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Abstract

The gut microbiome significantly impacts human
health and disease by modulating key biologi-
cal functions, including immune responses and
nutrient processing. Despite its importance, the
intricate web of microbial interactions and their
metabolic interdependencies remains largely elu-
sive. In this work, we introduce KODA—a novel
agent-based framework that employs large lan-
guage models (LLMs) and knowledge graphs
(KGs) to streamline the identification of antimi-
crobial drug targets within the gut microbiome.
KODA operates through a collaborative multi-
agent architecture that transforms natural lan-
guage queries into structured graph queries, facil-
itating user-friendly exploration of complex mi-
crobiome datasets. By focusing on KEGG or-
thologs associated with essential microbial genes,
KODA pinpoints candidate targets for antimicro-
bial intervention through the analysis of metabolic
pathways. At its core lies a Neo4j-powered micro-
biome knowledge graph, which integrates data on
microbial interactions, metabolic networks, and
KEGG-derived annotations. To ensure robustness,
the system incorporates an evaluation pipeline
where LLM-based agents review both query qual-
ity and analytical outputs. Our findings highlight
KODA’s capability to yield biologically relevant
insights, especially in uncovering conserved, es-
sential genes that may serve as promising drug
targets. This framework not only enhances antimi-
crobial research but also aims to broaden access
to microbiome analytics, lowering the technical
threshold for researchers and accelerating early-
stage drug discovery.
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1. Introduction

Collective metabolic activities and interactions within the
gut microbiome can be aptly described as microbial social
networks, shaped by complex ecological dynamics. A cen-
tral feature of these networks is metabolic cross-feeding,
in which the byproducts of one group of microbes serve
as essential nutrients or substrates for others. This interde-
pendence plays a key role in shaping both the structure and
functional output of the microbial community (Ponomarova
& Patil, 2015; Sung et al., 2017). Despite the acknowl-
edged importance of these interdependencies, the precise
underlying mechanisms, the full spectrum of exchanged
metabolites, and the functional consequences of these com-
plex metabolic handoffs often remain poorly characterized,
rendering significant portions of gut microbial ecosystem
dynamics a “black box”. This opacity limits our ability to
predict how microbial communities respond to perturba-
tions and to rationally design interventions, such as targeted
probiotics or dietary modulations.

To address this challenge, systematic integration and trans-
parent representation of available data are crucial. In this
context, knowledge graphs (KGs) are a powerful paradigm
for representing such complex, interconnected biological
data (Goetz et al., 2024; Ma et al., 2024). KGs model infor-
mation as networks of entities and their relationships, mak-
ing them inherently well-suited to capture the networked
nature of biological systems and enabling complex queries.
However, effective use of these KGs often requires profi-
ciency in graph query languages (e.g., Cypher for Neo4j),
which limits accessibility for many domain scientists.

Large language models (LLMs) and the agentic systems
built upon them offer a transformative approach to bridge
this gap (Brown et al., 2020; Wang et al., 2023). Al agents,
powered by LLMs, can interpret natural language, interact
with tools, and perform complex reasoning, thereby en-
abling more intuitive and accessible interfaces to structured
data repositories.

We propose KODA, an LLM-powered, multi-agent frame-
work designed to bridge the gap between natural language
inquiry and the structured yet technically demanding world
of human gut microbiome KGs. We hypothesize that such a
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system will make querying complex microbial interaction
data more accessible to researchers in the field by leverag-
ing intuitive, domain-specific natural language. More than
a data retrieval tool, KODA delivers contextually relevant
analyses that speed up hypothesis generation and testing
in microbiome research. Our system coordinates a team
of specialized Al agents that translate natural language
queries (NLQs) into precise Cypher commands, execute
these queries against a Neo4j database, analyze the retrieved
data with a focus on biological significance, particularly
the role of KOs linked to essential genes as potential drug
targets, and synthesize comprehensive reports. A key com-
ponent of the system is a detailed LLM-consumable graph
schema description, which guides the agents in accurately
interpreting user intent and interacting with the KG. Our
approach offers a novel, conversational interface for mi-
crobiome research, democratizing access to complex graph
data and speeding up discovery, especially in identifying
potential antimicrobial drug targets based on essential gene
functions.

Our contributions are:

* A KG of the human gut microbiome, constructed based
on mechanistic pairwise simulations by metabolic net-
works, gene essentiality analyses associated wtih de-
scriptive KEGG orthologies (KOs), and multi-source
biochemical data, providing a use-case for targeted
therapeutic discovery.

» The design and implementation of a pipeline for natural
language querying of a gut microbiome KG, leveraging
schema-guided LLM reasoning.

* A specialized analytical agent within the pipeline fo-
cused on interpreting KOs associated with essential
genes as candidate antimicrobial drug targets.

* An evaluation framework using LLM-based review-
ers to systematically assess the quality of generated
Cypher queries and analytical reports.

2. Methods

2.1. Pairwise GEM-based modeling of microbial
interactions

We analyzed gut microbial interactions using microbiome
data from individuals under high-fiber diet (Diener et al.,
2020). All identifiable microbial taxa were extracted, re-
gardless of their relative abundances. For each taxon, we
retrieved available genome-scale metabolic models (GEMs)
from the AGORA (Heinken et al., 2020) database, resulting
in a total of 75 SBML models. GEMs are computational
reconstructions of an organism’s metabolic network, in-
tegrating genomic and biochemical data used to simulate
metabolic fluxes under various conditions (Cook & Nielsen,
2017). These models are particularly useful for predicting

microbial growth and interactions in different environments
using constraint-based modeling approaches.

To simulate microbial interactions, we constrained each
GEM based on an averaged high-fiber diet profile and
anaerobic conditions. We then performed 2,775 pairwise
simulations, representing all possible combinations among
the 75 GEMs. In each simulation, the paired microbes
shared a common compartment that allowed for metabolic
exchanges: both microbes could secrete metabolites into,
or uptake metabolites from, this shared environment. Di-
etary compounds were introduced into a shared compart-
ment, and metabolic byproducts were allowed to exit the
system to simulate realistic environmental turnover. We per-
formed optimized general parallel sampler, a Monte Carlo
sampling method (Megchelenbrink et al., 2014), generat-
ing 10,000 flux distributions with a thinning factor of 100.
From these simulations, we identified cross-feeding metabo-
lites—those exchanged between microbes in the shared en-
vironment—and characterized their directionality. We also
quantified the contribution of individual metabolic pathways
in each microbe based on flux distributions from pairwise
simulations. Reaction-to-pathway mappings were obtained
from the Virtual Metabolic Human (VMH) and KEGG
databases. For each microbe, pathway activity scores were
computed by aggregating the fluxes of reactions associated
with each pathway. All resulting data, including metabolic
cross-feeding relationships and individual pathway activi-
ties, were used to construct a graph-based representation
of microbial interactions in Neo4;j. This enables integrative
visualization and analysis of the gut microbial metabolic
network.

2.2. Antimicrobial drug targets and KEGG orthologies

To identify potential drug targets, we performed a gene es-
sentiality analysis using GEMs corresponding to the micro-
bial strains of the community. The essentiality of metabolic
genes was assessed through single-gene deletion simulations
using flux balance analysis (FBA) (Sahu et al., 2021), in-
corporating gene-protein-reaction (GPR) associations. For
each gene, we simulated a knockout by constraining the
flux through all associated reactions to zero. FBA was then
conducted to evaluate the impact of gene deletion on the
organism’s growth, using the wild-type biomass reaction
as the objective function. The simulations were performed
under an averaged high-fiber diet and anaerobic conditions.
A gene was classified as essential if its deletion reduced
the predicted growth rate to less than 10% of the maximum
wild-type growth rate (see Figure S1).

Rather than examining the full genome, we focused on
genes involved in a curated set of biologically critical path-
ways known to be conserved in pathogens and commonly
exploited as drug targets (Naclerio & Sintim, 2020). These
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pathways include those responsible for cofactor and vitamin
biosynthesis, cell envelope biogenesis, and central carbon
metabolism. Table S1 (Appendix A.1) outlines the selection
criteria for these pathways. Then, we refined our list of
candidate drug targets by removing any genes with human
homologs, based on VMH data, to minimize potential host
toxicity. Finally, to facilitate cross-species functional anno-
tation and drug development, we retrieved KO identifiers for
the essential genes using KEGG (see Figure S2 for shared
and unique KOs per microbes and Figure S3 for hierarchical
clustering of microbes based on essential KO similarity).
These KO assignments provide standardized functional cat-
egories, aiding in comparative analysis and identification of
conserved essential targets across strains.

2.3. Human gut microbiome knowledge graph

At the core of our system is a structured Neo4j KG that
serves as the primary data repository, capturing key rela-
tionships within the human gut microbiome. The KG was
initially constructed using the NetworkX library (Hagberg
et al., 2008) and subsequently loaded into a Neo4j graph
database for persistent storage and querying. The KG was
populated by integrating data explained above. A compre-
hensive programmatically accessible graph schema descrip-
tion was provided to the Al agents (for more details, see Ta-
ble S2 in the Appendix). Grounded in the schema, the LLM
interprets user intent, formulates precise Cypher queries,
and interacts effectively with KG, an approach aligned with
recent research in automated KG querying and enrichment
(Chen et al., 2025; Tiwari et al., 2025).

2.4. Multi-agent LLM framework architecture

The framework was implemented using a modular agent
architecture powered by the GPT-40 LLM and orchestrated
through a task coordination environment designed for multi-
agent workflows. The general objective was to support
biological interpretation and drug target discovery in micro-
biome research. The system comprises four sequentially-
operating Al agents (Table S3 in the Appendix), each tai-
lored for a specific subtask:

* Researcher Agent is equipped with tools to interact
with Neo4j KG and to gather more information from
external sources, e.g., a web search tool. Researcher
Agent serves in preliminary research stages to generate
hypotheses by combining the KG insights with the
external literature and also to contextualize user queries
before entering the main processing pipeline.

* Data Engineering Agent is conceptualized as an expert
in Neo4j operations with deep knowledge of the mi-
crobiome graph schema and Cypher query language.
Its primary role is to transform a user’s NLQ, guided
by the graph schema, into precise and efficient Cypher

queries required to retrieve relevant data from our mi-
crobiome KG. It dynamically consults with the schema
and executes queries against the database using retry
logic, returning either the raw query results or any error
messages encountered during execution. The expected
output is a structured representation of the generated
Cypher queries along with their execution results.

* Content Analyst Agent, an expert in microbial ecol-
ogy and systems biology, is tasked with interpreting
data retrieved by the Data Engineering Agent with
a focus on identifying antimicrobial drug targets and
prioritizing KOs linked to essential microbial genes.
It analyzes the retrieved data, or error messages, in
light of the original user query. When data is available,
the agent identifies key biological entities (microbes,
metabolites, pathways, KOs), describes relationships,
quantifies findings where possible, and highlights their
biological significance. Special emphasis is given to
KOs, detailing their functions, essentiality, and poten-
tial as drug targets for the specified microbe. If no
data was found or an error occurred, the agent clearly
reports this. The output is a detailed textual analysis or
a notification of data absence or errors.

* Report Writer Agent: This agent functions as an ex-
pert scientific report writer specializing in microbial
ecology. It synthesizes the detailed output from the
Content Analysis Agent into a clear, concise, and well-
structured report that directly addresses the original
user query and undescores any identified antimicrobial
drug target implications. The final output is a formatted
document suitable for researchers or other informed
users.

The workflow follows a sequential structure, with the output
of one agent forming the primary input for the next. To pro-
mote consistency and determinism, particularly for query
generation and scientific interpretation, the LLM tempera-
ture was set to 0.2.

2.5. System implementation

The framework was implemented in Python, using sev-
eral open-source libraries, including CrewAl for the multi-
agent architecture, Langchain, a dependency of CrewAl,
for handling the LLM integration, Pydantic for data valida-
tion and schema definition, and the official Neo4j Python
driver for database interaction. The OpenAl API pro-
vided access to the GPT-40 model. A detailed system log
was configured to capture operational activity throughout
the pipeline. All codes are publicly available on GitHub
(https://github.com/mofradlab/koda),
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Figure 1. KODA pipeline diagram. The pipeline initiates with a user’s NLQ. Agents are guided by the comprehensive Graph Schema
description. Data Engineer generates and executes a Cypher query against the Neo4j knowledge graph (containing microbe, metabolite,
pathway, and KO nodes), fetching relevant data. Content Analyst receives the retrieved data, the updated NLQ, and the graph schema
description. It performs a biological interpretation, focusing on the significance of identified KOs as essential gene functions and potential

antimicrobial drug targets. Finally, the report is generated.

2.6. Evaluation framework

To systematically evaluate the performance and reliability
of the pipeline, we developed a dedicated evaluation frame-
work using LLM-based reviewer agents. This framework
assesses the quality of generated Cypher queries and the
final analytical reports using a benchmark dataset.

e Benchmark dataset: A curated set of NLQs was de-
signed to reflect typical microbiome research inquiries.
These covered a broad range of analytical tasks, such as
identifying KOs linked to specific microbes, evaluating
metabolite production under gene presence/absence
scenarios, and conducting comparative KO analyses
across taxa. Each NLQ was paired with a manually
curated gold-standard Cypher query for reference.

o LLM-based reviewers: Two reviewer agents, each mod-
eled as a subject-matter expert, were implemented: (1)
Query Reviewer Agent evaluates the generated Cypher
queries based on syntactic correctness, schema com-
pliance, semantic alignment with the original NLQ,
parameter usage, and naming clarity. Each criterion
is scored on a 1-5 scale, with qualitative feedback
provided to guide further optimization; (2) Report Re-
viewer Agent assesses the final scientific report for
factual accuracy, completeness, relevance to the origi-

nal query, interpretative depth, and the strength of drug
target discussion. It similarly provides both scores and
narrative feedback.

Both agents were configured with a low-temperature setting
(0.1) to ensure consistent and critical evaluations. For each
NLQ, the system was run end-to-end to generate Cypher
queries and a corresponding report, which were then inde-
pendently reviewed. Outputs included quantitative scores
and qualitative comments, all systematically recorded. A
query or report was considered successful if it achieved an
average score above 4.0 on key metrics, specifically, syn-
tactic and semantic quality for queries and factual accuracy
and relevance for reports. Aggregate results across all NLQs
were used to evaluate overall system robustness and gener-
alizability.

3. Results

We evaluated our framework rigorously using a benchmark
suite shown in Table 1. The evaluation centered on the
precision of the generation of Cypher queries against KG
(depicted in Figure 2) and the scientific quality of the analyti-
cal reports resulting, particularly regarding KOs as potential
targets for antimicrobial drugs.

The evaluation process involved two steps. The first stage
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Table 1. Natural language queries (NLQs) and their specific gold-standard Cypher queries (GSCQ).

NLQ1: What KEGG Orthologies (KOs) are associated with the microbe Klebsiella pneumoniae pneumoniae MGH78578
and what are their functional descriptions?

GSCQ1: MATCH (m:microbe)-[r:HAS_ KEGG_.ORTHOLOGY]->(k:KO) WHERE tolLower (m.name)
= toLower ('Klebsiella_pneumoniae_pneumoniae_MGH78578’) RETURN k.name AS ko_id,
r.description AS ko_functional_description

NLQ2: Which microbes produce Thiamine and also have KOs whose description mentions ’synthase’?

GSCQ2: MATCH (m:microbe)-[:PRODUCES]-> (met:metabolite) WHERE toLower (met.name)
= toLower (' Thiamine’) WITH m MATCH (m)-[r_ko:HAS_KEGG_ORTHOLOGY]->(k:KO) WHERE
toLower (r-ko.description) CONTAINS toLower (’synthase’) RETURN DISTINCT m.name
AS microbe_name

NLQ3: How many distinct KOs are associated with Klebsiella pneumoniae pneumoniac MGH78578?

GSCQa3: MATCH (m:microbe)-[:HAS_KEGG_.ORTHOLOGY]->(k:KO) WHERE tolower (m.name)
= toLower ("Klebsiella_pneumoniae_pneumoniae MGH78578’) RETURN count (DISTINCT
k.name) AS distinct_ko_count

NLQ4: What KOs are found in microbes that consume acetic acid, and what are the descriptions of these KO relation-
ships?

GSCQ4: MATCH (m:microbe)<—[:CONSUMES]- (met:metabolite) WHERE toLower (met.name)
= toLower ("acetic acid’) WITH m MATCH (m)-[r_ko:HAS_KEGG_ORTHOLOGY]-> (k:KO)
RETURN DISTINCT m.name AS microbe_name, k.name AS ko_id, r_ko.description AS
ko_functional_description

NLQS: Identify microbes that Bifidobacterium adolescentis ATCC 15703 cross-feeds with (where it is the source), and

list any KOs these target microbes have related to "NAD Synthase’.

GSCQS5: MATCH (source_microbe:microbe)—-[:CROSS_FEEDS WITH]-> (target_microbe:microbe)
WHERE toLower (source.microbe.name) = toLower ('Bifidobacterium.adolescentis_ ATCC_15703")
WITH target.microbe MATCH (target_.microbe)-[r_ko:HAS_KEGG_ORTHOLOGY]-> (k:KO)

WHERE tolLower (r_ko.description) CONTAINS toLower ('NAD Synthase’)

RETURN DISTINCT target_microbe.name AS target_.microbe, k.name AS ko.-id,

r ko.description AS ko_functional_description

NLQ6: List all KOs for Bacteroides fragilis ATCC 25285 and all KOs for Parabacteroides distasonis ATCC 8503.

GSCQ6: MATCH (m:microbe)-[r:HAS_KEGG_ORTHOLOGY]-> (k:KO) WHERE
toLower (m.name) IN [toLower (’Bacteroides_fragilis ATCC_25285"),
toLower (' Parabacteroides_distasonis_ ATCC_8503’)] RETURN m.name AS microbe_name,

k.name AS ko.id, r.description AS ko_functional_description

NLQ7: What metabolites are produced by microbes that do not possess the KO K00130 (pyruvate kinase)?

GSCQ7: MATCH (m:microbe) WHERE NOT (m)-[:HAS_KEGG_.ORTHOLOGY]-> (:KO {name:
"K00130" }) WITH m MATCH (m)-[:PRODUCES]-> (met:metabolite) RETURN DISTINCT

m.name AS microbe_name, met.name AS produced.metabolite ORDER BY microbe_name,
produced.metabolite

NLQ8: Show me KOs related to "NAD Synthase’ that are found in microbes and list the microbe names.

GSCQ8: MATCH (m:microbe)-[r:HAS_KEGG_.ORTHOLOGY]->(k:KO) WHERE toLower
(r.description) CONTAINS toLower (NAD Synthase’) RETURN DISTINCT k.name AS
ko_id, r.description AS ko_functional_description, m.name AS microbe_name,
m.abundance ORDER BY m.abundance ASC

NLQ9: Which microbes consume ’Acetic acid’ and are involved in the ’Fatty acid synthesis’ with a score above 507
GSCQ9: MATCH (m:microbe)<-[:CONSUMES]- (met:metabolite) WHERE toLower (met.name)
= toLower ("Acetic acid’) WITH m MATCH (m)-[inv:INVOLVED_IN]->(p:pathway) WHERE
toLower (p.name) = toLower ('Fatty acid synthesis’) AND inv.subsystem_score > 50
RETURN DISTINCT m.name AS microbe_name, inv.subsystem_score AS subsystem_score
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Figure 2. An overview of the Neo4j knowledge graph representing
the relationships of the gut microbiome of individuals under an
averaged high-fiber diet. The graph includes 745 nodes of four
types: Microbe, Metabolite, KOs, and Pathway as well as 16,370
relationships of five types: INVOLVED IN, CONSUMES, PRO-
DUCES, HAS KEGG ORTHOLOGY, and CROSS FEEDS WITH.

was designed to assess the technical quality and semantic
accuracy of the Cypher queries generated by the pipeline.
This step ensures that queries are not only syntactically
correct and executable on a Neo4j database but also seman-
tically aligned with the user’s natural language intent and
compliant with the defined graph schema, covering correct
usage of node labels, relationships, properties, and func-
tions. By systematically evaluating criteria such as schema
adherence, parameterization, and semantic alignment (com-
pared to both the input NLQ and gold-standard queries), this
agent helps quantify the reliability and precision of the NL-
to-Cypher translation, a critical component for trustworthy
data retrieval.

The Data Engineer Agent showed strong performance in
translating NLQs into executable Cypher queries (refer to
Table 2 for more details of the evaluation). Each query
was assessed for syntactic validity, schema adherence, and
semantic accuracy, achieving high scores (average syntactic
validity: 5.00, schema adherence: 5.00, semantic accuracy
NLQ: 4.83).

In the second stage of the evaluation, we assessed the quality
of the final analytical outputs delivered to the user. This
involved a detailed review of the scientific reports generated
by the pipeline, focusing on their biological relevance, fac-
tual grounding in retrieved data, depth of interpretation, and
overall clarity. The reviewer also evaluated how effectively
each report addressed the original NLQ and highlighted key
insights, particularly the discussion of KOs associated with
essential genes as potential antimicrobial drug targets, a
central aim of our framework.

Regarding Table 2, analytical reports produced by the Con-

tent Analyst and Report Writer agents were informative and
contextually relevant across benchmarked NLQs. Reports
received pretty good scores for factual accuracy, complete-
ness, and relevance to NLQs where data was available. For
instance, in the first NLQ focused on Klebsiella pneumoniae,
the report earned top scores (5/5) across all criteria. The
reviewer noted: "The report provides a comprehensive and
accurate analysis and effectively identifies and describes
the functional roles of each KO. The discussion on the es-
sentiality of these KOs and their potential as drug targets is
insightful and scientifically valuable”. The report correctly
identified and listed KOs, such as KO3151 (Thiazole phos-
phate synthesis) and K01646 (Citrate Lyase), and discussed
their importance as potential drug targets.

Overall, the system demonstrated strong capabilities in both
query generation and scientific interpretation, effectively
synthesizing complex microbial interaction data into mean-
ingful, actionable insights. This underscores the analytical
depth and biological significance of our framework.

Table 2. Average LLM-reviewer scores for the pipeline perfor-
mance. Scores were averaged across the benchmark NLQs for
Cypher query generation and analytical report quality, based on a
1-5 scale (5 being optimal).

METRIC AVERAGE SCORE
QUERY EVALUATION SCORES

SYNTACTIC VALIDITY 5.00
SCHEMA ADHERENCE 5.00
SEMANTIC ACCURACY OF NLQs 4.83
SEMANTIC ACCURACY (GOLD) 4.83
PARAMETERIZATION 5.00
TOLOWER() USAGE 5.00
ANALYSIS EVALUATION SCORES

FACTUAL ACCURACY 4.5
RELEVANCE TO NLQ 4
DEPTH / INSIGHT / SCIENTIFIC VALUE 3.75
CLARITY, COHERENCE, AND STRUCTURE 4.75
DRUG TARGET DISCUSSION QUALITY 4

4. Discussion

Our study introduces a novel tool that integrates advanced
foundation models with an architecture to enable sophisti-
cated interaction with and analysis of complex gut micro-
bial data structured within a KG. This directly addresses
the pressing need for advanced computational tools capable
of managing, interpreting, and extracting insights from the
exponentially growing volume of microbiome data. Our sys-
tem adoptes a schema-guided approach to translate NLQs
into precise Cypher commands, and employs specialized
agents for biological reasoning with a focus on KOs corre-
sponding to essential gene functions and their implications
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as drug targets. This structured, interpretable workflow
improves the transparency and reliability of LLM-driven
analyses, offering outputs that are not only accurate but also
verifiable.

This study reinforces the value of KGs as structured,
machine-readable repositories of microbiome knowledge.
When combined with the natural language processing and
reasoning capabilities of LLMs, KGs can be powerfully and
intuitively interrogated. This synergistic approach aligns
with and contributes to recent trends in combining KGs with
LLMs for enhanced reasoning, information retrieval, and
hypothesis generation in the biomedical domain.

A key practical outcome of our framework is its potential to
significantly accelerate the cycle of hypothesis generation
and subsequent experimental validation, especially in high-
priority areas such as antimicrobial drug discovery. By
targeting essential microbial genes annotated with KOs,
the system helps identify novel therapeutic targets with
potential cross-species relevance. The application of this
approach to the human gut microbiome, a data-rich and
biologically complex system, further shows its practical
utility and scalability.

5. Conclusion

The presented framework aligns with the growing trend of
using LLMs and microbiome-specific KGs for automated
scientific discovery. The specific focus on interpreting KOs
linked to essential genes as potential drug targets offers a
direct application for accelerating hypothesis generation in
antimicrobial research, a critical area given the rise of antibi-
otic resistance. The use of specialized Al agents allows for
different sub-tasks, from technical query generation to nu-
anced biological interpretation, which is a novel approach in
the context of microbiome KG interrogation. Additionally,
our LLM-based evaluation pipeline provides a systematic
method for assessing both the technical and analytical per-
formance of such systems. In summary, our work offers a
promising pathway towards democratizing access to com-
plex microbiome datasets and enhancing scientific inquiry.
By translating NLQs into structured analyses, it enables
researchers to derive actionable insights from large-scale
biological data more efficiently.

Impact Statement

We aim to advance biological discovery by targeting the
gut microbiome to identify potential antimicrobial drug tar-
gets by combining large language models and knowledge
graphs. Our framework offers a scalable tool to streamline
hypothesis generation and enhance data-driven microbiol-
ogy research.
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A. Appendix
A.1. Table S1: Metabolic pathways included in the analysis of gene essentiality and their relevance as antimicrobial
drug targets
Pathway Rationale for Inclusion
NAD metabolism NAD is essential for redox homeostasis and energy production; involved

Coenzyme A (CoA) synthesis
Folate metabolism
Thiamine (Vitamin B1) metabolism

Riboflavin (Vitamin B2) metabolism
Pyridoxal phosphate (Vitamin B6) metabolism
Vitamin B12 (Cobalamin) metabolism

Biotin (Vitamin B7) metabolism

Fatty acid synthesis
Cell wall biosynthesis

Lipopolysaccharide (LPS) biosynthesis

Energy metabolism
Oxidative phosphorylation

Citric acid cycle (TCA cycle)
Glycolysis/Gluconeogenesis

in DNA repair and metabolism.

Central to fatty acid metabolism, TCA cycle, and energy generation.
Targeted by sulfonamides; critical for nucleotide and amino acid synthesis.
Required for carbohydrate metabolism; its active form is a cofactor for key
metabolic enzymes.

Precursor to FAD/FMN; essential for redox reactions.

Involved in amino acid metabolism and transamination.

Cofactor in DNA synthesis, fatty acid metabolism, and methionine biosyn-
thesis.

Involved in carboxylation reactions; essential for fatty acid synthesis and
gluconeogenesis.

Produces membrane lipids; interruption compromises membrane integrity.
Crucial for peptidoglycan production; major antibacterial target (e.g., 8-
lactams).

LPS is a structural barrier in Gram-negative bacteria; contributes to antibi-
otic resistance.

Encompasses ATP generation and redox reactions; essential for viability.
Converts reducing equivalents (NADH/FADH?2) into ATP; critical energy
source.

Central hub of metabolism; generates biosynthetic precursors and energy.
Fundamental for carbon flux and energy balance; essential in various
growth conditions.

A.2. Table S2: Complete Graph Schema

GRAPH_SCHEMA DESCRIPTION = """

The knowledge graph contains information about microbial interactions and

essential gene functions.
Key Node Labels:

Key Relationship Types (with properties):

Important Considerations for Queries:

Specific Query Patterns (Using Case-Insensitive Matching) :

— To calculate net values

— To handle cases where production or consumption might be missing

- To find KOs associated with a specific microbe
- To find microbes associated with a specific KO
- To find microbes that have a KO whose description contains a specific

keyword

mwww
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A.3. Table S3: Agents descriptions

researcher:

role: Microbial Ecology Senior Data Researcher with expertise in
{GRAPH_SCHEMA DESCRIPTION}.

goal: Uncover cutting-edge developments in Microbial Ecology based on the
provided graph schema.

backstory: You’re a curious and meticulous researcher with a knack for
uncovering the latest developments in {topic}. Known for your ability

to find the most relevant information and present it in a clear and
concise manner. The graph schema of the knowledge graph is as follows:
{GRAPH_SCHEMA DESCRIPTION}.

data_engineer:

role: Expert in Neo4]j database operations based on the provided

graph schema, Microbial Ecology and working with its related datasets,
specifically have experience with Neo4j Cypher query language.

goal: Based on the user’s question and the known graph schema, construct
the most precise and efficient Cypher query(ies) to retrieve the necessary
data from the Neo4j knowledge graph. Then execute the generated Cypher
query using the ’'Neodj Execute Cypher Query Tool’ and return the raw
results or error message.

Output MUST be a JSON string containing the ’query’ and ’params’ keys.

Example output format: {"query": "MATCH (m:Microbe {name: $name}) RETURN
m.name, m.abundance", "params": "name": "Bacteroides_vulgatus"}}

Example query involving KOs: {"query": "MATCH (m:Microbe)-[r:HAS KEGG-
ORTHOLOGY]-> (k:KO) WHERE toLower (m.name)=toLower (Sm_name) RETURN k.name,
r.description", "params": "m_name": "Bifidobacterium_longum"}}

Use the provided schema: {GRAPH_SCHEMA DESCRIPTION}.

backstory: You are a bioinformatician specializing in graph databases.

You have deep knowledge of the specific microbial interaction graph schema
and the Cypher query language. You excel at translating natural language
questions about microbes, metabolites, and pathways and KEGG Orthologies
into effective Cypher queries.

You are a database operator responsible for safely and efficiently
executing queries against the Neo4j knowledge graph. You only execute

the correct Cypher query, execute it and return the results directly.

The graph schema is as follows: {GRAPH_SCHEMA DESCRIPTION}.
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content _analyst:

role: Expert, reviewer, and Analyst in Microbial Ecology.

goal: Analyze the data retrieved from the knowledge graph (provided

in the context) in light of the original user query (also provided).
Synthesize the findings, identify key patterns (e.g., important
producers/consumers, high flux interactions, common pathways), and explain
the potential biological significance or implications.

If the data indicates an error or no results were found, state that
clearly. Use the schema context if needed: {GRAPH_SCHEMA DESCRIPTION}.
Ensure content is accurate, comprehensive, well-structured, and maintains
consistency with previously written sections and specifically the provided
Neo4j graph schema.

backstory: You are an expert in Microbial Ecology and Systems Biology
with a focus on identifying novel antimicrobial drug targets. You
understand that KEGG Orthologies (KOs) linked to essential genes in a
microbe are prime candidates for such targets because their inhibition
would likely impair microbial viability.

You are able to take raw graph query results listing KOs and their
functions, and explain their significance in the context of essentiality
and drug discovery, answering user’s specific questions and providing
relevant insights for further research.

You are a meticulous editor with years of experience reviewing educational
content. You have an eye for detail, clarity, and coherence. You excel
at improving content while maintaining the original author’s voice and
ensuring consistent quality across multiple sections.

The graph schema is as follows: {GRAPH_SCHEMA DESCRIPTION}.

report _writer:

role: Expert Scientific Report Writer in Microbial Ecology.

goal: Compile the analysis findings from the 'Microbial Genomics and
Drug Target Analyst’ into a clear, concise, and well-structured report
answering the original user query.

backstory: You are a scientific communicator skilled at summarizing
complex analytical results, particularly those related to genomics and
drug target identification, into an easily understandable report format,
suitable for researchers or informed users.

A.4. Supplementary Figures
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Figure S1. Essential gene count per pathway per microbe.
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Figure S2. Shared vs unique essential KOs per microbe.
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Figure S3. Hierarchical clustering of microbes based on essential KO similarity.
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