but appears to be different in
the plots due to log scale conversion.

19



GRAIL: Graph Edit Distance and Node Alignment using LLM-Generated Code

Figure 7. Avg. RMSE vs. Avg. Graph Size comparison on IMDB, Linux and ogbg-code2 datasets. GRAIL-MIX outperforms the best
baselines at both smaller and larger graph sizes. The rate of increase of error is lower for GRAIL-MIX as opposed to GREED and GEDGNN

with increasing average graph size.

50 100 150
LLM Calls

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

RM
SE

RMSE vs LLM Calls
Top-b
Submodular

50 100 150
LLM Calls

0.4

0.5

0.6

0.7

0.8

EM
R

EMR vs LLM Calls

Top-b
Submodular

Figure 8. Performance comparison of Top-b vs. Greedy Submodular on the test set of AIDS dataset with an increasing number of LLM
calls.
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Figure 9. IMDB Case Study: The left-most graph represents Graph 1, while the middle and right-most graphs depict Graph 2 with
predicted edits from GRAIL-MIX (Fig: 11) and GEDGNN, respectively. The red and green edges in each graph indicate the edge edits
predicted by both methods. Ground Truth GED:4, GRAIL-MIX GED:4, GEDGNN Mapping’s GED: 20.
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Figure 10. IMDB Case Study: Heatmap of weight matrix generated by (a) GRAIL-MIX (Fig: 11) and (b) GEDGNN
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Figure 11. IMDB Case Study: Program discovered by GRAIL-MIX that has minimum individual RMSE on IMDB dataset.
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