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Abstract— Physics-guided deep learning (PG-DL) has
emerged as a powerful tool for accelerated MRI reconstruction,
while often necessitating a database of fully-sampled measure-
ments for training. Recent self-supervised and unsupervised
learning approaches enable training without fully-sampled data.
However, a database of undersampled measurements may not
be available in many scenarios, especially for scans involving
contrast or recently developed sequences, necessitating new
methodology for subject-specific PG-DL reconstructions. A
main challenge for developing subject-specific PG-DL methods
is the large number of parameters, making it prone to over-
fitting. Moreover, database-trained models may not generalize
well to unseen measurements that differ in terms of SNR,
image contrast, sampling pattern, and anatomy. In this work,
we propose a zero-shot self-supervised learning approach to
perform subject-specific PG-DL reconstruction to tackle these
issues. The proposed approach splits available measurements
for each scan into three disjoint sets. Two of these sets are
used to enforce data consistency and define loss during training,
while the last set is used to establish an early stopping criterion.
In the presence of models pre-trained on a database, we
show that the proposed approach can be adapted as subject-
specific fine-tuning via transfer learning to further improve
reconstruction quality.

I[. INTRODUCTION

Lengthy acquisition times in MRI remain a challenge,
necessitating the use of accelerated imaging techniques.
Conventional acceleration methods, such as parallel imaging
[1] or compressed sensing [2] are commonly used, but
the acceleration rates they achieve may be limited due to
noise amplification and/or residual aliasing artifacts in the
reconstruction. Recently, deep learning (DL) based methods
have emerged for accelerating MRI further [3], [4]. Among
DL methods, physics-guided DL (PG-DL) approaches have
received attention due to their robustness and improved
reconstruction quality [3]-[6], while explicitly incorporating
the physics of the encoding matrix to the neural network via
a procedure known as algorithm unrolling [7].

Despite its effectiveness as an accelerated MRI reconstruc-
tion strategy, a number of challenges remain for DL methods.
Most training paradigms require large databases of fully-
sampled data, which may not be available. Transfer learning
has been proposed to enable training with smaller fully-
sampled datasets [8], while unsupervised training approaches
[9], [10] have been proposed to tackle challenges associated
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with not having fully-sampled data in some applications. In
particular, self-supervised learning via data undersampling
(SSDU) has shown that similar reconstructions to supervised
PG-DL can be achieved while training only on a database of
undersampled measurements [9].

Although the aforementioned unsupervised learning strate-
gies enable training from undersampled data, they still re-
quire a database for training in order to learn the large
number of parameters for the neural network. However, in
some MRI applications involving time-varying physiological
processes, dynamic information such as time courses of
signal changes, contrast-related uptake or breathing patterns
may differ substantially between subjects, making it difficult
to generate high-quality databases of sufficient size for the
aforementioned strategies. Furthermore, database training in
general brings along concerns about generalization [11].
Particularly, for MRI reconstruction, this may translate to
training and test dataset mismatches on image contrast, sam-
pling pattern, SNR, vendor, and anatomy. For instance, the
fastMRI transfer track challenge shows that the performance
of pretrained models degrades due to distribution shift or
changes in acquisition parameters at inference time [12].
Moreover, bias due to datasets lacking examples of rare
and/or subtle pathologies increases the risk of generalization
failure [11], [13]. A recent work [14] proposed to fine-tune
a pre-trained neural network for MRI reconstruction in a
subject-specific manner using transfer learning. However, it
required a pre-trained model and lacked an early stopping
criterion to avoid overfitting [14], [15].

In this work, we develop a zero-shot self-supervised learn-
ing (ZS-SSL) strategy to enable subject-specific training of
PG-DL methods and tackle the challenges associated with
database training. We propose a holdout self-supervision
method, where the acquired data is split into at least three
disjoint sets, which are respectively used only in the PG-
DL neural network, to define the training loss, and to
establish an early stopping strategy to avoid overfitting. In
cases where a database-trained network may be available, we
also propose a subject-specific fine-tuning approach, which
combines the concept of transfer learning and our zero-shot
self-supervised learning to achieve improved reconstruction
quality and further reduce computational complexity.

II. MATERIALS AND METHODS

A. Problem Formulation and PG-DL Reconstruction

Let yo be the undersampled noisy data from a multi-coil
MRI system, where €2 denotes the under-sampling pattern,
and Eq : CM*N — CP be the forward encoding operator



that includes a partial Fourier matrix sampling the locations
in 0 and coil sensitivites [1]. The inverse problem for
accelerated MRI reconstruction is given as

arg m)zn lya — Eax||3 + R(x), (1)

where R(-) is a regularizer. Using standard optimization
methods [7], Eq. can be decoupled into two sub-
problems, one involving a regularization step and the other
forming a data consistency (DC) step. In PG-DL methods,
such iterative optimization algorithms are unrolled for a
fixed number of iterations [7]. Neural networks are used to
implicitly solve the regularization subproblem, while the DC
sub-problem is solved by conventional linear approaches [4].

B. Supervised Learning for PG-DL Reconstruction

In supervised PG-DL, training is performed using fully-
sampled data. Let y' ; be fully-sampled k-space for subject i
and f(y&, ES; 0) be the output of the unrolled network for
sub-sampled k-space y?,, where the network is parameterized
by 6. End-to-end training minimizes [4], [9]
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where NV is the number of samples in the training database,
Et,, is the fully-sampled encoding operator that transform
network output to k-space and L(-,-) is a loss function.

C. Self-Supervised Learning for PG-DL Reconstruction

Unlike supervised learning, SSDU performs training with-
out fully-sampled data by only utilizing acquired measure-
ments [9]. In SSDU, the acquired undersampled data indices,
 are split into two disjoint sets © and A as Q = © U A.
Here, © is the set of k-space locations that is used within the
DC units of the PG-DL network during training, while A is a
set of k-space locations used in the loss function. End-to-end
training is performed using a loss function of the form

N
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Recently, this method was also extended to a multi-mask
setting, which was shown to substantially improve the per-
formance at the cost of increased training time [16].

D. Proposed Zero-Shot Learning for PG-DL Reconstruction

SSDU uses 2-way partitioning of acquired measurements
for training and defining the loss. The use of this 2-way
partitioning for subject-specific learning was explored in our
previous work [14]. However, it was observed that training
had to be stopped early to avoid overfitting. This is similar
to other single-image learning strategies, such as deep image
prior (DIP) [15]. In both cases, it is difficult to develop a
stopping strategy with a 2-way partition. Thus, in this work,
we propose a zero-shot self-supervised learning (ZS-SSL)
approach for subject-specific reconstruction with a well-
defined early stopping criterion.

Acquired
k-space locations: Q

Validation Mask, T’

Training Mask, ® Loss Mask, A

Fig. 1: ZS-SSL splits acquired measurements into three disjoint
sets, used for data consistency in the unrolled network, for defining
loss, and for validation to establish an early stopping criterion.

1) ZS-SSL Formulation and Training : ZS-SSL extends
the partitioning in SSDU to a 3-way split, which is reminis-
cent of the machine learning framework of using a validation
set in addition to testing and training sets for hyperparameter
tuning or for regularization by early stopping. We define the
following partition for €2:

Q=0UuUAUT, 4

where LI denotes a disjoint union, i.e. ©, A and I are pairwise
disjoint (Figure [T). Similar to Section © is used in
the DC units of the unrolled network, and A is used to
define the loss in k-space. The third partition I" is a set of
acquired k-space indices that are set aside for defining a k-
space validation loss. The proposed zero-shot learning for
MRI reconstruction uses two types of losses at each epoch
during training. The training loss for ZS-SSL can be written
as:

min £(yh, BA(f(v6, Eb:9)) ). 5)
This is now supplemented by a new k-space validation loss,
which tests the generalization performance of the trained
network on the k-space validation partition I'. For the I

epoch, where the learned network weights are specified by
0", this loss is given by:

cW = L(y%, Ef (f(yorr Eoyrs 0(1)))). ©

Note that in Eq. (6), the network output is calculated by
applying the DC units on Q\I' = O UA, i.e. all the acquired
points outside of I' to get a more accurate representation
of its generalizability performance. The key idea is that
while the training loss will decrease over epochs, the k-
space validation loss will start increasing once overfitting
starts to be observed. Thus, we monitor the loss in Eq. @)
during training to define an early stopping criterion to avoid
overfitting. Let L represent the epoch in which the training
needs to be stopped. Then at inference time, the network
output is calculated as f(yq,Eq;0")), ie. all acquired
points are used to calculate the final network output [9].

2) Multi-Mask Augmentation for ZS-SSL Training : 7.S-
SSL can be extended to multi-mask setting for improved
performance [16], by fixing a k-space validation partition
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Fig. 2: a) Representative training and validation losses for ZS-SSL with multiple K € {1, 10,25, 50} masks on a coronal PD knee dataset
using uniform undersampling at R=4. For K > 1 the validation loss forms an L-curve, whose breaking point (red arrows) dictates the
early stopping criterion for training. b) Corresponding ZS-SSL reconstruction results. At K = 1, without a clear stopping criterion, visible
artifacts remain, highlighting the overfitting. For K > 1, ZS-SSL shows good reconstruction quality without residual artifacts.

I’ C Q, and performing the multi-masking on Q\I". Formally,
O\T is partitioned K times such that

Q\F:@kUAk, kE{l,...7K}, (7)

where Ay, © and I' are pairwise disjoint. This leads to the
following training loss

K
- o1
0= argmin - ;ﬁ(y/\j, Ep, (f(y@k7E@k;0)))

with the k-space validation loss

Cnese = £(yr Er(fyorr, Eari 00))). @)

Note that this training strategy has a K-fold longer training
time compared to that of Eq. [5]

3) ZS-SSL Scan Specific Fine-Tuning via Transfer Learn-
ing: DL approaches are typically trained on large databases
in a supervised manner. Similarly, for smaller datasets, a
network pre-trained on a large database can be re-trained
with supervision via transfer learning [8]. In both cases,
the learned models are fixed during inference and used
to reconstruct undersampled measurements that may have
different acquisition parameters than the pre-trained model.
Hence, the models may not generalize well during inference,
leading to sub-optimal reconstructions [13]. In the presence
of pre-trained models, proposed ZS-SSL can be used to fine-
tune this model using subject-specific transfer learning. This
approach, referred to as ZS-SSL-TL uses the network pre-
trained on a different database as the starting point and
optimizes the network parameters for the scan of interest
using the objective function in Eq. [§] Furthermore, using
pre-trained model weights as starting point leads to faster
convergence and reduced computational time.

E. Knee MRI Datasets

Fully-sampled coronal proton density (Coronal PD) knee
datasets [17] were obtained from the fastMRI database. Rel-
evant imaging parameters: matrix size = 320 x 368, in-plane
resolution = 0.49 x 0.44 mm?. Fully-sampled knee datasets
were retrospectively subsampled with an acceleration rate of
4 by keeping 24 lines of autocalibrated signal (ACS) from
center of k-space using a uniform undersampling pattern.

FE. Implementation Details

All PG-DL approaches were trained end-to-end using 10
unrolled iterations. Conjugate gradient method and a ResNet
structure were employed in DC and regularizer units of the
unrolled network, respectively [9]. Coil sensitivity maps were
generated from central 24x24 ACS using ESPIRiT. End-to-
end training was performed with a normalized ¢;-f5 loss
(Adam optimizer, learning rate=>5 - 10—, batch size=1) [9].

The stopping criterion for the proposed ZS-SSL was
investigated on slices from the knee dataset. I' was selected
from the acquired measurements €2 using a uniformly ran-
dom selection with |T'|/|Q2] = 0.2. The remaining acquired
measurements Q\I" were retrospectively split into disjoint 2-
tuples multiple times based on uniformly random selection
with the ratio p = |Ag|/|Q\I| = 0.4 for Vk € {1,...,K}.
Network parameters for ZS-SSL were initialized randomly
with a normal distribution. The supervised PG-DL network
was used for comparison purposes, as well as the starting
point for ZS-SSL-TL. CG-SENSE was also implemented for
further comparisons.
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a representative slice from Coronal PD dataset. ZS-SSL with TL
converges faster compared to ZS-SSL (red arrows). b) Reconstruc-
tion results corresponding to the loss curves. Both ZS-SSL and
ZS-SSL-TL removes residual artifacts.
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Flg 4: Reconstruction results for a representative test slice using uniform undersampling at R = 4. CG-SENSE suffers from major
artifacts. Supervised PG-DL improves reconstruction quality, but suffers from residual artifacts for this particular test slice. ZS-SSL and
ZS-SSL-TL successfully reduce these artifacts, while the latter achieves the highest visual and quantitative reconstruction quality.

III. RESULTS

Figure [2h shows representative subject-specific training
and validation loss curves at R=4 of ZS-SSL for K €
{1,10,25,50}. As expected, training loss decreases with
increasing epochs for all K. Validation loss for K = 1
decreases without showing a clear breaking point for stop-
ping. For K > 1, validation loss forms an L-curve, and
the breaking point of the L-curve is used as the stopping
criterion. Figure Zb shows reconstructions corresponding to
the K values using the proposed stopping criterion. For
K > 1, good reconstruction quality is observed with no
visible residual aliasing artifacts. For K = 1, without a clear
breaking point for stopping criterion, reconstructions show
lower visual and quantitative quality. K = 10 is used for the
remainder of the study.

Figure Bh and b show loss curves and reconstruction re-
sults on a representative slice with and without transfer learn-
ing. As expected, ZS-SSL-TL converges faster compared
to ZS-SSL, substantially reducing the total training time.
Both ZS-SSL and ZS-SSL-TL remove residual artifacts,
while the latter shows visually and quantitatively improved
reconstruction performance.

Figure @] shows reconstruction results for another test
slice. CG-SENSE suffers from major residual artifacts.
While supervised PG-DL further improves reconstruction
performance, it still suffers from residual artifacts in this
slice, marked by red arrows. Both ZS-SSL and ZS-SSL-
TL achieves artifact-free reconstruction despite being trained
on a single slice, while the latter expectedly achieves better
quantitative metrics due to transfer learning.

IV. CONCLUSION

In this study, we proposed a zero-shot self-supervised PG-
DL approach for subject-specific MRI reconstruction with a
well-defined stopping criterion that avoids overfitting. ZS-
SSL was also used to fine-tune a pretrained model via
transfer learning for improved reconstruction quality and
reduced risk of generalization at a lower computational cost.
Results on knee datasets showed that the proposed ZS-SSL
achieves comparable or better image quality than supervised
PG-DL despite being trained on a single dataset.
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