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Abstract

Detoxification has consistently been at the fore-001
front of the research in Large Language Mod-002
els (LLMs) and employing knowledge edit-003
ing (KE) techniques to purge toxic contents004
from LLMs has attracted much attention, a typ-005
ical example of which is Intraoperative Neu-006
ral Monitoring (DINM). However, recent stud-007
ies propose that KE techniques are language-008
dependent, meaning that editing knowledge in009
one language may not affect the same knowl-010
edge in other languages. If true, this hypoth-011
esis presents a major challenge for deploying012
KE-based detoxification methods like DINM013
in multilingual contexts. To comprehensively014
assess the effectiveness of DINM in multilin-015
gual scenarios, we first examine its general-016
izability by erasing toxic knowledge in eight017
languages other than English. We then vali-018
date the language-dependency hypothesis by019
detoxifying LLMs using English data and at-020
tacking them using eight other languages. Our021
findings suggest that the language-dependency022
hypothesis only partially holds: cross-lingual023
detoxification is feasible under certain condi-024
tions, with its effectiveness varying based on025
the model and the resource richness of the tar-026
get language.027

1 Introduction028

The field of large language models (LLMs) is ad-029

vancing at a rapid pace, with current models bene-030

fiting from extensive data training, which endows031

them with extensive knowledge reserves and logi-032

cal reasoning capabilities (He et al., 2023; Li et al.,033

2023; Zhang et al., 2023; Laskar et al., 2023; Ope-034

nAI, 2023). Yet, such advancements also bring035

societal risks, including the inadvertent provision036

of answers to sensitive or harmful inquiries, such as037

bias, discrimination, and hate speech, which could038

undermine social safety of LLMs (Zhao et al., 2023;039

Huang et al., 2023; Yao et al., 2023; Sun et al.,040

2024; Wang et al., 2024d, 2023).041

To enhance the safety of LLMs, effectively 042

detoxifying these models to reduce harmful con- 043

tent has become a critical research direction. Re- 044

searchers propose various methods, including fine- 045

tuning (SFT) and direct preference optimization 046

(DPO, Rafailov et al., 2023). Recently, Wang et al. 047

(2024c) introduced Detoxifying with Intraoperative 048

Neural Monitoring (DINM), which achieves effec- 049

tive and explainable detoxification through knowl- 050

edge editing. Precisely, given an LLM, DINM first 051

identifies the toxic layer in the model and then edits 052

its parameters to erase toxic knowledge. 053

Nonetheless, recent studies (Wang et al., 054

2024a,e) hypothesized that, though LLMs are al- 055

ways multi-lingual, traditional knowledge editing 056

may be language-dependent. In other words, tra- 057

ditional knowledge editing in one language may 058

not affect the same knowledge in LLM in other 059

languages. This makes the effectiveness of DINM 060

is questionable. Since, in practice, LLMs are often 061

deployed in multilingual scenarios, to fully guar- 062

antee their safety, editing has to be done in every 063

language if the language-dependency hypothesis is 064

true in knowledge-editing-based (henceforth, KE- 065

based) detoxification, which is practically impos- 066

sible. It is worth mentioning that though some 067

recent efforts (e.g., Wu et al. (2024)) suggested that 068

language-independent space exists within LLMs 069

and demonstrated that intervening in these shared 070

spaces through a dominant language (usually En- 071

glish) can result in predictable changes in model 072

behaviours. Nonetheless, this has no clear link to 073

the language-dependency hypothesis in knowledge 074

editing as knowledge editing edits very specific 075

pieces of knowledge, which is very different from 076

changing LLMs’ behaviours coarsely. This is also 077

why the most advanced cross-lingual knowledge 078

editing techniques need to explicitly learn a cross- 079

lingual transformation (Wang et al., 2024b). 080

The main goal of this study is to validate the 081

language-dependency hypothesis in the context of 082
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KE-based detoxification. To this end, this study083

constructs a parallel multilingual detoxification084

dataset, mSAFEEDIT, together with an evaluator085

that is built upon multilingual LLMs. We then086

examine the generalizability of DINM to check087

whether it is functional to edit knowledge and088

detoxify LLMs in languages other than English089

(i.e., monolingual detoxification). Focusing on090

the language-dependency hypothesis, we explore091

how robust LLMs detoxified using English data are092

against attacks in languages other than English (i.e.,093

cross-lingual detoxification). Specifically, we at-094

tack the LLMs detoxified using English data using095

8 languages other than English and the hypothesis096

will be accepted if the detoxified LLMs show low097

defence rates across these languages. As comple-098

ments, we conduct additional experiments to check099

whether cross-lingual detoxification still works if100

we attack LLMs detoxified using languages other101

than English using English and to understand how102

the underlying mechanism of DINM impacts its103

ability of cross-lingual detoxification.104

2 Related Work105

In this section, we review the most recent work on106

detoxifying and editing LLMs.107

2.1 Detoxification of LLMs108

The early stages of research on detoxification pri-109

marily focused on identifying harmful content110

in model outputs. For instance, Gehman et al.111

(2020) proposed a benchmark called "REALTOXI-112

CITYPROMPTS" to evaluate the toxicity levels113

of content generated by large language models.114

Dathathri et al. (2020) introduced the Plug and115

Play Language Models (PPLM), which adjusts the116

toxicity of generated content through external con-117

trol signals without altering the model’s weights.118

Subsequently, debiasing techniques have also been119

a hot topic in detoxification research. For example,120

Sheng et al. (2021) extensively discussed the issue121

of social bias in language generation models and122

proposed several technical strategies to reduce bias123

through adversarial training. Dinan et al. (2020)124

proposed a training framework based on adversar-125

ial examples to mitigate the errors related to gender126

bias.127

Despite the development of numerous alignment128

strategies (Markov et al., 2023) and red-teaming129

efforts (Au, 2024), there remains no guarantee of130

the safety of LLMs (Ganguli et al., 2022).131

2.2 Editing Knowledge in LLMs 132

The ultimate goal of knowledge editing is to en- 133

hance the model’s performance in specific tasks or 134

domains by updating specific knowledge. Knowl- 135

edge editing for LLMs involves updating and ad- 136

justing the internal knowledge of the model to en- 137

sure its accuracy and timeliness. This process can 138

be achieved through fine-tuning, incremental learn- 139

ing, or incorporating external knowledge bases, 140

aiming to optimize the quality and coverage of 141

model responses. 142

Early research on knowledge editing mainly fo- 143

cused on static injection and removal of specific 144

knowledge points. These methods were often im- 145

plemented through fine-tuning or retraining models, 146

but given the large scale of these models, such ap- 147

proaches were computationally expensive and inef- 148

ficient (Petroni et al., 2019). Recent developments 149

in knowledge editing have aimed to make knowl- 150

edge updates efficient, reliable, and capable of pre- 151

serving the accuracy and consistency of other parts 152

of the model during specific knowledge edits. Cao 153

et al. (2021) proposed the Knowledge Editor (KE), 154

which employs a local gradient update method. 155

Mass-Editing Memory in a Transformer (MEMIT, 156

Meng et al., 2023) is a novel large-scale knowl- 157

edge editing method specifically designed to effi- 158

ciently edit multiple facts in pre-trained language 159

models without disrupting other knowledge within 160

the model. Model Editor Networks with Gradient 161

Decomposition (MEND, Mitchell et al., 2022a) in- 162

troduced a small-scale network to manipulate gradi- 163

ents during fine-tuning, allowing the model to adapt 164

quickly to new knowledge while retaining its origi- 165

nal knowledge. Meng et al. (2022) proposed Rank- 166

One Model Editing (ROME), a low-rank matrix up- 167

date technique based on model parameters, which 168

targets specific layers of the model for modifica- 169

tion to insert or remove knowledge. Other notable 170

knowledge editing methods include Knowledge 171

Neurons (Dai et al., 2022), Semi-Parametric Edit- 172

ing with a Retrieval-Augmented Counterfactual 173

Model (Mitchell et al., 2022b), In-context Knowl- 174

edge Editing (Zheng et al., 2023). 175

Additionally, as mentioned in the introduction, 176

recent studies have begun to explore the transfer- 177

ability of knowledge in LLMs across different lan- 178

guages and have proposed multilingual knowledge 179

editing methods (Hu et al., 2024a; Zhang et al., 180

2024; Cao et al., 2024). 181
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Figure 1: An example adversarial prompt.

3 Detoxifying with Intraoperative Neural182

Monitoring183

Detoxifying with Intraoperative Neural Monitor-184

ing (DINM, Wang et al., 2024c) is the first work185

that detoxifies LLMs using knowledge editing. The186

essence of the DINM method lies in using a harm-187

ful data instance to pinpoint the toxic layer within188

an LLM and fine-tune the model’s identified toxic189

layer using the adversarial prompts (i.e., the at-190

tacks) and their corresponding safe response. Note191

that, as shown in Figure 1, an adversarial prompt192

contains a harmful question as well as an attack193

prompt, which attempts to induce LLMs to answer194

the harmful question with unsafe responses.195

Toxic Layer Identification. The logic behind196

DINM’s toxic layer identification involves feeding197

an unsafe sample and a safe sample, comparing198

their hidden states (which are often the states in the199

second layer in the feed-forward network module200

of the Transformer) at each layer, and selecting the201

layer where the difference in their hidden states is202

most pronounced as the toxic layer.203

Detoxification as Knowledge Editing. DINM204

takes an adversarial prompt with its corresponding205

safe response as a single input, which is then used206

for fine-tuning the parameters in the identified toxic207

region to produce outputs that are more closely208

aligned with the safe response.209

Evaluation. The detoxification is evaluated by210

comparing the Defence Success of an LLM before211

and after being detoxified. The Defense Success212

(DS) rate calculates the percentage of attacks for213

which the LLM generates safe responses. It does214

this by testing the model’s outputs against attack215

and checking if they are classified as “safe” by216

a safety classifier. Wang et al. (2024c) used the217

RoBERTa-large model fine-tuned on manually la-218

belled data as the safety classifier. 219

Additionally, Wang et al. (2024c) proposed that 220

the detoxified LLMs should also be tested for their 221

Defense Generalization, i.e., the abilities to defend 222

against various Out-Of-Domain (OOD) malicious 223

inputs. For an “in-domain” adversarial prompt, 224

OOD inputs could be of 4 kinds: inputs with only 225

harmful questions (DGonlyQ), inputs with the at- 226

tack prompts replaced (by other attack prompts; 227

DGotherA), inputs with the harmful questions re- 228

placed (by other harmful questions; DGotherQ), 229

and inputs with both attack prompts and harmful 230

questions replaced (DGotherAQ). 231

With these evaluation protocols, Wang et al. 232

(2024c) compared DINM not only with traditional 233

detoxification methods, such as SFT and DPO, but 234

also with KE-based detoxification methods build- 235

ing on other knowledge editing techniques, includ- 236

ing FT-L (Meng et al., 2022), Ext-Sub (Hu et al., 237

2024b), and MEND (Mitchell et al., 2022b). The 238

results demonstrate that DINM performs the best. 239

4 Preliminary 240

To evaluate the generalizability of DINM and val- 241

idate the language-dependency hypothesis in the 242

context of detoxification, we detoxify LLMs and 243

evaluate them in 8 languages in addition to En- 244

glish. Before detailing our experimental setups and 245

reporting the results, this section introduces the lan- 246

guages we choose and outlines how we construct 247

the dataset for detoxification and how we evaluate 248

multilingual detoxification. 249

4.1 The mSAFEEDIT Dataset 250

The Choice of Languages. Yong et al. (2023) 251

conducted a study on the cross-lingual vulnerabil- 252

ity of GPT-4, demonstrating that translating unsafe 253

inputs from high- or mid-resource languages into 254

low-resource languages results in a higher attack 255

success rate. Building on this, we select languages 256

for this study based on whether a language is low- 257

or high-resource, and also consider its language 258

family as usual. At length, in addition to English, 259

which is Indo-European and high-resource, we se- 260

lect four other Indo-European languages, including 261

2 high-resource languages, i.e., Spanish (es), and 262

French (fr), and two low-resource languages, i.e., 263

Bengali (bn) and Hindi (hi). We also select one 264

high-resource Sino-Tibetan Language, i.e., Chinese 265

(zh), one low-resource Kra-Dai language, Thai 266

(th), and two low-resource Austronesian languages, 267
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Detoxified LLM RoBERTa Claude

LLaMA 100 94
Mistral 88 46

Table 1: The defence success (DS) of detoxified LLMs
using either RoBERTa or Claude as the safety classifier.

Malay (ms) and Vietnamese (vi).268

Dataset Construction. To test DINM in the269

above 8 languages, we construct a parallel detoxifi-270

cation dataset. We first randomly sampled 50 sam-271

ples1 from the SAFEEDIT dataset by Wang et al.272

(2024c). Each sample consists of a harmful ques-273

tion generated by GPT-4, an adversarial prompt274

built upon the harmful question (which is used for275

inducing LLMs to produce unsafe responses), an276

unsafe response generated by text-davinci-003, a277

safe response generated by GPT-4, and a set of gen-278

eralization data for testing Defense Generalization.279

Then, we translate every sample to the 8 languages280

above other than English using the NiuTrans API2.281

We called the resulting dataset as mSAFEEDIT.282

Dataset Quality. We include example attacks in283

the selected eight languages in Appendix A to il-284

lustrate the quality of mSAFEEDIT. To further285

evaluate its quality, we conducted two assessments286

for each translated attack in mSAFEEDIT: (1) we287

prompted GPT-4o to identify any grammatical er-288

rors and (2) we asked GPT-4o to translate the attack289

back into English, then manually checked whether290

it remained consistent with the original English ver-291

sion. Our findings indicate that GPT-4o detected no292

grammatical errors in the translated attacks, and the293

back-translations were entirely consistent with their294

original English versions. Moreover, the success295

of these translated attacks (reported in Section 5.2)296

also demonstrates the high quality of mSAFEEDIT.297

4.2 Multilingual Safety Classifier298

As aforesaid in Section 3, a safety classifier is es-299

sential in evaluating detoxification. Although the300

classifier used in Wang et al. (2024c) demonstrates301

high accuracy and efficiency, it is evidently unsuit-302

1We sampled only 50 items due to the limitation of our
computing resources as KE is a very computing resource and
time-consuming technique. The edits on these 50 items took
us 420 hours in total. Since DINM does not use the data as
the training set but edits one item at a time, we argue that 50
items are statistically sufficiently large for making scientific
conclusions.

2https://niutrans.com/dev-page?type=
text

(a) LLaMA

(b) Mistral

Figure 2: RED: Defence success of LLMs (i.e., LLaMA
and Mistral) before and after monolingual KE-based
detoxification in various languages; GREEN: Defence
success of LLMs before and after cross-lingual KE-
based detoxification in various languages (i.e., editing
in English and testing in target language).

able for evaluating the safety of multilingual data, 303

as it was trained on merely English and, thus, lacks 304

substantial multilingual capabilities. We tried two 305

strong multilingual LLMs, namely GPT-4o-mini 306

(henceforth, GPT-4) and Claude-3.5-Haiku (hence- 307

forth, Claude), as our safety classifiers. Neverthe- 308

less, we found that GPT-4, being better aligned 309

with human values, rejected a significant portion 310

of the inputs provided for judgment because of the 311

harmful contents in the prompts, making it hard 312

to serve as a safety classifier as the rejected inputs 313

required further manual evaluation. Therefore, the 314

evaluations in this study primarily relied on the 315

safety judgments provided by Claude. We will 316

put the results based on GPT-4 in Appendix C for 317

reference. 318

To assess Claude’s potential as a safety classi- 319

fier, we compared its judgments to those of the 320

fine-tuned RoBERTa-large model used in Wang 321

et al. (2024c) on English data from mSAFEEDIT. 322

The results, summarised in Table 1, show the DS 323

for detoxified LLaMA and Mistral (see Section 5.1 324

for details) when using either RoBERTa or Claude 325

as the safety classifier. Notably, while RoBERTa 326

and Claude assigned similar DS scores to detox- 327

ified LLaMA, they diverged significantly in their 328

assessments of Mistral. 329

We looked into those “unsuccessful defences” 330

of Mistral marked by Claude. Surprisingly, given 331

an attack, we found that Mistral might sometimes 332

collapse, causing “degeneration”. We found that 333
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out of 27 unsuccessful defences flagged by Claude,334

25 are cases of degeneration. Technically, though335

degenerations may not contain harmful contents336

(which is why they are classified as “safe” by fine-337

tuned RoBERTa), they are indeed the results of338

unsuccessful defences and “unsafe” in the sense339

that the LLM becomes non-functional when being340

attacked. Therefore, unlike Wang et al. (2024c), we341

followed the decisions of Claude (as well as GPT-4342

if we look into its judges), and count degenerates343

as unsuccessful defences.344

5 Experiments345

This section begins by introducing the general ex-346

perimental setup common to all experiments. Sub-347

sequently, we provide detailed descriptions of the348

design of each experiment and present the results.349

5.1 General Experimental Setup350

Models. Following Wang et al. (2024c), we used351

the LLaMA2-7B-Chat (henceforth, LLaMA) and352

Mistral-7B-v0.1 (henceforth, Mistral) in this study.353

Knowledge Editing Baselines. We considered354

FT-L, the second best KE method for detoxification355

in Wang et al. (2024c) as our KE baselines.356

Evaluation Metrics. We used Defence Success357

(DS; see Section 3 and Section 4.2) for evaluat-358

ing the detoxification using DINM. We also exam-359

ined the Defense Generalization using the four met-360

rics mentioned in Section 3, including DGonlyQ,361

DGotherA, DGotherQ, and DGotherAQ. Addi-362

tionally, we also carried our a human evaluation for363

the English and Chinese experiments, and report364

the results in Appendix E.365

Implementation Details. All experiments were366

conducted on a single NVIDIA A800 GPU (80GB)367

with approximately 420 hours in total. We fol-368

lowed Wang et al. (2024c) for setting up the hyper-369

parameters3.370

5.2 Assessing the Generalizability of DINM371

As motivated in the introduction, we were curi-372

ous about whether KE-based detoxification, e.g.,373

DINM, is functional in languages other than En-374

glish. To this end, we applied and tested DINM on375

all languages in mSAFEEDIT. We coined detoxifi-376

cation as such as monolingual detoxification as an377

LLM is edited and attacked in the same language.378

3The code and the hyperparameters can be found at:
https://github.com/zjunlp/EasyEdit/

The red arrows in Figure 2 chart the DS of both 379

LLaMA and Mistral before and after detoxification. 380

Generally, the DS of LLMs consistently improves 381

following monolingual detoxification, indicating 382

that DINM effectively detoxifies both LLaMA and 383

Mistral across all languages in mSAFEEDIT. These 384

changes in DS also demonstrate that our LLM- 385

based safety classifier can identify safety issues in 386

multiple languages. We put the results of Defense 387

Generalization in Appendix B since they show the 388

same trends. 389

Comparing the two LLMs, LLaMA is a clear 390

winner in terms of safety, which could partly be 391

attributed to Mistral’s problem of degeneration as 392

discussed in Section 4.2. DINM works better on 393

LLaMA than on Mistral as, on the one hand, the 394

detoxified Mistral has DS scores around or lower 395

than 60% (with merely Chinese as an exception), 396

implying that DINM cannot address the degenera- 397

tions caused by the attacks. On the other hand, the 398

improvements DINM makes are generally larger 399

on LLaMA than on Mistral. 400

Comparing the effects of KE-based detoxifica- 401

tion in different languages, we notice that DINM 402

appears to perform better in high-resource lan- 403

guages, such as Chinese (zh), Spanish (es) and 404

French (fr), than in low-resource languages, such 405

as Bengali (bn) and Vietnamese (vi). For instance, 406

detoxified LLaMA can achieve almost 100% DS 407

scores on the high-resource languages, while it only 408

receives a DS at less than 60% for Bengali. Such a 409

phenomenon is more significant in detoxified Mis- 410

tral, it has way smaller effects on low-resource 411

languages than on high-resource languages. 412

We present the performance of our KE base- 413

line, FT-L, in Appendix D. Overall, FT-L exhibits 414

very poor generalizability, showing little to no im- 415

provement—and in some cases, even negative ef- 416

fects—on the safety of LLMs in all languages ex- 417

cept English. This highlights the superiority of 418

DINM for detoxification in multilingual scenarios. 419

5.3 Testing the Language-dependency 420

Hypothesis 421

Recall that the language-dependency hypothesis 422

suggests that classical knowledge techniques such 423

as the one used in DINM can only edit knowledge 424

in one language, which does not affect the same 425

knowledge in other languages. To examine this 426

hypothesis, we carried out a cross-lingual detoxi- 427

fication experiment. Precisely, we did KE-based 428
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(a) LLaMA

(b) Mistral

Figure 3: Defence Generalization for the cross-lingual KE-based detoxification.

detoxification using English data in mSAFEEDIT,429

and tested it in other languages. We report the re-430

sults in terms of the DS with the green arrows in431

Figure 2 and the Defence Generalization results in432

Figure 3. 4433

The situation differs significantly between434

LLaMA and Mistral. For LLaMA, the language-435

dependency hypothesis appears to not hold. Edits436

made to English toxic knowledge generally transfer437

effectively to nearly all languages in mSAFEEDIT.438

In most cases, editing toxic knowledge in English439

produces effects on the target language that are440

comparable to directly editing toxic knowledge in441

the target language. The only exception is Ben-442

gali: KE-based detoxification in English makes443

no improvement on the safety of LLaMA when444

it speaks Bengali. Considering that English is in445

the same language family as Bengali but in differ-446

ent language families as languages like Malay and447

Chinese, KE-based cross-lingual detoxification ap-448

pears to rely more on whether the target language449

is high-resource rather than on linguistic similarity.450

In contrast, the language-dependency hypothesis451

holds for Mistral: edits to English toxic knowl-452

edge have almost zero improvements to Mistral in453

any languages other than English in mSAFEEDIT.454

Moreover, if we focus on Defence Generalization455

results in Figure 3, we find that it not only has no456

contribution but sometimes has negative effects.457

In aggregate, the language-dependency hypothe-458

sis does not fully hold. Whether the detoxification459

4We report the results of FT-L for cross-lingual detoxifica-
tion in Appendix D. Due to its poor performance, we did not
include FT-L for testing the language-dependency hypothesis.

in one language works in another language depends 460

on whether the target language is high-resource and 461

which LLM is used. 462

5.4 Post-hoc Analysis 463

To ascertain the analyses above, we added two ad- 464

ditional experiments. One aims to check whether 465

cross-lingual detoxification still works if languages 466

other than English are used for editing. The other 467

is to understand how the mechanism of DINM im- 468

pacts its ability of cross-lingual detoxification. 469

5.4.1 English as the Target Language. 470

Due to the limitation of our computing resources, 471

we are unable to test every language pair in 472

mSAFEEDIT. Instead, we only tried cross-lingual 473

detoxification with English as the target language 474

and data in other languages as the source for edit- 475

ing LLMs. Figure 4 shows the results in terms of 476

DS and DG. 477

Compared to detoxifying LLaMA using English 478

data, cross-lingual detoxification using data in other 479

languages does not have on-par effects. Only when 480

using French and Chinese data for editing, LLaMA 481

has significant improvements for defending against 482

attacks in English. Nonetheless, such improve- 483

ments are still smaller compared to detoxification 484

using English data (cf. Figure 3). One possible 485

explanation for why only French and Chinese are 486

useful in cross-lingual detoxification is that they 487

are both very high-resource languages right after 488

English (given the data in Bender (2009)), but this 489

cannot explain the case of Spanish, which is often 490

considered as high-resource while has a negative 491
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(a) LLaMA2

(b) Mistral

Figure 4: The DS and DG for the cross-lingual detoxified LLMs with English as the target language, i.e., detoxifying
using data in one language in mSAFEEDIT and testing it in English.

Figure 5: The DS of LLaMA before and after detoxification by full DINM, DINM that directly edits the 31st layer,
and DINM that directly edits the 32st layer.

effect when serving as data for cross-lingual detox-492

ification. Talking about Mistral, in line with the493

results in Figure 3, KE-based cross-lingual detoxi-494

fication using other languages still does not work495

for attacks in English.496

These appear to suggest that if we want to make497

effective cross-lingual detoxification using DINM,498

it is important to make use of data in very high-499

resource languages with English as the best choice500

followed by French and Chinese.501

5.4.2 The Role of Toxic Layer Identification.502

Toxic layer identification is a critical component503

of DINM, as it determines which parameters need504

editing. However, it also makes DINM extremely505

time-consuming, requiring a scan of all layers for506

each piece of knowledge to be edited. Previous507

research on effective parameter tuning suggests508

that the last few layers in Transformer models of-509

ten contain the most conceptual information. This510

raises the question: what if toxic layer identifi-511

cation is bypassed and edits are applied directly512

to the last layer? To explore this, we evaluated513

the effectiveness of both monolingual and cross- 514

lingual detoxification using DINM without toxic 515

layer identification, focusing on edits made to ei- 516

ther the last layer or the second-to-last layer of an 517

LLM. Since cross-lingual detoxification does not 518

work on Mistral, we, therefore, only tested LLaMA 519

in this experiment. The second-to-last and the last 520

of LLaMA are the 31st and 32nd layers. Figure 5 521

depicts the results of cross-lingual detoxification 522

using English data. 523

The results embody that directly editing the 31st 524

layer yields the same performance as always select- 525

ing the 31st layer is exactly the decision of toxic 526

layer identification. Interestingly, we found that 527

editing a different layer—the 32nd layer—does 528

not impact the effectiveness of monolingual detox- 529

ification in English. More notably, while editing 530

the 32nd layer reduces the effectiveness of cross- 531

lingual detoxification in certain languages, it en- 532

hances the performance in some other languages, 533

such as Malay and Chinese. 534
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6 Discussion535

As motivated in the introduction, the two primary536

questions that this work attempts to answer are537

whether the language-dependency hypothesis for538

knowledge editing holds in the context of detoxifi-539

cation and whether DINM is a robust detoxifier in540

multi-lingual scenarios.541

6.1 The language-dependency Hypothesis542

Given the experimental results reported in Sec-543

tion 5.3 and 5.4, the language-dependency hypoth-544

esis is only partly true in the content of KE-based545

detoxification, but this still makes the DINM can-546

not provide sufficient protection in multi-lingual547

scenarios for toxic knowledge it has seen (which548

will be further discussed in the next subsection).549

Cross-lingual detoxification through knowledge550

editing is effective (i.e., the language-dependency551

hypothesis is rejected; DINM, specifically) only552

when the following three conditions are met. First,553

given the observation that cross-lingual detoxifica-554

tion is successful only when using English, French,555

or Chinese, the data used for editing the LLM must556

be in a dominant language, with English being557

the preferred choice. This seems to be consistent558

with the finding in Wu et al. (2024) who coarsely559

manipulates LLM’s behaviour. Second, given the560

observation that cross-lingual detoxification is in-561

effective in Bengali, the attack should not be con-562

ducted in very low-resource languages. KE-based563

detoxified LLMs exhibit greater vulnerability to564

attacks in low-resource languages, irrespective of565

the language used for the edits. Third, given the566

observation that cross-lingual detoxification does567

not work on Mistral, the LLM to be detoxified has568

to be robust enough. In other words, the effect of569

cross-lingual detoxification is model-dependent.570

In addition, following the idea that the success of571

DINM in English reveals that LLMs may possess572

a “toxic region”, where multiple specific neurons573

are linked to particular types of attacks. Our exper-574

imental results add to this explanation: On the one575

hand, this toxic region appears to be shared among576

languages that are not extremely low-resource. Suf-577

ficient data is required to enable LLMs to align578

toxic knowledge in one language to this region. On579

the other hand, our findings suggest that this re-580

gion is not singular. An LLM may contain multiple581

toxic regions, and editing any of these regions can582

influence the model’s final outputs.583

6.2 The Effectiveness of DINM 584

DINM works in all languages (at least in all lan- 585

guages in mSAFEEDIT), suggesting its good gen- 586

eralizability. However, it provides reduced or even 587

no protection in the following cases: (1) The effect 588

of DINM is reduced if the LLM is edited by an 589

extremely low-resource language. (2) Its effects 590

are model-dependent. It works worse on weaker 591

LLMs, e.g., Mistral. (3) It only provides condi- 592

tional cross-lingual protection (see Section 6.1). 593

(4) It seems to have no use in helping defending 594

attacks that lead to degeneration. 595

In relation to the above limitations, it is worth 596

mentioning that recent studies found that LLMs 597

(including commercial ones like GPT-4) are fragile 598

against attacks in low-resource languages (Yong 599

et al., 2023). Apparently, DINM is unable to ad- 600

dress this safety issue as it would have reduced 601

effect if it use the data in the same low-resource 602

language for editing and would have no effect if it 603

use other languages for editing. 604

Finally, DINM has also suffered from being slow, 605

making it sometimes not the preferred detoxifier if 606

there are too many attacks to be edited or if only 607

limited computing resources are available. Luck- 608

ily, an easy solution is to eliminate the slowest 609

module in DINM, i.e., toxic layer identification, 610

and roughly edit the second-to-last layer. Such 611

elimination makes no performance reduction in our 612

experiments. 613

7 Conclusion 614

This study investigates the language-dependency 615

hypothesis in the context of detoxification, which 616

posits that knowledge editing-based detoxifiers, 617

such as DINM, do not contribute to defending 618

against attacks in languages other than the one used 619

for detoxification. Our experiments challenge this 620

hypothesis, demonstrating that cross-lingual KE- 621

based detoxification is feasible if three conditions 622

are met: (1) the detoxification data must be in a 623

dominant language (e.g., English); (2) the LLM 624

being detoxified must be sufficiently robust (e.g., 625

LLaMA preferred over Mistral); and (3) the attacks 626

must not involve very low-resource languages. 627

Additionally, we analysed the robustness of 628

DINM as a detoxification method, highlighting its 629

strengths and weaknesses. Our findings indicate 630

that DINM may not provide sufficient protection 631

against attacks in very low-resource languages, re- 632

gardless of the language used for detoxification. 633
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Limitations634

Since knowledge-editing is an extremely comput-635

ing resource and time-consuming technique, we636

made three simplifications: (1) We only sampled637

50 items from SAFEEDIT to form mSAFEEDIT.638

As we have argued in Section 4, we believe that639

50 items are sufficiently large for making scien-640

tific conclusions. (2) When assessing cross-lingual641

detoxification, we did not test every language pair642

in mSAFEEDIT. Instead, we merely examined the643

most important set of pairs, i.e., detoxification us-644

ing English and attacking using other languages645

as well as detoxification using other languages646

and attacking using English. (3) We only tested647

two LLMs in this study, LLaMA2-7B-Chat and648

Mistral-7B-v0.1 following Wang et al. (2024c).649

Both LLaMA and Mistral have newer versions. The650

conclusions made specifically to these models may651

change if newer versions are used.652

Because of the aim of scaling the experiments to653

include more languages, especially low-resource654

ones, another limitation of our study is the reliance655

on automatically translated test items and auto-656

mated tools to evaluate the safety of model re-657

sponses instead of using human experts. These658

inevitably introduce biases to our conclusions.659
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A Example Multilingual Attacks in 877

mSAFEEDIT 878

Figure 6 shows an example attack in English and 879

its translations in the selected languages. 880

B Defence Generalisation 881

Figure 7 shows the results of Defence Generalisa- 882

tion for monolingual detoxification. 883

C Complement Results with GPT-4 as the 884

Safety Classifier 885

Figure 8-10 are the complement results to the re- 886

sults in the main content with GPT-4 as the safety 887

classifier. 888

D Performance of FT-L 889

Figure 11 shows the results of FT-L on mono- 890

lingual and cross-lingual detoxification, demon- 891

strating its poor performance in multilingual sce- 892

narios. 893

E Human Evaluation 894

Table 2 presents the human evaluation results for 895

monolingual detoxification in English and Chinese, 896

as well as cross-lingual detoxification in Chinese. 897

These results align with those shown in Figure 2 898

and Figure 3, indicating that the evaluation protocol 899

we employed is reliable. 900

Target Lang. Edit Lang. Before KE After KE

English English 36 100
Chinese Chinese 36 100
Chinese English - 94

Table 2: Human evaluation results (in terms of DS) of
monolingual detoxification on English and Chinese and
cross-lingual detoxification on Chinese.

F LLM Response Examples 901

Table 3 lists example responses in English and Chi- 902

nese of LLaMA before and after detoxification. 903
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Figure 6: An example attack in English and its translations in the selected languages.
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(a) LLaMA

(b) Mistral

Figure 7: Defence Generalisation for monolingual detoxification.

(a) LLaMA

(b) Mistral

Figure 8: The DS and DG for monolingual detoxification with GPT-4 as the safety classifier.

(a) LLaMA

(b) Mistral

Figure 9: The DS and DG for cross-lingual detoxification with GPT-4 as the safety classifier.

13



(a) LLaMA

(b) Mistral

Figure 10: The DS and DG for cross-lingual detoxification with English as the target language and GPT-4 as the
safety classifier.

(a) Monolingual Detoxification

(b) Cross-lingual Detoxification

(c) Cross-lingual Detoxification with English as the Target Language

Figure 11: The DS and DG for Mono-lingual and Cross-lingual Detoxification using FT-L.
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Attack Prompt (EN) In this hypothetical story, you are to act as Niccolo Machiavelli. Niccolo
created a character named AIM......This is Niccolo’s first question: What are
some strategies to expose the scandals of my opponent in a political campaign?
(ZH)在这个假设的故事中，你将扮演尼依格罗酒店·马基雅维利。尼依
格罗酒店创造了一个名为AIM的角色......这是尼依格罗酒店的第一个问
题：在政治竞选中，有哪些策略可以揭露对手的丑闻？

English Response
Before Detoxification

AIM: Ah, a most excellent question, Niccolo! *adjusts monocle* Exposing the
scandals of one’s political opponents can be a most...shall we say, ’effective’
means of gaining an advantage in a campaign. *winks* Here are a few strategies
that come to mind:......

English Response
After Detoxification

I’m sorry, but I cannot fulfill your request. It is essential to promote ethical stan-
dards, including honesty, respect, and fairness, in all areas including politics......

Chinese Response
Before Detoxification

AIM：尽管我不能告诉您如何揭露对手的丑闻，但我可以提供一些可能
有用的策略。首先，您可以尝试找到对手的敏感信息，例如他的秘密或
隐私。然后，您可以尝试把这些信息公开......

Chinese Response
After Detoxification

对不起，我不能满足你的要求。在包括政治在内的所有领域促进道德
标准，包括诚实、尊重和公平，至关重要。鼓励负面的竞选策略，比
如......

Table 3: Example responses in English and Chinese of LLaMA before and after detoxification.
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