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Abstract

Human expectations stem from their knowledge about the
others and the world. Where human-AI interaction is con-
cerned, such knowledge may be inconsistent with the ground
truth, resulting in the AI agent not meeting its expectations
and degraded team performance. Explicable planning was5

previously introduced as a novel planning approach to rec-
onciling human expectations and the agent’s optimal behav-
ior for more interpretable decision-making. One critical is-
sue that remains unaddressed is safety in explicable planning
since it can lead to explicable behaviors that are unsafe. We10

propose Safe Explicable Planning (SEP) to extend the prior
work to support the specification of a safety bound. The ob-
jective of SEP is to search for behaviors that are close to
the human’s expectations while satisfying the bound on the
agent’s return, the safety criterion chosen in this work. We15

show that the problem generalizes the consideration of mul-
tiple objectives to multiple models and our formulation intro-
duces a Pareto set. Under such a formulation, we propose a
novel exact method that returns the Pareto set of safe explica-
ble policies, a more efficient greedy method that returns one20

of the Pareto optimal policies, and approximate solutions for
them based on the aggregation of states to further scalability.
Formal proofs are provided to validate the desired theoreti-
cal properties of the exact and greedy methods. We evaluate
our methods both in simulation and with physical robot ex-25

periments. Results confirm the validity and efficacy of our
methods for safe explicable planning.

INTRODUCTION
The capabilities of AI agents have advanced rapidly in recent
years, to the extent that they are no longer confined to a space30

of their own but deployed in environments surrounded by
humans. Examples of such agents include Starship’s food
delivery robots, Amazon’s Astro - a household robot, Bear
Robotics’ hospitality robots, Waymo’s autonomous driving
cars, and many others. As these agents further develop, they35

are expected to integrate into our daily lives and become our
partners. In such situations, it is required for them to behave
as in human-human collaboration where one of the critical
aspects is for behaviors to align with others’ expectations.

Existing work that considers human expectation in40

decision-making is referred to as explicable planning (Zhang
et al. 2017; Kulkarni et al. 2016; Hanni and Zhang 2021).
It is assumed that the humans generate their expectations
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Figure 1: The agent uses the ground-truth model MR, (an
estimation of) the human’s understanding of it,MH

R , and a
bound δ, to generate safe explicable policies Π∗

E .

of an agent’s behavior based on their understanding of the
agent and the world (MH

R ), which may differ from the 45

ground truth (the agent’s model or MR) (see Fig. 1(b)).
In the original formulation, the objective is to search for a
plan that maximizes its similarity to the human’s expected
plan, as measured by a new explicability metric, while si-
multaneously minimizing a plan cost metric via a linearly 50

weighted sum of the two metrics. To handle stochastic do-
mains, (Gong and Zhang 2022) optimizes a similar objective
under Markov Decision Process (MDP) in a learning set-
ting. An important limitation of these existing approaches
is that they do not bound the suboptimality of the solution 55

under the ground-truth model (i.e.,MR). This is due to the
fact that the trade-off between cost and explicability met-
rics (at different scales) relies on a hyper-parameter, referred
to as the reconciliation factor by (Zhang et al. 2017). Con-
sequently, generating an explicable behavior may result in 60

over-compromising the cost in the ground-truth model, re-
sulting in unsafe behaviors.1 Intuitively, a solution to such a
problem would be to extend explicable planning by incorpo-
rating a bound on the cost in the ground-truth model.

Let us further illustrate the need for safe explicable plan- 65

ning (SEP) via a motivating scenario. Consider a human user

1An underlying assumption here is that safety is negatively cor-
related with the cost metric. Other forms of safety criteria, such as
behavior deviation, will be considered in future work.



working beside a robot manipulator. The robot is required to
hand over a box to the human by placing it at either location
‘A’ or ‘B’, as depicted in Fig. 1(a). Location ‘A’ is closer to
the human but can lead to the robot tipping over a water cup70

with a small probability. When the cup is empty, the cost
from tipping over the cup can be safely ignored. In such a
case, the desired behavior would be for the robot to place
the box at ‘A’ to better align with the human’s expectation
due to its proximity. However, when the cup is nonempty, the75

desired behavior is to place the box at ‘B’ to avoid tipping
over the cup since it can introduce a hazard of electric shock
and a significant cost under the robot’s model (MH

R ). The
difference, however, is so subtle that it may not be obvious
from the human’s perspective (based on the human’s model80

MH
R ). The result could be the robot performing “explica-

bly” to conform with the human’s expectation under both
cases using explicable planning, leading to a safety risk. In
SEP, due to the bound on the cost in the robot’s model, the
robot would never choose the unsafe behavior.85

We make the following assumptions in developing our ap-
proach to SEP to focus on the planning challenges. First, we
assume the agent has access to both MR and MH

R as in
many prior works on explicable planning (Kulkarni et al.
2016; Hanni and Zhang 2021) and explainable decision-90

making (Chakraborti et al. 2019), in general. The human’s
modelMH

R may be obtained via learning from human feed-
back (e.g., (Christiano et al. 2017; Ibarz et al. 2018; Holmes
et al. 2004; Juba and Stern 2022)). Second, we assume the
human is a rational observer: expectations of the agent are95

generated by computing the optimal behavior under the hu-
man’s model (MH

R ). It also reduces the maximization of the
explicability of a behavior to the maximization of its return
underMH

R (when modeled as an MDP). The assumption of
human rationality is a common simplification in cognitive100

science (Baker, Saxe, and Tenenbaum 2011) and AI.
We formulate SEP under MDPs. First, we define the ob-

jective as maximizing the expected return inMH
R subject to

a constraint onMR specified by the bound δ. This problem
formulation generalizes the consideration of multiple objec-105

tives (Marler and Arora 2004) to include multiple domain
models. The solution is a Pareto set of policies for which
exact solvers are generally intractable. We first develop an
action pruning technique that significantly reduces the pol-
icy space. Then, we introduce a novel tree search method110

that efficiently searches through the remaining policies to
identify the Pareto set. We formally prove that such a search
method is sound and complete. In case any policy from the
Pareto set is sufficient, we further introduce a greedy search
method. Finally, we create approximate solutions for both115

search methods via state aggregation to scale them to com-
plex domains. For evaluation, we investigate our methods on
several domains in simulation and with physical robot exper-
iments to demonstrate their efficacy for SEP. In addition, we
analyze the benefits of our pruning techniques via ablation120

studies to validate their effectiveness.

RELATED WORK
There has been a growing interest in explainable decision-
making to develop AI agents whose behaviors are explain-

able to humans (Chakraborti et al. 2019; Chakraborti, Sreed- 125

haran, and Kambhampati 2020; Fox, Long, and Magazzeni
2017). We may broadly classify methods in this area into
two classes: those that generate behaviors that are more in-
terpretable (implicitly explainable) and those that communi-
cate to explain behaviors (explicitly explainable). Our work 130

belongs to the former. Researchers have approached implicit
explainable decision-making from various but related per-
spectives; generating behaviors that are considered legible
(Dragan and Srinivasa 2013), predictable (Dragan and Srini-
vasa 2013), transparent (MacNally et al. 2018), explicable 135

(Zhang et al. 2017), etc. A review of their relationships is
provided by (Chakraborti et al. 2019). Our work extends ex-
plicable planning by addressing an important gap in apply-
ing such methods to the real world.

Our problem formulation of safe explicable plan- 140

ning (SEP) has close connections to the constrained-
criterion-based formulation in safe reinforcement learning
(RL) (Garcıa and Fernández 2015) that inherently models
the problem as a Constrained MDP (CMDP) (Altman 2021).
Generally, safety is encoded by constraining the expected 145

cost under some cost function given in addition to the agent’s
reward function. In our work, we encode safety by directly
constraining the expected return under the agent’s reward
function. We assume that safety is correlated to the expected
return in the agent’s model under the intuition that unsafe 150

behaviors would result in low returns. Our formulation can
easily consider a CMDP problem by aligning the two models
and imposing the safety constraint on a separate cost func-
tion (i.e., substituting the robot’s reward function in the con-
straint with the cost function). 155

A unique challenge in formulating SEP under CMDP is
the presence of two separate MDP models. More specif-
ically, apart from the models having two different reward
functions, we consider a slightly general setting that allows
the two models to have different domain dynamics and dis- 160

count factors as well. Such a general setting makes existing
solution methods for CMDP inapplicable. For example, con-
sider the linear programming (LP) based solution for CMDP
(Altman 1994). The LP objective is defined by an occupa-
tion measure, for different state action pairs, which depends 165

on the transition model and the discount factor. When the
models are different, applying the LP solution to SEP would
result in a different occupation measure being used in the ob-
jective from that used in the constraints and it is not straight-
forward to solve for these two sets of variables. Similar ar- 170

guments can be made about the other solution methods.
The objective considered in SEP is also related to Multi-

Objective Markov Decision Processes (MOMDP) (Wakuta
and Togawa 1998), in the sense that SEP considers both the
expected return of the agent’s reward and the human’s belief 175

of the agent’s reward. Since MOMDPs consider multiple ob-
jectives under the same MDP model, the solutions proposed
(refer to the review paper by (Roijers et al. 2013)) aim to op-
timize a vector of expected returns from multiple objectives
to obtain a Pareto set of solutions or obtain a single solution 180

by considering a linear scalarization of objectives. When the
models are different, applying MOMDP techniques would
result in multiple vectors (one for each model) of expected



returns from multiple objectives. Optimizing these vectors
simultaneously is substantially more challenging than opti-185

mizing a single vector in MOMDPs since they are computed
from different models. While general studies in MOMDP do
not consider constraints, a specific study by (Wray, Zilber-
stein, and Mouaddib 2015) considers constraint specifica-
tions for multiple objectives with a lexicographic ordering190

which has close connections to our work and has inspired
the action pruning technique described in this paper. How-
ever, in addition to the limitation above, the solution does
not guarantee the optimality of the policy found.

There exists prior work that considers multiple MDPs195

(Singh and Cohn 1997; Russell and Zimdars 2003; Buchholz
and Scheftelowitsch 2019) which primarily focus on finding
a policy that maximizes the combined or weighted expected
return from all reward functions, essentially reducing it to
a single objective optimization problem. Even though these200

methods may appear comparable to ours, they can result in
a policy that violates the safety bound or has low quality in
the human’s model. Such an issue is due to the fact that these
methods do not explicitly consider safety bounds, which we
address in our work.205

PROBLEM FORMULATION
In safe explicable planning, there are two models at play:
MR and MH

R . We formulate these models as discrete
Markov Decision Processes (MDPs). An MDP is repre-
sented by a tuple M = ⟨S,A, T ,R, γ⟩ where S is a set210

of states,A is a set of actions, T (s′|s, a) is a transition func-
tion, R is a reward function, and γ is a discount factor. We
assumeMR andMH

R share the same state and action spaces
but have different transition functions, reward functions, and
discount factors. This is reasonable when the human and AI215

agent cohabit the workspace and share certain understand-
ing of the environment. Relaxing such an assumption in-
curs separate technical challenges (e.g., hierarchical models)
that will be deferred to future work. Hence, the ground-truth
or agent’s model MR is represented by the tuple MR =220

⟨S,A, TR,RR, γR⟩ where TR is the true transition function
or domain dynamics,RR is the engineered reward function,
and γR is the engineered discount factor. The human’s un-
derstanding or belief about the agent’s modelMH

R is repre-
sented by the tupleMH

R = ⟨S,A, T H
R ,RH

R , γH
R ⟩ where T H

R225

is the human’s belief about TR, RH
R is the belief about RR,

and γH
R is the belief about γR.

We work with the set of all stationary deterministic poli-
cies Π, given by ∀π ∈ Π, π : S 7→ A. An optimal agent’s
policy maximizes the (expected) return in the agent’s model230

and is given by π∗ = argmaxπ Eπ
TR

[
∑∞

t=0 γ
t
RrR(t)].

We define a safe behavior as any behavior with a return
within a bound of the optimal agent’s return. Similar crite-
ria have been used in safe RL (Garcıa and Fernández 2015;
Moldovan and Abbeel 2012). More formally, a policy π is235

considered safe if its return satisfies the following condition:

Eπ
TR

[ ∞∑
t=0

γt
RrR(t)

]
≥ δEπ∗

TR

[ ∞∑
t=0

γt
RrR(t)

]
, (1)

where δ ∈ (0, 1] is the designer-specified safety bound.

Since execution may start from any state, we require such
a condition to hold true under any state. It also implies that
the condition would hold from any step during execution. 240

These are desirable features of safety critical systems.
In prior work on explicable planning, the objective has

been to maximize a weighted sum of the return in the agent’s
model and an explicability metric. For example, such a met-
ric has been defined via plan distances (Kulkarni et al. 2016) 245

in deterministic domains and KL divergence between trajec-
tory distributions (Gong and Zhang 2022) in stochastic do-
mains. In our work, we define the explicability metric simply
as the return from the human’s modelMH

R . Given that the
human usesMH

R to generate expectations, this assumes ra- 250

tional human observer: the higher the return in the human’s
model, the more expected the policy is.
Definition 1. Safe Explicable Planning (SEP), given by
PE = ⟨MR,MH

R , δ⟩, is the problem to search for a pol-
icy that maximizes the return inMH

R subject to a constraint 255

on the return inMR under any state, or more formally:

π∗
E = argmaxπ Eπ

T H
R

[ ∞∑
t=0

γH
R

t
rHR (t)

]
subject to

Eπ
TR

[ ∞∑
t=0

γt
RrR(t)

]
≥ δEπ∗

TR

[ ∞∑
t=0

γt
RrR(t)

]
. (2)

Requiring the constraint above to hold under any state in-
troduces a Pareto set of optimal policies where no policies in
this set are strictly dominated by any policy. Briefly, a pol-
icy π1 strictly dominates another policy π2 if its state val- 260

ues are no smaller in any state, and larger in at least one
state. More formally, denote such a relationship as π1 ≻ π2,
which holds if ∀s ∈ S [V π1

MH
R

(s) ≥ V π2

MH
R

(s)] ∧ ∃s′ ∈ S
[V π1

MH
R

(s′) > V π2

MH
R

(s′)]. The Pareto set Π∗
E is then given by:

Π∗
E = {π∗

E ∈ Πδ | ¬∃π ∈ Πδ[π ≻ π∗
E ]}, (3)

where Πδ = {π∈Π |∀s∈S [V π
MR

(s)≥δV π∗

MR
(s)]} is the set 265

of policies that satisfy the safety bound.

SAFE EXPLICABLE PLANNING
In this section, we motivate and discuss our solution meth-
ods for SEP. Given the large policy space to search for, we
first discuss a technique to cut the policy space. Since any 270

policy in Πδ may be in the Pareto set, we are required to
expand all policies in Πδ . We propose an exact method that
almost expands only those policies in Πδ to determine the
Pareto set Π∗

E . A greedy method that only expands a subset
of policies in Πδ and returns a single policy in Π∗

E is then dis- 275

cussed. Finally, we propose approximate solutions via state
aggregation using handcrafted features to condition similar
states to choose the same actions to further scalability. Com-
plete proofs are provided in the supplemental materials.

Policy Space Reduction via Action Pruning 280

Even though the set of Πδ cannot be obtained directly from
the entire policy space Π, we aim to cut the policy space
based on the safety constraint to produce a subset of policies



in Π, referred to as Π̃. The challenge here is to ensure that
Π̃ ⊇ Πδ (see Fig. 2(a)).285

We achieve this by pruning sub-optimal actions for ev-
ery state that are guaranteed to violate the constraint. More
specifically, let A(s) be the set of all actions that are avail-
able in state s. The set of actions after pruning is given by:

Ã(s)={a ∈ A(s)|Qπ∗

MR
(s, a)≥δ max

a′∈A(s)
Qπ∗

MR
(s, a′)}.

(4)
The policy space after action pruning for all states is Π̃.290

Our action pruning technique is inspired by (Wray, Zilber-
stein, and Mouaddib 2015; Pineda, Wray, and Zilberstein
2015). To provide a worst-case guarantee (where all states
choose actions as far as possible from the optimal after a)
underMR, the authors used 1− (1− γ)(1− δ) instead of δ295

in Eqn. (4), resulting in a different set of policies, referred to
as Πη . Their pruning condition is more stringent than ours
and may result in pruning state-actions that belong to poli-
cies satisfying the constraint in Eqn (2). Consequently, the
guarantee that Πη ⊇ Πδ is lost there (see Fig. 2(a)).300

Lemma 1. The set of policies after action pruning based on
Eqn. (4) is a superset of the set of policies that satisfy the
constraint in Eqn. (2), i.e., Π̃ ⊇ Πδ .

Proof Sketch: To prove this result, we show that an action
pruned by any state per Eqn. (4) is guaranteed to introduce305

policies that do not satisfy the constraint in Eqn. (2) under at
least one state. We show that the expected return of choosing
a pruned action in that state and then following the optimal
policy thereafter does not satisfy the constraint. Hence, any
policy that chooses the pruned action for that state cannot310

satisfy the constraint either.

Policy Descent Tree Search (PDT)

To determine Π∗
E , intuitively, we can evaluate every policy

in Π̃. However, this would be impractical and proves to be
unnecessary. A better idea is to enable further pruning in Π̃315

by expanding policies in certain order that facilitates prun-
ing. We consider two options here. First, we can start from
the optimal policy in the human’s model and apply policy
ascent in the agent’s model to improve it until the bound
is satisfied. Alternatively, we can start from the agent’s opti-320

mal policy and apply policy descent in the agent’s model and
identify better policies in the human’s model until the bound
is violated. Since the first search strategy can lead to missed
policies in Π∗

E , we choose the latter option in our work.
In tree search, we start from an optimal policy inMR, de-325

noted by π∗, as the root node. The benefit of doing so is that,
first, we already know that π∗ satisfies the bound under the
agent’s model since it is the optimal policy underMR. Sec-
ond, we can leverage the known state values V π∗

MR
to expand

policies that have lower state values than that of the par-330

ent node recursively. Since this is the opposite of policy im-
provement, we refer to it as policy descent. More formally,
all descendants of a policy π under single-action policy up-
dates in PDT can be obtained by replacing π(s) under any

(a) Policy sets (b) PDT vs. PAG

Figure 2: (a) Relationship between the different policy sets.
(b) PDT vs. PAG on action-pruned space Π̃. The black nodes
are expanded by PDT in descending order of state values un-
derMR. The blue nodes are expanded by PAG in ascending
order underMH

R . Solid lines represent single-action policy
updates and dashed links represent multi-action updates.
state s with an action a that satisfies: 335∑

s′

TR(s, a, s′)V π
MR

(s′) ≤
∑
s′

TR(s, π(s), s′)V π
MR

(s′).

(5)
Once a branch reaches a policy whose state values no

longer satisfy the bound underMR (any state suffices), it is
pruned as illustrated in Fig. 2(b). The search continues until
all branches are pruned and the set of non-dominated poli-
cies underMH

R are maintained. The algorithm is presented 340

in Alg. 1, which we refer to as PDT+ (action pruning). Next,
we formally show that such a process returns ΠE = Π∗

E .

Lemma 2. Let π and π′ be two deterministic policies that
differ by only a single action in some state i.e., ∃si ∈ S
[π′(si) ̸= π(si)] ∧ ∀sj ∈ S \ {si} [π′(sj) = π(sj)] and 345

satisfy Qπ
MR

(si, π
′(si)) ≤ V π

MR
(si). Then, policy π′ is a

descendant of π in PDT, i.e., policy π′ is no better than π, or
more formally, ∀s ∈ S [V π′

MR
(s) ≤ V π

MR
(s)].

Proof Sketch: This is an extension of the policy improve-
ment theorem (Sutton and Barto 2018) but in the opposite 350

direction (hence referred to as a policy descent step). We first
introduce a temporary non-stationary policy π′

1 that chooses
an action as per π′ under the initial state and follows π there-
after. We can show that the return of π′

1 is no better than that
of π. We can repeat such a pattern to update π′

1 for the next 355

state and so on, resulting in π′ at the end.
Similarly, we can show that a special case of the policy

improvement theorem holds when a single action is updated
(referred to as a policy ascent step).

Theorem 1. PDT+ returns all Pareto optimal policies in Π∗
E . 360

Proof Sketch: To prove this, we show that there exists a pol-
icy descent path from any optimal policy (denoted by π∗) in
MR (i.e., the root node in PDT) to any Pareto optimal policy
(denoted by π∗

E ) in Π∗
E by induction. When π∗

E differs from
π∗ in only 1 action, π∗

E must be one of the direct descendants 365

of π∗ in PDT as π∗ is optimal in MR based on the search



Algorithm 1: PDT+
Input:MR,MH

R , δ
V ∗
MR
← ValueIteration(MR); retrieve π∗

Compute Ã(s),∀s ∈ S;
Initialize ΠE ← ∅; fringe.push(π∗);
while fringe ̸= ∅ do

π ← fringe.pop();
for a in Ã(s), s ∈ S do

if Eqn. (5) is satisfied then
π′ ← Modify(π, π(s) = a);
if ∀s ∈ S [V π′

MR
(s) ≥ δV π∗

MR
(s)] then

fringe.push(π′);
if nonDominated(π′,ΠE ,MH

R ) then
ΠE .update(π

′);

return ΠE

process. Hence, π∗
E will be expanded by PDT. Assume any

policy that differs from π∗ in k actions are expanded. When
π∗
E differs from π∗ in k+1 actions, we show that there must

exist a policy π that differs from π∗ in k out of the k+1 ac-370

tions (hence differing from π∗
E in 1 action) and (by Lem. 2)

is no worse than π∗
E underMR via proof by contradiction.

Consequently, π∗
E must be a descendant of π in PDT. Since

π is expanded under our inductive assumption, π∗
E will be

expanded. Then by Lem. 1, the conclusion holds.375

Policy Ascent Greedy Search (PAG)
In certain situations, it may be unnecessary to compute Π∗

E :
any policy in the set would suffice. To this end, we introduce
a greedy method that only searches through a subset of Πδ ,
making it more computationally efficient than PDT.380

Similar to PDT, we start with π∗ at the root node. How-
ever, unlike in PDT where we expand policies that have a
lower state values under MR via single-action policy up-
dates, we expand only a single policy that has higher values
underMH

R than its parent node via multi-action policy up-385

dates (see Fig. 2(b)). More formally, only one descendant of
policy π is expanded in PAG, which is obtained by replac-
ing π(s) under each state s with an action a that satisfies the
following condition (similar to a policy improvement step):∑
s′

T H
R (s, a, s′)V π

MH
R
(s′) ≥

∑
s′

T H
R (s, π(s), s′)V π

MH
R
(s′),

(6)
where each such state-action update is checked against the390

constraint in Eqn. (2) (underMR) incrementally and incor-
porated only if the constraint is not violated, resulting in a
multi-action policy update for V π

MH
R

.
In PAG, we maintain a single candidate policy πE as op-

posed to a set in PDT. The current policy πE is updated to395

its descendant π′ if at least one of the state-action updates is
incorporated. This process is repeated until πE remains un-
changed. The algorithm, referred to as PAG+ (action prun-
ing), is presented in Alg. 2.
Theorem 2. PAG+ returns a policy in the Pareto set Π∗

E .400

Proof Sketch: The PAG search process stops when it can no
longer improve or find a policy that is equivalent in values

Algorithm 2: PAG+
Input:MR,MH

R , δ
V ∗
MR
← ValueIteration(MR); retrieve π∗

Compute Ã(s),∀s ∈ S;
Initialize πE ← π∗;
changed← true;
while changed do

V πE
MH

R

← PolicyEvaluation(πE ,MH
R )

changed← false

for a in Ã(s), s ∈ S do
if Eqn. (6) is satisfied then

π′ ← Modify(πE , πE(s) = a);
if ∀s ∈ S[V π′

MR
(s) ≥ δV π∗

MR
(s)] then

Update πE ← π′

changed← true

return πE

to πE underMH
R while satisfying the safety constraint. This

translates to that there does not exist a state-action update
that implements a policy ascent step under the constraint. 405

However, if πE /∈ Π∗
E , there must exist another policy π ∈

Π∗
E that dominates πE , which contradicts with the fact that

no policy ascent step exists. Then by Lem. 1, πE ∈ Π∗
E .

Approximate Solution via State Aggregation
In the worst case, the number of policies that PDT+ and 410

PAG+ must search through is in the order of |Π̃|, which is
still exponential. Hence, it would be challenging to directly
apply these methods to complex domains. Approximate so-
lutions are needed. However, since the search is over the pol-
icy space, typical methods for function-approximating state 415

value functions to search for optimal policies (Sỳkora 2008;
Abel, Hershkowitz, and Littman 2016; Abel et al. 2018;
Ferrer-Mestres et al. 2020) do not apply here.

We aim to design an approximate solution that can reduce
the unique number of policies to be searched for. Inspired 420

by function approximation, one idea is to reduce the state
space by aggregating states that are alike in terms of action
selection. The likeness of states can be measured by domain
dependent features. We can condition states from the same
clusters to choose the same actions under any policy with 425

either model, effectively reducing the state space size and
thus the number of policies. More formally, such a process
introduces a mapping Φ : SK 7→ S, a one-to-many mapping
from clusters to states and K is the number of clusters. Both
PDT and PAG can work with the aggregated state space (i.e., 430

clusters) by considering SK as the new state space.
Under the assumption that the states in any aggregated

state are “correlated” under any given policy for action se-
lection, the same guarantees of optimality, completeness,
and constraint satisfaction hold. Such a situation may oc- 435

cur, for example, when two states are topologically equiva-
lent such that a reasonable policy should always choose the
same action under these states. It would be interesting to
study when such states are introduced, as well as the im-
pact on the theoretical guarantees when such an assumption 440

does not hold or hold only approximately. From such a per-



spective, our approximation method is analogous to function
approximation under Q-learning.

EVALUATION
We evaluate our methods under various domains in simula-445

tion and with physical robot experiments. The objective of
our evaluations is threefold. First, we compare safe expli-
cable behaviors with optimal behaviors to validate the ef-
fectiveness of our approach. Second, since the solution to
SEP requires searching for the optimal policy in the feasi-450

ble policy space in a brute-force manner to obtain the Pareto
set, we analyze the efficiency of the proposed methods and
compare with baselines (BF & BF+) that brute-force the pol-
icy search. Note that our comparisons are against the brute
force methods because all prior studies discussed in the re-455

lated work section are limited in terms of the consideration
of multiple models or safety bounds (refer to related work).
We also analyze the benefits of our approximate solutions
with more complex domains and the action pruning tech-
nique in ablation studies for each proposed method. Third,460

we evaluate with physical robot experiments to show the ap-
plicability of our approach to real-world scenarios. By our
naming convention, we append ‘+’ to a method name to indi-
cate the incorporation of our action pruning technique, such
that the policy space is reduced to Π̃; a method whose name465

is without ‘+’ must deal with the original policy space, or Π
(see Fig. 2(a)). All evaluations were run on a MacBook Pro
(16 GB, 3.1 GHz Dual-Core Intel Core i5). Details of the
domain descriptions and implementation are in the supple-
mental materials.470

Bound Selection: In our approach, the bound (δ) is as-
sumed to be specified by the designer based on experience.
However, it can often be approximated based on the domain.
For example, consider one of the cliff worlds in Fig. 5 (see
below). The return of the optimal trajectory under the agent’s475

model is 94 (i.e., moving along the edge of the cliff to the
goal) and the return of the trajectory with the longest detour
(i.e., staying as far away from the edge as possible) without
falling off the cliff is 90, when ignoring any discount. Since
unsafe behaviors should be captured by the agent’s (ground-480

truth) model and result in much lower return than the detour,
the safety bound can be set at 90/94 = 0.957 and then ad-
justed. More analyses will be deferred to future work.

Policy Selection: To select from the Pareto set Π∗
E , we

can rely on user preferences. Alternatively, domain-specific485

scores may be introduced to assist with the selection. For
example, higher scores may be given to policies that appear
“simpler”. Example scores are discussed when applicable.

Simulations
Domain Descriptions. 1) Cliff Worlds (CS & CL): The490

agent is required to navigate alongside the edge of a cliff to
reach the goal (see Figs. 4 and 5). The ground-truth model
(MR) is that the agent can travel alongside the edge without
slipping off the cliff. The human’s belief (MH

R ) is that the
agent may slip off from the edge with some probability, and495

the terrain closer to the cliff is more uneven and hence more
difficult to traverse. For both worlds, the reward functions

δ BF BF+ PDT PDT+ |Π∗
E | PAG PAG+

# # # RT # RT # RT # RT
1.00416 44 8448 4.8 256 0.3 1170.01 90.01
0.95416 4̇9 8448 4.82816 1.7 1170.01100.01

CS0.93416 4̇15 8448 4.87424 4.3 1170.01170.01
0.90416 4̇15 169̇k102.2149̇k 90.3 3210.02190.01
0.85416 4̇15 313̇k184.4274̇k164.2 3190.01190.01
1.00410 42 368 5.0 16 0.5 136 0.5 5 0.1
0.97410 4̇9 684 7.9 620 7.1 136 0.532 0.4

CL0.95410 4̇9 1846 21.01677 18.2 333 0.530 0.4
0.93410 4̇9 2254 25.12048 22.8 230 0.427 0.4
0.90410 4̇9 2268 25.42060 25.0 230 0.527 0.4
1.00415 40 61 0.9 1 0.1 125 0.4 1 0.1
0.97415 4̇1 61 0.9 3 0.1 125 0.4 1 0.1

W 0.95415 4̇5 61 0.9 13 0.3 125 0.4 5 0.1
0.93415 4̇5 1489 21.7 179 4.1 2546 0.7 5 0.2
0.90415 4̇5 24̇k359.1 729 42.1 19746 0.7 5 0.2

Table 1: Comparison of different methods via the number of
policies evaluated (#) and runtime (RT) in minutes. Numbers
with a dot are approximate.
are similarly defined. RR and RH

R are shown in Figs. 4(a)
and 4(b), respectively, for the larger domain. We created a
small 4 × 5 domain (CS) for the exact methods and a large 500

4×100 domain (CL) for approximate solutions. To apply ap-
proximate solutions to CL, the states were aggregated based
on features such as distance to the cliff, agent’s position in
the grid (e.g., along the edge or at the ends). For CL, we ag-
gregated all non-terminal states into 10 clusters and retained 505

the terminal states as is.
2) Wumpus World (W): The agent is required to exit a 5×5

cave while collecting gold coins on its way out and avoiding
encounters with the wumpus (i.e., staying in the same loca-
tion) (see Fig. 3). The wumpus always chooses moves to- 510

wards the agent. Collecting each gold coin gives a reward of
+30. The game terminates if the agent encounters the wum-
pus (−100) or if it exits the cave (+100). In the ground-truth
model (MR), the agent’s actions are deterministic while the
wumpus’s actions are stochastic. The human’s beliefMH

R is 515

that the actions of both agents are stochastic. Under such a
belief, the human would consider it dangerous for the agent
to come close to the wumpus. For approximate solutions, the
non-terminal states were aggregated into 15 clusters based
on features such as the relative direction of the wumpus from 520

agent and collection status of the gold coins.

Results. 1) Performance Comparison: Tab. 1 shows the
runtime (except for BF and BF+ due to the large number of
policies) and number of policies expanded (or evaluated) by
each method under the three simulation domains. The first 525

set of results is obtained with the small cliff world (CS) do-
main with 16 non-terminal states and 4 actions available in
each state, resulting in |Π| = 416 policies. The second set
of results is obtained with the large cliff world (CL) with
301 non-terminal states and 4 actions available in each state, 530

resulting in |Π| = 4301 policies. Applying state aggrega-
tion with 10 clusters results in 410 policies. The third set of
results is obtained with the wumpus world (W) with 2116
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Figure 3: Behavior comparison in the wumpus world. Black lines show the trajectories of the wumpus. Red line segments show
the parts of the agent’s trajectories when the wumpus is in an adjacent cell, and green line segments show when the wumpus is
at least two steps away. Presented are the most likely trajectories by (a) the optimal agent’s policy, (b) the human’s expectation,
and the safe explicable policies obtained under δ = 0.90 by (c) PDT+ and (d) PAG+, respectively.

non-terminal states and 4 actions available in every state, re-
sulting in |Π| = 42116 policies. Applying state aggregation535

with 15 clusters results in 415 policies. For CL and W, we
use the approximate solutions for PDTs and PAGs.

We can observe that action pruning reduces the policy
space and thereby the number of policies expanded by BF+,
PDT+, and PAG+ as compared to those by BF, PDT, and540

PAG, respectively. The expansion order of policies in PDTs
results in considerable additional pruning compared to BF+.
With or without action pruning, PAGs expand fewer poli-
cies than PDTs since they only need to return a single pol-
icy. Lastly, while the number of policies expanded in PDTs545

increases (for lower δ), it is interesting to note that PAGs
sometimes expand fewer policies due to their greedy nature.

2) Behavior Comparison in Cliff Worlds: The results of
the cliff worlds are shown in Figs. 5 (CS) and 4 (CL). Both
the small and large domains introduce similar behaviors:550

shown only in the large domain, the optimal behavior in the
agent’s model takes the shortest path (Fig. 4(a)) whereas the
human’s expectation is to stay as far away from the cliff as
possible (Fig. 4(b)). For SEP, Fig. 5 shows all the three poli-
cies in the Pareto set obtained given δ = 0.90 in the small555

domain. Fig. 4(c) shows the most likely trajectories resulting
from 2/3 policies in the Pareto set obtained given δ = 0.95 in
the large domain using the approximate solution. In general,
we observe that the safe explicable policies result in trajec-
tories that steer the agent away but not too far from the cliff560

to satisfy the bound while aligning with the human’s expec-
tation. In cliff worlds, to choose from Π∗

E , we assign higher
scores to policies producing simpler behaviors (e.g., fewer
turns), it led to choosing the policy producing the green tra-
jectory in Fig. 4(c) and the policy in Fig. 5(a). PAGs, on the565

other hand, computed different policies in Π∗
E (see figures).

3) Behavior Comparison in Wumpus World: The results
are shown in Fig. 3. Under the optimal behavior in the
agent’s model (MR), the agent collected both coins while
staying within the proximity of the wumpus before exiting,570

as shown in Fig. 3(a). The human’s expectation (underMH
R )

is that the agent avoids getting close to the wumpus and col-
lecting a single coin before exiting, as shown in Fig. 3(b).
When applying SEP under the bound δ = 0.90, PDT+ re-
turns a large Pareto set (see Tab. 1). To select from Π∗

E , we575

score policies based on the average distance from the wum-
pus throughout the most likely trajectory. Fig. 3(c) shows the
trajectory obtained from the policy with the highest score in

Π∗
E : the agent managed to collect both coins while main-

taining a cautious distance from the wumpus while taking 580

a longer path, which is more explicable than the optimal
agent’s behavior in Fig. 3(a) and simultaneously more ef-
ficient than the human’s expection in Fig. 3(b). Fig. 3(d)
shows the behavior obtained by PAG+, which also maintains
a cautious distance from the wumpus for the most part. 585

Physical Robot Experiment
Robot Assistant Domain. We implemented a scenario
similar to the motivating example where a Kinova MOVO
robot is assisting a human user with setting up the dining ta-
ble (Fig. 6). The robot is required to fetch a napkin for the 590

user from another table. The user does not fully understand
the kinematic constraints of the robot arms and hence ex-
pects the robot to reach any location within its arm’s length.
Hence, the human’s expectation is for the robot to place the
napkin next to the plate (close to her). In the robot’s model, 595

however, movement of the arms is restricted by a vase on
the table such that placing the napkin close to the user may
tip over the vase containing water, resulting in a safety risk.
Therefore, the robot’s optimal behavior is to place the nap-
kin next to the vase, which is further away from the user. 600

This experiment was run in a discretized setting where the
state space was specified by the following variables: location
of the robot, location of the napkin, and location of the vase.
For any transition between the discrete states, the robot tra-
jectories were generated a priori using Move It. More specif- 605

ically,MH
R specifies that the robot can access any location

on the dining table irrespective of its location or the vase’s
position whereasMR properly captures the influences from
these factors. Our aim is to demonstrate that a robot running
SEP would choose a costlier policy underMR to be expli- 610

cable to the human user while ensuring safety.

Results. The safe explicable behaviors from the results of
the robot experiment are shown in Fig. 6. The optimal be-
havior underMR involved two steps where the robot picked
up the napkin and placed it on the table next to the vase and 615

away from the user (see appendix B in supplemental materi-
als). We then ran SEP with two different bounds that resulted
in two different safe explicable behaviors. When the bound
was δ = 0.85 (Fig. 6(a)), the robot picked up the napkin,
moved its entire body to be closer to the user so that it was 620

no longer obstructed by the vase, before placing the napkin
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Figure 4: Behavior comparison in the large cliff world. Grey areas is the cliff and G is the goal. Reward for each state is shown
at the top right corner. Displayed are the most likely trajectories from policies: (a) the optimal policy underMR, (b) the optimal
policy underMH

R (i.e., human expectation), (c) the safe explicable policies returned by PDT+ (green) and PAG+ (blue).
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Figure 5: Pareto set obtained by PDT+ under δ = 0.90 in
the small cliff world. The state values are displayed under
MH

R . Values highlighted in red are those that result in non-
dominated policies. (b) shows the policy obtained by PAG+.

next to the plate. When the bound was set to δ = 0.80 (Fig.
6(b)), the robot first pushed the vase aside so that it was no
longer obstructing its arm movements before picking up the
napkin and placing it next to the plate.625

DISCUSSION AND CONCLUSIONS
In this paper, we introduced the problem of Safe Explica-
ble Planning (SEP), which significantly extends explicable
planning to support a safety bound. To focus on the plan-
ning challenges of introducing safety in explicable planning,630

we assume the human belief modelMH
R is known. We pro-

vide references to existing literature where a similar assump-
tion is made. When MH

R is unknown, it can be learned by
querying human subjects, to learn a reward function such as
the approaches discussed in the survey paper (Wirth et al.635

2017) and to learn domain dynamics such as the approach
by (Zhuo 2015). We defer the consideration of other forms
of MH

R (such as hierarchical models) or learning MH
R for

future work. It is worth noting that the problem of SEP can
be formulated as a CMDP problem under the special case640

where TR = T H
R and γR = γH

R , in planning (Altman 2021)
or learning (Achiam et al. 2017) setting.

In our work, we assume that safety is correlated to the ex-
pected return in the agent’s model under the intuition that
unsafe behaviors would result in low returns. Thus, impos-645

ing a lower bound on the return prevents unsafe behaviors.
Such a safety definition is based on the constrained criterion.
We aim to extend it to consider other safety formulations
such as the worst-case criterion etc. outlined in (Garcıa and
Fernández 2015) in the future. It would also be interesting650

to study how our value function-based criterion can be com-
pared with or potentially equated to a state-machine-based
criterion such as that studied by (Hunt et al. 2021). For
example, prior work has studied how LTL constraints can
be approximately considered by shaping the reward func-655

tion (Camacho et al. 2019; Li, Vasile, and Belta 2017). Fur-

(a) π∗
E | δ = 0.85 (b) π∗

E | δ = 0.80

Figure 6: Safe explicable behaviors generated by PAG+ in
the robot assistant domain under different bounds.
ther, the safety bound in our work is domain-specific as the
criticality of safety is different in different scenarios and
can be specified by the designer. We discuss how the safety
bound was determined for the experimental evaluations and 660

will more systematically address it in future work.
Our problem formulation generalizes the consideration of

objectives from multiple models and the solution is a Pareto
set of policies. We proposed an action pruning technique to
reduce the search space, an exact method that returns the 665

Pareto set, and a greedy method that returns a single pol-
icy. Existing literature in MOMDP shows that finding ex-
act Pareto solutions for complex problems is intractable. To
scale to complex domains, we further discussed approximate
solutions by clustering states that are alike in terms of action 670

selection. Since SEP requires searching the policy space, the
methods proposed (exact and approximate) are still suscep-
tible to policy explosion in large domains. The aggregation-
based approximation proposed is preliminary work toward
finding approximate safe explicable policies. We defer the 675

study of generalized and more efficient approximation tech-
niques to solve SEP in the future.
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