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Abstract

Traditional Markov Chain Monte Carlo sampling
methods often struggle with sharp curvatures, in-
tricate geometries, and multimodal distributions.
Slice sampling can resolve local exploration inef-
ficiency issues, and Riemannian geometries help
with sharp curvatures. Recent extensions enable
slice sampling on Riemannian manifolds, but they
are restricted to cases where geodesics are avail-
able in a closed form. We propose a method that
generalizes Hit-and-Run slice sampling to more
general geometries tailored to the target distribu-
tion, by approximating geodesics as solutions to
differential equations. Our approach enables the ex-
ploration of the regions with strong curvature and
rapid transitions between modes in multimodal dis-
tributions. We demonstrate the advantages of the
approach over challenging sampling problems.

1 INTRODUCTION

Sampling from a differentiable unnormalized log-density
defined on a Euclidean space is a core problem in machine
learning and statistics. While gradient-based Markov Chain
Monte Carlo (MCMC) methods have proven effective in
many scenarios, they often face significant challenges when
the target distribution exhibits complex geometry (sharp
curvature) or multimodal behavior. The two core challenges
are largely addressed with complementary techniques, with
little work on algorithms that excel for targets that are both
multimodal and complex in shape.

Complex shapes and sharp curvatures are often addressed
by using a suitably chosen Riemannian geometry within
the sampling algorithms [Girolami and Calderhead, 2011].
Instead of operating in a Euclidean space and metric, the
samplers carry out the necessary operations using a met-
ric that adapts to the curvature of the parameter space. In

practice, the methods follow flows induced by the metric,
in most cases by numerical integration, and consequently
the methods are sometimes called geodesic methods as in
our title. Various practical metrics and sampling algorithms
have been shown to improve the sampling of targets with
strong curvature [Girolami and Calderhead, 2011, Byrne
and Girolami, 2013, Lan et al., 2015, Hartmann et al., 2022,
2023, Williams et al., 2024], albeit always with increased
computational cost.

Multimodality, in turn, is most commonly addressed by tem-
pering or diffusion techniques [Earl and Deem, 2005, Chen
et al., 2024]. These methods use a tempered (smoothed)
version of the target to improve exploration over multiple
modes, intuitively changing the problem itself so that the
modes are connected with areas of sufficient probability. At
a high degree of tempering these methods can efficiently
explore the different modes, but low tempering is needed for
accurate sampling within the modes, necessitating adaptive
or parallel sampling with different degrees of tempering.
The efficiency of parallel tempering depends on the swap
acceptance rate between adjacent temperatures, which can
decrease in high dimensions if the temperature schedule
is not well-tuned [Woodard et al., 2009]. Diffusion-based
approaches, in turn, require careful choice of the noise sched-
ule to balance exploration and accuracy [Song and Ermon,
2019, Chen et al., 2024]. Unlike tempering, diffusion meth-
ods can achieve smooth transitions between modes without
explicitly maintaining a set of parallel chains, but the accep-
tance rate of noisy samples can be low [Chen et al., 2024].

Even though the two approaches are efficient in addressing
the two challenges separately, there is very little work on
samplers designed for the general setup where both diffi-
culties may arise simultaneously. One could consider e.g.
parallel tempering in a Riemannian metric — see Byrne
and Girolami [2013] for a rare example in this intersec-
tion — but ideally we would like to address both aspects
using a common mechanism. This work explores one such
approach, developing a Riemannian sampler capable of ef-
ficiently exploring multiple modes, without any tempering
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for the target distribution. Instead, we seek to improve mode
exploration by changing the metric, in the spirit of the early
work by Lan et al. [2014] that developed a specific metric
solely for this purpose. Their metric, however, requires ex-
plicit identification and tracking of the modes and is more
like a conceptual demonstration, and we are not aware of
any other works aiming for efficient multimodal samplers
solely by the change of the metric.

We are motivated by the idealized slice sampler with com-
putable level sets. As noted by Durmus et al. [2023]: “This
means that the performance of the idealized slice sampler
is ignorant of the introduction of, e.g., multimodality, local
modes, or anisotropy as long as the volume of the level
sets is not modified.” This insight suggests that by modi-
fying the geometry of the problem to produce simpler or
more tractable level sets, the slice sampler can effectively
handle multimodal distributions. From a practical perspec-
tive, we build on the (Euclidean) Hit-and-Run slice sampler
by Bélisle et al. [1993], which at each iteration selects a
random direction and then samples from the resulting one-
dimensional distribution formed by the intersection of the
line and the slice. In effect, it transforms multi-dimensional
sampling into sequential one-dimensional sampling tasks,
but the overall sampler may be inefficient. Especially in
higher dimensions, the intersection with the slice can be
small for almost all directions Murray et al. [2010].

Both Habeck et al. [2023] and Durmus et al. [2023] recently
considered generalizations of the Hit-and-Run sampler for
Riemannian manifolds, replacing the lines with geodesics.
We build on the general algorithmic framework introduced
by Durmus et al. [2023] and adapt it to the task of sam-
pling from a distribution with a complex geometry. Specif-
ically, we begin by embedding the (Euclidean) sampling
space into a higher-dimensional space that incorporates the
target distribution’s geometric information, such as Fisher
information or Monge embedding [Hartmann et al., 2022].
This transforms the problem into sampling from a particular
Riemannian manifold where the target distribution corre-
sponds to the Hausdorff density (see Section 3). Note that
even though we leverage components proposed by Durmus
et al. [2023], our task is fundamentally more difficult. Their
starting point was sampling of a density on a known mani-
fold (e.g., a sphere) where the geodesics are exactly known,
whereas the complexity of our embedding manifold requires
us to approximate the geodesics using numerical integrators.

In this work, we propose a geodesic slice sampler applicable
for arbitrary Riemannian metrics, and discuss the choice of
the metric. In particular, we introduce two new computation-
ally efficient metrics. Both metrics improve sampling over
multimodal targets by, in a sense, pulling the modes closer
to each other; see Figure 1 illustrating this effect within the
slice sampler, as a function of a parameter λ controlling how
much the metric warps the space. In addition, we introduce
a meta-sampler similar to Tjelmeland and Hegstad [2001]

Figure 1: Illustration of the step-out procedure in Metric-
agnostic Geodesic Slice Sampler. The lines drawn with
different colors represent the Hausdorff density p(t) :=
pH(γ̂(x,v)(t)) (Eq. (1)) considering the Inverse Generative
metric for different values of λ (Eq. (4)). The step-out pro-
cedure chooses s ∼ Unif(0, p(0)) and sets randomly an
interval of length r − ℓ at t = 0 with left and right points
ℓ and r. While p(r) > p(s) it expands the right side of the
interval as r = r+w and for the left side while p(l) > p(s)
it does ℓ = ℓ − w. This expands the length of the initial
interval. As λ→ 0 the space shrinks due the properties of
the metric, making it easier for the step-out procedure to
jump to the distant mode.

that combines the proposed method with a separate sampler
for improved exploration of local modes.

We empirically demonstrate improved sampling over Eu-
clidean methods for complex targets, and highlight im-
proved mixing over multiple modes in high dimensional-
cases when compared against parallel tempering [Swendsen
and Wang, 1986, Łatuszyński et al., 2025] and the diffusive
Gibbs sampler by Chen et al. [2024] designed for address-
ing multimodality. Similar to previous Riemannian methods,
the algorithm shows good exploration and mixing, but has
slower iterations because of the numerical computation of
the geodesics.

2 BACKGROUND: SLICE SAMPLING

The classic work of Neal [2003] introduces slice sampling
as a method for generating samples by uniformly sampling
from the RD+1 manifold defined by the graph of the prob-
ability density. Let p(x) be an unnormalized continuous



target density that satisfies
∫
p(x) dx < ∞. Suppose that

direct sampling from p(x) is not feasible. We consider den-
sities where x ∈ RD with respect to the Lebesgue measure.

Idealized slice sampling defines a uniform distribution over
the volume under the graph of p(x) and generates samples
through the following two steps:

1. Sample s ∼ Unif(0, p(x)).

2. Sample x ∼ Unif(L(s)).

where the slice is given by L(s) := {x | p(x) > s}. For
special cases, such as log-concave or rotationally invari-
ant densities, the slice sampler has theoretical performance
guarantees [Natarovskii et al., 2021]. However, for more
complex distributions, drawing uniform samples from L(s)
is often impractical [Rudolf and Ullrich, 2018].

To address this, the step-out and shrinkage procedures are
used. Below, we provide an informal explanation of these
procedures. The full algorithm is detailed in the Appendix
(Algorithms 3 and 4). Both procedures were first introduced
by Neal [2003], but we adopt an equally valid modified
version of the shrinkage step as proposed by Durmus et al.
[2023]. For a moment, assume a univariate density p(x) and
a current position x ∈ R. The procedures are as follows:

The Step-Out Procedure The step-out procedure, illus-
trated in Figure 1, takes two parameters: the width w ∈ R
and maximum steps m ∈ N. Given the slice L(s), the goal
is to expand an interval around the current point x. Consider
the auxiliary function γx(t) = x+ t.

The initial left ℓ and right r points are set at a random
distance w apart. This is done by sampling u ∼ Unif(0, w)
and setting ℓ = −u and r = ℓ + w. To ensure that at
most m+ 1 expansion steps are performed (combined for
both directions), a random integer ι ∼ Unif({1, . . . ,m}) is
sampled. The right limit is expanded up to ι times, and the
left limit up to m+ 1− ι times.

The expansion proceeds as follows: The right limit r is
expanded by adding w until p(γx(r + w)) < s, meaning
γx(r + w) /∈ L(s). The left limit ℓ is expanded by subtract-
ing w until p(γx(ℓ− w)) < s, meaning γx(ℓ− w) /∈ L(s).
The procedure returns the updated interval (ℓ, r). We denote
it by Step-outw,m(s, γx).

The Shrinkage Procedure The shrinkage procedure se-
lects a sample from the interval (ℓ, r) by gradually reducing
its size until a point is found within L(s) ∩ (ℓ, r).

The interval J = (ℓ, r) is treated as a circular domain,
meaning that if we move past r, we continue from ℓ. The
procedure starts by sampling two points y and z uniformly
within (ℓ, r). If neither γx(y) or γx(z) fall inside L(s), the
interval is shrunk as follows:

• Form the interval (y ∧ z, y ∨ z). Update the circular

region by

J =

{
J ∩ (y ∧ z, y ∨ z), if 0 ∈ J,

J \ (y ∧ z, y ∨ z), if 0 /∈ J.

• Set y = z and update z ∼ Unif(J).

• This process repeats, each time reducing the size of the
interval, until γx(z) ∈ L(s).

We denote the procedure Shrinkl,r(s, γx). One complete
step of the slice sampler is:

1. Sample s ∼ Unif(0, p(x))

2. Obtain ℓ, r = Step-outw,m(s, γx)

3. Sample t∗ = Shrinkℓ,r(s, γx).

4. Set x = γx(t
∗).

Hit-and-Run One way to extend slice sampling to mul-
tivariate distributions is to combine it with Hit-and-Run
sampling, presented here following Bélisle et al. [1993].
Let SD−1(x) = {v ∈ RD : ∥v∥2 = 1}, and v ∼
Unif(SD−1(x)). An iteration of the whole sampler is:

• Obtain v ∼ Unif(SD−1(x)).

• Obtain a sample from the density evaluated on the
straight line (Euclidean geodesic)

t 7→ p(x+tv)/

∫
p(x+tv)dt.

When directly sampling a value t according the density
along a straight line t 7→ p(x+tv)/

∫
p(x+tv)dt is not

feasible, we can use slice sampling on t 7→ p(x+tv),
since it is an unnormalized univariate distribution. De-
fine γ(x,v)(t) = x+tv. The step-out procedure outputs
ℓ, r = Step-outw,m(s, γ(x,v)) and the shrinkage procedure
will return t∗ = Shrinkℓ,r(s, γ(x,v)). The new sample is
x = γ(x,v)(t

∗). This is called Hit-and-Run slice sampling
or hybrid slice sampling [Łatuszyński and Rudolf, 2014].
This method extends slice sampling to probability distribu-
tions defined over RD.

3 METHOD

Our main contribution is a geodesic slice sampler that can
accommodate arbitrary metrics. It extends the Hit-and-Run
slice sampler described above for non-Euclidean geome-
tries, similar to the recent works of Durmus et al. [2023] and
Habeck et al. [2023], but instead of leveraging closed-form
analytic geodesics of predefined manifolds we induce met-
rics using characteristics of the target density itself to guide
the sampling. Now the geodesics need to be approximated
by numerical integrators. This section explains the sampler
and a meta-sampler that combines the core method with



separate local sampler for improved efficiency for general
metrics, always using G(x) to denote the metric tensor. We
will discuss specific metrics in Section 4.

Straight-line Hit-and-Run sampling can be inefficient be-
cause proposals often move away from high-probability
regions [Murray et al., 2010]. To resolve this, we perform
slice sampling along geodesic curves that can accommo-
date the geometry of the target distribution. This improves
efficiency when the target distribution is highly curved or
multimodal; see Section 4.2. We are interested in sampling
problems defined in RD but allow using different plug-in
metrics (preferably using the target density information) to
enhance exploration.

The general problem can be cast as sampling from a distri-
bution defined on a Riemannian manifold where we adapt
the algorithm of Durmus et al. [2023] under general met-
rics. Alternatively, it can be seen as Hit-and-Run where
straight lines are replaced by curves that better wrap around
the level sets of the target density (given the metrics are
good enough). Because the metric is general, closed-form
geodesics are unavailable, so we must compute them with
numerical integrators. To correctly sample along geodesics,
we need three key components: Adjusting for the correct
density on the manifold, properly sampling directions using
the Riemannian metric, and solving the geodesic equations.

Hausdorff Density: To ensure we sample from the correct
distribution on the manifold with metric G(x), we must
account for the change in measure from the Euclidean space
to the manifold. The correct density is the Hausdorff density

pH(x) =
p(x)√
detG(x)

. (1)

The denominator adjusts for local volume distortion intro-
duced by the metric G(x), ensuring that the volume over
the manifold is preserved and hence maintaining proper
sampling behavior. See Appendix A.5 for further details.

Sampling from the Riemannian Unit Ball: Instead of
sampling a random direction in Euclidean space, we must
now sample from the unit geodesic ball under the Rieman-
nian metric, where we can directly use the method proposed
by Durmus et al. [2023]. Given a position x, a velocity
v is sampled as follows: First draw v ∼ N (0,G−1(x)),
and then normalize it to obtain a unit-length vector in the
Riemannian metric with:

v ← v

∥v ∥g
, where ∥v ∥g =

√
v⊤ G(x)v.

This ensures that the direction is uniformly distributed on
the unit sphere under the metric G(x). See Appendix A for
additional implementation details.

Approximating Geodesic Curves Given a sampled ve-
locity v, we need to follow the geodesic curve starting at x

in direction v. In general, the geodesic equation

ẋk = vk,

v̇k = −∥v∥2Γk , for k = 1, . . . , D. (2)

where Γk
ij =

1
2g

km(∂igmj+∂jgim−∂mgij), does not have
a closed-form solution for arbitrary G(x). See more detail
in appendix A.3. Instead, we numerically approximate the
exponential map γ(x,v)(t) by solving these differential equa-
tions with an ordinary differential equation (ODE) solver,
denoted as γ̂(x,v)(t). The choice of the metric determines
the shape of geodesic trajectories, allowing the sampler to
adapt to different target distributions; see Section 4.

Algorithm 1 explains the full Metric-agnostic Geodesic
Slice Sampler (MAGSS). After sampling a velocity v from
the unit Riemannian sphere, slice sampling is performed on
the Hausdorff density evaluated along the numerical solu-
tion of the geodesic trajectory. The step-out and shrinkage
procedures then determine the final sample.

Algorithm 1 Metric-agnostic Geodesic Slice Sampler

Input: Initial position x[0], metric tensor G(x), and param-
eters m ∈ N, w ≥ 0.
Output: N samples x[n].

1: for n← 0, . . . , N − 1 do
2: Sample s ∼ Unif(0, pH(x[n]))
3: Sample velocity v[n] ∼ Unif(SD−1

g (x[n]))
4: Compute (ℓ, r) = Step-outw,m(s, γ̂(x[n],v[n]))
5: Sample time t∗ = Shrinkℓ,r(s, γ̂(x[n],v[n]))

6: x[n+1] = γ̂(x[n],v[n])(t
∗)

7: end for

3.1 META SAMPLER AND MULTIMODALITY

The sampler as described above is valid as such, but we also
introduce a simple extension that can further improve sam-
pling for multimodal targets with complex local structure.

Following Tjelmeland and Hegstad [2001], Łatuszyński et al.
[2025], we create a meta-sampler that alternates between us-
ing MAGSS for global moves and an arbitrary local MCMC
for sampling within each mode. To generate one sample,
we first run K-steps of MAGSS followed by L-steps of any
local MCMC sampler. We refer to this combined strategy
as Meta-MAGSS, detailed in Algorithm 2 (in Appendix).
The main motivation for this hybrid strategy is to leverage
gradient-based algorithms for fast exploration of the mode,
to utilize their efficient mixing and fast per-iteration com-
putation when they are sufficiently good for the local target.
We could in principle use any sampler for the local part,
including Riemannian samplers, but we in practice use stan-
dard Euclidean Metropolis-adjusted Langevin Algorithms
(MALA) [Roberts and Tweedie, 1996] in our experiments.



4 METRICS

The sampler is general, applicable for an arbitrary metric
and only requiring G(x) to be positive definite and vary
continuously. By selecting an appropriate metric we can
influence how the geodesics explore the space, controlling
the overall sampling behavior. There is no single metric that
is optimal for all targets, and the metrics proposed in the
literature are motivated by complementary argumentation,
with notable emphasis in computational efficiency.

Next we discuss the metric choice. The literature has exclu-
sively focused on metrics that improve local exploration for
complex target distributions, with several practical solutions
that we re-cap in Section 4.1. We then turn our attention on
how to improve exploration of multiple modes, presenting
novel metrics specifically designed for this in Section 4.2.

4.1 FOR ADAPTING TO LOCAL CURVATURE

The Fisher metric The Fisher Information Metric (FIM)
is defined as the covariance of the score function, and was
predominantly used in the early Riemannian methods [Giro-
lami and Calderhead, 2011] due to its close connection to
estimation theory. A general form of the metric is:

GF (x) = Ey |x
[
∇x log p(y |x)∇x log p(y |x)⊤

]
,

but the specific form depends on the underlying problem,
due to integration over the conditional density. Furthermore,
it requires direct matrix inversion for computing G−1

F (x)
that is required during geodesic computations (Eq. 2), with
complexity of O(D3). This makes the metric impractical
and inefficient for high-dimensional problems.

The Monge Metric The computational cost of solving the
geodesic equations (Eq. 2) is primarily determined by the
inversion of the metric tensor, and consequently metrics with
closed-form inverse offer significant savings. The Monge
metric by Hartmann et al. [2022] naturally arises from the
geometry of the graph of log-density function when viewed
as a submanifold embedded in RD+1. Let α2 ≥ 0 and
λ ≥ 0. The Monge metric and its inverse are given by

GM (x) = ID +α2∇ℓ∇ℓ⊤,

G−1
M (x) = ID −

α2

1 + α2∥∇ℓ∥2
∇ℓ∇ℓ⊤, (3)

where ℓ(x) = ln p(x). As α2 → 0, the metric reduces to
the Euclidean metric ID. The determinant required for com-
puting the Hausdorff density (Eq. (1)) is detGM (x) =
1 + α2∥∇ℓ∥2. Figure 2 illustrates the exponential map of
geodesic balls with increasing radius under the Monge met-
ric. This metric adapts to the geometry of the target distribu-
tion, expanding regions based on the local structure of the
density.

Figure 2: Exponential map for Riemannian balls of increas-
ing radius on the Funnel distribution for the Monge metric
with α = 1 on the left panel. On the right, the plot is anal-
ogous but considering the Generative metric with λ = 0.1
and p0 = 0.1. Each color represents a bigger radius from
the base point (⋆). Both metrics achieve the desired goal,
shortening the distances to the points along the narrow fun-
nel that would be difficult to reach in a Euclidean geometry.

The Generative Metric Another efficient metric, the Gen-
erative metric that is proportional to the target density func-
tion, was recently proposed by Kim et al. [2024]. One of its
advantages is that computing the Christoffel symbols Γk

ij

only requires first-order derivatives of the density, whereas
the Monge metric (Equation 3) introduces second-order
terms. For scalars p0 > 0 and λ ≥ 0, the Generative metric
and its inverse are:

Gg(x) =

(
p0 + λ

p(x) + λ

)2

ID, (4)

G−1
g (x) =

(
p(x) + λ

p0 + λ

)2

ID. (5)

As λ → ∞, the metric reduces to the Euclidean metric.

The determinant is detGg(x) =
(

p0+λ
p(x)+λ

)2D
. Figure 1

illustrates the effect of λ on the Hausdorff density along
geodesics t 7→ pH

(
γ̂(x,v)(t)

)
, and Figure 2 again shows

how the Generative metric transforms the space.

4.2 FOR BRIDGING THE MODES

The above metrics adapt for the local curvature and have
been designed to improve sampling of, for instance, narrow
funnels by re-defining the proximity (see Figure 2). For
assisting exploration of multimodal targets we need different
kinds of metrics: Now we would want a metric that makes
modes that are far away in the original Euclidean sense
appear closer. With the exception of the construction of Lan
et al. [2014], which we will discuss in Section 6, we are
not aware of any previous metrics designed for this. Next,
we introduce two computationally efficient metrics, with
fast inverses and determinants, for assisting multimodal
sampling.

Geodesic curves maintain a constant velocity norm in the
Riemannian sense by construction. Let xt = γ(x0,v0)(t)
be a geodesic curve with velocity vt = γ̇(x0,v0)(t), start-
ing from x0 with initial velocity v0. If the geodesic moves



toward a low-probability region where p(xt) → 0, then
the “mode bridging” behavior occurs if the Euclidean ve-
locity norms satisfy ∥v0∥2 ≪ ∥vt∥2. This means that as
t increases in low-density regions, the geodesics curves
accelerate and locally pull the distant modes closer.

We propose two metrics with the desired behavior, by lever-
aging the metrics described in Section 4.1 in a novel way.
Any matrix G(x) defines a valid Riemannian metric as long
as it is positive definite for every x ∈M and varies contin-
uously onM. Since the inverse of a positive definite matrix
is also positive definite, we observe that it is possible to
use any of the previously formulated G−1(x) for defining a
metric. This gives two new metrics that both help exploring
multiple modes in different ways:

The Inverse Monge Metric We use

GIM (x) = ID −
α2

1 + α2∥∇ℓ∥2
∇ℓ∇ℓ⊤,

as the metric tensor, with the inverse G−1
IM (x) = GM (x)

given by the previously introduced metric tensor of the stan-
dard Monge metric (Eq. (3)). The determinant of this metric
is 1/det(GM ), and hence it retains the computational ef-
ficiency of the original Monge metric. Figure 3 illustrates
the geodesics emanating from one mode of a bimodal distri-
bution under the Inverse Monge metric. The metric twists
the curves towards the second mode and slightly increases
acceleration (seen by the change of color). Observation 1
mathematically states the conditions for the change of ac-
celeration caused by the metric.

Observation 1. Let p(x) be a smooth density function. Let
(xt,vt) be the geodesic flow with initial conditions (x0,v0)
with respect to the Inverse Monge metric, such that x0 is a
local maximum. Then ∥vt∥2 ≥ ∥v0∥2 for all t ̸= 0.

The Inverse Generative Metric We use

GIg(x) =

(
p(x) + λ

p0 + λ

)2

ID,

and obtain the inverse G−1
Ig (x) = Gg(x) as the metric

tensor of the standard Generative metric (Eq. (4)) and the
determinant as 1/ det(Gg). Again, the computational effi-
ciency of the original Generative metric is retained. Figure 3
illustrates the main effect of the metric, that is to accelerate
on low density regions (indicated by the light color); it also
twists the trajectories slightly (best seen within the initial
mode and beyond the second mode in the top right corner).
Additionally Figure 1 illustrates the behavior in a univariate
distribution. The acceleration behavior is mathematically
stated in Observation 2.

Observation 2. Let p(x) be a smooth density function.
Let (xt,vt) be the geodesic flow with initial conditions
(x0,v0) such that p(x0) > 0 with respect to the Inverse
Generative metric. Then, for t such that p(xt)→ 0 we have
∥vt∥2 > ∥vt∥0.

Figure 3: Effect of the metric for multimodal targets, show-
ing the geodesics (lines) and the relative compression of
the distance (color; yellow means faster travel in that area,
darker colors mean slower travel). Left: Inverse Monge
metric (α = 0.001) helps more the geodesics to reach the
other mode, and also slightly compresses the distances in
the low-probability region. Right: Inverse Generative met-
ric (λ = 1) compresses the distances in the low-probability
region, but twists the paths only slightly.

The mathematical details for Observations 1 and 2 are given
in Appendix A.6.

5 EXPERIMENTS

We evaluate MAGSS for targets with sharp curvature (Sec-
tion 5.1), multiple modes (Section 5.2), or both (Section 5.3),
always considering different choices of the metric. We also
empirically quantify the effect of the numerical integra-
tor. A code reproducing the experiments is available at
github.com/williwilliams3/magss.

Evaluation We use primarily targets with known refer-
ence samples, which allows measuring the accuracy using
the 1-Wasserstein (earth mover’s) distance with the samples
provided by the algorithm [Flamary et al., 2021]. Besides
accuracy, we quantify the samplers with the probability of
jumping between the different modes, as the raw ratio of
consecutive samples that are within separate modes (defined
manually for each problem).

Comparison methods To showcase the effect of the met-
ric we will be running MAGSS also with in Euclidean met-
ric, with G(x) = ID, and we additionally compared against
the No-U-Turn Sampler, parallel tempering and diffusive
Gibbs sampling.

The No-U-Turn Sampler (NUTS) is an auxiliary-variable
sampler that augments the position xt with a velocity vt

which jointly follow the Hamiltonian dynamics [Neal et al.,
2011]. It adaptively determines the integration time by stop-
ping at the first U-turn, i.e., the first time t > 0 such that
⟨xt−x0,vt⟩ < 0 [Hoffman et al., 2014].

Parallel tempering (PT) runs many Markov Chains in par-
allel, each of which has p(x)1/τi as targets for different
temperatures τi ≥ 1, with τ1 = 1 recovering the original
target. As τ → ∞, the density flattens, facilitating transi-

https://github.com/williwilliams3/magss


tions between regions of higher densities that are far apart
from each other. The parallel chains jumps randomly be-
tween each other, thus visiting the modes more often accord-
ing to a Metropolis-Hastings ratio [Swendsen and Wang,
1986, Geyer, 1991]. Our implementation of PT follows Ła-
tuszyński et al. [2025].

Diffusive Gibbs sampling (DiGS) by Chen et al. [2024]
is a sampler designed for addressing multimodality. It ap-
proaches the sampling task by using an auxiliary variable x̃
with a Gibbs scheme. It uses the variance preserving (VP)
[Song et al., 2021] noise scaling: p(x̃|x) = N (x̃|αt x, σ

2
t ),

where σt =
√
1− α2

t , sampled directly and p(x |x̃) ∝
p(x̃|x)p(x) sampled through a local MCMC sampler. It
has an additional Metropolis within Gibbs proposal scheme
q(x |x̃) = N (x |x̃/αt, (αt/σt)

2). VP has the property that
at when αt → 0 then p(x̃|x) = N (x̃|0, ID) and when
αt → 1 then, informally, p(x̃|x) = δx.

5.1 COMPLEX UNIMODAL TARGETS

We evaluate the methods on three canonical benchmark tar-
gets (funnel, hybrid Rosenbrock and squiggle) which exhibit
strong curvature. The densities are given in Appendix C.5.
Since these targets are unimodal, we only consider the met-
rics presented in Section 4.1 and exclude PT.

Figure 4 shows that MAGSS with Fisher metric GF (x) is
clearly superior, but runs out of the limited computational
budget already at low dimensions, and the Monge metric
GM (x) offers notable improvement for Rosenbrock and
squiggle targets. DiGS remains on the level of the Euclidean
MAGSS and the Generative metric does not help either.

Experiment specification: We obtain 10, 000 samples us-
ing 10 chains and omit results for runs that did not complete
in 12 hours. We set α2 = 1 for the Monge metric since
this value has been shown to work [Hartmann et al., 2022].
We select λ = 1, p0 = 1 for the Generative metric without
further tuning. We use Dopri5 integrator with adaptive step-
size. We set w = 3 and m = 8. DiGS and NUTS uses a
single noise scale α = 1 and step-size 0.1 for MALA within
the algorithm.

5.2 MULTIMODAL WITH SIMPLE MODES

For studying mode exploration, we use a target of two D-
dimensional Gaussian distributions centered at −1D and
1D with scale σ = 0.1 and weights {0.2, 0.8}. The distance
between the modes (

√
D2) grows for increasing dimensions,

making transition between the modes more difficult. Now
we only consider the new metrics for boosting mixing be-
tween the modes (Section 4.2).

Figure 5 reports the corresponding accuracies and reports
the percentage of jumps between the modes. While the

Table 1: Mixture of narrow distributions.

sampler metric jump% t(s)

PT NA 6.18 2
DiGS NA 0.27 2
MAGSS GIg, λ = 1.0 0.81 178
Meta-MAGSS GIM , α2 = 10−4 2.62 1327

comparison methods PT and DiGS explore the modes well
in low dimensions, they get completely stuck in one mode
for D ≥ 16. MAGSS and Meta-MAGSS with the Inverse
Monge metric (α = 0.1) are able to jump between the
modes even for higher dimensions and the meta-sampler is
overall the most accurate method.

Experiment specifications: For MALA we find a step-
size of 60% acceptance rate for each dimension, since it
is close to the optimal for Gaussians [Roberts and Rosen-
thal, 1998]. For MAGSS we try the Euclidean metric
and the grid: α2 ∈ {10−3, 10−2, 10−1, 1, 10} and λ ∈
{10−4, 10−3, 10−2, 10−1, 1, 10}. We find α2 = 0.1 is al-
ways optimal. For Meta-MAGSS we fix α2 = 0.1 based
on what was observed for MAGSS. We use Dopri5 solver
with adaptive step-size. DiGS uses 10 MALA steps per iter-
ations, T = 100 equally spaced times between α1 = 10−4,
α1000 = 1 − 10−4. PT uses N = 100 temperatures in the
scale τi = b

−i/N
min for i = 1, .., N where bmin = 10−4.

5.3 MULTIMODAL WITH COMPLEX MODES

To demonstrate that we can simultaneously handle multi-
modality and complex local geometry, we consider a (uni-
form) mixture of two narrow bivariate distributions, the
Rosenbrock and Squiggle distributions (Figure 6 left; the
red line is purely for identifying jumps between the modes,
Table 1). We use use the Inverse Monge and Inverse Gener-
ative metrics. However, Figure 6 (right) indicates that PT is
the least accurate method, requiring substantially more sam-
ples for matching the target well. All methods will reach
approximately the same Wasserstein distance if ran long
enough, but both of our variants achieve it in less samples,
confirming more efficient mixing.

Experiment specifications: Obtain 10, 000 samples us-
ing 10 chains. We run DiGS with 5 noise steps between
0.1 and 0.9, and 10 MALA iterations per sample. PT uses
τ ∈ {1.0, 5.62, 31.62, 177.83, 1000} and thinning of 10.
MAGSS and Meta-MAGSS are tuned using the same grid
of values as Experiment 5.2, reporting the best based on
distances. Meta-MAGSS uses 5 sweeps and 10 MALA it-
erations per sample. PT, DiGS and Meta-MAGSS rely on
MALA with stepsize 0.001 (≈ 60% acceptance rate). We
use w = 3 and m = 8 and the adaptive Dopri8 integrator.



Figure 4: Univariate sampling accuracy in various metrics (Wasserstein distance, lower is better) for targets of varying
dimensionality. The medians over 5 runs are connected with a line. Left: Funnel. Middle: Rosenbrock. Right: Squiggle.

Figure 5: Accuracy (lower is better) for mixture of Gaus-
sians. Both MAGSS variants use GIM with α = 0.1.

Figure 6: Left: Mixture of narrow distributions, with sam-
ples using Meta-MAGSS. Right: Wasserstein distance as a
function of iterations (samples). For MAGSS we use GIg

with λ = 1 and Meta-MAGSS GIM with α2 = 10−4.

5.4 FIELD SYSTEM

We include a highly multimodal target distribution of modes
(2D for D = 16) by replicating the Allen-Cahn Field
System model experiment from Cabezas et al. [2024b].
The distribution has two global maxima at (1, .., 1) and
(−1, ..,−1), and several lower density modes at points of
the form xi = ±1 for all i. DiGS collapses to a single mode,
PT explores only the two most dominant modes, while our
Meta-MAGSS explores also the additional modes (Fig 7).

The target density is symmetric along each axis. The initial
sampling position is (−1, . . . ,−1) and we use the marginal
distribution of x8 to evaluate how well each sampler cap-
tures the symmetry. In particular, we report the percentage
of samples with x8 > 0, which should be 50% under the
true distribution. Since reference samples are not directly
available, we follow Cabezas et al. [2024b] and also report

Table 2: Field System model

sampler KSD V-stat x8 > 0 t(s)

PT 0.13± 0.04 0.35 6
DiGS 0.13± 0.05 0.0 157
META-AGSS 2.98± 0.7 0.33 32

the Kernel Stein Discrepancy (KSD V-stat) [Liu et al., 2016]
in Table 2.

Our method explores more modes than the competing meth-
ods (PT and DiGS), although the KSD V-stat is worse. Note,
however, that the KSD V-stat does not account for mul-
timodality at all; DiGS has a better value despite cover-
ing only a single mode and failing completely in terms of
the marginal distribution metric. In contrast, PT and Meta-
MAGSS exhibit similar percentages of samples with x8 > 0.
We provide the density of the model, an explanation of the
multimodality of the model, and the computation of KSD
V-stat in Appendix C.5.

Experiment specifications: We obtain 10, 000 samples
using 10 chains initialized at (−1, ..,−1). DiGS uses T =
1000 equally spaced times between α1 = 10−5, α1000 =
1 − 10−5. PT uses N = 200 temperatures in the scale
τi = b

−i/N
min for i = 1, .., N where bmin = 10−5. For Meta-

MAGSS we try values of α and λ in powers of ten, finding
λ = 10−6 maximizes the number of jumps between modes
and a single sweep. We use w = 3 and m = 8 and the
Dopri5 integrator with adaptive step-size. For all methods
MALA uses 10 iterations per sample and stepsize 0.005
(roughly 60% acceptance rate).

5.5 EFFECT OF NUMERICAL INTEGRATOR

We use numerical integrators for computing the geodesics
in Eq. (2). To explore the effect of the integrator, we present
results for broad range of integrators for a multimodal bench-
mark task considered previously by Chen et al. [2024]. The
target is a 40-mode Gaussian mixture model with equal



Figure 7: Samples from Allen-Cahn Field System model
[Cabezas et al., 2024b] with 216 modes that zig-zag between
−1 and 1 on the y-axis over the D = 16 values at the x-
axis. Euclidean DiGS (left) gets stuck in one mode, Parallel
Tempering (middle) only explores two dominant modes
with constant value over the x-axis, whereas Meta-MAGGS
(right; GIg with λ = 10−6) explores also the modes that
switch between the extremes.

Figure 8: Different numerical integrators for the 40 mode
Gaussian mixture model. The black dotted lines are PT and
DiGS. Left: Inverse Generative metric with parameter λ.
Right: Inverse Monge metric with parameter α2.

weights and each component of variance σ = 0.1 where the
means are distributed uniformly on the square (−40, 40)2.

We use seven different integrators for GIM and GIg metrics,
including both adaptive and fixed step-sizes as implemented
by Kidger [2021], and report the results in Figure 8. The
three main conclusion are: (a) For metrics that are further
away from Euclidean (large α or small λ) the integration
time for adaptive methods grows dramatically. This is a nat-
ural consequence of operating in a less flat geometry. (b)
For good accuracy we typically need to use such a geom-
etry, which means there is inherent compromise between
accuracy an computation. (c) Simple fixed-step integrators,
even the Euler method, are efficient when they work, but for
robustness we recommended adaptive methods. We recog-
nize dopri5 as a good practical recommendation, but Euler
is worth trying for the Inverse Generative metric.

Experiment specifications: Obtain 10, 000 samples using
10 chains. PT has τ ∈ {1, 5.62, 31.62, 177.83, 1000} and
thinning of 200. DiGS uses α = 0.1, thinning of 200 and 5
MALA steps per step. MALA has step size of 0.1. MAGSS
is run with w = 3, m = 8 for the GIM and GIg and metrics
with the parameter grid of Experiment 5.2. We test seven
different numerical integrators of Equation (2). The fixed
integration size is 0.01. Details in Appendix B.

6 RELATED WORK

Lan et al. [2014] constructed the Wormhole Hamiltonian
Monte Carlo where a specific geometry is built to (only)
connect the modes of multimodal distributions. The modes
are first identified along the Markov Chain evolution. After
a new mode identification, it "stores" the mode’s location
for later use. A jump using the updated mode candidates
guarantees correct detailed-balance equations. While this
work served as an inspirational motivation for us, it requires
notable additional components. However, MAGSS does not
require separate identification or storage of the modes, but
instead shrinks the distances by naturally warping the space.

7 CONCLUSIONS

Our aim was to show that local curvature and multimodality
can be addressed by the same set of tools, namely Rieman-
nian geometry. We provided a concrete Riemannian slice
sampler, introduced two new metrics for improving mixing
between modes, and showed that we can achieve accuracy
and mixing comparable to recent samplers designed specif-
ically for multimodal targets, by only using Riemannian
metrics for this task.

One obvious limitation is the computational cost, caused
by numeric integration of the geodesics. Even when using
metrics with fast inverses, the per-iteration cost of MAGSS
is larger than of competing methods. However, we note that
we used maximally exact solvers rather than seeking for
the highest computational efficiency. Now that the principle
has been demonstrated, the use of more approximative nu-
merical integrators for speeding up the overall computation
could be studied in future work.
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A METRIC-AGNOSTIC GEODESIC SLICE SAMPLER

A.1 META-METRIC-AGNOSTIC GEODESIC SLICE SAMPLER

The Meta-MAGSSfound in algorithm 2 is the combination of MAGSS for K-steps followed by a local MCMC sampler for
L-steps.

Algorithm 2 Meta-MAGSS

Input: Initial position x[0] and metric components G(x). Parameters m ∈ N, w ≥ 0, K sweeps, L steps of local MCMC
sampler.
Output: N samples x[n].

1: for n← 1, . . . , N do
2: Let x← x[n−1]

3: for k ← 1, . . . ,K do
4: Update x by MAGSS with initial position x
5: end for
6: for l← 1, . . . , L do
7: Update x by local MCMC with initial position at x.
8: end for
9: Set x[n] ← x

10: end for



A.2 STEP-OUT AND SHRINKAGE PROCEDURES

The stepping-out and shrinkage procedures are Algorithm 3 and Algorithm 4 respectively, these algorithms are taken from
Durmus et al. [2023]. Our code implementation of the step-out procedure has vectorized both while loops in Algorithm 3.
This is done by evaluating the log density on all possible step-out points at once (vectorized). The code implementation
of the shrinkage procedure (Algorithm 4) has a max number of iteration set at 100 for the while loop, which if exceeded
defaults back to the previous point of the chain. In the algorithm boxes we use the notation for the exponential map γ(x,v)(t).
JAX is used to handle automatic differentiation and the samplers are coded in the style of Blackjax [Bradbury et al., 2018,
Cabezas et al., 2024a].

Algorithm 3 Stepping-out procedure. Call it Step-outw,m(s, γ(x,v))

Input: point x ∈M, direction v ∈ Sd−1
x , level s ∈ (0, p(x)), hyperparameters w ∈ (0,∞) and m ∈ N

Output: two points ℓ, r ∈ R such that ℓ < 0 < r

1: Draw u ∼ Unif([0, w]).
2: Set ℓ := −u and r := ℓ+ w.
3: Draw ι ∼ Unif({1, . . . ,m}).
4: Set i = 2 and j = 2.
5: while i ≤ ι and pH(γ(x,v)(ℓ)) > s do
6: Set ℓ = ℓ− w.
7: Update i = i+ 1.
8: end while
9: while j ≤ m+ 1− ι and pH(γ(x,v)(r)) > s do

10: Set r = r + w.
11: Update j = j + 1.
12: end while
13: return (ℓ, r)

Algorithm 4 Shrinkage procedure. Call as Shrinkℓ,r(s, γ(x,v))

Input: point x ∈M, direction v ∈ Sd−1
x , level s ∈ (0, p(x)) and parameters ℓ < 0 < r

Output: point θ ∈ L(x, v, s) ∩ [ℓ, r]

1: Draw θh ∼ Unif((0, r − l)).
2: Set θ := θh − 1{θh>r}(r − l).
3: Set θmin := θh.
4: Set θmax := θh.
5: while pH(γ(x,v)(θ)) ≤ s do
6: if θh ∈ [θmin, r − l] then
7: Set θmin = θh.
8: else
9: Set θmax = θh.

10: end if
11: Draw θh ∼ Unif((0, θmax) ∪ [θmin, r − l)).
12: Set θ = θh − 1{θh>r}(r − l).
13: end while
14: return θ.

A.3 THE GEODESIC EQUATIONS

A Riemannian metric is a smooth, symmetric, and positive-definite tensor g : TxM×TxM→ R for each point x ∈M.
In coordinates, the metric is represented by a positive-definite matrix G(x) such that for all v,u ∈ TxM,

g(v,u) = v⊤ G(x)u.

Geodesics are curves γ(t) onM that locally minimize distance and generalize straight lines to curved spaces. They solve
the geodesic equation, a second-order ODE determined by the metric. Given initial conditions γ(0) = x0 ∈ M and



γ̇(0) = v0 ∈ Tx0M, the geodesic equation in local coordinates is

γ̈k(t) +

D∑
i,j=1

Γk
ij(γ(t))γ̇

i(t)γ̇j(t) = 0, for k = 1, . . . , D,

where Γk
ij are the Christoffel symbols of the second kind, given by

Γk
ij =

1
2

D∑
m=1

gkm (∂igmj + ∂jgim − ∂mgij) ,

with gij = G(x)ij and gkm = (G−1(x))km. Alternatively, defining the position-velocity system with x = γ(t) and
v = γ̇(t), the geodesic equations can be expressed as a first-order system (Equation 2):

ẋk = vk,

v̇k = −∥v∥2Γk for k = 1, . . . , D,

where ∥v∥2Γk =
∑D

i,j=1 Γ
k
ij(x)vi vj .

A.4 SAMPLING UNIFORMLY FROM THE UNIT TANGENT SPHERE

Recall the unit tangent sphere is defined by

SD−1
g (x) := {v ∈ RD : ∥v∥2g = 1}.

Durmus et al. [2023, Appendix C.4] justify the existence of the uniform distribution distribution over SD−1
g (x). One method

for producing samples from the uniform distribution on the unit tangent sphere is:

1. Sample z ∼ N(0, I).

2. Transform v ← G− 1
2 (x)z, then v is distributed according to N (0,G−1(x)).

3. Compute the Riemannian norm ∥v∥g =
√
vT G(x)v.

4. Project to the boundary v ← v
∥v∥g

.

A.5 THE HAUSDORFF MEASURE

The volume form of a Riemannian manifold with metric G(x) is defined as V (dx) :=
√

detG(x) dx. For technical details
about the volume form, interested readers can consult Proposition 2.41 in Lee [2018]. The volume element gives the natural
measure on the manifold, analogous to the Lebesgue measure in Euclidean space [Durmus et al., 2023]. The Hausdorff
density is defined as the density which integrates to one with respect to the volume element:

pH(x) =
p(x)√
detG(x)

.

An intuitive explanation for the volume element can be thought in terms of change-of-variables in Euclidean space. When
transforming coordinates via a diffeomorphism ϕ : RD → RD, the standard density must be adjusted by the Jacobian
determinant to preserve probability mass. That is, |det J | accounts for local volume distortion.

When ϕ : RD → Rd, where d > D maps from a lower-dimensional Euclidean space onto a manifold embedded in higher
dimensions, the Jacobian J is generally rectangular. In this case, the induced Riemannian metric (Pullback metric) on the
manifold is G(x) = JJ⊤, and the volume change is given by

√
detG(x), which generalizes |det J |.

Thus, the Hausdorff density pH adjusts the density p to be properly normalized on the manifold with respect to the intrinsic
geometry. This adjustment ensures correct sampling and integration as seen in Proposition 1.



A.6 OBSERVATIONS AND PROPOSITION

Denote by GIM (x) the inverse Monge metric and by GIg(x) the inverse generative metric. The metrics are defined as:

GIg(x) =

(
p(x) + λ

p0 + λ

)2

I, GIM (x) = I − α2

1 + α2∥∇ℓ(x)∥2
∇ℓ(x)∇ℓ(x)⊤.

Observation 1. Let p(x) be a smooth density function. Let (xt,vt) be the geodesic flow with initial conditions (x0,v0)
such that p(x0) > 0 with respect to the Inverse Generative metric. Then, for t such that p(xt)→ 0 we have ∥vt∥2 > ∥vt∥0.

Analysis for the Inverse Generative metric Assume a geodesic curve starting at (x0,v0) satisfies p(x0) ≥ p(xt) for all
t ≥ 0 and p(xt)→ 0. Recall that along a geodesic curve, the magnitude of the velocity with respect to the metric remains
constant:

∥vt∥2GIg
= ∥v0∥2GIg

∀t.
Thus, the equality holds:

∥vt∥2GIg
= ∥v0∥2GIg(

p(x0) + λ

p0 + λ

)2

∥v0∥2 =

(
p(xt) + λ

p0 + λ

)2

∥vt∥22(
p(x0) + λ

p(xt) + λ

)2

∥v0∥2 = ∥vt∥22.

Since p(x0) ≥ p(xt), it follows that ∥vt∥22 ≥ ∥v0∥22, and as p(xt)→ 0 the quantity is arbitrary large.

Observation 2. Let p(x) be a smooth density function. Let (xt,vt) be the geodesic flow with initial conditions (x0,v0)
with respect to the Inverse Monge metric, such that x0 is a local maximum. Then ∥vt∥2 ≥ ∥v0∥2 for all t ̸= 0.

Analysis for the Inverse Monge metric We consider geodesics emanating from a mode. Let x0 be a mode, meaning that
∇ℓ(x0) = 0. Consider a geodesic emanating form x0 with velocity v0, it holds

∥v0∥22 −
α2

1 + α2∥∇ℓ(x0)∥2
⟨∇ℓ(x0),v0⟩2 = ∥vt∥22 −

α2

1 + α2∥∇ℓ(xt)∥2 2

⟨∇ℓ(xt),vt⟩2 ,

or

∥v0∥22 +
α2

1 + α2∥∇ℓ(xt)∥2 2

⟨∇ℓ(xt),vt⟩2 = ∥vt∥22.

We see that ∥vt ∥2 ≥ ∥v0 ∥2, so any geodesic starting from x0 always has a "shrinkage" behavior. So this metric helps
bring the entire space close to x0 along geodesics, as it shrinks the space towards (multiple) modes. Also note that the
collapsing towards modes depends on how flat the region is and how well-aligned the velocity and the gradient of ℓ is. For
complicated distributions, the behavior should not depend monotonically on α.

Note: For a multimodal distribution of dim ≥ 2, Observation 1 and Observation 2 guarantee that low-density/increasing-
gradient regions the speed increases, but we do not have the guarantee that the geodesics given by the inverse metrics will
reach the other modes. The geodesic could twist before reaching the other modes, which could negate the “teleport/move
fast" effect.

Proposition 1. An MCMC sampler targeting the Hausdorff density on a Riemannian manifoldM with metric tensor G(x)
also targets the correct distribution on the Euclidean space.

For a general setting proof of the Proposition consult Section XII.1, Proposition 1.5 in Amann et al. [2005].

The volume element on the manifold is defined as V (dx) =
√

detG(x) dx, where G(x) is the Riemannian metric tensor.
Let X be a random variable onM whose law is pH where pH(x) is the Hausdorff density. Let B ∈ B(M) be a Borel set
on the manifoldM. The probability of X being in B, under the Hausdorff target density, is given by

P(X ∈ B) =

∫
B

pH(x)V (dx). (1)



Figure 1: The Hausdorff density of a mixture of two Gaussian distributions evaluated along the geodesic, namely t 7→
pH(γ̂(x,v)(t)) for different values of λ and α2. Left: inverse Monge metric. Right: inverse Generative metric

Substituting pH(x) = p(x)√
detG(x)

,

P(X ∈ B) =

∫
B

p(x)√
detG(x)

√
detG(x) dx

=

∫
B

p(x) dx . (2)

Thus, the integral of the Hausdorff density with respect to the volume element on the manifold coincides with the integral of
the Euclidean density p(x) over the same set B.

Since the probabilities computed for any B ∈ B(M) are identical whether using (1) or (2), the corresponding estimators for
the probabilities also coincide. Consequently, an MCMC sampler on the manifold targeting the Hausdorff density pH(x)
correctly targets the Euclidean density p(x) in RD.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 LOGISTIC REGRESSION

Here we denote by θ the random variable of interest and by the x input data. The Logistic regression model [Girolami and
Calderhead, 2011] is

p(yi |θ,xi) = Bernoulli(yi |s(x⊤
i θ)), p(θ) = N (θ |0, α ID), i = 1, .., N,

where α = 100 and s(·) is the Sigmoid function. The Fisher Information Metric for this probabilistic model including the
addition of the the Hessian of the prior is: G(x) = X⊤ ΛX +α−1 I . Where X is the covariate matrix and Λ is a diagonal
matrix with entries Λnn = s(x⊤

i θ)
(
1− s(x⊤

i θ)
)
.

References samples used for computing the Wasserstein distance are obtained with HMC-NUTS. The samples obtained
with the Euclidean and Fisher metrics are just as close to the samples, but Fisher and Monge have higher effective sample
size (ESS) and use less shrinkage iterations than the Euclidean metric (See Table 1). The Monge metric uses the parameter
α = 1.W is the earth mover’s distance. The notation used is mean± std over 5 runs with different seeds.

B.2 NUMERICAL INTEGRATORS

The numerical solvers we consider are part of the diffrax package [Kidger, 2021]. We consider three groups of solvers.
Simple solvers (euler, tsit, dopri). Implicit solvers (kv). And reversible solvers (revheun). The solvers have the following
characteristics:

• euler: The Euler solver can only be used with a fixed step-size.

• tsit: Tsitouras’ 5/4 method can be used with both fixed and adaptive step-size.

• dopri5: Dormand-Prince’s 5/4 method can be used with both fixed and adaptive step-size.

• dopri8: Dormand-Prince’s 8/7 method can be used with both fixed and adaptive step-size.



model metr W min ESS avg ESS avg step-out avg shrinkage t(s)

aus euclidean 0.74 ± 0.12 18 ± 5 228 ± 12 0.14 ± 0.0 3.33 ± 0.01 8.2
fisher 0.58 ± 0.01 177 ± 9 270 ± 13 0.95 ± 0.0 1.0 ± 0.01 3298.6

ger euclidean 0.49 ± 0.01 35 ± 10 119 ± 9 0.08 ± 0.0 4.19 ± 0.02 15.8
monge 0.75 ± 0.02 80 ± 5 4673 ± 113 3.97 ± 0.03 0.28 ± 0.01 4665.4
fisher 0.49 ± 0.0 85 ± 24 169 ± 5 0.95 ± 0.0 0.99 ± 0.01 19684.4

hrt euclidean 0.63 ± 0.01 137 ± 26 254 ± 16 0.19 ± 0.01 2.72 ± 0.02 7.3
monge 0.74 ± 0.03 394 ± 55 2979 ± 266 2.99 ± 0.04 0.38 ± 0.02 637.4
fisher 0.64 ± 0.01 232 ± 14 311 ± 8 0.92 ± 0.01 1.01 ± 0.01 1694.8

pim euclidean 0.21 ± 0.0 266 ± 41 445 ± 45 0.11 ± 0.0 3.59 ± 0.03 6.8
monge 0.29 ± 0.01 515 ± 72 4656 ± 269 2.38 ± 0.03 0.53 ± 0.02 1711.7
fisher 0.21 ± 0.0 427 ± 47 547 ± 30 0.93 ± 0.0 0.98 ± 0.01 425.4

rip euclidean 0.09 ± 0.01 829 ± 112 1499 ± 56 0.24 ± 0.01 2.46 ± 0.02 4.2
monge 0.15 ± 0.02 1042 ± 211 3123 ± 685 1.38 ± 0.02 0.97 ± 0.01 593.9
fisher 0.09 ± 0.0 1623 ± 113 1753 ± 92 0.91 ± 0.0 0.96 ± 0.01 204.7

Table 1: Bayesian Logistic Regression. Entries are reported as mean± std.

• kv3: Kvaerno’s 3/2 method is an implicit solver can be only used with adaptive step-size.

• kv5: Kvaerno’s 5/4 method is an implicit solver can only be used adaptive step-size.

• revheun: Reversible Heun method can be used with both fixed and adaptive step-size.

C MATHEMATICAL DERIVATIONS

C.1 THE GENERATIVE AND INVERSE GENERATIVE METRICS

The Generative and Inverse Generative metrics read

G(x) = f(x)I = exp(log f(x))I,

where the scalar factor is f(x) =
(

p0+λ
p(x)+λ

)2
for the Generative metric and f(x) =

(
p(x)+λ
p0+λ

)2
for the Inverse Generative

metric.

Square root and inverse square root The quantities are given by:

G
1
2 (x) = exp

{
1
2 log f(x)

}
I,

G− 1
2 (x) = exp

{
− 1

2 log f(x)
}
I,

log |detG(x)| = D log f(x).

Christoffel symbols derivation Given the Riemannian metric G(x) = f(x)I , the tensor entries are:

Gij(x) = f(x)δij .

The Christoffel symbols for this metric are given by:

Γk
ij =

1

2f(x)
(δjk∂if(x) + δik∂jf(x)− δij∂kf(x))

=
1

2
(δjk∂i log f(x) + δik∂j log f(x)− δij∂k log f(x)) .

Denote by ek the standard basis vectors, the Christoffel symbols in matrix notation are:

Γk =
1

2

(
∇ log f(x) e⊤k + ek∇ log f(x)⊤ − ∂k log f(x)I

)
.



We compute ∥v∥2Γk =
∑D

i,j=1 Γ
k
ij(x)vi vj which appears in the geodesic equations,

∥v∥2Γk = ⟨v,∇ log f⟩vk − 1
2∥v∥

2
∂k log f.

The geodesic equations read:

ẋ = v,

v̇ = 1
2∥v∥

2∇ log f − ⟨v,∇ log f⟩v .

C.2 THE MONGE AND INVERSE MONGE METRICS

The Monge metric and the Inverse Monge metric are:

G(x) = I + α2∇ℓ∇ℓ⊤, G−1(x) = I − α2

1 + α2∥∇ℓ∥2
∇ℓ∇ℓ⊤.

Square root and inverse square root Define the quantity Lα := 1 + α2∥∇ℓ∥2, we list the quantities derived from the
matrix and present later their derivation,

G1/2(x) = I +
α2

1 +
√
Lα

∇ℓ(x)∇ℓ(x)⊤,

G−1/2(x) = I − α2

Lα +
√
Lα

∇ℓ(x)∇ℓ(x)⊤,

log |detG(x)| = log
(
1 + α2∥∇ℓ∥2

)
.

We now derive the quantities. Hartmann et al. [2022] gave

G− 1
2 (x) = I +

1

∥∇ℓ∥2

(
1√
Lα

− 1

)
∇ℓ∇ℓ⊤ (3)

Note that if ∥∇ℓ∥2 → 0 then Equation 3 is undefined. We find a more numerical stable form of G− 1
2 (x) Multiply the scalar

1
∥∇ℓ∥2

(
1√
Lα
− 1
)

by its conjugate

1

∥∇ℓ∥2

(
1√
Lα

− 1

)
=

1

∥∇ℓ∥2

(
1−
√
Lα√

Lα

)(
1 +
√
Lα

1 +
√
Lα

)
=

−α2

Lα +
√
Lα

.

Plugging the scalar −α2

Lα+
√
Lα

into G− 1
2 (x), then it is numerically stable for ∥∇ℓ∥2 → 0.

The computation of G
1
2 (x) For convenience take y = ∇ℓ(x). The the metric is G(y) = I + yy⊤. Let us assume the

square root is of the form G
1
2 (y) = I + λyy⊤. Let us formulate a quadratic equation for λ:

G
1
2 (y)G

1
2 (y) = I + yy⊤

I + 2λyy⊤ + λ2∥y∥2yy⊤ = I + yy⊤

0 =
(
1− 2λ− λ2∥y∥2

)
yy⊤.

The solutions of the quadratic equation are

λ =
−1±

√
1 + ∥y∥2
∥y∥2

.

Let us simplify −1+
√

1+∥y∥2

∥y∥2 , multiply by its conjugate√
1 + ∥y∥2 − 1

∥y∥2

(√
1 + ∥y∥2 + 1√
1 + ∥y∥2 + 1

)
=

∥y∥2

∥y∥2
√

1 + ∥y∥2 + 1
.

Substitute y = α∇ℓ(x) and we obtain the result

G1/2(x) = I +
α2√

1 + α2∥∇ℓ(x)∥2 + 1
∇ℓ∇ℓ⊤.



Christoffel symbols of the Monge metric The Christoffel associated to the Monge metric (derivation in Section C.3 and
Hartmann et al. [2022]) are

Γk(x) =
α2

1 + α2∥∇ℓ∥2
∇2ℓ∂kℓ,

and the geodesic equations read

ẋ = v,

v̇ = − α2

Lα
∥v∥2∇2ℓ∇ℓ.

Christoffel symbols of the Inverse Monge metric The Christoffel symbols associated to the inverse Monge metric
(derivation in Section C.4) are

Γk =
α2

2

[
Lα

(
∇f∇ℓ⊤ +∇ℓ∇f⊤ + 2f∇2ℓ

)
∂kℓ+∇ℓ∇ℓ⊤∂kf + α2 ⟨∇ℓ,∇f⟩∇ℓ∇ℓ⊤∂kℓ

]
,

and the geodesic equations read

ẋ = v,

v̇ = −α2

2

[
2Lα

(
⟨v,∇f⟩ ⟨∇ℓ, v⟩+ f∥v∥2∇2ℓ

)
∇ℓ+ ⟨∇ℓ, v⟩2∇f + α2 ⟨∇ℓ,∇f⟩ ⟨∇ℓ, v⟩2∇ℓ

]
.

C.3 MONGE METRIC: CHRISTOFFEL SYMBOLS DERIVATION

For completeness let us do an alternative derivation of the Christoffel symbols from the one found in Hartmann et al. [2022].
Take the auxiliary function f(x) = − 1

Lα
, where Lα = 1 + α2∥∇ℓ∥2. The metric and inverse components are:

gij = δij + α2∂iℓ∂jℓ,

gkm = δkm + α2f(x)∂kℓ∂mℓ.

The derivatives of the metric are:

∂igmj = α2 (∂imℓ∂jℓ+ ∂mℓ∂ijℓ) ,

∂jgim = α2 (∂ijℓ∂mℓ+ ∂iℓ∂jmℓ) ,

∂mgij = α2 (∂imℓ∂jℓ+ ∂iℓ∂jmℓ) .

The Christoffel symbols read,

Γk
ij =

1

2
gkm (∂igmj + ∂jgim − ∂mgij)

=
α2

2
gkm (2∂mℓ∂ijℓ)

= α2
∑
m

(
δkm + α2f(x)∂kℓ∂mℓ

)
∂mℓ∂ijℓ

= α2

(
∂kℓ∂ijℓ+ α2f(x)

∑
m

(∂mℓ)2∂k∂ijℓ

)
= α2∂kℓ∂ij

(
1− α2∥∇ℓ∥2

1+α2∥∇ℓ∥2

)
=

α2

1 + α2∥∇ℓ∥2
∂kℓ∂ij .

Thus, the Christoffel symbols are Γk
ij =

α2

Lα
∂kℓ∂ij . Writing in matrix form Γk of size D×D with components [Γk]ij = Γk

ij ,

Γk =
α2

1 + α2∥∇ℓ∥2
∇2ℓ∂kℓ.



Let us compute ∥v∥2Γk , which appears in the geodesic equations,

v⊤Γkv =
α2

1 + α2∥∇ℓ∥2
∥v∥2∇2ℓ∂kℓ.

The geodesic equations read:

ẋ = v,

v̇ = − α2

Lα
∥v∥2∇2ℓ∇ℓ.

C.4 INVERSE MONGE METRIC: CHRISTOFFEL SYMBOLS DERIVATION

Again the auxilary function is f(x) = − 1
Lα

, where Lα = 1 + α2∥∇ℓ∥2, the metric and inverse components are

gij = δij + f(x)α2∂iℓ∂jℓ

gkm = δkm + α2∂kℓ∂mℓ.

The derivatives of the metric are (we mark with the same color repeating terms)

∂igmj = α2 (∂if∂mℓ∂jℓ+ f∂imℓ∂jℓ+ f∂mℓ∂ijℓ) ,

∂jgim = α2 (∂jf∂iℓ∂mℓ+ f∂ijℓ∂mℓ+ f∂iℓ∂jmℓ) ,

∂mgij = α2 (∂mf∂iℓ∂jℓ+ f∂miℓ∂jℓ+ f∂iℓ∂mjℓ) .

Let us compute the Christoffel symbols of the first kind (blue and red terms will cancel out, pink terms add to each other)

Γkij =
1

2
(∂igmj + ∂jgim − ∂mgij)

=
α2

2
(∂if∂mℓ∂jℓ+ ∂jf∂iℓ∂mℓ− ∂mf∂iℓ∂jℓ+ 2f∂ijℓ∂mℓ) .

The Christoffel symbols of the second kind read

Γk
ij =

1

2
gkm (∂igmj + ∂jgim − ∂mgij)

=
α2

2

∑
m

(
δkm + α2∂kℓ∂mℓ

)
(∂if∂mℓ∂jℓ+ ∂jf∂iℓ∂mℓ− ∂mf∂iℓ∂jℓ+ 2f∂ijℓ∂mℓ)

=
α2

2

(
∂if∂kℓ∂jℓ+ ∂jf∂iℓ∂kℓ− ∂kf∂iℓ∂jℓ+ 2f∂ijℓ∂kℓ

+ α2∂kℓ
(
∂if∥∇ℓ∥2∂jℓ+ ∂jf∂iℓ∥∇ℓ∥2 − ⟨∇f,∇ℓ⟩ ∂iℓ∂jℓ+ 2f∂ijℓ∥∇ℓ∥2

))
=

α2

2

(
∂kℓ

(
Lα∂if∂jℓ+ Lα∂iℓ∂jf − α2 ⟨∇f,∇ℓ⟩ ∂iℓ∂jℓ+ 2Lαf(x)∂ijℓ

)
− ∂kf∂iℓ∂jℓ

)
.

Thus, the Christoffel symbols are:

Γk
ij =

α2

2

[
∂kℓ

(
Lα (∂if∂jℓ+ ∂iℓ∂jf + 2f(x)∂ijℓ)− α2 ⟨∇f,∇ℓ⟩ ∂iℓ∂jℓ

)
− ∂kf∂iℓ∂jℓ

]
.

Written in matrix form

Γk =
α2

2

[
∂kℓ

(
Lα

(
∇f∇ℓ⊤ +∇ℓ∇f⊤ + 2f(x)∇2ℓ

)
− α2 ⟨∇f,∇ℓ⟩∇ℓ∇ℓ⊤

)
− ∂kf∇ℓ∇ℓ⊤

]
.



Let us compute ∥v∥2Γk which appears in the geodesic equations

v⊤Γkv =
α2

2

[
∂kℓ

(
2Lα

(
⟨v,∇f⟩ ⟨∇ℓ, v⟩+ f∥v∥2∇2ℓ

)
− α2 ⟨∇f,∇ℓ⟩ ⟨∇ℓ, v⟩2

)
− ∂kf ⟨∇ℓ, v⟩2

]
.

Then the geodesic equations read,

ẋ = v,

v̇ = −α2

2

[ (
2Lα

(
⟨v,∇f⟩ ⟨∇ℓ, v⟩+ f∥v∥2∇2ℓ

)
− α2 ⟨∇f,∇ℓ⟩ ⟨∇ℓ, v⟩2

)
∇ℓ− ⟨∇ℓ, v⟩2∇f

]
.

Where the gradient of f is:

∇f =
2α2

L2
α

∇2ℓ∇ℓ.

C.5 TARGET DISTRIBUTIONS

The Funnel, Squiggle and Rosenbrock distributions are smooth bijective transformations from a Z ∼ N (µ,Σ) to X = f(X).
We use the shorthand notation x = x(z) and z = z(x).

The Funnel distribution p(x) = N (xD|0, σ2)N (x1:D−1|µ, exDID−1). In this case Z ∼ N (0, I). The choice of
parameters is σ = 3 and µ = 0,

x =

[
eσzD/2z1:D−1

σzD

]
,

∂x

∂z
=

[
eσzD/2ID−1

σ
2 e

σzD/2z1:D−1

0 σ

]
∂z

∂x
=

[
e−xD/2ID−1 − 1

2e
−xD/2x1:D−1

0 1
σ .

]
.

The log determinant of the inverse Jacobian is log det
(
∂z
∂x

)
= −(D − 1)xD/2− log σ.

The hybrid Rosenbrock distribution For simplicity here we show the two dimensional case, the full distribution can
be consulted in Pagani et al. [2022]. The two dimensional density is: p(x) = N (x1|a, 1

2 )N (x2|x2
1,

1
2b ). In this case

Z ∼ N (0, I). The choice of parameters is a = 1, b = 100 and block size of 3 and ⌊D−1
3 ⌋ total blocks,

x =

[
a+ 1√

2
z1

(a+ 1√
2
z1)

2 + 1√
2b
z2

]
,

∂x

∂z
=

[
1√
2

0√
2a+ z1

1√
2b

]
,

∂z

∂x
=

[ √
2 0

−2
√
2bx1

√
2b

]
.

The Squiggle distribution The density is p(x) = N (x(z)|µ,Σ)|det ∂x
∂z |, where Z ∼ N (µ,Σ). The choice of parameters

is a = 1.5, µ = 0, Σ = diag(5, 1
2 , ..,

1
2 )

x =

[
z1

z2:D − sin(az1)

]
∂x

∂z
=

[
1 0

−a cos(az1) I

]
,

∂z

∂x
=

[
1 0

a cos(ax1) I

]
.

The log determinant of the inverse Jacobian is log det
(
∂z
∂x

)
= 0.

For these three toy problems the Fisher Information follows from the transformation rule of Riemannian metrics

G(x) =
∂z

∂x

⊤
Σ−1 ∂z

∂x
.

Location and Scale parameters for Complex Distributions In Experiment 5.3 we consider the mixture of two complex
distributions. We introduce a location and scale parameter for each components of the mixture. The Funnel, Squiggle and
Rosenbrock distributions are smooth bijective transformations from a Z ∼ N (µ,Σ) to Y = f(X). Let us add a location
and scale parameters by an additional transformation g(Y ) = X , where g(y) = Σyy + µy

Z
f

7−−−→ Y
g

7−−−→ X.



The change of variable formula for the composition g ◦ f gives

pX(x) = pZ
(
(g ◦ f)−1(x)

) ∣∣∣∣det ∂x∂z
∣∣∣∣

= pZ
(
(f−1 ◦ g−1)(x)

) ∣∣∣∣det ∂x∂y
∣∣∣∣ ∣∣∣∣det ∂y∂z

∣∣∣∣
Plug in g−1(x) = Σ

−1/2
y (x− µy), det ∂y

∂z = detΣ−1/2, and pZ(z) = N (z|µ,Σ), we obtain the expression of the density

pX(x) = N
(
f−1(Σ1/2(x− µy))

∣∣∣∣µ,Σ) ∣∣∣∣det ∂x∂y
∣∣∣∣ ∣∣∣detΣ−1/2

y

∣∣∣ .
Where (µy,Σy) are the location and scale parameters of the component of the mixture distribution.

The Allen-Cahn Field System We consider the stochastic Allen–Cahn model [Berglund et al., 2017] used as a benchmark
in Cabezas et al. [2024b]. The log-density is:

log p(x) = −β

(
a

2∆s

D+1∑
i=1

(xi − xi−1)
2 +

b∆s

4

D∑
i=1

(1− x2
i )

2

)
. (4)

We adopt the parameter choices ∆s = 1
D and boundary conditions x0 = xD+1 = 0, and the constants a = 0.1 and b = 1

a
ensure that the double-well potential induces bimodality in each component xi, and we fix D = 16.

Analysis of multimodality To understand the maxima of this density, we analyze the two terms in the log-density function
(Eq. 4):

1. The first term,
∑D+1

i=1 (xi − xi−1)
2, penalizes differences between adjacent components, encouraging all components

to have similar values.

2. The second term,
∑D

i=1(1− x2
i )

2, is minimized when xi = ±1.

The global maxima occur at (1, . . . , 1) and (−1, . . . ,−1) because these configurations minimize both terms simultaneously:
all components have the same value (satisfying the first term) and each component equals ±1 (satisfying the second term).

Local maxima occur at all other combinations of ±1 values (i.e., at points (±1, . . . ,±1) with mixed signs) because these
configurations still satisfy the second term perfectly, but incur penalties from the first term due to sign changes between
adjacent components.

This creates 2D local maxima, making the problem highly multimodal, with the two homogeneous configurations being
global maxima.

Kernel Stein Discrepancy Let π and ν be two probability measures. We estimate the Kernel Stein Discrepancy with the
biased but non-negative V-estimator. Given a sample xi ∼ ν for i = 1, . . . , n,

K̂SD
2

k,V (π, ν) =
1

n2

n∑
i=1

n∑
j=1

kπ(xi, x
′
j).

Denote by p(x) be the density of the measure π, then,

kπ(x, x
′) = ∇x ·∇x′k(x, x′)+∇xk(x, x

′) ·∇x′ log p(x′)+∇x′k(x, x′) ·∇x log p(x)+k(x, x′)∇x log p(x) ·∇x′ log p(x),

where we choose the inverse multi quadratic kernel k(x, x′) = (1+ (x−x′)⊤(x−x′))β for β = − 1
2 , following the choices

made by Cabezas et al. [2024b].
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