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ABSTRACT

Federated adversarial training can effectively complement adversarial robustness
into the privacy-preserving federated learning systems. However, the high de-
mand for memory capacity and computing power makes large-scale federated
adversarial training infeasible on resource-constrained edge devices. Few pre-
vious studies in federated adversarial training have tried to tackle both memory
and computational constraints at the same time. In this paper, we propose a new
framework named Federated Adversarial Decoupled Learning (FADE) to enable
AT on resource-constrained edge devices. FADE decouples the entire model into
small modules to fit into the resource budget of each edge device respectively, and
each device only needs to perform AT on a single module in each communication
round. We also propose an auxiliary weight decay to alleviate objective incon-
sistency and achieve better accuracy-robustness balance in FADE. FADE offers
a theoretical guarantee for convergence and adversarial robustness, and our ex-
perimental results show that FADE can significantly reduce the consumption of
memory and computing power while maintaining accuracy and robustness.

1 INTRODUCTION

As a privacy-preserving distributed learning paradigm, Federated Learning (FL) makes a meaningful
step toward the practice of secure and trustworthy artificial intelligence (Konečnỳ et al., 2015; 2016;
McMahan et al., 2017; Kairouz et al., 2019). In contrast to traditional centralized training, FL
pushes the training to edge devices (clients), and client models are locally trained and uploaded
to the server for aggregation. Since no private data is shared with other clients or the server, FL
substantially improves the data privacy during the training process.

While FL can preserve the privacy of the participants, other threats can still impact the reliability of
the machine learning model running on the FL system. One of such threats is adversarial samples,
which aim to cause misclassifications of the model by adding imperceptible noise into the input
data (Szegedy et al., 2013; Goodfellow et al., 2014). Previous research has shown that performing
adversarial training (AT) on a large model is an effective method to attain robustness against ad-
versarial samples while maintaining high accuracy on clean samples (Liu et al., 2020). However,
large-scale AT also puts high demand for both memory capacity and computing power, which is
affordable for some edge devices with limited resources, such as mobile phones and IoT devices,
in FL scenarios (Kairouz et al., 2019; Li et al., 2020; Wong et al., 2020; Zizzo et al., 2020; Hong
et al., 2021). Table 1 shows that strong robustness of the whole FL system cannot be attained by
allowing only a small portion (e.g., 20%) of the clients to perform AT. Therefore, enabling resource-
constrained edge devices (which usually contribute to the majority of the participants in cross-device
FL (Kairouz et al., 2019)) to perform AT is necessary for achieving strong robustness in FL.

Some previous works have tried to tackle client-wise systematic heterogeneity in FL (Li et al., 2018;
Lu et al., 2020; Wang et al., 2020b; Xie et al., 2019). The most common method to deal with the
slow devices is to allow them performing less epochs of local training than the others (Li et al., 2018;
Wang et al., 2020b). While this method can reduce the computational costs on the slow devices, the
memory capacity limitation on edge devices has not been well discussed in these works.
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Table 1: Results of partial federated adversarial training with 100 clients. “20% AT + 80% ST”
means that 20% clients perform AT while 80% clients perform standard training (ST).

Training Scheme FMNIST (CNN-7) CIFAR-10 (VGG-11)
Natural Acc. Adversarial Acc. Natural Acc. Adversarial Acc.

100% AT + 0% ST 78.39% 66.93% 64.73% 33.27%
20% AT + 80% ST 83.83% 48.61% 74.77% 19.22%

To tackle both memory capacity and computational constraints, recent studies propose a novel train-
ing scheme named Decoupled Greedy Learning (DGL) which decouples the entire neural network
into several small modules and trains each module separately (Belilovsky et al., 2019; Wang et al.,
2021). DGL can be naturally deployed in FL since the training of decoupled modules can be paral-
lelized on different computing nodes (Belilovsky et al., 2020). However, vanilla DGL only supports
a unique model partition on all computing nodes, which cannot fit into different resource budgets of
different clients in heterogeneous FL. Additionally, no previous studies have explored whether DGL
can be combined with AT to confer joint adversarial robustness to the entire model. It is not trivial
to achieve joint robustness of the entire model when applying AT in DGL, since modules are trained
separately in DGL with different locally supervised losses.

In this paper, we propose Federated Adversarial DEcoupled Learning (FADE), which is the first
adversarial decoupled learning scheme for heterogeneous FL. Our main contributions are:

1. We propose a more flexible decoupled learning scheme for heterogeneous Federated Learn-
ing, which allows different model partitions on devices with different resource budgets. We
give a theoretical guarantee for the convergence of our Federated Decoupled Learning.

2. We propose Federated Adversarial DEcoupled Learning (FADE) to attain theoretically
guaranteed joint adversarial robustness of the entire model. Our experimental results show
that FADE can significantly reduce the memory and computational requirements while
maintaining the natural accuracy and adversarial robustness as joint training.

3. We analyze the trade-off between objective consistency (natural accuracy) and adversarial
robustness (adversarial accuracy) in FADE, and we propose an effective method to achieve
a better accuracy-robustness balance point with the weight decay on auxiliary models.

2 PRELIMINARY

Federated Learning (FL) In FL, different clients collaboratively train a shared global model w
with locally stored data (McMahan et al., 2017). The objective of FL can be formulated as:

min
w

L(w) =
1∑
i |Di|

N∑
k=1

∑
(x,y)∈Dk

l(x, y;w) =
N∑

k=1

qkLk(w), (1)

where Lk(w) =
1

|Dk|
∑

(x,y)∈Dk

l(x, y;w) = E(x,y)∼Dk
[l(x, y;w)] , (2)

and l is the task loss, e.g., cross-entropy loss for classification task. Dk is the dataset of client k
and its weight qk = |Dk|/(

∑
i |Di|). To solve for the optimal solution of this objective, in each

communication round, FL first samples a subset of clients S(t) to perform local training. These
clients initialize their models with the global model w(t,0)

k = w(t), and then run τ iterations of local
SGD. After all these clients complete training in this round, their models are uploaded and averaged
to become the new global model (McMahan et al., 2017). We summarize this procedure as follows:

w
(t+1)
k = w(t) − ηt

τ−1∑
j=0

∇Lk(w
(t,j)
k ), (3)

w(t+1) =
1∑

i∈S(t) qi

∑
k∈S(t)

qkw
(t+1)
k , (4)

where w
(t,j)
k is the local model of client k at the j-th iteration of round t.
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Adversarial Training (AT) The goal of AT is to achieve robustness against small perturbation in
the inputs. We define (ϵ, c)-robustness as follows:
Definition 1. We say a model w is (ϵ, c)-robust in a loss function l at input x if

∀δ ∈ {δ : ∥δ∥p ≤ ϵ}, l(x+ δ, y;w)− l(x, y;w) ≤ c, (5)

where ∥ · ∥p is the ℓp norm of a vector1, and ϵ is the perturbation tolerance.

AT trains a model with adversarial samples to achieve adversarial robustness, which can be formu-
lated as a min-max problem (Goodfellow et al., 2014; Madry et al., 2017):

min
w

max
δ:∥δ∥p≤ϵ

l(x+ δ, y;w). (6)

To solve Eq. 6, people usually alternatively solve the inner maximization and the outer minimization.
While solving the inner maximization, Projected Gradient Descent (PGD) is shown to introduce the
strongest robustness in AT (Madry et al., 2017; Wong et al., 2020; Wang et al., 2021).

Decoupled Greedy Learning (DGL) The key idea of DGL is to decouple the entire model into
several non-overlapping small modules. By introducing a locally supervised loss to each module,
we can load and train each module independently without accessing the other parts of the entire
model (Belilovsky et al., 2019; 2020). This enables devices with small memory to train large models.

𝒛𝒛𝑚𝑚−1 𝒛𝒛𝑚𝑚

𝒘𝒘𝑚𝑚 𝜽𝜽𝑚𝑚
𝑙𝑙𝑚𝑚

Figure 1: An illustration of
the module m.

As shown in Fig. 1, each module m usually contains one or mul-
tiple adjacent layers wm of the backbone neural network, together
with a small auxiliary model θm that provides locally supervised
loss. We denote Θm = (wm,θm) to be all the parameters in mod-
ule m. Module m accepts the features zm−1 from the previous
module as the input, and it outputs features zm = fm(zm−1;wm)
for the following modules, as well as a locally supervised loss
lm(zm−1, y;Θm). At epoch t, the averaged locally supervised loss
L
(t)
m will be used for training this module:

L(t)
m (Θ(t)

m ) = E
(z

(t)
m−1,y)

[
lm(z

(t)
m−1, y;Θ

(t)
m )
]
. (7)

Different from joint training, the input of one module can be various in different epochs in DGL
since we may keep updating the previous modules during training. Thus we use z(t)

m−1 to denote the
inputs of module m in epoch t, and only the input of the first module z

(t)
0 = x is invariant.

For each module m ∈ {1, 2, · · · ,M} in the entire model, we define the loss function of its auxiliary
model as l̃m(zm, y;θm) = lm(zm−1, y;Θm), and the loss function of its following layers in the
backbone network as l̃′m(zm, y;wm+1, · · · ,wM ) = l(x, y;w1, · · · ,wM ). Without specifying, we
will omit all parameters (wm,θm and Θm) in the following sections for notation simplicity.

3 FEDERATED ADVERSARIAL DECOUPLED LEARNING

In this section, we present our method, Federated Adversarial Decoupled Learning (FADE), which
aims at enabling all clients with different computing resources to participate in adversarial training.
We first introduce Federated Decoupled Learning (FDL) with flexible model partitions for heteroge-
neous FL in Section 3.1, and we also give a convergence analysis for it. In Section 3.2, we integrate
AT into FDL to achieve joint adversarial robustness of the entire model, and we give a theoretical
guarantee for its robustness. In Section 3.3, we discuss the objective inconsistency in FDL and
propose an effective method to achieve a better accuracy-robustness balance point.

3.1 FEDERATED DECOUPLED LEARNING

In cross-device FL, the main participants are usually small edge devices who have limited hardware
resources and may not be able to afford large-scale AT that requires large memory and high com-
puting power (Li et al., 2018; Kairouz et al., 2019; Li et al., 2020; Wang et al., 2020b). A solution

1For simplicity, without specifying p, we use ∥ · ∥ for ℓ2 norm. Our conclusions in the following sections
can be extended to any ℓp norm with the equivalence of vector norms.
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Layer (Auxiliary) Output Model Module

Figure 2: A framework of Federated Decoupled Learning. In contrast to the original unique parti-
tion (Belilovsky et al., 2020), we allow different model partitions among devices according to their
resource budgets. In each communication round, each device randomly selects one module (high-
lighted) for training, and then the updates of each layer will be averaged respectively.

to tackle the resource constraints on edge devices is to deploy DGL in FL, where each device only
needs to load and train a single module instead of the entire model in each communication round.
However, the vanilla DGL only supports a unique model partition on all the devices (Belilovsky
et al., 2020). Considering the systematic heterogeneity, we would prefer various model partitions to
fit into different resource budgets of different clients. A device with limited resources (such as a IoT
device) can train small modules of the entire model, while a device with more resources (such as a
mobile phone or a computer) can train larger modules or even the entire model.

Accordingly, we propose our Federated Decoupled Learning (FDL) framework as shown in Fig. 2.
We denote the set of all modules on client k as Mk, while Mi ̸= Mj if client i is using a different
model partition from client j. Here, we consider the update and aggregation rule for each layer n
with parameter ωn in the model, since one single layer is the “atom” in FDL and cannot be further
decoupled. We use mk(n) to denote the module on client k that contains this layer, and we define
Ln,k = Lmk(n),k as the locally supervised loss for training this layer. In each communication
round t, each client k randomly samples a module mt

k from Mk for training (Eq. 8). After the local
training, the updates of each layer n will be averaged over clients in S(t)n respectively, where S(t)n is
the set of clients whose trained module mt

k contains layer n in this round(Eq. 9).

ω
(t+1)
n,k =

{
ω

(t)
n − ηt

∑τ−1
j=0 ∇ωn

L
(t)
n,k, if n ∈ mt

k;

ω
(t)
n , elsewhere.

(8)

ω(t+1)
n =

1∑
i∈S(t)n

qi

∑
k∈S(t)n

qkω
(t+1)
n,k , where S(t)n = {k ∈ S(t) : n ∈ mt

k}. (9)

Theorem 1 guarantees the convergence of FDL, while the full version with proof is in Appendix A.
Theorem 1. Under some common assumptions, for any layer n in the entire model, its locally
supervised loss Ln =

∑
k qkLn,k can converge in Federated Decoupled Learning:

lim
T→∞

inf
t≤T

E ∥∇ωn
Ln∥2 = 0. (10)

Theorem 1 can guarantee the convergence of locally supervised loss Ln. However, because of the
existence of the objective inconsistency ∥∇L − ∇Ln∥ ≥ 0, we cannot guarantee the convergence
of the joint loss L with this result. We discuss the objective inconsistency in Section 3.3, and we
show how we can reduce this gap such that we can make the joint loss gradient ∇L smaller when
the locally supervised loss Ln converges.
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3.2 ADVERSARIAL DECOUPLED LEARNING

Adversarial decoupled learning can achieve local robustness of each module by performing AT in
each module m separately on their own locally supervised loss:

min
Θm

max
δm−1

lm(zm−1 + δm−1, y;Θm), subject to ∥δm−1∥ ≤ ϵm−1. (11)

However, there are two concerns that have not been addressed in adversarial decoupled learning:

1. Since different modules are trained with different locally supervised losses, can local ro-
bustness of each module guarantee the joint robustness of the entire (backbone) model?

2. When applying AT on a module m, what value of the perturbation tolerance ϵm−1 should
we use to ensure the joint robustness of the entire model?

Theorem 2 reveals the relationship between the local robustness of each module and the joint ro-
bustness of the entire model, and it gives a lower bound of the perturbation tolerance ϵm−1 for each
module m to sufficiently guarantee the joint robustness. Theorem 2 is proved in Appendix B.1.

Theorem 2. Assume that l̃m(zm, y) is µm-strongly convex in zm for each module m. If each module
m ≤ M has local (ϵm−1, cm)-robustness in lm(zm−1, y), and

∀m ≤ M, ϵm ≥ gm
µm

+

√
2cm
µm

+
g2m
µ2
m

, where gm = ∥∇zm
l̃m(zm, y)∥, (12)

then we can guarantee that the entire model has a joint (ϵ0, cM )-robustness in l(x, y).

Remark 1. In Theorem 2, we assume that the loss function of the auxiliary model l̃m(zm, y) is
strongly convex in its input zm. This assumption is realistic since the auxiliary model is usually a
very simple model, e.g., only a linear layer followed by cross-entropy loss. We also theoretically
analyze the sufficiency of a simple auxiliary model in Section 3.3 (See Remark 2).

Theorem 2 shows that a larger µm and a smaller gm will lead to a stronger joint robustness of the
entire model, since the lower bound of ϵm becomes smaller for ensuring the joint robustness. In
Section 3.3, we further discuss how we can control these two parameters to attain better accuracy-
robustness balance with the weight decay on the auxiliary model.

3.3 OBJECTIVE INCONSISTENCY AND ACCURACY-ROBUSTNESS TRADE-OFF

As we mentioned in Section 3.1, there exists objective inconsistency between the module and the
entire model because the module is trained with locally supervised loss lm instead of the joint loss
l (Wang et al., 2021). The objective inconsistency in FDL is defined by the difference between
the gradients of the locally supervised loss (∇wm

lm) and the joint loss (∇wm
l). The existence

of this inconsistency makes the optimal parameters that minimize the locally supervised loss lm
does not necessarily minimize the joint loss l. Furthermore, the objective inconsistency can enlarge
heterogeneity among clients and hinder the convergence of FL (Li et al., 2019; Wang et al., 2020b),
thus it is important to alleviate the objective inconsistency in FDL to improve its performance.

Theorem 3 shows a non-trivial relationship between adversarial robustness and objective inconsis-
tency: strong joint adversarial robustness also implies small objective inconsistency in FDL. We
prove Theorem 3 in Appendix B.2.

Theorem 3. Assume that l̃m(zm, y) and l̃′m(zm, y) are βm, β′
m-smooth in zm for a module m. If

there exist cm, c′m, and r ≥
√

2
cm+c′m
βm+β′

m
, such that the auxiliary model has (r, cm)-robustness in

l̃m(zm, y), and the backbone network has (r, c′m)-robustness in l̃′m(zm, y), then we have:

∥∇wm
l −∇wm

lm∥ ≤
∥∥∥∥ ∂zm∂wm

∥∥∥∥√2(cm + c′m)(βm + β′
m). (13)

Theorem 3 suggests that we can alleviate the objective inconsistency by reducing βm, β′
m, cm and

c′m (Regularizing ∥∂zm/∂wm∥ usually requires second derivative, which introduces high memory
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Algorithm 1 FADE: Federated Adversarial Decoupled Learning

1: Initialize w(0) and θ
(0)
m for each module m.

2: for t = 1, 2, · · · , T do
3: Randomly sample a group of clients S(t) for training.
4: for each client k ∈ S(t) in parallel do
5: Randomly select a module mt

k that will be trained in this round.
6: Request the current global model w(t) and the auxiliary model θ(t)

mt
k

from the server.

7: Generate input features z(t)

mt
k−1

for all data x ∈ Dk.

8: Perform AT in module mt
k with lFADE

mt
k

in Eq. 14 for τ iterations, and get Θ(t+1)

mt
k,k

.

9: Upload Θ
(t+1)

mt
k,k

to the server.
10: end for
11: The server aggregates ω(t+1)

k to get ω(t+1) according to Eq. 9 for each ω.
12: end for

and computational overhead, so we do not consider it here). Notice that c′m is small given the
joint robustness of the backbone network, which is guaranteed by adversarial decoupled learning
in Theorem 2. Furthermore, Moosavi-Dezfooli et al. (2019) shows that adversarial robustness also
implies a smoother loss function. Therefore, the joint robustness also leads to a small β′

m.

Accordingly, with adversarial decoupled learning, we only need to reduce βm and cm to alleviate the
objective inconsistency. We notice that both βm and cm are only related to the auxiliary model, and
we show in Appendix B.3 that we can reduce them by adding a large weight decay on the auxiliary
model θm when the auxiliary model is simple (e.g., only a single linear layer).

Remark 2. It is noteworthy that we do not use any conditions on the difference between l̃′m and
l̃m in both Theorem 2 and 3. This implies that the auxiliary model is not required to perform as
well as the joint backbone model. Thus, a simple auxiliary model is sufficient to achieve high joint
robustness and low objective inconsistency in adversarial decoupled learning.

Based on all analysis above, we propose Federated Adversarial Decoupled Learning (FADE), where
we replace the original loss function lm in Eq. 7 by the following adversarial loss with weight decay:

lFADE
m (z

(t)
m−1, y;w

(t)
m ,θ(t)

m ) = max
δ
(t)
m−1

[
lm(z

(t)
m−1 + δ

(t)
m−1, y;w

(t)
m ,θ(t)

m )
]
+ λm∥θ(t)

m ∥2, (14)

where λm is the hyperparameter that control the weight decay on the auxiliary model θm. Our
framework is summarized in Algorithm 1.

Trade-off Between Joint Accuracy and Joint Robustness. As we discussed in Section 3.2 and
this section, four parameters (µm, gm, cm and βm) that are only related to the auxiliary model θm can
influence the joint robustness and objective consistency. We can see in Appendix B.3 that applying
a larger λm can decrease all of them. Smaller cm and βm can alleviate the objective inconsistency to
increase the joint accuracy, and smaller gm can improve the joint robustness. However, smaller µm

will lead to weaker robustness by increasing the lower bound of ϵm. Therefore, there exists accuracy-
robustness trade-off when we apply the weight decay, and the value of λm plays an important role
in balancing the joint accuracy and the joint robustness.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENT SETTINGS

We conduct our experiments on two datasets, FMNIST (Xiao et al., 2017) and CIFAR-10
(Krizhevsky et al., 2009). To simulate the statistical heterogeneity in FL, we partition the whole
dataset into N = 100 clients with the same Non-IID data partition as Shah et al. (2021), where
80% data of each client is from only two classes while 20% is from the other eight classes. We
sample C = 30 clients for local training in each communication round. We conduct two groups of
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Figure 3: Minimum memory and computational requirements of baselines and FADE. The results
are shown as the percentage of the resource requirement of full FedDynAT with PGD-10 AT.
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Figure 4: Adversarial accuracy when training with different portions of resource-sufficient clients.

experiments with two state-of-the-art FL optimizers respectively: FedNOVA (Wang et al., 2020b)
for global FL and FedBN (Li et al., 2021b) for personalized FL. Notice that the results in global FL
and personalized FL are not comparable since they assume different test set partitions. We combine
FADE with different FL optimizers to show the generalization of our method.

For AT settings, following Moosavi-Dezfooli et al. (2019) and Zizzo et al. (2020), we use l∞ norm
to bound the perturbation and use PGD-10 to generate adversarial samples for training and test. The
perturbation tolerance at input z0 = x is set to be ϵ0 = 0.15 with PGD step size α0 = 0.03 for
FMNIST. For CIFAR-10, we set ϵ0 = 8/255 and α0 = 2/255.

For FMNIST, we use a 7-layer CNN (CNN-7) with five convolutional layers and two fully connected
layers. We adopt a model partition with 2 modules for CNN-7. For CIFAR-10, we use VGG-
11 (Simonyan & Zisserman, 2014) as the model. We adopt two different model partitions for VGG-
11, with 2 modules and 3 modules respectively. See Appendix C for more details.

In the following sections, we will compare our method FADE with three baselines. Full FedDynAT
(Shah et al., 2021) represents the ideal performance of federated adversarial training when all the
clients are able to perform AT on the entire model. While FedDynAT with 100% AT is not feasible
under our limitation that only a small portion of clients can afford AT on the entire model, we adopt
partial FedDynAT where clients with insufficient resources only perform standard training (ST).
Another baseline FedRBN (Hong et al., 2021) also allows resource-constrained devices performing
ST only, and the robustness will be propagated by transferring the batch-normalization statistics
from the clients who can afford AT to the clients who only perform ST.

4.2 RESOURCE REQUIREMENTS

We measure the minimum resource requirements of FADE and all baselines on resource-constrained
devices. We use the number of loaded parameters as the metric of memory, and we use FLOPs as
the metric of computation. For partial FedDynAT and FedRBN, the minimum memory requirement
is the number of parameters in the entire model since they always load the entire model for training,
and the computing power requirement is the FLOPs of ST on the entire model since the resource-
constrained devices only perform ST. For FADE, the minimum memory requirement is the number
of parameters in the largest module, while the computing power requirement is the mean of FLOPs
for PGD-10 AT across all modules. The results are shown in Fig. 3.

We can see that FADE can reduce the memory requirement by more than 40% on both CNN-7
and VGG-11, while FADE with 2 modules and 3 modules can reduce the computation by 50%
and 67% respectively. Although partial FedDynAT and FedRBN can largely reduce the amount

7



Under review as a conference paper at ICLR 2023

Table 2: The natural accuracy (clean samples) and adversarial accuracy (adversarial samples) on
FMNIST. Results are reported in the mean and the standard deviation over 3 random seeds.

Training Scheme FedNOVA FedBN
Natural Acc. Adversarial Acc. Natural Acc. Adversarial Acc.

FedDynAT (100% AT) 78.39± 0.65% 66.93± 0.87% 89.85± 0.41% 82.92± 0.66%
FedDynAT (20% AT) 83.83± 0.32% 48.61± 0.87% 91.94± 0.07% 16.02± 1.03%

FedRBN n/a n/a 90.35± 1.51% 62.14± 6.45%
FADE (2 Modules) 78.74± 1.09% 66.72± 2.09% 89.43± 0.52% 81.24± 0.94%

Table 3: The natural accuracy (clean samples) and adversarial accuracy (adversarial samples) on
CIFAR-10. Results are reported in the mean and the standard deviation over 3 random seeds.

Training Scheme FedNOVA FedBN
Natural Acc. Adversarial Acc. Natural Acc. Adversarial Acc.

FedDynAT (100% AT) 64.73± 1.63% 33.27± 0.46% 81.71± 0.14% 57.28± 1.23%
FedDynAT (20% AT) 74.77± 1.68% 19.22± 2.16% 87.12± 0.25% 16.51± 1.64%

FedRBN n/a n/a 86.80± 0.31% 53.08± 1.03%
FADE (2 Modules) 65.42± 0.42% 32.22± 0.43% 81.05± 0.56% 59.12± 0.63%
FADE (3 Modules) 64.72± 0.68% 31.81± 0.35% 77.46± 0.67% 58.14± 0.85%

FADE (Mixing) 66.06± 1.09% 32.28± 0.49% 78.23± 0.35% 58.80± 0.66%

of computation, they are far less efficient than they appear to be when training a large model that
exceeds the memory limit, since they need to repeatedly fetch and load small parts of the entire
model from the cloud or the external storage during each forward and backward propagation. And
we will also see in the following experiments that neither of them can maintain the adversarial
robustness, while FADE can still achieve the same level of robustness as full FedDynAT.

4.3 PERFORMANCE OF FADE

We first compare our method with three baselines under the limitation that only 20% clients can
afford AT on the entire model, while the other 80% clients can only afford Standard Training (ST)
on the entire model or AT on a module. The natural and adversarial accuracy in FMNIST and
CIFAR-10 is shown in Table 2 and 3 respectively. While neither partial FedDynAT nor FedRBN
can maintain the robustness under the resource constraint, FADE consistently outperforms other
baselines and achieves almost the same or even higher accuracy and robustness comparing to full
FedDynAT (the constraint-free case). In addition, we mix clients with one module (joint training),
clients with two modules and clients with three modules in a ratio of 2:3:5 as the setting “FADE
(Mixing)”. We can see that FADE still attains high accuracy and robustness in this case, which
verifies the compatibility of our flexible FDL framework.

We also conducted experiments with different proportions of resource-sufficient clients who perform
joint AT on the entire model, and the adversarial accuracy is shown in Fig. 4. Even in the worst case
that none of the clients have enough resources to complete AT on the entire model, FADE can
achieve robustness comparable to full FedDynAT. And with only 40% resource-sufficient clients,
FADE can already attain the same robustness as full FedDynAT in all our experiments, while the
other baselines still have significant robustness gaps from full FedDynAT.

4.4 THE INFLUENCE OF WEIGHT DECAY ON THE AUXILIARY MODEL

As we suggested in Section 3.3, the auxiliary model weight decay hyperparameter λm acts as an
important role that balances natural accuracy and adversarial robustness. To show the influence
of this hyperparameter, we conduct experiments in FADE (2 Modules) with different λm between
0.0001 and 0.1, and we plot the natural and adversarial accuracy in Fig. 5.

We can observe that in all our settings the natural accuracy increases first as we increase λm, and
then goes down quickly. The growing part can be explained by our theory in Section 3.3 that the
larger auxiliary weight decay can alleviate the objective inconsistency and improve the performance.
However, when we adopt a too large weight decay, the weight decay will drive the model away from
optimum and lead to a performance drop, which is also commonly observed in joint training process.
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Figure 5: Natural (blue lines with triangle markers) and adversarial (red lines with circle markers)
accuracy with different auxiliary weight decay hyperparameter λm.

For the adversarial accuracy, the effects of λm become more complicated, since larger λm can
decrease both gm and µm, which affect the robustness in opposite ways. An increasing adversarial
accuracy suggests that the effect of gm dominates, while a decreasing one suggests that the effect
of µm dominates. Similarly to the natural accuracy, we could observe that the adversarial accuracy
usually grows first before going down, which implies that the effect of gm is usually stronger when
λm is small. And considering the increasing natural accuracy, adopting a moderately large λm

usually attains a better overall performance on clean and adversarial samples.

5 RELATED WORKS

Federated Learning Client-wise heterogeneity is one of the challenges that hinders the practice
of Federated Learning (FL). Many studies have tried to overcome the statistical heterogeneity in
data (Karimireddy et al., 2019; Liang et al., 2019; Tang et al., 2022; Wang et al., 2020a) and the
systematic heterogeneity in hardware (Li et al., 2021a; 2018; Wang et al., 2020b). Beyond the het-
erogeneity, FL is also vulnerable in several kinds of attack, such as model poisoning attack (Bhagoji
et al., 2019; Sun et al., 2021) and adversarial sample attack (Zizzo et al., 2020; Shah et al., 2021). In
this paper, we mainly focus on the adversarial sample attack and deal with the challenge in federated
adversarial training under client-wise heterogeneity (Hong et al., 2021).

Adversarial Training AT is well known for its high demand for computing resources (Wong et al.,
2020). Several fast AT algorithms have been proposed to reduce the computation in AT (Shafahi
et al., 2019; Zhang et al., 2019), such as replacing PGD with FGSM (Andriushchenko & Flam-
marion, 2020; Wong et al., 2020) or using other regularization methods for robustness (Moosavi-
Dezfooli et al., 2019; Qin et al., 2019). FADE can be easily combined with these fast AT algorithms
to further reduce the computing cost, which we leave as a future work. In addition, AT will decrease
the model performance on clean samples, and thus a larger model is usually required to maintain the
same natural accuracy (Liu et al., 2020). This makes AT also memory-demanding.

Decoupled Greedy Learning As deeper and deeper neural networks are used for better perfor-
mance, the low efficiency of end-to-end (joint) training is exposed because it hinders the model par-
allelization and requires large memory for model parameters and intermediate results (Belilovsky
et al., 2020; Hettinger et al., 2017). As an alternative, Decoupled Greedy Learning (DGL) is pro-
posed, which decouples the whole neural network into several modules and trains them separately
without gradient dependency (Belilovsky et al., 2019; 2020; Marquez et al., 2018; Wang et al., 2021).
As a more flexible DGL framework, FADE fits better in heterogeneous FL while offering guarantees
in convergence as well as joint adversarial robustness.

6 CONCLUSIONS

In this paper, we proposed Federated Adversarial Decoupled Learning (FADE), a novel framework
to reduce the memory and computing power requirements for resource-constrained edge devices in
large-scale federated adversarial training. Our theory guarantees the convergence and joint adversar-
ial robustness of FADE, and we develop an effective regularizer to reduce the objective inconsistency
in FADE based on the theory. Our experimental results show that FADE can significantly reduce
both memory and computing power consumption on small edge devices, while maintaining almost
the same accuracy as the joint federated adversarial training on both clean and adversarial samples.
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A CONVERGENCE ANALYSIS OF FEDERATED DECOUPLED LEARNING

A.1 PRELIMINARY

In this section, we analyze the convergence property of Federated Decoupled Learning (FDL). Since
FDL partitions the entire model with layers as the smallest unit, we only need to prove the conver-
gence of each layer. We use ωn to denote all the parameters in layer n, and mk(n) to denote the
module that contains layer n on client k. We define the parameters other than ωn in module mk(n)
as Ωn,k. We also denote the input feature of layer n as zn−1,k = zmk(n) on client k. we define the
locally supervised loss of layer n on client k as:

l
(t,j)
n,k (z

(t)
n−1, y;ω

(t,j)
n ) = lmk(n)(z

(t)
mk(n)−1, y;ω

(t,j)
n ,Ω

(t,j)
n,k ), (15)

where l
(t,j)
n,k changes every iteration because of the update of Ω(t,j)

n,k . For simplicity, from now on

we abridge (z, y) as z. We let z(t)
n−1,k follow the distribution with probability density p

(t)
n−1,k(z) at

the j-th iteration of communication round t, and we define its converged density as p∗n−1,k(z) with
converged previous layers and Ω∗

n,k (Belilovsky et al., 2020). With these notations, we define

L
(t)
n,k(ω

(t)
n ) = E

z
(t)
n−1,k∼p

(t)
n−1,k

1
τ

τ−1∑
j=0

l
(t,j)
n,k (z

(t)
n−1,k;ω

(t)
n )

 ; (16)

L(t)
n (ω(t)

n ) =

N∑
k=1

qkL
(t)
n,k(ω

(t)
n ); (17)

Ln,k(ω
(t)
n ) = Ezn−1,k∼p∗

n−1,k

[
l∗n,k(zn−1,k;ω

(t)
n )
]

= Ezmk(n)−1,k∼p∗
mk(n)−1,k

[
lmk(n)(zmk(n)−1,k;ω

(t)
n ,Ω∗

n,k)
]
; (18)

Ln(ω
(t)
n ) =

N∑
k=1

qkLn,k(ω
(t)
n ); (19)

Following Belilovsky et al. (2020), we use the distance between the current density and the con-
verged density below for our analysis:

ρ
(t)
n−1 ≜

N∑
k=1

qk

∫ ∣∣∣p(t)n−1,k(z)− p∗n−1,k(z)
∣∣∣ dz, (20)

And we also define the following gap between l
(t)
n,k and l∗n,k:

ξ(t)n ≜
N∑

k=1

τ−1∑
j=0

qk
τ

∥∥∥Ezn−1,k∼p∗
n−1

[
∇l

(t,j)
n,k (zn−1,k;ω

(t)
n )−∇l∗n,k(zn−1,k;ω

(t)
n )
]∥∥∥2 (21)

We will discuss the convergence of Ln(ωn) for each layer n. Without specifying, all the gradients
(∇L or ∇l) in the following analysis are with respect to ωn. Following Belilovsky et al. (2020) and
Wang et al. (2020b), we make the common assumptions below.
Assumption 1 (L-smoothness (Belilovsky et al., 2020; Wang et al., 2020b)). Ln is differentiable
with respect to ω

(t)
n and its gradient is Ln-Lipschitz for all t. Similarly, L(t)

n,k is differentiable with

respect to ω
(t)
n,k and its gradient is L̃n-Lipschitz for all t and k.

Assumption 2 (Robbins-Monro conditions (Belilovsky et al., 2020)). The learning rates satisfy∑∞
t=0 ηt = ∞ yet

∑∞
t=0 η

2
t < ∞.

Assumption 3 (Finite variance (Belilovsky et al., 2020; Wang et al., 2020b)). There exists some

positive constant G such that ∀t, j and ∀k, E
z
(t,j)
n−1,k∼p

(t,j)
n−1,k

[∥∥∥∇l
(t,j)
n,k (z

(t,j)
n−1,k;ωn)

∥∥∥2] ≤ G and

Ezn−1,k∼p∗
n−1

[∥∥∥∇l∗n,k(zn−1,k;ωn)
∥∥∥2] ≤ G at any ωn.
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Assumption 4 (Bounded Dissimilarity (Wang et al., 2020b)). There exist constants β2 ≥ 1, κ2 ≥ 0

such that ∀t and ωn,
∑N

k=1 qk

∥∥∥∇L
(t)
n,k(ωn)

∥∥∥2 ≤ β2
∥∥∥∑N

k=1 qk∇L
(t)
n,k(ωn)

∥∥∥2 + κ2.

Assumption 5 (Convergence of the previous modules and Ωn (Belilovsky et al., 2020)). We assume
that

∑∞
t=0 ρ

(t)
n−1 < ∞ and

∑∞
t=0 ξ

(t)
n < ∞.

A.2 PROOF OF THEOREM 1

With all above assumptions, we get the following theorem that guarantees the convergence of Fed-
erated Decoupled Learning.
Theorem 1. Under Assumption 1- 5, Federated Decoupled Learning converges as follows:

inf
t≤T

E
[∥∥∥∇Ln
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n

)∥∥∥2]
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2
t∑T

t=0 ηt

)
. (22)

Proof. We consider the SGD scheme in Eq. 9 with learning rate {ηt}t:
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n = ω(t)
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∑
k∈S(t)n

qkh
(t)
n,k∑

k∈S(t)n
qk

,

where S(t)n = S(t)ωn which is defined in Eq. 9. And h
(t)
n,k is defined as

h
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According to the Lipschitz-smooth assumption for the global objective function Ln , it follows that
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Similar to the proof in (Wang et al., 2020b), to bound the T1 in Inequality 24, we should notice that
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Eq. 25 uses the fact: 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 −∥a− b∥2, and Inequality 26 uses the fact: ∥a+ b∥2 ≤
2∥a∥2 + 2∥b∥2. Inequality 27 uses L(t)

n =
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n,k and Jenson’s inequality ∥
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(t)
n )
]
− E

z∼p
(t)
n−1,k

[
∇l

(t,j)
n,k (z;ω(t)

n )
]∥∥∥2

≤2

τ

∑
k

qk
∑
j

∥∥∥∥∫ ∇l
(t,j)
n,k (z;ω(t)

n )p
(t)
n−1,k(z)dz−

∫
∇l

(t,j)
n,k (z;ω(t)

n )p∗n−1,k(z)dz

∥∥∥∥2
+

2

τ

∑
k

qk
∑
j

∥∥∥Ez∼p∗
n−1,k

[
∇l

(t,j)
n,k (z;ω(t)

n )−∇l∗n,k(z;ω
(t)
n )
] ∥∥∥2

≤2

τ

∑
k

qk
∑
j

(∫ ∥∥∥∇l
(t,j)
n,k (z;ω(t)

n )
∥∥∥√|p(t)n−1,k(z)− p∗n−1,k(z)||p

(t)
n−1,k(z)− p∗n−1,k(z)|dz

)2

+ 2ξ(t)n

≤2

τ

∑
k

qk
∑
j

∫ ∥∥∥∇l
(t,j)
n,k (z;ω(t)

n )
∥∥∥2 |p(t)n−1,k(z)− p∗n−1(z)|dz

∫
|p(t)n−1,k(z)− p∗n−1,k(z)|dz

+ 2ξ(t)n

≤2

τ

∑
k

qk

∫
|p(t)n−1,k(z)− p∗n−1,k(z)|dz

∑
j

∫ ∥∥∥∇l
(t,j)
n,k (z;ω(t)

n )
∥∥∥2 (p(t)n−1,k(z) + p∗n−1,k(z)

)
dz

+ 2ξ(t)n

≤4Gρ(t)n + 2ξ(t)n (28)

Hence, we have

T1 ≥ 1

2

∥∥∥∇Ln

(
ω(t)

n

)∥∥∥2 − N∑
k=1

qk

∥∥∥Eh(t)
n,k −∇L

(t)
n,k(ω

(t)
n )
∥∥∥2 − 4Gρ(t)n − 2ξ(t)n . (29)

Similar to the proof in Section C.3, we have the following bound for T2:

T2 ≤2

E
∥∥∥∥∥∥
∑

k∈S(t)n
qkh

(t)
n,k∑

k∈S(t)n
qk

−
∑

k∈S(t)n
qkEh(t)

n,k∑
k∈S(t)n

qk

∥∥∥∥∥∥
2
+ 2

E
∥∥∥∥∥∥
∑

k∈S(t)n
qkEh(t)

n,k∑
k∈S(t)n

qk

∥∥∥∥∥∥
2


≤4

E
∥∥∥∥∥∥
∑

k∈S(t)n
qkh

(t)
n,k∑

k∈S(t)n
qk

∥∥∥∥∥∥
2

+ E

∥∥∥∥∥∥
∑

k∈S(t)n
qkEh(t)

n,k∑
k∈S(t)n

qk

∥∥∥∥∥∥
2
+ 2

E
∥∥∥∥∥∥
∑

k∈S(t)n
qkEh(t)

n,k∑
k∈S(t)n

qk

∥∥∥∥∥∥
2
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≤4

E∑k∈S(t)n
qk∥h(t)

n,k∥2∑
k∈S(t)n

qk
+ E

∑
k∈S(t)n

qkE∥h(t)
n,k∥2∑

k∈S(t)n
qk

+ 2

E
∥∥∥∥∥∥
∑

k∈S(t)n
qkEh(t)

n,k∑
k∈S(t)n

qk

∥∥∥∥∥∥
2


≤8τ2G+ 2

E
∥∥∥∥∥∥
∑

k∈S(t)n
qkEh(t)

n,k∑
k∈S(t)n

qk

∥∥∥∥∥∥
2
 (30)

≤8τ2G+ 6

N∑
k=1

qk

∥∥∥Eh(t)
n,k −∇L

(t)
n,k(ω

(t)
n )
∥∥∥2

+ 6∥∇L(t)
n (ω(t)

n )∥2 + 6

St

(
β2∥∇L(t)

n (ω(t)
n )∥2 + κ2

)
, (31)

where St =
∣∣∣S(t)n

∣∣∣. Inequality 30 is based on the Assumption 3 and the definition of h(t)
n,k, while

Inequality 31 is from Lemma 5 in Wang et al. (2020b).

According to Assumption 3, for all t, j, k,ωn, we have

E
z∼p

(t)
n−1,k

[∥∥∥∇l
(t,j)
n,k (z;ωn)− E

z∼p
(t)
n−1,k

∇l
(t,j)
n,k (z;ωn)

∥∥∥2]
≤E

z∼p
(t)
n−1,k

[
2
∥∥∥∇l

(t,j)
n,k (z;ωn)

∥∥∥2 + 2∥E
z∼p

t)
n−1,k

∇l
(t,j)
n,k (z;ωn) ∥2

]
≤4E

z∼p
(t)
n−1,k

∥∥∥∇l
(t,j)
n,k (z;ωn)

∥∥∥2
≤4G. (32)

With the results in Inequality 32 and in Section C.5 of Wang et al. (2020b), we have the following
bound

1

2

N∑
k=1

qk

∥∥∥Eh(t)
n,k −∇L

(t)
n,k(ω

(t)
n )
∥∥∥2

≤4η2t L̃2
nG

1−D
(τ2 − 1) +

Dβ2

2(1−D)

∥∥∥∇L(t)
n (ω(t)

n )
∥∥∥2 + Dκ2

2(1−D)
, (33)

where D = 4η2t L̃2
nτ(τ − 1) < 1. If D ≤ 1

12β2+1 , then it follows that 1
1−D ≤ 1 + 1

12β2 ≤ 2 and
3Dβ2

1−D ≤ 1
4 . In this case, we can further simplify the inequality:

6

N∑
k=1

qk

∥∥∥Eh(t)
n,k −∇L

(t)
n,k(ω

(t)
n )
∥∥∥2

≤96η2t L̃2
nG(τ2 − 1) +

1

2

∥∥∥∇L(t)
n (ω(t)

n )
∥∥∥2 + 48η2t L̃2

nκ
2τ(τ − 1)

≤96η2t L̃2
nG(τ2 − 1) +

∥∥∥∇Ln(ω
(t)
n )
∥∥∥2 + 4Gρ(t)n + 2ξ(t)n + 48η2t L̃2

nκ
2τ(τ − 1). (34)

Then we can bound T2 as follows:

T2 ≤8τ2G+ 6

N∑
k=1

qk

∥∥∥Eh(t)
n,k −∇L

(t)
n,k(ω

(t)
n )
∥∥∥2

+ 6∥∇L(t)
n (ω(t)

n )∥2 + 6

St

(
β2∥∇L(t)

n (ω(t)
n )∥2 + κ2

)
≤8τ2G+ 96η2t L̃2

nG(τ2 − 1) +
∥∥∥∇Ln(ω

(t)
n )
∥∥∥2 + 4Gρ(t)n + 2ξ(t)n + 48η2t L̃2

nκ
2τ(τ − 1)

+ 6∥∇Ln(ω
(t)
n )∥2 + 48Gρ(t)n + 24ξ(t)n

+
6

St

(
β2∥∇Ln(ω

(t)
n )∥2 + 8β2Gρ(t)n + 4β2ξ(t)n + κ2

)
, (35)
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where Inequality 35 uses the difference bound in Inequality 28. Plugging Inequality 29 and Inequal-
ity 35 back into Inequality 24, and with St ≥ 1, we have

E
[
Ln

(
ω(t+1)

n

)]
− Ln

(
ω(t)

n

)
≤− 1

2
ηt

∥∥∥∇Ln

(
ω(t)

n

)∥∥∥2 + 4ηtGρ(t)n + 2ηtξ
(t)
n

+ ηt

[
16η2t L̃2

nG(τ2 − 1) +
1

6

∥∥∥∇Ln(ω
(t)
n )
∥∥∥2 + 2

3
Gρ(t)n +

1

3
ξ(t)n + 8η2t L̃2

nκ
2τ(τ − 1)

]
+

η2tLn

2

[
8τ2G2 + 96η2t L̃2

nG(τ2 − 1) +
∥∥∥∇Ln(ω

(t)
n )
∥∥∥2 + 4Gρ(t)n + 2ξ(t)n

+ 48η2t L̃2
nκ

2τ(τ − 1) + 6∥∇Ln(ω
(t)
n )∥2 + 48Gρ(t)n + 24ξ(t)n

+ 6(β2∥∇Ln(ω
(t)
n )∥2 + 8β2Gρ(t)n + 4β2ξ(t)n + κ2)

]
(36)

≤−
(

5

12
ηt −

7η2tLn

2
− 3η2tLnβ

2

)∥∥∥∇Ln

(
ω(t)

n

)∥∥∥2
+ ηt

[
14

3
Gρ(t)n +

7

3
ξ(t)n + 16η2t L̃2

nG(τ2 − 1) + 8η2t L̃2
nκ

2τ(τ − 1)

]
+

η2tLn

2

[
8τ2G2 + 52Gρ(t)n + 26ξ(t)n + 96η2t L̃2

nG(τ2 − 1) + 48η2t L̃2
nκ

2τ(τ − 1)

+ 48β2Gρ(t)n + 24β2ξ(t)n + 6κ2

]
. (37)

When we set ηt ≤ min{ 1
(21+18β2)Ln

, 1}, we can get

1

4
ηt∥∇Ln

(
ω(t)

n

)
∥2

≤Ln

(
ω(t)

n

)
− E

[
Ln

(
ω(t+1)

n

)]
+

(
14

3
G+ 26LnG+ 24β2LnG

)
ηtρ

(t)
n +

(
7

3
+ 13Ln + 12β2Ln

)
ηtξ

(t)
n

+

[
16L̃2

nG(τ2 − 1) + 8L̃2
nκ

2τ(τ − 1) + 4Lnτ
2G2

+ 48L̃2
nLnG(τ2 − 1) + 24L̃2

nLnκ
2τ(τ − 1) + 3Lnκ

]
η2t .

Taking the expectation and averaging across all rounds, one can obtain

1

4

T∑
t=0

ηt

∥∥∥∇Ln

(
ω(t)

n

)∥∥∥2
≤
[
Ln

(
ω(0)

n

)
− Ln

(
ω(T+1)

n

)]
+A

T∑
t=0

η2t +B

T∑
t=0

ηtρ
(t)
n + C

T∑
t=0

ηtξ
(t)
n

≤Ln

(
ω(0)

n

)
+A

T∑
t=0

η2t +B

T∑
t=0

ηtρ
(t)
n + C

T∑
t=0

ηtξ
(t)
n ,

where A,B and C are some positive constants. Now we get our final result:

inf
t≤T

E
[∥∥∥∇Ln

(
ω(t)

n

)∥∥∥2] ≤ 1∑T
t=0 ηt

T∑
t=0

ηt

∥∥∥∇Ln

(
ω(t)

n

)∥∥∥2
≤O

(
1∑T

t=0 ηt

)
+O

(∑T
t=0 ρ

(t)
n ηt∑T

t=0 ηt

)
+O

(∑T
t=0 ξ

(t)
n ηt∑T

t=0 ηt

)
+O

(∑T
t=0 η

2
t∑T

t=0 ηt

)
.
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It is simple to verify that 1∑T
t=0 ηt

→ 0 and
∑T

t=0 η2
t∑T

t=0 ηt
→ 0 if T → ∞. As for

∑T
t=0 ρ(t)

n ηt∑T
t=0 ηt

, according
to the Cauchy-Schwartz inequality, we have

T∑
t=0

ρ(t)n ηt =

T∑
t=0

√
ρ
(t)
n

(√
ρ
(t)
n ηt

)

≤

√√√√( T∑
t=0

ρ
(t)
n

)(
T∑

t=0

ρ
(t)
n η2t

)

≤

√√√√( T∑
t=0

ρ
(t)
n

)(
T∑

t=0

ρ
(t)
n

)(
T∑

t=0

η2t

)
< ∞.

Hence, we also have
∑T

t=0 ρ(t)
n ηt∑T

t=0 ηt
→ 0 if T → ∞. Similarly, we get the same result for

∑T
t=0 ξ(t)n ηt∑T

t=0 ηt
.

In conclusion, we get the result in Section 3.1:

lim
T→∞

inf
t≤T

E
∥∥∥∇Ln

(
ω(t)

n

)∥∥∥2 = 0. (38)

B PROOFS OF THEOREM 2, 3 AND ADDITIONAL ANALYSIS

B.1 PROOF OF THEOREM 2

Theorem 2. Assume that l̃m(zm, y) is µm-strongly convex in zm for each module m. If each module
m ≤ M has local (ϵm−1, cm)-robustness in lm(zm−1, y), and

∀m ≤ M, ϵm ≥ gm
µm

+

√
2cm
µm

+
g2m
µ2
m

, where gm = ∥∇zm
l̃m(zm, y)∥, (39)

then we can guarantee that the entire model has a joint (ϵ0, cM )-robustness in l(x, y).

Proof. We only need to prove the joint robustness of the concatenation of module m and (m +
1) given the local robustness of them separately, and then we can use deduction to get the joint
robustness of the entire model given the local robustness of all modules.

For a module m and any perturbation δm−1 ∈ {δm−1 : ∥δm−1∥ ≤ ϵm−1} at its input, let
r = fm(zm−1 + δm−1)− fm(zm−1). Given µm-strongly convexity and (ϵm−1, cm)-robustness in
l̃m(zm, y), we have

∇zm
l̃m(zm, y)Tr +

µm

2
∥r∥2 ≤ l̃m(zm + r, y)− l̃m(zm, y) ≤ cm (40)

⇒µm

2

∥∥∥∥∥r +
∇zm

l̃m(zm, y)

µm

∥∥∥∥∥
2

− ∥∇zm
l̃m(zm, y)∥2

µ2
m

 ≤ cm (41)

⇒

∥∥∥∥∥r +
∇zm

l̃m(zm, y)

µm

∥∥∥∥∥ ≤

√
2cm
µm

+
∥∇zm

l̃m(zm, y)∥2
µ2
m

(42)

⇒∥r∥ ≤ ∥∇zm
l̃m(zm, y)∥
µm

+

√
2cm
µm

+
∥∇zm

l̃m(zm, y)∥2
µ2
m

=
gm
µm

+

√
2cm
µm

+
g2m
µ2
m

. (43)

And we know that

ϵm ≥ gm
µm

+

√
2cm
µm

+
g2m
µ2
m

≥ ∥r∥, (44)
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which gives us

∀δm−1 ∈ {δm−1 : ∥δm−1∥ ≤ ϵm−1}, ∥fm(zm−1 + δm−1)− fm(zm−1)∥ ≤ ϵm. (45)

With the (ϵm, cm+1)-robustness of module (m+1), we have the joint robustness of the concatenation
of m and (m+ 1):

∀δm−1 ∈ {δm−1 : ∥δm−1∥ ≤ ϵm−1},
lm+1(fm(zm−1 + δm−1), y)− lm+1(fm(zm−1), y) ≤ cm+1. (46)

B.2 PROOF OF THEOREM 3

Theorem 3. Assume that l̃m(zm, y) and l̃′m(zm, y) are βm, β′
m-smooth in zm for a module m. If

there exist cm, c′m, and r ≥
√

2
cm+c′m
βm+β′

m
, such that the auxiliary model has (r, cm)-robustness in

l̃m(zm, y), and the backbone network has (r, c′m)-robustness in l̃′m(zm, y), then we have:

∥∇wm l −∇wm lm∥ ≤
∥∥∥∥ ∂zm∂wm

∥∥∥∥√2(cm + c′m)(βm + β′
m). (47)

Proof. With the chain rule, we know that

∇wm
l −∇wm

lm =
∂zm
∂wm

∂(l − lm)

∂zm
=

∂zm
∂wm

∂(l̃′m − l̃m)

∂zm
, (48)

and thus

∥∇wm l −∇wm lm∥ ≤
∥∥∥∥ ∂zm∂wm

∥∥∥∥
∥∥∥∥∥∂(l̃′m − l̃m)

∂zm

∥∥∥∥∥ . (49)

We now need to find the upper bound of the second factor. We define h(zm) = l̃′m(zm, y) −
l̃m(zm, y), which is (βm + β′

m)-smooth in zm. For any δm, ∥δm∥ ≤ r, with the (r, cm)-robustness
in l̃m(zm, y) and (r, c′m)-robustness in l̃′m(zm, y), we have

|h(zm + δm)− h(zm)| ≤ |l̃m(zm + δm, y)− l̃m(zm, y)|+ |l̃′m(zm + δm, y)− l̃′m(zm, y)|
≤ cm + c′m. (50)

And with the (βm + β′
m)-smoothness, we know that(

∂h(zm)

∂zm

)T

δm − βm + β′
m

2
∥δm∥2 ≤ h(zm + δm)− h(zm) ≤ cm + c′m. (51)

The maximum of the LHS is achieved when δ∗m = 1
βm+β′

m

∂h(zm)
∂zm

, and thus we get

1

2(βm + β′
m)

∥∥∥∥∂h(zm)

∂zm

∥∥∥∥2 ≤ cm + c′m (52)

⇒
∥∥∥∥∂h(zm)

∂zm

∥∥∥∥ ≤
√
2(cm + c′m)(βm + β′

m). (53)

To check the achievability of this maximum, we have

∥δ∗m∥ =
1

βm + β′
m

∥∥∥∥∂h(zm)

∂zm

∥∥∥∥ ≤

√
2
cm + c′m
βm + β′

m

≤ r. (54)

Thus, we get our final result

∥∇wm
l −∇wm

lm∥ ≤
∥∥∥∥ ∂zm∂wm

∥∥∥∥√2(cm + c′m)(βm + β′
m). (55)
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B.3 CASE STUDY: LINEAR AUXILIARY OUTPUT MODEL

For a linear auxiliary output model θm = {Wm, bm}, the cross-entropy loss is given as

l̃(zm,y) = L(σ(W T
mzm + bm),y), (56)

where L(p,y) = −
∑

i=1 yi log(pi) and σ(q)i = exp(qi)/(
∑

j exp(qj)) are cross-entropy loss and
softmax function respectively. Let pm = σ(W T

mzm + bm), we know that

∇zm l̃(zm,y) = Wm(pm − y), (57)

and

Hm = ∇2
zm

l̃(zm,y) = WmJmW T
m, (58)

where

Jm = diag(pm)− pmpT
m (59)

is the Jacobi of the softmax function. We have the following properties related to the robustness and
objective consistency in Theorem 2 and Theorem 3:

1. (First Order Property) Smaller ∥Wm∥ leads to smaller gm and cm.

gm = ∥∇zm l̃m(zm, y)∥ = ∥Wm(pm − y)∥ ≤
√
2∥Wm∥, (60)

cm = max
∥δm∥≤r

|l̃m(zm + δm, y)− l̃m(zm, y)| ≤
√
2r∥Wm∥. (61)

2. (Second Order Property) Smaller ∥Wm∥F leads to smaller µm and βm.∑
i

λi(Hm) = tr(Hm) = tr(WmJmW T
m) = tr(W T

mWmJm)

≤ ∥Wm∥2F (
∑
j

pm,j − p2m,j), (62)

where λi(Hm) means the eigenvalues of Hm in increasing order. λ1(Hm) = µm and λ−1(Hm) =
βm.

We notice that when increasing λm, namely, decreasing ∥Wm∥ and ∥Wm∥F , we will decrease
gm, cm, µm and βm. According to Theorem 2, smaller gm will lead to stronger robustness while
smaller µm will lead to weaker robustness. And according to Theorem 3, smaller cm and βm can
lead to smaller objective inconsistency and thus better natural accuracy.

C EXPERIMENT SETTINGS AND DETAILS

We run all the experiments on a sever with a single NVIDIA TITAN RTX GPU and an Intel Xeon
Gold 6254 CPU.

C.1 DETAILS OF BASELINES

FedDynAT (Shah et al., 2021). FedDynAT proposes to use an annealing number of local training
iterations to alleviate the slow convergence issue of Federated Adversarial Training (FAT) (Zizzo
et al., 2020). More specifically, they anneal the number of local training iterations as τt = τ0γ

t/FE

E
where τt is the number of local training iterations at round t, γE is the decay rate and FE is the
decay period. When implementing FedDynAT, we use FedNOVA instead of FedCurv (Shoham
et al., 2019) to avoid extra communication in our resource-constrained settings.

FedRBN (Hong et al., 2021). FedRBN adopts Dual Batch Normalization (DBN) layers (Xie et al.,
2020) with two sets of batch normalization (BN) statistics for clean samples and adversarial sam-
ples respectively. When propagating the robustness from the clients who perform AT to the clients
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Table 4: The hyperparameters of FADE. The last module does not have an auxiliary model since it
directly uses the loss of the backbone network, thus it does not have a weight decay hyperparameter.

Model Optimizer Module 1 Module 2 Module 3
ϵ0 α0 λ1 ϵ1 α1 λ2 ϵ2 α2 λ3

2-module CNN-7
FMNIST

FedNOVA 0.15 0.03 0.003 0.06 0.012 n/a n/a n/a n/a
FedBN 0.15 0.03 0.03 0.12 0.024 n/a n/a n/a n/a

2-module VGG-11
CIFAR-10

FedNOVA 8/255 2/255 0.1 3/255 0.75/255 n/a n/a n/a n/a
FedBN 8/255 2/255 0.003 3/255 0.75/255 n/a n/a n/a n/a

3-module VGG-11
CIFAR-10

FedNOVA 8/255 2/255 0.003 4/255 1/255 0.003 3/255 0.75/255 n/a
FedBN 8/255 2/255 0.001 4/255 1/255 0.001 3/255 0.75/255 n/a

Mixing VGG-11
CIFAR-10

FedNOVA 8/255 2/255 0.01 4/255 1/255 0.01 3/255 0.75/255 n/a
FedBN 8/255 2/255 0.001 4/255 1/255 0.001 3/255 0.75/255 n/a

who perform ST, they use the adversarial BN statistics of AT clients to evaluate the adversarial BN
statistics of ST clients as follows:

µa
ST = µa

AT + λRBN(µ
n
ST − µn

AT), (63)

(σa
ST)

2 = (σa
AT)

2

[
(σn

ST)
2

(σn
AT)

2 + ϵ

]λRBN

(64)

where µa
ST and µn

ST are the means in adversarial BN and natural BN respectively on a ST client, and
(σa

ST)
2 and (σn

ST)
2 are the variances. Similarly, for AT clients we have µa

AT, µn
AT, (σa

AT)
2 and (σn

AT)
2.

λRBN is the hyperparameter and ϵ is a small constant. With these evaluations of the adversarial BN
statistics, the ST clients can also attain some adversarial robustness without performing AT.

C.2 HYPERPARAMETERS

Hyperparameters of FL We partition the whole FMNIST and CIFAR-10 dataset (including the
training set and the test set) onto N = 100 clients, with a training-validation ratio the same as the
ratio of the training set to the test set. For global FL (FedNOVA), the validation sets on all clients
are I.I.D.. For personalized FL (FedBN), we make the validation set on each client have the same
distribution as the training set on that client (i.e., Non-I.I.D.). We report the averaged validation
accuracy over all clients in our experiments.

We set the number of initial local training iterations as τ0 = 40 for both FMNIST and CIFAR-10,
and the local batch size is set to be B = 50. We use the same trick as Shah et al. (2021) that
we gradually decrease the number of local training iterations. When training with FedNOVA, the
maximal number of communication rounds T = 500 for FMNIST and T = 2000 for CIFAR-10.
When training with FedBN, the maximal number of communication rounds T = 150 for FMNIST
and T = 500 for CIFAR-10. We use the SGD optimizer with a constant learning rate η = 0.01 and
momentum 0.9 for all the experiments.

Hyperparameters of AT We adopt ϵ0 = 0.15 and α0 = 0.03 for FMNIST, and we use ϵ0 = 8/255
and α0 = 2/255 for CIFAR-10. We use PGD with T = 10 iterations for training and testing in all
our experiments. Following Zizzo et al. (2020), we use a warmup phase with only standard training
before performing any AT in all the experiments. When training with FedNOVA, the length of the
warmup phase is set to be 50 for FMNIST and 400 for CIFAR-10. When training with FedBN, the
length of the warmup phase is set to be 15 for FMNIST and 200 for CIFAR-10.

Hyperparameters of FADE Table 4 summarizes the λm and ϵm−1 that we used in the experi-
ments in Section 4.3. When tuning both ϵm and λm, we adopt the overall accuracy on both clean
and adversarial samples as the criterion, which can be written as A = 0.4An + 0.6Aa where An

and Aa are natural accuracy and adversarial accuracy respectively. When determining the feature
perturbation ϵ1 and ϵ2, we perform linear search for the optimal discount factors d1, d2 ∈ [0.0, 1.0]
such that ϵ1 = d1ϵ0 and ϵ2 = d2ϵ0. When determining the weight decay hyperparameter λm, we
select the optimal λm ∈ {0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1}.

Hyperparameters of FedDynAT We set the decay rate γE = 0.9, and the decay period FE is
always set to be 1/10 of the maximal number of communication rounds T .
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Table 5: The model architecture and the 2-module partition of CNN-7.
Module Layer Details # Parameters

1

1 Conv2D (8, kernel size = 3, padding = 1, stride = 1)
BN2D, ReLU, MaxPool2D (kernel size = 2, stride = 2)

15.312 k2 Conv2D (16, kernel size = 3, padding = 1, stride = 1)
BN2D, ReLU, MaxPool2D (kernel size = 2, stride = 2)

3 Conv2D (32, kernel size = 3, padding = 1, stride = 1)
BN2D, ReLU

4 Conv2D (32, kernel size = 3, padding = 1, stride = 1)
BN2D, ReLU, MaxPool2D (kernel size = 2, stride = 2)

A1 FC (288, 10) 2.890 k

2
5 Conv2D (64, kernel size = 3, padding = 0, stride = 1)

BN2D, ReLU 23.562 k6 FC (64, 64), BN1D, ReLU
7 FC (64, 10)

Table 6: The model architecture and the 2-module partition of VGG-11.
Module Layer Details # Parameters

1

1 Conv2D (64, kernel size = 3, padding = 1, stride = 1)
BN2D, ReLU, MaxPool2D (kernel size = 2, stride = 2)

4.504 M2 Conv2D (128, kernel size = 3, padding = 1, stride = 1)
BN2D, ReLU, MaxPool2D (kernel size = 2, stride = 2)

3 Conv2D (256, kernel size = 3, padding = 1, stride = 1)
BN2D, ReLU

4 Conv2D (256, kernel size = 3, padding = 1, stride = 1)
BN2D, ReLU, MaxPool2D (kernel size = 2, stride = 2)

5 Conv2D (512, kernel size = 3, padding = 1, stride = 1)
BN2D, ReLU

6 Conv2D (512, kernel size = 3, padding = 1, stride = 1)
BN2D, ReLU, MaxPool2D (kernel size = 2, stride = 2)

A1 MaxPool2D (kernel size = 2, stride = 2), FC (512, 10) 0.005 M

2

7 Conv2D (512, kernel size = 3, padding = 1, stride = 1)
BN2D, ReLU

5.254 M8 Conv2D (512, kernel size = 3, padding = 1, stride = 1)
BN2D, ReLU, MaxPool2D (kernel size = 2, stride = 2)

9 FC (512, 512), BN1D, ReLU
10 FC (512, 512), BN1D, ReLU
11 FC (512, 10)

Hyperparameters of FedRBN Following Hong et al. (2021), we adopt the same setting where
λRBN = 0.1. We loose the requirement of a noise detector and allow an optimal noise detector for
FedRBN such that it can always use the correct BN statistics during test (This makes its robustness
stronger than that with a real noise detector).

C.3 MODEL ARCHITECTURES AND MODEL PARTITIONS

The model architectures and model partitions we use in our experiments are shown in Table 5, 6 and
7. We skip all the Batch Normalization layers in the model when training with FedNOVA. We also
show the number of parameters in the tables. We could see that in most case the auxiliary models
are small enough and they only introduce negligible extra parameters and computation. Therefore it
will not increase the memory and computing power requirements on resource-constraint devices.
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Table 7: The model architecture and the 3-module partition of VGG-11.
Module Layer Details # Parameters

1

1 Conv2D (64, kernel size = 3, padding = 1, stride = 1)
BN2D, ReLU, MaxPool2D (kernel size = 2, stride = 2)

0.962 M2 Conv2D (128, kernel size = 3, padding = 1, stride = 1)
BN2D, ReLU, MaxPool2D (kernel size = 2, stride = 2)

3 Conv2D (256, kernel size = 3, padding = 1, stride = 1)
BN2D, ReLU

4 Conv2D (256, kernel size = 3, padding = 1, stride = 1)
BN2D, ReLU, MaxPool2D (kernel size = 2, stride = 2)

A1 MaxPool2D (kernel size = 2, stride = 2), FC (1024, 10) 0.010 M

2
5 Conv2D (512, kernel size = 3, padding = 1, stride = 1)

BN2D, ReLU 3.542 M

6 Conv2D (512, kernel size = 3, padding = 1, stride = 1)
BN2D, ReLU, MaxPool2D (kernel size = 2, stride = 2)

A2 MaxPool2D (kernel size = 2, stride = 2), FC (512, 10) 0.005 M

3

7 Conv2D (512, kernel size = 3, padding = 1, stride = 1)
BN2D, ReLU

5.254 M8 Conv2D (512, kernel size = 3, padding = 1, stride = 1)
BN2D, ReLU, MaxPool2D (kernel size = 2, stride = 2)

9 FC (512, 512), BN1D, ReLU
10 FC (512, 512), BN1D, ReLU
11 FC (512, 10)
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