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ABSTRACT

Understanding molecular interactions such as Drug-Target Interaction (DTI),
Protein-Protein Interaction (PPI), and Drug-Drug Interaction (DDI) is critical
for advancing drug discovery and systems biology. However, existing meth-
ods often struggle with scalability due to the vast chemical and biological space
and suffer from limited accuracy when capturing intricate biochemical rela-
tionships. To address these challenges, we introduce LANTERN (Leveraging
Large LANguage Models and Transformers for Enhanced moleculaR interac-
tioNs), a novel deep learning framework that integrates Large Language Mod-
els (LLMs) with Transformer-based architectures to model molecular interactions
more effectively. LANTERN generates high-quality, context-aware embeddings
for drug and protein sequences, enabling richer feature representations and im-
proving predictive accuracy. By leveraging a Transformer-based fusion mech-
anism, our framework enhances scalability by efficiently integrating diverse in-
teraction data while maintaining computational feasibility. Experimental results
demonstrate that LANTERN achieves state-of-the-art performance on multiple
DTI and DDI benchmarks, significantly outperforming traditional deep learn-
ing approaches. Additionally, LANTERN exhibits competitive performance on
challenging PPI tasks, underscoring its versatility across diverse molecular in-
teraction domains. The proposed framework offers a robust and adaptable so-
lution for modeling molecular interactions, efficiently handling a diverse range
of molecular entities without the need for 3D structural data and making it a
promising framework for foundation models in molecular interaction. Our find-
ings highlight the transformative potential of combining LLM-based embeddings
with Transformer architectures, setting a new standard for molecular interac-
tion prediction. The source code and relevant documentation are available at:
https://github.com/anonymousreseach99/LANTERN.git.

1 INTRODUCTION

Deciphering molecular interactions—including Drug-Target Interactions (DTI), Protein-Protein In-
teractions (PPI), and Drug-Drug Interactions (DDI)—is crucial for advancing drug discovery
Sachdev & Gupta (2019); Liao et al. (2025), therapeutic innovation Grizzle et al. (2019); Luo et al.
(2024), systems biology Hu et al. (2021); Meng et al. (2021), protein design Tran & Hy (2024);
Nguyen et al. (2024), and protein-binding ligand generation Khang Ngo & Son Hy (2024) through
Generative AI. These interactions are pivotal for uncovering potential drug candidates, elucidating
disease pathways, and crafting effective treatments. Yet, the intricate and diverse nature of molec-
ular biology presents substantial challenges in accurately predicting these interactions, necessitat-
ing the development of advanced computational strategies. Recent advancements in deep learning
have revolutionized computational biology by offering powerful methods for modeling complex bi-
ological systems. Transformer architectures Vaswani et al. (2017), originally designed for natural
language processing (NLP), have demonstrated remarkable success in capturing long-range depen-
dencies and intricate relationships. Simultaneously, Large Language Models (LLMs) have shown
their ability to generate meaningful embeddings for biological sequences, such as SMILES for drugs
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Elnaggar et al. (2021); Brandes et al. (2022); Hayes et al. (2025) and amino acid sequences for pro-
teins Chithrananda et al. (2020); Ross et al. (2022); Edwards et al. (2022); Nguyen & Hy (2024);
Khang Ngo & Son Hy (2024). These embeddings retain rich biochemical and structural information,
providing a promising avenue for understanding molecular interactions.

Existing approaches for molecular interaction prediction leverage various machine learning tech-
niques but face notable limitations. ConPLex Singh et al. (2023) utilizes a pretrained protein lan-
guage model to predict drug-target interactions by co-locating proteins and drug molecules in a
shared feature space, achieving solid performance. However, its reliance on choosing appropriate
loss functions based on molecule and protein diversity can lead to data leakage and poor general-
ization. iNGNN-DTI Sun et al. (2024) applies a nested graph neural network (GNN) for DTI pre-
diction, leveraging pre-trained molecular and protein models, and constructing target graphs from
AlphaFold2 3D structures. While it enhances interpretability, it still faces challenges in fully cap-
turing molecular relationships. Its use of a cross-attention-free transformer fails to jointly model
drug and protein features due to their distinct distributions, and the reliance on pure MLPs for pre-
diction limits performance, especially in complex cases. SkipGNN Huang et al. (2020) introduces
a novel GNN architecture that propagates neural messages via both direct and second-order interac-
tions, improving molecular interaction discovery. However, it still suffers from a lack of biological
context, as it does not incorporate pretrained biological language models. MUSE Rao et al. (2024)
proposes a multi-scale EM-based framework that integrates structural and network-level information
for protein-drug interactions. However, it heavily relies on structural data, which is often unavail-
able. Moreover, protein structures are merely approximations influenced by experimental techniques
like X-ray crystallography Smyth & Martin (2000), cryo-electron microscopy (cryo-EM) Tye et al.
(2017), or nuclear magnetic resonance (NMR), all of which introduce uncertainties. In drug design,
accurate 3D target structures, such as binding sites, are often missing, further limiting structure-
based approaches. Many existing methods, including those by Jha et al. (2022), Zhang et al. (2024),
Zhu et al. (2024), and Li et al. (2022), either depend on inaccessible structural data or fail to capture
complex relationships due to simplified architectures like MLPs.

To address these challenges, we propose a novel framework that combines the strengths of LLM-
based sequence embeddings and Transformer architectures to model molecular interactions. Drugs
and proteins are represented as embeddings learned by domain-specific LLMs, capturing their in-
trinsic biochemical properties. These embeddings are then fused through a Transformer model,
which effectively captures the interaction patterns between different molecular entities. This unified
approach enables the prediction of DTIs, PPIs, and DDIs with high accuracy and generalization.
We evaluate our framework on a diverse set of molecular interaction benchmarks, achieving state-
of-the-art (SOTA) performance on multiple DTI and DDI datasets and competitive results on PPI
benchmarks. These results highlight the versatility and effectiveness of our approach in addressing
various molecular interaction prediction tasks. Our contributions can be summarized as follows:

• Integration of pretrained LLM embeddings with Transformer-based interaction mod-
eling: We combine the rich sequence-level representations of drugs and proteins from pre-
trained large language models (LLMs) with a Transformer encoder layer to jointly model
interactions. This approach captures complex relationships between molecular entities and
significantly enhances prediction tasks.

• Broad applicability and SOTA performance: Our method achieves SOTA performance
on three standard drug-target interaction (DTI) datasets and competitive results on protein-
protein interaction (PPI) and drug-drug interaction (DDI) benchmarks, demonstrating its
generalizability and versatility across fundamental biological prediction tasks and making
it an ideal candidate for developing foundation models for molecular interaction.

• Efficiency and independence from 3D structural data: Unlike approaches reliant on 3D
molecular structures, which are label-intensive and architecturally complex, our framework
operates efficiently using only sequence data, making it adaptable to arbitrary drugs and
proteins. Its efficacy and versatility make it well-suited for building robust, large-scale
foundation models for molecular interactions.
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Figure 1: The diagram illustrates the flow of data through different components for the Drug-Target
Interaction (DTI) task: Drug SMILES are processed by a Small molecule LLM and then passed
through an MLP (Multi-Layer Perceptron). Similarly, Protein target sequences are processed by a
Protein LLM and then passed through another MLP. The outputs of these MLPs are concatenated
(denoted by ⊕) and fed into a Transformer encoder, which then passes the processed data to a
Classifier for interaction prediction.

2 METHOD

The Drug-Target Interaction (DTI) prediction task can be framed as a binary classification problem.
Given a drug d ∈ D, represented by its SMILES notation, and a protein p ∈ P , represented by its
amino acid sequence, the goal is to learn a function f : D × P → {0, 1} that predicts whether an
interaction exists. Formally, the model aims to approximate ŷ = f(d, p; θ), where ŷ ∈ {0, 1} rep-
resents the predicted interaction (1 for interaction, 0 for no interaction), and θ refers to the model’s
learnable parameters.

Drug Representation. The drug d is first encoded using a pretrained Small Molecule LLM, de-
noted as LLMdrug, which transforms the SMILES notation into an embedding: hd = LLMdrug(d).
This embedding hd captures the drug’s structural and chemical features. The embedding is then
further processed by a Multi-Layer Perceptron (MLP), parameterized by ϕd, to refine the drug rep-
resentation: zd = MLPϕd

(hd). This step enhances the drug feature vector zd, making it suitable for
interaction prediction.

Protein Representation. Similarly, the protein sequence p is encoded by a pretrained Protein
LLM, denoted as LLMprotein, which generates a sequence-level embedding: hp = LLMprotein(p).
The embedding hp represents the protein’s sequence and structure. This sequence-level embedding
is further refined by another MLP, parameterized by ϕp: zp = MLPϕp

(hp). The result is a feature
vector zp that encapsulates the protein’s characteristics relevant to binding with drugs.

Unified Representation. The drug and protein embeddings are then concatenated to form a uni-
fied feature representation: zfusion = zd ⊕ zp, where ⊕ denotes the concatenation operation, com-
bining the drug and protein features into a single vector. The fused representation zfusion is then
processed by a Transformer encoder T , which captures complex relationships between the drug and
protein features. The attention mechanism in the Transformer allows the model to learn dependen-
cies between the two types of entities (drug and protein), improving the accuracy of predictions:
ztrans = T (zfusion). Finally, a classifier C, typically implemented as an MLP followed by a sigmoid
activation function, is applied to the Transformer output to predict the probability of interaction:
ŷ = σ(C(ztrans)), where σ(·) is the sigmoid function, ensuring that the output ŷ is in the range (0, 1),
representing the probability of interaction.

Optimization. The model is trained using binary cross-entropy loss, which measures the differ-
ence between the predicted interaction probabilities and the true labels yi for the i-th drug-target
pair. The loss function is:

L = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] ,

3
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where N is the total number of training samples, yi is the ground truth label for the i-th pair (1 for
interaction, 0 for no interaction), and ŷi is the predicted probability for the interaction. This loss
function encourages the model to make accurate predictions by penalizing errors in both positive
and negative classifications.

2.1 GENERALIZATION TO OTHER INTERACTION TASKS

The proposed architecture is not limited to drug-target interaction prediction. It can be generalized
to other interaction prediction tasks, such as protein-protein and drug-drug interactions. For protein-
protein interactions, both the Small Molecule LLM and the Protein LLM in Figure 1 are replaced
with two instances of the Protein LLM, enabling the extraction of biologically meaningful features
from both input protein sequences. Similarly, for drug-drug interactions, the architecture employs
two Small Molecule LLMs to process the SMILES representations of the interacting drugs.

3 EXPERIMENTS

3.1 DATASETS

The study leverages a variety of benchmark datasets to assess the performance of the proposed
methods in different interaction prediction tasks. For Drug-Target Interaction (DTI) prediction, the
DAVIS Davis et al. (2011), KIBA He et al. (2017), and BioSNAP Zitnik et al. (2018) datasets provide
comprehensive drug-protein interaction data, summarized in Table 1. For Protein-Protein Interaction
(PPI) tasks, the Yeast PPI Ito et al. (2001) dataset is employed, containing 2,497 proteins and 11,188
interactions. In the case of Drug-Drug Interaction (DDI) prediction, the DeepDDI Rao et al. (2024)
dataset provides data on drug-drug interactions and side effects, sourced from DrugBank Wishart
et al. (2018), making it an essential resource for studying potential adverse drug reactions.

Dataset #Drugs #Proteins #Interactions #Positives #Negatives
DAVIS 68 442 30,056 1506 28,550
KIBA 2068 229 118,254 22,729 95,525

BioSNAP 4510 2180 27,428 13,817 13,611

Table 1: Summary of the DAVIS, KIBA, and BioSNAP datasets used for drug-target interaction
(DTI) tasks, including the number of drugs, proteins, interactions, and the distribution of positive
and negative interactions.

3.2 ARCHITECTURE AND IMPLEMENTATION DETAILS

The detailed architectural configurations, hyperparameter selections, and implementation specifics
are thoroughly documented in Appendix A.1. This section covers critical aspects such as the com-
putational resources utilized, including the type of GPUs employed, the selection of large language
models (LLMs), optimization strategies, and the number of layers in the proposed architecture.

3.3 ABLATION STUDY

BioSNAP and DAVIS were selected for the ablation study due to their distinct characteristics and
computational feasibility. DAVIS, which consists of a small number of drugs with dense interaction
data, provides a controlled setting for evaluating model performance on well-characterized targets.
In contrast, BioSNAP offers a more balanced distribution of positive and negative interactions, en-
abling a comprehensive assessment of model generalization.

Effect of LLMs selection: To identify the optimal large language model (LLM) for interaction
prediction tasks, we conducted an ablation study evaluating the performance of various LLMs tai-
lored for proteins and drugs. For proteins, we considered models such as ProtT5 Elnaggar et al.
(2021), ProtBERT Brandes et al. (2022) and ESM3 Hayes et al. (2025) (Evolutionary Scale Model-
ing version 3), while for drugs, we evaluated models like ChemBERTa Chithrananda et al. (2020),
MoLFormer Ross et al. (2022) and MolT5 Edwards et al. (2022). The evaluation was performed on

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review for LMRL Workshop at ICLR 2025

two benchmark datasets, DAVIS and BioSNAP, which provide diverse and complementary data for
drug-target interaction prediction tasks. The results from these datasets allowed for a robust compar-
ison of the LLMs, highlighting their strengths and weaknesses in capturing biochemical interactions
effectively.

BioSNAP DAVIS
Proteins Drugs AUROC (↑) AUPRC (↑) AUROC (↑) AUPRC (↑)

ProtT5
ChemBERTa 0.9911 0.9907 0.989 0.827
MoLFormer 0.9953 0.9961 0.991 0.878

MolT5 0.9946 0.9955 0.991 0.872

ProtBERT
ChemBERTa 0.9807 0.9857 0.990 0.849
MoLFormer 0.9947 0.9953 0.991 0.857

MolT5 0.9842 0.9880 0.991 0.867

ESM3
ChemBERTa 0.9927 0.9938 0.990 0.871
MoLFormer 0.9948 0.9958 0.995 0.905

MolT5 0.9887 0.9908 0.993 0.882

Table 2: Performance comparison of large language models (LLMs) for proteins and drugs on the
BioSNAP and DAVIS datasets. The metrics reported are the Area Under the ROC Curve (AU-
ROC) and the Area Under the Precision-Recall Curve (AUPRC). The highest performance values
are marked in bold, the second-highest are underlined, and the third-highest are italicized, showcas-
ing the relative effectiveness of each model combination.

Table 2 illustrates the performance of various large language models (LLMs) for proteins and drugs
was evaluated on the BioSNAP and DAVIS datasets using AUROC and AUPRC metrics. The re-
sults indicate that the combination of ProtT5 and MoLFormer achieved the highest performance on
BioSNAP, with AUROC and AUPRC values of 0.9953 and 0.9961, demonstrating its effectiveness
in predicting interactions in this dataset. On the DAVIS dataset, ESM3 paired with MoLFormer
emerged as the top-performing model, attaining the highest AUROC (0.995) and AUPRC (0.905).
MoLFormer consistently delivered strong results across both datasets, showcasing its robustness as
a drug representation model. Among the protein models, ProtT5 and ESM3 were particularly effec-
tive, with ESM3 excelling in DAVIS and ProtT5 in BioSNAP. Additionally, ProtBERT paired with
MoLFormer also showed competitive performance, making it a viable alternative for specific scenar-
ios. Based on these findings, ProtT5 with MoLFormer is recommended for BioSNAP, while ESM3
with MoLFormer is best suited for DAVIS. For applications requiring a single versatile combination,
MoLFormer paired with either ProtT5 or ESM3 provides a robust solution.

Impact of Transformer-based Encoding: We evaluated the performance of Transformer archi-
tectures against traditional Multi-Layer Perceptrons (MLPs) for encoding tasks. Our findings indi-
cate that transformer-based models with the combination of ProtT5 for protein encoding and MoL-
Former for drug encoding, significantly outperformed MLP-based approaches on the BioSNAP
dataset. Table 3 presents the performance metrics of different model configurations, highlighting
the effect of removing or replacing Transformer components. The results demonstrate that the full
Transformer-based model achieves the highest AUROC (0.9953) and AUPRC (0.9961), along with
superior sensitivity (0.9511) and specificity (0.9562).

Model Configuration AUROC AUPRC Sensitivity Specificity
Remove Feed Forward and Add & Norm 0.9942 0.9915 0.9496 0.9275
Remove Multi-head Attention 0.8571 0.8606 0.8072 0.8613
Remove Whole Transformer 0.7601 0.7541 0.5669 0.7852
Replace Whole Transformer by MLP 0.8485 0.8559 0.8805 0.8541
Use Whole Transformer 0.9953 0.9961 0.9511 0.9562

Table 3: Performance metrics (AUROC and AUPRC) for different model configurations, evaluating
the impact of removing or replacing Transformer components.

Ablation studies reveal a substantial decline in performance when key Transformer components
are removed. Eliminating the Feed Forward and the Add & Normalization steps results in a slight
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reduction in AUROC (0.9942) and AUPRC (0.9915), suggesting that these components contribute
to fine-tuning the model’s performance. In contrast, removing the Multi-head Attention mechanism
causes a significant drop in AUROC (0.8571) and AUPRC (0.8606), emphasizing the crucial role of
attention mechanism in feature extraction. The most severe degradation is observed when the entire
Transformer structure is removed, leading to an AUROC of 0.7601 and an AUPRC of 0.7541, with
markedly reduced sensitivity (0.5669).

Furthermore, replacing the entire Transformer with a MLP results in an AUROC of 0.8485 and
an AUPRC of 0.8559, which is still lower than any Transformer-based configuration, reinforcing
the superiority of Transformer architectures over traditional MLPs for encoding tasks. These find-
ings underscore the critical role of Transformer components, particularly Multi-head Attention, in
achieving optimal performance in drug-protein interaction prediction.

Appendix A.2 provides an in-depth analysis of the advantages of Transformer-based fusion models
compared to traditional MLPs. The results presented in Table 3 further corroborate these findings,
emphasizing the critical role of various Transformer components in encoding performance. Specif-
ically, the removal of key elements, such as Multi-head Attention, led to a substantial decline in
predictive accuracy, thereby reinforcing the theoretical insights discussed in Appendix A.2.

Figure 2 presents t-SNE visualizations of data representations, illustrating the impact of MLP and
Transformer models on feature distribution and clustering. Observing the transformations, it is
evident that the MLP modifies the data distribution to a certain extent, enhancing separation but
still exhibiting some overlap. In contrast, the Transformer model demonstrates a more pronounced
clustering effect, indicating its superior capability in capturing complex relationships and structural
patterns within the data. These visualizations underscore the effectiveness of Transformer-based
models in producing well-defined feature representations compared to traditional MLP approaches.

By integrating both theoretical analysis and empirical validation, our study underscores the enhanced
capability of Transformer-based models in capturing complex feature interactions, presenting a com-
pelling case for their adoption in drug-target interaction tasks.

Figure 2: t-SNE visualizations of data representations: (a) before applying the MLP, (b) after ap-
plying the MLP, (c) before applying the Transformer, and (d) after applying the Transformer. Data
points are color-coded according to their labels, where represents label 0, represents label 1.

3.4 BENCHMARKS

3.4.1 DRUG-TARGET INTERACTION BENCHMARK

Tables 4, 5, and 6 present a comprehensive performance comparison of various drug-target interac-
tion (DTI) prediction methods across the BioSNAP, DAVIS, and KIBA datasets. The results high-
light the superiority of our Transformer-based approach over existing models, including DeepDTA
Öztürk et al. (2018), Moltrans Huang et al. (2021), ML-DTI Yang et al. (2021), DGraphGTA Jiang
et al. (2020), and iNGNN-DTI Sun et al. (2024).

Across all datasets, our method consistently achieves the highest AUROC and AUPRC, with sub-
stantial improvements over state-of-the-art approaches. Notably, on the BioSNAP dataset, our model
attains an AUROC of 0.995 and an AUPRC of 0.996, surpassing iNGNN-DTI, the second-best
model, by a significant margin. Similar trends are observed for the DAVIS dataset, where our
method outperforms competing models with a notable increase in both AUROC (0.995) and AUPRC
(0.905). The most pronounced performance gain is seen on the KIBA dataset, where our approach
achieves an AUROC of 0.976 and an AUPRC of 0.977, demonstrating its robustness across different
benchmarks.
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These results underscore the effectiveness of our model in accurately capturing drug-protein inter-
actions, significantly outperforming MLP-based and graph-based methods. The observed improve-
ments in sensitivity and specificity further validate the model’s reliability in both detecting positive
interactions and minimizing false positives, making it a promising tool for DTI prediction.

Method AUROC AUPRC Sensitivity Specificity
DeepDTA 0.897 ± 0.0027 0.900 ± 0.0046 0.859 ± 0.0089 0.786 ± 0.0197
Moltrans 0.887 ± 0.0034 0.881 ± 0.0085 0.824 ± 0.0106 0.809 ± 0.0104
ML-DTI 0.911 ± 0.0053 0.911 ± 0.0112 0.851 ± 0.0054 0.828 ± 0.0215
DGraphGTA (Alphafold2) 0.913 ± 0.0022 0.917 ± 0.0024 0.858 ± 0.0175 0.831 ± 0.0151
iNGNN-DTI 0.934 ± 0.0021 0.939 ± 0.0022 0.872 ± 0.0189 0.854 ± 0.0200
Our method 0.995 ± 0.0045 0.996 ± 0.0036 0.951 ± 0.0409 0.956 ± 0.0329

Table 4: Performance comparison of various methods on the DTI task using the BioSNAP datasets.
The table reports the AUROC and AUPRC with their respective standard deviations.

Method AUROC AUPRC Sensitivity Specificity
DeepDTA 0.892 ± 0.0066 0.378 ± 0.0231 0.854 ± 0.0066 0.792 ± 0.0291
Moltrans 0.898 ± 0.0050 0.371 ± 0.0067 0.865 ± 0.0050 0.783 ± 0.0387
ML-DTI 0.910 ± 0.0034 0.381 ± 0.0247 0.895 ± 0.0034 0.795 ± 0.0183
DGraphGTA (Alphafold2) 0.885 ± 0.0099 0.316 ± 0.0447 0.894 ± 0.0034 0.724 ± 0.0467
iNGNN-DTI 0.931 ± 0.0027 0.473 ± 0.0167 0.922 ± 0.0155 0.802 ± 0.0240
Our method 0.995 ± 0.0037 0.905 ± 0.0238 0.976 ± 0.0159 0.964 ± 0.0207

Table 5: Performance comparison of various methods on the DTI task using the DAVIS datasets.
The table reports the AUROC and AUPRC with their respective standard deviations.

Method AUROC AUPRC Sensitivity Specificity
DeepDTA 0.912 ± 0.0037 0.743 ± 0.0127 0.881 ± 0.0056 0.780 ± 0.0127
Moltrans 0.899 ± 0.0022 0.691 ± 0.0142 0.872 ± 0.0116 0.760 ± 0.0160
ML-DTI 0.909 ± 0.0020 0.727 ± 0.0108 0.878 ± 0.0111 0.779 ± 0.0113
DGraphGTA (Alphafold2) 0.911 ± 0.0004 0.739 ± 0.0043 0.881 ± 0.0183 0.784 ± 0.0277
iNGNN-DTI 0.915 ± 0.0016 0.753 ± 0.0071 0.888 ± 0.0183 0.779 ± 0.0146
Our method 0.976 ± 0.0154 0.977 ± 0.0088 0.959 ± 0.0268 0.965 ± 0.0074

Table 6: Performance comparison of various methods on the DTI task using the KIBA datasets. The
table reports the AUROC and AUPRC with their respective standard deviations.

3.4.2 DRUG-DRUG INTERACTION BENCHMARK

Table 7 presents a comparative analysis of drug-drug interaction (DDI) prediction methods on the
DeepDDI dataset, evaluated using AUROC and AUPRC metrics. Our proposed method achieves
an AUROC of 0.998 and an AUPRC of 0.995, outperforming all other approaches. Notably, while
MUSE attains the same AUROC, our method achieves the highest AUPRC, demonstrating superior
precision in ranking positive interactions. These results highlight the effectiveness of our approach
in enhancing DDI prediction accuracy.

Method AUROC (↑) AUPRC (↑)
SSI-DDI Rao et al. (2024) 0.868 0.871
MIRACLE Wang et al. (2021) 0.944 0.895
CGIB Lee et al. (2023) 0.950 0.961
MUSE Rao et al. (2024) 0.998 0.993
Our method 0.998 0.995

Table 7: Performance comparison of drug-drug interaction prediction methods using the DeepDDI
datasets, evaluated by AUROC and AUPRC metrics. Bold values indicate the best performance in
each category.
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3.4.3 PROTEIN-PROTEIN INTERACTION BENCHMARK

Table 8 presents a comparative evaluation of various methods on the Yeast PPI dataset across mul-
tiple performance metrics, including accuracy (Acc), precision (Pre), sensitivity (Sen), specificity
(Spe), F1-score (F1), Matthews correlation coefficient (MCC), and area under the curve (AUC). The
TAGPPI method demonstrates superior overall performance, achieving the highest scores in most
metrics. In contrast, our proposed methods, particularly ProtBERT and ProtT5, exhibit exceptional
sensitivity, reaching a near-perfect 99.82%, along with competitive AUC values. However, this
comes at the cost of lower precision and accuracy, making our approach particularly well-suited for
applications that prioritize high recall, such as identifying novel protein-protein interactions.

Method Acc Pre Sen Spe F1 MCC AUC
MCD-SVM You et al. (2014) 91.36 91.94 90.67 NA 91.30 84.21 97.07
RF-LPQ Wong et al. (2015) 93.92 96.45 91.10 NA 93.70 88.56 NA
kNN-CTD Yang et al. (2010) 86.15 90.24 81.03 NA 85.39 NA NA
EELM-PCA You et al. (2013) 86.99 87.59 86.15 NA 86.86 77.36 NA
DeepPPI Du et al. (2017) 94.43 96.65 92.06 NA 94.30 88.97 97.45
SAE Sun et al. (2017) 67.17 66.90 68.06 66.30 67.44 34.39 NA
DPPI Hashemifar et al. (2018) 94.55 96.68 92.24 NA 94.41 NA NA
DNN-PPI Li et al. (2018) 76.61 75.10 79.63 73.59 77.29 53.32 74.35
PIPR Chen et al. (2019) 97.09 97.00 97.17 97.00 97.09 94.17 NA
TAGPPI Song et al. (2022) 97.81 98.10 98.26 98.10 97.80 95.63 97.74
Our method (ProtT5) 77.35 68.87 99.82 54.99 81.50 61.23 96.23
Our method (ProtBERT) 79.27 70.74 99.82 59.95 82.80 64.21 97.93
Our method (ESM3) 84.47 93.60 71.85 95.08 81.29 68.82 94.61

Table 8: Performance comparison of different methods using the Yeast PPI datasets. NA means the
corresponding metric is not available from the original paper. Bold font indicates the best result in
the column.

4 CONCLUSION

In this work, we introduced LANTERN, a novel framework that leverages Large Language Models
(LLMs) and Transformer architectures to enhance molecular interaction prediction. By integrat-
ing pretrained embeddings with a Transformer-based fusion mechanism, LANTERN effectively
captures complex biochemical relationships across diverse interaction tasks, including Drug-Target
Interactions (DTI), Protein-Protein Interactions (PPI), and Drug-Drug Interactions (DDI).

Our extensive evaluations demonstrate that LANTERN achieves state-of-the-art (SOTA) perfor-
mance on multiple DTI and DDI benchmarks and exhibits competitive results in PPI tasks, un-
derscoring its robustness and versatility. The ablation studies further highlight the importance of
Transformer-based encoding over traditional MLP architectures, validating the superior representa-
tion learning capabilities of attention mechanisms.

Beyond achieving strong predictive performance, LANTERN offers a scalable and generalizable
solution that does not require 3D structural data, making it highly applicable for drug discovery,
therapeutic development, and network biology. Integrating self-supervised pretraining strategies
may enhance adaptability to new molecular interaction domains. Another key direction is leveraging
multiple LLM models within the same data type, such as drugs, to harness the complementary
knowledge from various models, addressing individual model limitations and optimizing predictions
for a more comprehensive understanding of the problem.

MEANINGFULNESS STATEMENT

A meaningful representation of life captures biological entities through rich embeddings that enable
the discovery of novel interactions and insights via computational methods, validated in real-world
applications. Our work lays the groundwork for developing a large-scale foundation model for
molecular interaction prediction, advancing our ability to represent and understand molecular enti-
ties at an unprecedented scale.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS AND MODEL CONFIGURATIONS

In this section, we provide a comprehensive overview of the implementation details and model
configurations of the proposed LANTERN framework.

A.1.1 LLM CHOOSING

To featurize the inputs, we utilize Molformer, ChemBERTa, and MolT5 for small molecules (em-
bedding sizes per SMILES string: 768, 384, and 1024, respectively) and ProtBERT, ProtT5, and
ESM-3 for proteins (embedding sizes per amino acid: 1024, 1024, and 1536, respectively). Our
framework is designed to be flexible, allowing for various biological pretrained LLMs, and we pro-
pose the choice of LLMs for each task based on empirical observations.

For most language models, we use the output from their final embedding layer. However, for ProtT5
and MolT5, we specifically use the final embedding layer of their encoder components. All models
generate per-amino-acid features for proteins or per-SMILES string features for small molecules.
These features are averaged along the sequence length to produce fixed-length vectors for down-
stream tasks.

• DTI Benchmark: Based on performance across different datasets, we use ProtT5 for pro-
teins in BioSNAP, ProtBERT for proteins in KIBA, and ESM3 for proteins in DAVIS. For
small molecules, MoLFormer is selected as the best-performing model across all datasets.

• DDI Benchmark: MoLFormer is selected due to its robust and consistent performance
across experiments.

• PPI Benchmark: ProtT5, ProtBERT, and ESM3 are all utilized in this task.

A.1.2 EVALUATION METRICS

Model performance was evaluated using standard metrics, including the accuracy (Acc), precision
(Pre), sensitivity (Sen), specificity (Spe), F1-score (F1), Matthews correlation coefficient (MCC),
area under the curve (AUC) and area under the precision-recall curve (AUC-PR). The formulas for
these metrics are as follows:

• Accuracy (Acc) measures the proportion of correctly classified samples:

Acc =
TP + TN

TP + TN + FP + FN

• Precision (Pre) represents the proportion of true positives among all predicted positives:

Pre =
TP

TP + FP

• Sensitivity (Sen) or Recall measures the ability to correctly identify positive samples:

Sen =
TP

TP + FN

• Specificity (Spe) measures the ability to correctly identify negative samples:

Spe =
TN

TN + FP

• F1-Score (F1) is the harmonic mean of precision and sensitivity:

F1 = 2 · Pre · Sen
Pre + Sen

• Matthews Correlation Coefficient (MCC) is a balanced measure that considers all four
quadrants of the confusion matrix:

MCC =
(TP · TN)− (FP · FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
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• Area Under the ROC Curve (AUC) evaluates the trade-off between sensitivity and speci-
ficity across thresholds. While no specific formula is shown here, it is calculated using the
area under the Receiver Operating Characteristic (ROC) curve.

• Area Under the Precision-Recall Curve (AUC-PR): Similar to AUC, but focuses on
precision-recall trade-offs, especially useful for imbalanced datasets.

A.1.3 HARDWARE AND SOFTWARE ENVIRONMENT

Experiments were conducted on a system equipped with NVIDIA A100 GPUs and 160GB RAM.
The implementation was carried out using PyTorch, with additional libraries such as Hugging Face
Transformers for embedding extraction and RDKit for molecular processing.

A.1.4 HYPERPARAMETER TUNING

For all three tasks, a linear layer is employed to project the pretrained embeddings from the large
language models (LLMs), including the protein language model and the small molecule language
model, into a shared latent space of size 384. The two projected representations are then concate-
nated and passed through an Transformer encoder layer with 8 attention heads. The classifier, a
linear layer of shape (768, 1), transforms the encoder output into a logit. The model is trained and
optimized for 100 epochs, with a learning rate initialized at 1e-4 and subsequently reduced following
a linear annealing schedule after 30, 60, and 80 epochs, using a decay coefficient of 0.8. The batch
size is set to 64 for all datasets except the DeepDDI dataset, where it is increased to 512. Dropout is
set to 0.1 for all datasets, except for the Yeast dataset, where it is increased to 0.2.

A.2 ADVANTAGES OF TRANSFORMER-BASED FUSION OVER MLP

The feature fusion step plays a critical role in learning meaningful interactions between drug and
protein representations. While traditional approaches such as Multi-Layer Perceptrons (MLPs) offer
simple non-linear transformations, they fall short in capturing complex dependencies between input
modalities. In contrast, Transformer-based architectures, driven by the attention mechanism, pro-
vide several advantages, including the ability to model long-range dependencies, dynamic weighting
of input features, and improved representation learning. This section presents a mathematical for-
mulation to justify the superiority of Transformers over MLPs in the proposed architecture.

A.2.1 LIMITATIONS OF MLP-BASED FUSION

An MLP processes concatenated drug and protein feature representations via successive linear trans-
formations followed by non-linear activations. Given the concatenated feature vector zfusion ∈ Rd,
an MLP of L layers with weight matrices W (l)l = 1L and biases b(l)l = 1L produces an output
representation:

h
(l)
MLP = σ

(
W (l)h

(l−1)
MLP + b(l)

)
,

where σ(·) denotes a non-linear activation function, such as ReLU. Despite its expressiveness, an
MLP applies fixed learned weights to all input features, lacking the flexibility to capture contextual
relationships between different segments of the input. Consequently, it struggles with:

• Static Weighting: The same weights are applied to all input pairs, disregarding potential
interactions between drug and protein features.

• Lack of Interpretability: MLPs lack mechanisms to quantify feature importance, making
it challenging to understand which features contribute most to the interaction prediction.

• Poor Scalability: As input dimensions grow, MLPs require exponentially more parameters
to capture feature dependencies effectively.

A.2.2 ADVANTAGES OF ATTENTION MECHANISM FOR FEATURE FUSION

The self-attention mechanism in Transformers provides a more expressive and efficient method for
feature fusion compared to traditional Multi-Layer Perceptrons (MLPs). Unlike MLPs, which apply
fixed weights to all input features, self-attention dynamically computes context-dependent feature

13
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interactions, leading to improved representation learning. In this section, we provide a mathemat-
ical justification of why attention is a more suitable choice for feature fusion in the Drug-Target
Interaction (DTI) task.

Attention Formulation Given the concatenated feature representation zfusion ∈ Rd, the self-
attention mechanism operates by computing attention scores across all feature dimensions. The
attention scores are computed as:

αij =

exp

(
qik

⊤
j√
d

)
∑d

j=1 exp
(

qik⊤
j√
d

) ,
where:

• qi = WQzi and kj = WKzj are the query and key projections of the feature representa-
tions,

• WQ,WK ∈ Rd×d are learnable weight matrices,
• αij represents the attention weight assigned to feature j when computing the representation

of feature i,
•
√
d serves as a scaling factor to prevent gradient vanishing.

The output of the attention mechanism is computed as a weighted sum of value vectors:

zattn,i =

d∑
j=1

αijvj , where vj = WV zj ,

where WV ∈ Rd×d is the learnable value projection.

Expressive Power of Attention Compared to MLP MLPs apply a fixed transformation to the
input of the form:

zMLP = σ(Wzfusion + b).

This transformation assumes a linear mapping followed by a non-linear activation σ(·), which fails
to capture interactions across features in a dynamic fashion. In contrast, attention mechanisms
adaptively model feature interactions through:

zattn =

d∑
j=1

αijWV zj .

Complexity Analysis Let d be the input feature dimension, and assume a hidden dimension of h.
The computational complexity of an MLP is O(d · h), whereas the complexity of the self-attention
mechanism is O(d2). Although the attention mechanism has a quadratic complexity with respect
to input size, the added computational cost is justified by the superior feature interaction modeling
capabilities and improved generalization.

Given an arbitrary function f : Rd → Rd, it has been demonstrated that a multihead-attention
mechanism, when equipped with a sufficient number of heads and layers, can approximate f with
lower sample complexity than a Multilayer Perceptron (MLP) of comparable depth. Specifically,
for any ϵ > 0, the approximation error of attention-based models satisfies the following bound:

sup
x∈X

|f(x)− fattention(x)| ≤ ϵ.

Moreover, the scaling of the approximation error for attention-based models is more favorable than
that of MLPs. In particular, the error for MLPs decreases at a rate of O

(
1√
d

)
, whereas the error in

attention-based models diminishes at a faster rate of O
(
1
d

)
:

ErrorMLP ∼ O
(

1√
d

)
, ErrorAttention ∼ O

(
1

d

)
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These results indicate that Transformers, which rely on self-attention mechanisms, require fewer
parameters to achieve a similar level of approximation accuracy compared to MLPs. This property
highlights the parameter efficiency of attention-based models, making them particularly well-suited
for high-dimensional input spaces.

Empirical Validation To empirically validate the advantages of attention-based feature fusion,
we conducted experiments comparing the Transformer and MLP architectures in terms of model
accuracy and loss convergence. The results in Table 3 demonstrate that the attention-based model
achieves significantly better performance, supporting the theoretical findings.

Conclusion The self-attention mechanism provides a mathematically superior alternative to MLP-
based fusion by offering:

• Dynamic feature weighting that adjusts to the importance of different drug and protein
features,

• Efficient long-range dependency modeling without the need for exponentially large pa-
rameters,

• Stronger generalization abilities due to better function approximation properties.

Thus, replacing MLPs with attention-based mechanisms in the proposed DTI model enhances fea-
ture interaction learning, ultimately leading to improved prediction performance.

Given the above theoretical and empirical justifications, the Transformer-based fusion approach
provides a more effective solution for capturing drug-target interactions than MLPs. The proposed
model capitalizes on attention mechanisms to dynamically learn intricate feature relationships, lead-
ing to improved interaction prediction performance.
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