
Under review as a conference paper at ICLR 2022

NOT ALL REGIONS ARE WORTHY TO BE DIS-
TILLED: REGION-AWARE KNOWLEDGE DISTILLATION
TOWARDS EFFICIENT IMAGE-TO-IMAGE TRANSLA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent progress in image-to-image translation has witnessed the success of gener-
ative adversarial networks (GANs). However, GANs usually contain a huge num-
ber of parameters, which lead to intolerant memory and computation consumption
and limit their deployment on edge devices. To address this issue, knowledge dis-
tillation is proposed to transfer the knowledge learned by a cumbersome teacher
model to an efficient student model. However, previous knowledge distillation
methods directly train the student to learn teacher knowledge in all the spatial re-
gions of the images but ignore the fact that in image-to-image translation a large
number of regions (e.g. background regions) should not be translated and teacher
features in these regions are not worthy to be distilled. To tackle this challenge, in
this paper, we propose Region-aware Knowledge Distillation which first localizes
the crucial regions in the images with attention mechanism. Then, teacher features
in these crucial regions are distilled to students with a region-wise contrastive
learning framework. Besides distilling teacher knowledge in features, we fur-
ther introduce perceptual distillation to distill teacher knowledge in the generated
images. Experiments with four comparison methods demonstrate the substantial
effectiveness of our method on both paired and unpaired image-to-image trans-
lation. For instance, our 7.08× compressed and 6.80× accelerated CycleGAN
student outperforms its teacher by 1.36 and 1.16 FID scores on Horse→Zebra
and Zebra→Horse, respectively. Codes have been released in the supplementary
material and will be released on GitHub soon.

1 INTRODUCTION

Excellent breakthroughs have been attained with state-of-the-art generative adversarial networks
(GANs) in generating high-resolution, high-fidelity, and photo-realistic images and videos (Shaham
et al., 2019; Brock et al., 2018; Goodfellow et al., 2014; Isola et al., 2017; Zhu et al., 2017). Due to its
powerful ability of representation and generation, GANs have evolved to the most dominant model in
image-to-image translation. However, the advanced performance of GANs is always accompanied
by tremendous parameters and computation, which have limited their usage in resource-limited
edge devices such as mobile phones. To address this issue, knowledge distillation is proposed to
improve the performance of an efficient student model by mimicking the features and prediction of
a cumbersome teacher model. Following previous research on image classification (Romero et al.,
2015; Tung & Mori, 2019), some recent works try to directly apply knowledge distillation to image-
to-image translation but their improvements are not significant (Li et al., 2020a;c).

In this paper, we argue that the reason leading to failure in previous image-to-image translation
knowledge distillation methods is the spatial redundancy of teacher features. More specifically, in
image-to-image translation, usually only a few regions of the images are required to be translated.
For example, in the well-known Horse→Zebra task, only the regions of horses need to be translated
while the regions of background should be preserved. Even in some tasks where all the regions
in images are required to be translated, there are usually some more crucial regions. However,
previous knowledge distillation methods directly employ the student to mimic teacher features in all
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the regions while ignoring the fact that not all regions are worthy to be distilled. Since the student
has much fewer parameters than their teachers, they are not able to learn all teachers knowledge.
As a result, the student should pay more attention to knowledge distillation in the crucial regions
instead of learning all the regions with the same priority. Unfortunately, different from the other
vision tasks such as object detection, there is no annotations on crucial regions in image-to-image
translation, especially unpaired image-to-image translation. Thus, it is still challenging to localize
and make good use of these crucial regions.

Input Attention Select Regions with 

Large Attention
Crucial Regions

Figure 1: The paradigm of localizing crucial re-
gions in region-aware knowledge distillation on
Horse→Zebra with CycleGANs.

To tackle this challenge, in this paper
we propose a novel knowledge distillation
method referred to as Region-aware Knowl-
edge Distillation. Different from previous
knowledge distillation methods, the teacher
model in our method not only transfers its
knowledge in features to students but also
tells the student which region should be
learned. Concretely, we first propose to lo-
calize the crucial regions in images with a parameter-free attention mechanism, where the attention
value of a region is decided by its mean absolute value across the channel dimension. As pointed out
in previous works (Zhou et al., 2016; Zhang & Kaisheng, 2021; Zagoruyko & Komodakis, 2017),
this attention mechanism can reveal the importance of each region with no requirements on addi-
tional supervision. Then, we select several the regions with the large attention values as the crucial
regions in an image. As shown in Figure 1, in Horse→Zebra, this method can localize the regions
of horses while filtering the regions of background. Since no additional labels and parameters are
required, it can be easily utilized in all kinds of datasets and models.

After localizing the crucial regions in the image, we then apply a region-wise contrastive learning
framework to distill teacher knowledge in crucial regions. Motivated by previous works on con-
trastive learning and knowledge distillation (Park et al., 2020; Tian et al., 2019), instead of directly
minimizing the distance between students and teachers in the feature space, we propose to maxi-
mize the mutual information between features of students and teachers in the same crucial region,
while pushing away the features of students and teachers in different crucial regions. Concretely,
during the training period, the features of students and teachers in the same crucial region are con-
sidered as a positive pair and their features in different crucial regions are regarded as negative pairs.
Then, by optimizing these pairs with InfoNCE loss (Oord et al., 2018), the distance between positive
pairs is minimized while the distance between negative pairs is maximized, which transfers teacher
knowledge in the crucial regions to the student.

Besides distilling teacher knowledge in its features, motivated by the well-known perceptual loss
utilized in image super-resolution (Johnson et al., 2016), we introduce the perceptual distillation to
distill teacher knowledge in the generated images. Instead of directly training the students to mimic
the generated images from teachers pixel by pixel, we apply an ImageNet pre-trained model to
extract the semantic features of the generated images from students and teachers and then minimize
their L2-norm distance. Compared with the previous pixel-level distillation methods, perceptual
distillation is based on differences between high-level image feature representations extracted from
the pre-trained models and thus it is more robust and efficient.

In summary, we mainly make the following contributions in this paper.

• We propose Region-aware Knowledge Distillation which first localizes the crucial regions
in an image depending on the attention values and then distills teacher knowledge in these
crucial regions with a region-wise contrastive learning framework.

• We propose perceptual distillation to transfer teacher knowledge in the generated images.
Instead of learning the generated images pixel by pixel, the student is trained to generate
images which has similar semantic features to images generated from teachers.

• Experiment results with four comparison methods have demonstrated the effectiveness of
our method on both paired and unpaired image-to-image translation in terms of both quan-
titative and qualitative results. For instance, our 7.08× compressed and 6.80× accelerated
CycleGAN student outperforms its teacher by 1.36 and 1.16 FID scores on Horse→Zebra
and Zebra→Horse, respectively.
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2 RELATED WORK

2.1 GANS FOR IMAGE-TO-IMAGE TRANSLATION

Generative Adversarial Network (GAN), which is composed of a generator for image generation
and a discriminator for discriminating the real and generated images, have become the most pop-
ular model in image-to-image translation (Goodfellow et al., 2014). Pix2Pix is proposed to apply
conditional GAN (Mirza & Osindero, 2014) to the task of image-to-image translation on paired
datasets (Isola et al., 2017). Then, Pix2PixHD improves the resolution of generated images with
multi-scale neural networks and boundary maps (Wang et al., 2018b). Based on these efforts, Wang
et al. further propose Vid2Vid to perform video-to-video translation (Wang et al., 2018a).

A more challenging task in this domain is how to perform image-to-image translation on unpaired
datasets. CycleGAN, DualGAN, and DiscoGAN are proposed to address this issue by regularizing
the training of generators with the cycle consistency loss (Zhu et al., 2017; Yi et al., 2017; Kim
et al., 2017). Recently, Park et al. propose to replace the cycle consistency loss with a patch-
wise contrastive loss, which minimizes the mutual information between the corresponding input and
output patches (Park et al., 2020). Besides image style transfer, GANs have also been utilized in the
other tasks, such as single image super resolution (Ledig et al., 2017; Wang et al., 2018c), image
deblurring (Kupyn et al., 2018) and so on.

The tremendous storage and computation consumption in GAN have promoted the research on its
compression. Wang et al. propose a unified GAN compression framework with knowledge distil-
lation, channel pruning, and quantization (Wang et al., 2020). Li et al. propose to compress GANs
with once-for-all net architecture search and naive feature knowledge distillation (Li et al., 2020a).
Shu et al. propose to investigate and prune the unimportant weights in GANs with a co-evolutionary
approach (Shu et al., 2019). Recently, Jin et al. introduce an inception residual block into generators
and prune it with a one-step pruning algorithm (Jin et al., 2021).

2.2 KNOWLEDGE DISTILLATION

Knowledge distillation has become one of the most effective techniques for model compression (Bu-
ciluǎ et al., 2006; Hinton et al., 2014). It first trains a cumbersome teacher model and then transfers
its knowledge to a lightweight student model. Previous knowledge distillation usually aims to dis-
till the knowledge in the logits (softmax outputs) (Hinton et al., 2014; Zhang et al., 2018). Then,
abundant methods have been proposed to distill the knowledge in the features and its variants, such
as attention (Zagoruyko & Komodakis, 2017; Zhang & Kaisheng, 2021) and the gram matrix (Yim
et al., 2017). Recently, some research has been proposed to distill the relation between different sam-
ples (Park et al., 2019; Tung & Mori, 2019) and pixels (Liu et al., 2020; Li et al., 2020b). Another
popular trend in knowledge distillation is to maximize the mutual information between students and
teachers with contrastive learning. Tian et al. first propose the contrastive representation distilla-
tion framework which regards the representation of the same image from students and teachers as
a positive pair in contrastive learning. Then Chen et al. extend this idea with the Wasserstein dis-
tance (Chen et al., 2020). In this paper, we extend this framework into the patch-wise contrastive
learning (Park et al., 2020) for knowledge distillation on image-to-image translation with GANs.

In the last several years, there has been some research proposed to apply knowledge distillation to
the compression of GANs. Li et al. propose to improve the performance of student generators with
the naive feature distillation (Li et al., 2020a). Then, Li et al. propose the semantic relation pre-
serving knowledge distillation, which computes and distills the relation between different patches in
generators (Li et al., 2020c). Jin et al. propose to distill the knowledge in features with global ker-
nel alignment which enables knowledge distillation without additional adaptation layers (Jin et al.,
2021). Recently, Liu et al. propose content-aware GAN compression to compress unconditional
GANs, in which the main content such as human faces in an image is first parsed with an additional
parser network and then distilled to students. However, the training of the parser network needs
additional annotation, which is rare in real-world application.
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Figure 2: The overview of Region-aware Knowledge Distillation (best viewed in color). (a) Step-1:
Find the crucial regions in the to be translated image by applying the attention module to teacher
features. Note that the attention module is composed of an absolute value operation and a mean
operation on the channel dimension. Then, K regions with the largest attention values are selected
as the crucial regions (here K=3). (b) Step-2: Based on the crucial regions found in Step-1, select
student and teacher features on these crucial regions and discard the features in unimportant regions.
Student features and teacher features in the same region are considered as a positive pair (such as
� and � ) and the others are regarded as negative pairs (such as � and �). All these pairs are
optimized in a contrastive learning framework with InfoNCE loss.

3 METHODOLOGY

3.1 REGION-WISE CONTRASTIVE LEARNING FOR KNOWLEDGE DISTILLATION

Given two set of images X and Y , image-to-image translation aims to find a mapping function
F : RC×H×W → RC×H×W which maps images in X to Y . Note that C,H,W indicates the
number of channels, height and width of the image, respectively. Usually, F can be divided into an
encoder Fenc followed by a decoder Fdec. Given an image x, then its intermediate feature can be
formulated asFenc(x) ∈ Rc×w×h where c,w and h denotes its number of channels, width and height
respectively. For convenience, we reshape it into Rc×wh, where Fenc(x)[:, i] indicates the feature of
i-th region. The corresponding index set of regions can be formulated as S = {1, 2, 3, ..., wh}.
In this paper, we adopt a noise contrastive estimation framework (Oord et al., 2018) to maximize the
mutual information between the features between students and teachers. Given a query v, a positive
key v+ and a set of negative keys {v−1 , v

−
2 , ..., v

−
N}. The InfoNCE loss can be formulated as

LInfoNCE(v, v+, v−) = − log

[
exp(v · v+/τ)

exp(v · v+/τ) +
∑N

n=1 exp(v · v−i /τ)

]
, (1)

where τ is a temperature hyper-parameter. Regarding the features of students and teachers at the
same region as positive pairs and the other features as the negative pair, we can extend InforNCE to
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a region-wise contrastive distillation framework, which can be formulated as

LRegionDis(X ,FSenc,FTenc) = Ex∼X

wh∑
i=1

LInfoNCE(FSenc(x)[:, i]︸ ︷︷ ︸
Query

, FTenc(x)[:, i]︸ ︷︷ ︸
Positive Key

, {FTenc[:, j] | j ∈ S, j 6= i})︸ ︷︷ ︸
Negative Keys

,

(2)
where the scripts S and T are utilized to distinguish students and teachers.

3.2 REGION-AWARE KNOWLEDGE DISTILLATION

It is generally acknowledged that the attention value of each pixel shows its importance (Zhang &
Kaisheng, 2021). In this paper, we define the attention value of a region as its absolute mean value
across the channel dimension, which can be formulated as

A : Rc×wh abs()−−→ Rc×wh mean(dim=1)−−−−−−−→ Rwh. (3)

Then, given a teacher feature, FTenc(x), its attention map can be denoted as A(FTenc)(x). Then, we
select K regions with the largest attention values as the crucial regions in this image. Denote the
index set of regions as PK , then the feature of the crucial regions can be formulated as G(x) =
stack({Fenc[:, i]}, i ∈ Pk) ∈ Rc×K . Denote its index set as S′ = {1, 2, ...,K}, then our region-
aware knowledge distillation can be formulated as

LRegionAware(X ,GS ,GT ) = Ex∼X

K∑
i=1

LInfoNCE(GS(x)[:, i], GT (x)[:, i], {GT [:, j] | j ∈ S′, j 6= i}),

(4)

It is observed that the main difference between Equation 2 and Equation 4 is that Equation 4 applies
knowledge distillation to only the K crucial regions found by A instead of all the regions.

3.3 PERCEPTUAL DISTILLATION
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Figure 3: The overview of perceptual distillation.
A ImageNet pre-trained model is utilized to ex-
tract the features of images generated by students
and teachers. Then, the distance between these
extracted features are minimized for distillation.

Perceptual distillation is proposed to dis-
till teacher knowledge in the generated im-
ages. Usually, the native knowledge distilla-
tion methods directly minimize the L1 norm
distance between each pixel, which can be for-
mulated as

LNaive Distill = Ex∼X
∣∣FS(x)−FT (x)

∣∣
1

(5)

In contrast, motivated by previous research in
image super-resolution, in this paper we pro-
pose perceptual distillation, which minimizes
the difference between students and teachers
on the semantic features extracted by a Im-
ageNet pre-trained model. Denote the pre-
trained model as J (·), then its loss function can be formulated as

LPercep. Distill = Ex∼X
∣∣J ◦ FS(x)− J ◦ FT (x)

∣∣
2
. (6)

Based on Equation 4 and 6, now we can formuate the overall loss function as

Loverall = α · LRegionAware + β · LPercep. Distill + LOrigin, (7)

where LOrigin indicates the origin training loss of GANs. α and β are two hyper-parameters in-
troduced to balance different loss functions. Sensitivity studies on them have been conducted and
shown in Appendix D. For the image-to-image translation models which have two generators such
as CycleGAN, the distillation loss are applied to the two directions, respectively.

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

Models, Datasets and Comparison Methods We evaluate our method on three image-to-image
translation models including CycleGAN, Pix2Pix and Pix2PixHD, and two datasets including
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Horse⇐⇒Zebra and Edges2Shoes. Horse⇐⇒Zebra is an unpaired image-to-image translation
dataset which translates images of horses to zebras and vice versa. Edges2Shoes is a paired image-
to-image dataset which maps the edges of shoes to their natural images. Besides, experiments on
Cityscapes have also been conducted and shown in Appendix A. The students in our experiments
have the same neural network depth but fewer channels compared with their teachers. Four GAN
knowledge distillation methods are utilized for comparison. Note that some of these methods in-
cludes both neural network pruning and knowledge distillation and we only compare our method
with the knowledge distillation parts in these comparison methods for fairness. To obtain more
reliable results, we run 8 trials for each experiment and report their average and standard deviation.

Evaluation Settings Fréchet Inception Distance (FID), which measures the distance between the
distribution of features extracted from the real and the synthetic images, is utilized as the metric for
all the experiments. A lower FID indicates the synthetic images have better quality. Please refer to
the codes in the supplementary material for more details.
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Figure 4: Qualitative results on Horse→Zebra and Zebra →Horse. A 15.81× compressed Cycle-
GAN is utilized as the student. Results on Edges2Shoes are shown in Appendix B.

4.2 EXPERIMENT RESULTS

Quantitative Result Quantitative results of our methods compared with four knowledge distilla-
tion methods have been shown in Table 1. It is observed that: (a) Our method leads to consistent and
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significant performance improvements (FID reduction) on various datasets and models. On average,
it leads to 12.65 and 5.08 FID reduction on unpaired and paired image-to-image translation tasks,
respectively. (b) Our method outperforms the other four kinds of image-to-image translation knowl-
edge distillation methods by a large margin. On average, it outperforms the second-best method
by 7.77 FID. (c) Not all the knowledge distillation methods work well on GAN for image-to-image
translation. Directly applying the naive Hinton knowledge distillation (Hinton et al., 2014) leads to
very limited and even sometimes negative effects. For example, it leads to 1.91 FID increment on the
Pix2Pix student for the Edges2Shoes task. (d) Compared with paired image-to-image translation,
there are more performance improvements on unpaired image-to-image translation with our method.

Table 1: Quantitative comparison between different knowledge distillation methods. Numbers in
the brackets indicate the ratio of compression and acceleration. A lower FID indicates better per-
formance. ∆ indicates the relative increment compared with the student trained without knowledge
distillation (higher is better). Each experiment is averaged from 8 trials.

Models Dataset #Params (M) FLOPs (G) Method Metric

FID↓ ∆ ↑

CycleGAN Horse→Zebrea

11.38 49.64 Teacher 61.34±4.35 –

0.72 (15.81×) 3.35 (14.82×)

Origin Student 85.04±6.88 –
Hinton et al. 2014 84.08±3.78 0.96
Li and Lin et al. 2020a 83.97±5.01 1.07
Li and Jiang et al. 2020c 81.74±4.65 3.30
Jin et al. 2021 82.37±8.56 2.67
Ours 71.04±6.21 14.00

1.61 (7.08×) 7.29 (6.80×)

Origin Student 70.54±9.63 –
Hinton et al. 2014 70.35±3.27 0.18
Li and Lin et al. 2020a 68.58±4.31 1.96
Li and Jiang et al. 2020c 68.94±2.98 1.60
Jin et al. 2021 67.31±3.01 3.23
Ours 59.98±5.48 10.56

CycleGAN Zebra→Horse

11.38 49.64 Teacher 138.07±4.01 –

0.72 (15.81×) 3.35 (14.82×)

Origin Student 152.67±5.07 –
Hinton et al. 2014 148.64±1.62 4.03
Li and Lin et al. 2020a 151.32±2.31 1.35
Li and Jiang et al. 2020c 151.09±3.67 1.58
Jin et al. 2021 149.73±3.94 2.94
Ours 142.39±4.40 10.28

1.61 (7.08×) 7.29 (6.80×)

Origin Student 141.86±1.57 –
Hinton et al. 2014 142.03±1.61 -0.17
Li and Lin et al. 2020a 141.32±1.27 0.54
Li and Jiang et al. 2020c 141.16±1.31 0.70
Jin et al. 2021 140.98±1.41 0.88
Ours 136.91±2.90 15.76

Pix2Pix Edges2Shoes

54.41 6.06 Teacher 59.70±0.91 –

13.61 (4.00×) 1.56 (3.88×)

Origin Student 85.06±0.98 –
Hinton et al. 2014 86.97±3.49 -1.91
Li and Lin et al. 2020a 83.63±3.12 1.43
Li and Jiang et al. 2020c 84.01±2.31 1.05
Jin et al. 2021 84.39±3.62 0.67
Ours 77.51±3.28 7.55

Pix2PixHD Edges2Shoes

45.59 48.36 Teacher 41.59±0.42 –

1.61 (28.23×) 1.89 (25.59×)

Origin Student 44.64±0.54 –
Hinton et al. 2014 45.31±0.63 -0.67
Li and Lin et al. 2020a 44.03±0.41 0.61
Li and Jiang et al. 2020c 43.90±0.36 1.28
Jin et al. 2021 43.97±0.17 1.21
Ours 42.03±0.20 2.61
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Figure 5: The visualization of the learned similarity between student features in one region and
teacher features in all regions. For each line, we plot the similarity when six different regions
of students are selected. Three of these regions come from horses and the others come from the
background. A Lighter region indicates a higher similarity.

This may be caused by the fact that there is less labeled supervision in unpaired image-to-image
translation and thus the knowledge from teachers is more helpful. (e) A high ratio of acceleration
and compression can be achieved by replacing the teacher model with the distilled student model.
For example, our method leads to 7.08× compression and 6.80× acceleration on CycleGAN stu-
dents in terms of the number of parameters and FLOPs. The compressed students outperform their
teachers by 1.36 and 1.16 FID on Horse→Zebra and Zebra→Horse, respectively.

Qualitative results Qualitative results of our method on Horse→Zebra and Zebra→Horse have
been shown in Figure 4. It is observed that the student model trained without knowledge distillation
always can not translate the whole body of horses and zebras. In contrast, the student model trained
with our methods does not have this issue. Moreover, on Horse→Zebra, the student model trained
by our method sometimes outperforms its teacher on the effect of removing the stripes in zebras.

5 DISCUSSION

5.1 ABLATION STUDY

Table 2: Ablation studies of the three main modules in
our method are Horse→Zebra with CycleGAN students.
Each experiment is averaged from 8 trials. Reported re-
sults are FID (lower is better).

(a) Crucial Region × × X × X
(b) Contrastive Distillation × X X × X
(c) Perceptual Distillation × × × X X

Horse→Zebra 70.54 65.53 61.10 67.52 59.98

There are mainly three modules in the
proposed region-aware knowledge dis-
tillation, including (a) localizing the
crucial regions in images with attention
mechanism (b) performing knowledge
distillation with region-wise contrastive
learning, and (c) distilling knowledge
in the generated images with perceptual
distillation. A series of ablation stud-
ies have been conducted to demonstrate
their effectiveness. As shown in Table 2:
(i) The basic framework of applying contrastive learning to knowledge distillation is beneficial even
without the other two modules. (ii) By only distilling the features in the crucial regions, 5.01 FID
reduction can be achieved. (iii) Individual usage of perceptual distillation leads to 3.02 FID reduc-
tion and applying it to the other two modules reduces FID from 61.10 to 59.98. These observations
demonstrate that each module in our method is indispensable.
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Ablations on Distilling the Crucial Regions To further show the effectiveness of only distilling
the crucial regions, we have compared the following three schemes: (a) distilling regions with the
largest attention (our scheme) (b) distilling the regions with the least attention and (opposite to
our scheme) (c) randomly choose regions for knowledge distillation. Our experiments show that
the three schemes achieve 59.98, 72.54, and 65.53 FID on Horse→Zebra with 7.08× compressed
CycleGAN students, respectively. It is observed that our scheme (a) and its opposite scheme (c)
achieves the best and the worst performance, respectively. These results show that there is a positive
relation between the attention value of a region and the benefits from distilling this region.

5.2 VISUALIZING THE SIMILARITY BETWEEN STUDENTS AND TEACHER

The similarity of features from students and teacher have been visualized in Figure 5. For each line,
we select student features of six different regions in an image. Note that three of the student regions
are selected from the body of the horses and the other three regions comes from the background.
Then, we compute the similarity between teacher features in all the regions and the student feature
in the selected region. It is observed that when computing the similarity with respect to student
features in regions of horses, teacher regions in the horse body have a much higher value than the
background regions. When computing the similarity with respect to student features of background
regions, teacher regions of the horses become are and teacher regions in the background are light.
This result shows that there is a high similarity between student features and teacher features on the
same location, which demonstrates the effectiveness of knowledge distillation.

5.3 KNOWLEDGE DISTILLATION CAN STABILIZE GAN TRAINING

0 50 100 150 200

100

150

200

250 with distillation
w/o distillation

0 50 100 150 200
140

160

180

200

220
with distillation
w/o distillation

Training  Epoch

F
ID

 o
n

 H
o

rs
e 

  
  

 Z
eb

ra

F
ID

 o
n

 Z
eb

ra
  

  
  

 H
o

rs
e

Training  Epoch

Figure 6: The FID curve of CycleGAN students
trained with and without knowledge distillation on
Horse→Zebra and Zebra→Horse.

The training of GAN is usually not sta-
ble due to their complex network archi-
tectures and loss functions. In this paper,
we find that the proposed knowledge dis-
tillation can alleviate this problem. Fig-
ure 6 shows the FID curves of Cycle-
GAN students in different training epochs
on Horse→Zebra and Zebra→Horse. It
is observed that (a) Both the training of
students with and without knowledge dis-
tillation are stable in the early several
epochs. (b) After the early epochs, the
training of the student without knowledge distillation becomes unstable and sometimes collapses
(marked with circles). In contrast, the distilled student is more stable during the whole training
period. Its undulations are much smaller than the student trained without knowledge distillation.

6 CONCLUSION

Motivated by the observation that a large number of regions in image-to-image translation are not
worthy to be distilled, this paper proposes region-aware knowledge distillation. First, attention
mechanism is utilized to localize the crucial regions in the to be translated images. Then, a region-
wise contrastive learning framework is employed for knowledge distillation, which maximizes the
mutual information between the features of students and teachers in the same region. Besides, per-
ceptual distillation is also introduced to transfer teacher knowledge in the generated images. Abun-
dant experiments with four comparison methods have been conducted to demonstrate the effective-
ness of our method. On average, 12.65 FID and 5.08 FID reduction can be observed on unpaired
and paired image-to-image translation tasks, respectively. Our 7.08× compressed and 6.80× ac-
celerated CycleGAN student outperforms its teacher by 1.36 and 1.16 FID on Horse→Zebra and
Zebra→Horse respectively. In the discussion period, detailed ablation studies results have further
shown the effectiveness of each module in our method. Besides, visualization results and FID curves
during the training period show that our knowledge distillation method enables students to learn the
similarity between different regions and stabilize the training of GANs.
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Table 3: Quantitative comparison between different knowledge distillation methods on Cityscapes
with Pix2Pix. Numbers in the brackets indicate the ratio of compression and acceleration. A higher
mIoU indicates better performance. ∆ indicates the relative increment compared with the student
trained without knowledge distillation (higher is better). Each experiment is averaged from 8 trials.

Models Dataset #Params (M) FLOPs (G) Method Metric

mIoU↑ ∆ ↑

Pix2Pix Cityscapes

54.41 96.97 Teacher 46.51±0.32 –

13.61 (4.00×) 24.90 (3.88×)

Origin Student 41.35±0.22 –
Hinton et al. 2014 40.49±0.41 -0.86
Li and Lin et al. 2020a 41.52±0.34 0.17
Li and Jiang et al. 2020c 41.77±0.30 0.42
Jin et al. 2021 41.29±0.51 -0.06
Ours 42.41±0.25 1.06

w/o KD

with KD

Input

Ground 

Truth

Figure 7: Qualitative results on Edges2Shoes. “w/o” indicates “without”.

A EXPERIMENTS ON CITYSCAPES

Experiments on Cityscapes with Pix2Pix are shown in Table 3. Following previous works (Jin et al.,
2021), we adopt the mIoU of a pre-trained segmentation model on the generated images as the
performance metric on Cityscapes. A high mIoU indicates better performance. It is observed that
the Pix2Pix student trained with our method leads to 1.06 mIoU improvements compared with the
baseline, which outperforms the second-best knowledge distillation method by 0.64 mIoU.

B QUALITATIVE RESULTS ON EDGES2SHOES

Qualitative results on Edges2Shoes are shown in Figure 7. It is observed that the distilled student
outperforms the student trained without knowledge distillation by a large margin. The distilled
student has much better details such as the shoe string and the highlight on the shoes.

C TRICKS: RANDOM PROJECTION HEADS

As pointed out by many previous works on contrastive learning, the architecture and training meth-
ods of the projection heads have a significant influence on the performance of contrastive learning. In
this paper, we fix the parameters of projection head and do not train them during the whole training
period. Surprisingly, we find this trick can stabilize student training and lead to better performance.
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Figure 8: Sensivity studies on the three hyper-parameters with CycleGAN on Horse→Zebra.

D SENSITIVITY STUDY

There are mainly three hyper-parameter α, β and K introduced in our method. α and β are uti-
lized to balance the magnitude of different loss functions and K is the number of crucial regions
selected in an image. The sensitivity studies results on Horse→Zebra with CycleGAN students have
been shown in Figure 8. It is observed that all our method is not sensitive to the choice of hyper-
parameters. Even in the worst siatuation, our methods still outperforms the baseline (70.54 FID) and
the second-best method (67.31 FID) by a clear margin.
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