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Abstract: Legged navigation has been widely applied in open-world, off-road,
and challenging environments. In these scenarios, estimating external distur-
bances requires a complex synthesis of multi-modal information. This underlines
a major limitation in existing works that primarily focus on avoiding obstacles. In
this work, we propose TOP-Nav, a novel legged navigation framework that inte-
grates a comprehensive path planner with Terrain awareness, Obstacle avoidance
and close-loop Proprioception. TOP-Nav underscores the synergies between vi-
sion and proprioception in both path planning and locomotion control. Within
the path planner, we present a terrain estimator that enables the robot to select
waypoints on terrains with higher traversability while effectively avoiding obsta-
cles. The locomotion controller tracks the planned waypoints and provides mo-
tion evaluations as the proprioception advisor. Based on the closed-loop motion
feedback, we offer online corrections for the vision-based terrain and obstacle es-
timations. Consequently, TOP-Nav achieves open-world navigation that the robot
can handle terrains or disturbances beyond the distribution of prior knowledge and
overcomes constraints imposed by visual conditions. Building upon extensive ex-
periments conducted in both simulation and real-world environments, TOP-Nav
demonstrates superior performance in open-world navigation compared to exist-
ing methods. Project page at top-nav-legged.github.io.
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1 Introduction

Figure 1: TOP-Nav achieves open-world navigation in both simulation and the real world. The
robot plans an obstacle-free path on terrains with better traversability. The robot rapidly estimates
its traversability for novel terrains based on proprioception experience.

Despite recent advancements in legged locomotion allowing the robots to navigate various terrains
based on a simulation-learned strong controller [1, 2, 3, 4, 5, 6, 7, 8, 9], the complexity of currently
hard-to-simulate real-world factors makes it impossible for the robot to traverse all potential terrains
encountered in reality. As a result, simply connecting the locomotion controller with a vision-based
path planner often restricts legged navigation to limited scenarios [10, 11, 12, 13, 14, 15].
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An effective solution to overcome these limitations is equipping the robot with terrain awareness:
a traversable path can be planned based on the robot’s preferences on terrains [16, 17] with an ap-
propriate distribution of contact heights and forces [18]. Unlike obstacle estimation, the distinct
terrain features are typically encoded as semantic information, whereas traditional methods collect
sufficient data and train segmentation or classification models [19] to learn these features. Never-
theless, compiling an exhaustive catalog of all conceivable terrains and their corresponding walking
preferences is impractical [20]. Compounding the issue, the dynamic real-world conditions, such
as lighting, humidity, and temperature, may introduce inaccuracies in the correspondence between
images and walking preferences, especially when relying exclusively on vision in this context [21].

To address the mentioned challenges of relying solely on vision and ignoring motion states in path
planning, we complement the vision-only terrain estimator with online corrections derived from mo-
tion evaluations. We construct a proprioception advisor to convey information about the traversabil-
ity cost of novel terrains and alert the robot to unexpected disturbances, such as invisible obstacles.

By integrating the Terrain estimator, Obstacle estimator, and Proprioception advisor, we formu-
late TOP-Nav: a hierarchical path planning and motion control framework navigating a quadruped
robot through diverse and challenging terrains proficiently. Within TOP-Nav, we develop a terrain
estimator trained from previously collected data to inform the robot of terrain traversability. For
novel terrains, we compensate proprioceptive history to offer online corrections for the vision-based
estimation of unexpected and unknown environmental disturbances. We evaluate TOP-Nav both in
simulation and on a physical robot, with a comparative analysis against existing legged navigation
systems.

2 RELATED WORK

2.1 Vision and Legged Proprioception Integration

Vision-aided legged navigation has been extensively explored in existing literature [12, 11, 22, 14,
15], with performance heavily dependent on a robust perception module [23]. This reliance makes
transferring a specific system to different hardware platforms difficult and costly. Recent research
has introduced proprioception to improve task planning, provide comprehensive task observation,
and reduce dependence on vision systems. A majority of these works learn proprioception represen-
tations along with visual features in simulation and then implement the cross-modal features through
end-to-end [24], hybrid [25] or decoupled frameworks [26]. Despite the effectiveness demonstrated
in these works, the high-dimensional representation space presents challenges for adaptation to novel
scenarios and sim-to-real transfer. Alternatively, Fu et al. [27] introduced a hierarchical navigation
framework that derives evaluation scores from motion states, yet overlooks visual observation inte-
gration. To mitigate these limitations, we propose a novel approach within TOP-Nav by maintaining
a series of lightweight cost maps derived from multi-modal observations. This integration achieves
a dynamic balance between vision and proprioception. Furthermore, we leverage the learning-based
locomotion controller to derive motion evaluations from the value function, offering an efficient
solution without additional training.

2.2 Terrain Traversability Estimation

Terrain traversability is determined by factors such as terrain geometry, texture, and physical proper-
ties [28]. These features could be estimated by identifying the semantic class with a predefined static
traversability score [29, 19, 30, 16]. These solutions notably depend on large-scale datasets [31] or
are limited to structured environments like urban scenarios [32, 33]. In off-road navigation, the
motion states involved in the dynamic interactions between the robot and the environment provide
valuable metrics for assessing terrain traversability [34]. These insights have inspired methods that
eliminate the need for manual annotation by autonomously deriving terrain traversability from pro-
prioception through self-supervised learning [21, 35, 36, 37, 38, 39]. Nevertheless, the performance
of these studies is contingent upon the quality of the collected datasets [28]. Researchers have
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proposed various approaches to handling novel observations to emphasize the challenges in un-
constrained navigation. For instance, Frey et al. [20] updated the traversability estimation network
online with anomalies into consideration. Karnan et al. [40] performs nearest-neighbor search in
the proprioception space to align visually novel terrains with existing traversability. Drawing inspi-
ration from those works estimating traversability for novel terrains, we propose a terrain estimator
that employs the proprioception advisor as online corrections. Our method diverges from previous
approaches primarily in two key aspects: 1) We employ an estimated value function from reinforce-
ment learning to assess terrain traversability, providing a comprehensive evaluation of robot-terrain
interactions. 2) We make online corrections on the vision-based estimation without additional train-
ing, providing a data-efficient solution for identifying novel terrains.

3 Background

Learning-based legged locomotion controllers have been well developed through reinforcement
learning, which is generally achieved by updating the policy π1 within the asymmetric actor-critic
training:
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the locomotion policy receives privileged observation op
t , proprioception observation oi

t, scanned
dots external observation oe

t and historical observation oh
t respectively. πactor is modeled as a Gaus-

sian policy and infers the optimized actions at to compute the joint positions qdes. ct stands for the
estimated value function from πcritic, which is updated through:

Lcritic
t = (ct − ctarg

t )2 and ctarg
t =

T∑
i=t

γi−tR(si), (2)

si denotes the robot state, R(si) represents the rewards accrued at timestep i, which commonly in-
cludes guiding the robot to track a given velocity command with stable gaits and attitude. Substantial
efforts in reward engineering to formulate R(si) have enabled the value function ctarg

t to evaluate a
comprehensive set of interactions between the robot and its environment. This provides an essential
foundation for the proposed proprioception advisor to leverage the estimated ct for motion evalua-
tions within the path planner.

The complete training paradigm will involve a second stage, training a depth encoder and a student
network to reproduce op

t and oe
t from real-world accessible observations Id (depth image), oi

t and
oh
t . The motion controller will track the target direction ∆yaw and velocity command vlin, the control

signal is represented by the desired joint position qdes.

4 Method

4.1 System Overview

TOP-Nav connects a path planner and a motion controller to tackle the task of legged navigation
(Fig. 2). The path planner generates waypoints from an integrated cost map, MC , which is built
around the robot and updated through online proprioception and visual observations. MC offers
a comprehensive estimation of external environment that encompasses terrain traversability costs
MT , obstacle occupancy MO, proprioception advice MP and goal approaching MG. The planned
waypoint is tracked by the RL-learned locomotion controller. In the following section, we will
highlight the terrain estimator and proprioception advisor to demonstrate how the proposed system
informs the robot of unexpected obstacles and unknown terrains based on walking experience. De-
tails on the integration of the costmaps within the path planner are provided in the appendix (Section
7.2).
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Figure 2: TOP-Nav framework: the path planner synthesizes MT ,MO,MP ,MG into a combined
cost map, from which it computes waypoints based on the overall cost considerations. The controller
tracks the desired velocity and provide motion evaluations for the proprioception advisor.

4.2 Proprioception Advisor

We design the proprioception advisor to identify motion abnormalities that may arise from un-
expected external disturbances. To offer a stable and comprehensive evaluation of the robot-
environment interactions, we train the estimated value function (Section 3) to synthesize multiple
metrics and incorporate historical observations. As demonstrated in Fig. 3(b), the motion evaluation
will decline sharply when the robot encounters a locomotion failure caused by transitioning onto
challenging terrain. The reward design and normalization implementation details are provided in
Section 7.4.

Within the path planner, we first directly utilize the motion evaluations to enhance the robot’s aware-
ness of unforeseen disturbances. This involves estimating invisible collisions (MP ) and integrating
them into the combined cost map (MC). We propose a continuously varied proprioception cost
along the lateral direction (which is the y-axis in MP ).

MP (:, y) =
1− Norm(ct)

ekP (∥ybase−y∥) , (3)

here kP is hyperparameter and ct is the estimated motion evaluation. Since a lower motion eval-
uation indicates a potentially challenging terrain or an invisible obstacle in the current direction of
the robot, we allocate ct to the centroid column in MP and decrease it towards the edges, this will
prevent the robot from continuing to move forward when its motion is disturbed by an unexpected
obstacle or challenging terrain. We further discuss the relationship between the proposed motion
evaluations, terrain difficulty, and ground truth motion states in Section 8.3.

4.3 Vision-based Terrain Estimation

The proposed terrain estimator first leverages prior knowledge to map the visual observations to the
reference terrain traversability. We apply a perspective transformation on Irgb to map the pixels to
bird-eye-views MBEV, which has corresponding coordinates as MT . We then discretize MBEV into
patches (Fig. 3(a)) and assign the same difficulty within each patch. The terrain within the prior
knowledge Dterrain is identified through a terrain classification network πterrain.

Considering that such identification falls short when faced with unfamiliar terrains, we calculate
the predictive entropy to approximate the identification uncertainty [41] and obtain the confidence
Conf of current visual estimation accordingly. With Pi denoting the predicted probability of terrain
i, the predicted explicit Terrain names and confidence of the prediction for the current patch can
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Figure 3: (a) The proposed terrain estimator incorporates a visual estimator and online corrections.
(b) The motion evaluations respond rapidly when the robot encounters difficult terrains.

be calculated as:

Conf = 1 +
∑
i

Pi logPi and Terrain = argmax
i

(Pi). (4)

then a vision based traversability cost map MTO
could be directly obtained from a pre-defined

(Terrain, Cost) mapping. The mapping process leverages experience from previous works [20,
37], where we collect motion evaluations as the robot traverses various terrains in Dterrain (Fig.
3(a)). Terrains with higher motion evaluations are assigned higher traversability scores and lower
terrain costs. Detailed discussions are provided in section 7.5.

4.4 Online Terrain traversability Corrections

Through the seamless integration of vision and proprioception, we provide online corrections for the
vision-based traversability estimation MTO

without additional training (Fig. 3(a)). This enables the
robot to terrain awareness beyond the limitations of the collected data Dterrain.

We address the mechanism by which the robot recalls the traversability of terrain once it has been
seen and traversed within the navigation process. With the robot location (xbase, ybase), we record a
duration of 1s proprioception advice to indicate the terrain traversability cost at the robot location:

TP (xbase, ybase) = 1− Norm(ct−k:t). (5)

Besides TP (xbase, ybase), we can access a latent feature L(xbase, ybase) extracted by the classifier
πterrain when the same patch was observed a few steps ago, we record both TP and L at location
(xbase, ybase) into an experienced list Pe. Now given a new observation at location (xo, yo), We can
find a traversed and seen patch (xr, yr) that looks closest to (xo, yo) based on cosine similarity:

S(o,r) = argmax
r∈Pe

cos (L(xr, yr),L(xo, yo)), (6)

Note that we also have the historical traversability cost TP (xr, yr) infered by the proprioception
advisor at (xr, yr), we can compute a proprioception adapted traversability cost with the similarity
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S(o,r) to access the historical proprioception correction MTP
(xo, yo):

MTP
(xo, yo) =

TP (xr, yr)

1 + e−kT3
(S(o,r)−S0)

, (7)

due to the delay in estimation from the proprioception history, we intend for MTP
to be utilized

when encountering novel terrains where MTO
becomes unreliable. Therefore, we normalize the

visual uncertainty U(xo, yo) into confidence Conf(xo, yo) to adjust the contribution of MTO
and

MTP
:

MT (xo, yo) = (
MTO

−MTP

1 + e−kT4
(Conf−C0)

+MTP
)(xo, yo), (8)

here kT3
, S0, kT4

and C0 are hyperparameters.

By integrating the adapted MT as the terrain costmap into the path planner, our system demonstrates
rapid adaptability to different terrains and visual conditions.

5 Evaluations

5.1 Experimental Setup

We assess TOP-Nav in challenging navigation environments across both simulations and real-world
scenarios, emphasizing the following evaluations: 1) The improvements in navigation performance
and locomotion stability achieved by introducing terrain awareness and motion evaluations into the
navigation system. 2) The effectiveness of the proposed Proprioception advisor. 3) The effectiveness
of the proposed Terrain estimator faced with novel terrains.

Evaluation Settings Our simulation experiments are conducted within Nvidia Isaac Gym (Fig. 4).
We create a 8× 8 independent navigation cells grid. Each cell is 5m× 5m in size, featuring a robot
assigned to a point goal navigation task. The robot and point goal is randomly generated, with a
minimum initial distance of 5m within the cell. The simulation experiments are conducted 25 times
in each of the 64 navigation cells. For real-world evaluations, we conduct outdoor navigation tasks
across different scenarios involving challenge obstacles and various terrains, with each scenario
replicated 5 times for each method under investigation.

Metrics: We evaluate TOP-Nav with the following metrics: SR (Success Rate): The percentage of
successful experiments. We define a success experiment as approaching the point goal into 0.5m
within 20 seconds; TD (Terrain Difficulty): The percentage of average traversed terrain costs, TD
provides the ground truth traversed terrain costs within each episode; UT (Unstable Time): The
percentage of unstable motion states (|roll| > 0.15 or |pitch| > 0.15) in each episode; VFT (Ve-
locity Tracking Failure): The average percentage of velocity tracking failures (∥vlin − vact∥ > 0.2)
in each episode; AEC (Average Energy Consumption): The average energy consumption (τ q̇) [42]
in each successful episode. We calculate the variance across different navigation scenarios to assess
the robustness of the proposed method.

Baselines: Beyond ablation study, we compare TOP-Nav against state-of-the-art legged naviga-
tion frameworks and segmentation based terrain estimators. VP-Nav [27] integrates vision and
proprioception to develop a collision detector and a fall predictor within the navigation pipeline.
GA-Nav [19] achieves terrain segmentation relying solely on vision. Sterling [37] learns terrain
traversability in a self-supervised manner by assigning traversability to terrains with similar propri-
oception representations. However, this approach requires prior training for encountered terrains.

5.2 Simulation Evaluations

Improvements with Terrain Awareness: TOP-Nav empowers the robot to select terrains with
higher traversability, leading to a significant improvement in the success rate of navigation: TOP-
Nav surpasses the VP-Nav baseline by approximately 8% in success rate (SR) and achieve a TD of
nearly 20% (Table 1), which is half of the TD achieved in methods without terrain awareness.
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Figure 4: Each navigation cell consists of randomly generated challenging terrains with distinct
traverse difficulty, which is marked by the irregularity and complexity of the terrain. The proposed
terrain awareness navigation framework plans an optimal path to navigate challenging terrains. The
robot demonstrates the capability to recover from unexpected obstacles or irregular terrains with the
proprioception advisor.

Table 1: Simulation Results with comparison experiments and ablation study

Method SR (%) ↑ TD(%) ↓ UT(%) ↓ VFT(%) ↓ AEC ↓
VP-Nav 65.62± 2.4 47.18± 0.8 36.18± 0.5 26.09± 0.4 101.80± 49.6

wo/Terrain 68.00± 2.6 45.83± 0.7 34.92± 0.6 25.06± 0.5 101.70± 46.6

wo/Proprioception 62.75± 1.6 20.47± 0.2 32.87± 0.5 26.66± 0.6 88.17± 15.3

Obstacle-Only 52.81± 2.3 47.79± 0.8 41.45± 0.8 39.13± 1.0 96.82± 48.0

TOP-Nav 73.62± 1.2 22.65± 0.2 27.21± 0.2 18.14± 0.2 92.08± 24.4

Improvements with Proprioception Advisor: The proposed proprioception advisor could recover
the robot from locomotion failures such as getting stuck on irregular terrain surfaces or colliding with
unseen obstacles during directional changes (Fig. 4). In contrast to methods without proprioception,
our approach exhibits an approximate 11% enhancement in SR. Meanwhile, even without terrain
awareness, the proposed system outperforms VP-Nav by 2.5%, signifying an improvement in our
integration of the proprioception advisor compared to existing methods.

Advancements in Locomotion: TOP-Nav achieves the lowest UT and VFT, indicating that select-
ing simpler terrains contributes to locomotion stability. We evaluate energy consumption with the
assumption that when traversing simpler terrain, the robot should exhibit more natural gaits. As
a result, TOP-Nav exhibit a 10% reduction in energy consumption compared to methods without
terrain awareness.

5.3 Real World Evaluations

To evaluate the efficacy of the online corrections for providing the robot with traversability on novel
terrains, we conduct experiments using a degraded terrain classifier trained without gravel (Fig 5(A))
and in terrains without any prior information (Fig 5(B)). We demonstrate that the robot can recall
previously encountered challenging terrain during the phase of online corrections and plan a way-
point to avoid it. This showcases the fast adaptation ability of TOP-Nav to plan an optimal path
when faced with novel terrains.

The quantitative results are provided in Table 2. In the Unkown Gravel experiments, despite GA-Nav
possessing complete prior knowledge and correctly identifying the paved road, our online correc-
tions only lead to a 7% increase in UT, mainly due to the forward movement in phase 1. VP-Nav
allows the robot to exit the gravel terrain with the safety advisor, but it can not retain this infor-
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Table 2: Real World Evaluation Results on Novel Terrains

Scenerios Unkown Gravel Slippy Tarpaulin
TOP-Nav VP-Nav GA-Nav Obstacle-Only TOP-Nav VP-Nav Sterling

SR ↑ 5/5 4/5 5/5 5/5 5/5 3/5 2/5

UT(%) ↓ 14.30 26.43 7.98 42.33 1.19 2.64 3.85

AEC ↓ 57.46 70.30 62.57 72.60 83.40 102.0 113.8

Time(%)↓ 1 62.72 77.90 67.42 70.64 67.62 63.05 76.52
1 The Time metric measures the proportion of time the robot takes to complete the navigation task.

mation. In the Slippy Tarpaulin experiments, TOP-Nav demonstrates effectiveness in maintaining
stability and improving the success rate by avoiding challenging terrain. In the Slippy Tarpaulin ex-
periments, TOP-Nav demonstarting effectiness in maintaining stability and improving the success
rate by avoiding challenging terrain. Among the comparisons, Obstacle-Only keeps moving forward
on the slippy surface and exhibit the worst motion performance. We include Sterling in this com-
parison to demonstrate the importance of online corrections when incorporating proprioception into
terrain estimation. Without online corrections, Sterling behaves similarly to Obstacle-Only, unable
to adapt to novel terrains and continuing forward. The results against novel terrains highlight the
system’s ability to perform open-world navigation.

Figure 5: (A) The terrain classifier does not include high-cost gravel in prior. (B) The robot en-
counters terrains with no prior knowledge, including a slippery detergent surface. We evaluate the
effectiveness of the proposed terrain estimator within TOP-Nav in the experiments.

In addition, we conducted a consecutive long-distance experiment (Fig. 5-C) in an off-road scenario
with grass and gravel on both sides of the path. The robot is initially given a target direction straight
ahead, relying on the terrain and obstacle estimator to keep navigating on the paved road. In such
scenarios, the challenging terrains help guide the robot in changing its direction, ensuring that it
stays on the paved road automatically. More hardware evaluations are provided in Section 8.2 and
the supplementary video.

6 Conclusion

We present TOP-Nav, a legged navigation system that achieves closed-loop integration of visual
and proprioception at both task and motion planning levels. Through the extensive quantitative ex-
periments conducted in both simulation and real world, we underscore the success of our system in
achieving open-world navigation, surpassing limitations posed by visual conditions or prior knowl-
edge.

Limitations: The camera-based vision system in TOP-Nav fails in providing robust visual odom-
etry in varying light conditions in outdoor environments. This limitation could be mitigated by
integrating LiDAR-odometry into the perception module. Another significant limitation is related
to the costmap-based local planner, where the planned waypoint can continuously shift when sim-
ilar minimum costs arise at different locations on the map. We plan to address this in future work
by introducing a diffusion-based task planner, which can integrate different cost modalities while
providing a smoother sequence of future waypoints.
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Appendix

7 Implementation Details

7.1 Task Configuration

To elucidate the task configuration, the robot is given a point goal with its location pgoal. The location
of the robot is denoted as (pbase, rbase). For external observation, we utilize a bio-channel perception
module for both the path planner and the controller. This module includes depth (Id) and RGB (Irgb)
channels. The path planner computes the desired velocity command (vlin,∆yaw) for the robot, which
is tracked by the controller along with the appropraite joint position signal.

7.2 Path Planner Details

TOP-Nav integrates the combined cost map MC , offering a comprehensive estimation that encom-
passes terrain traversability cost MT , obstacle cost MO, proprioception advice MP and the goal
approaching cost MG. This integration addresses both visible and unexpected external disturbances
against the robot.

To keep a balance between navigation efficiency and safety, we formulate the combination of MC

with dynamic scaling factors as follows:

MC = MP +MO + αTMT + αGMG, (9)

αT =
kT1

1 + e−kT2
(d−d0)

, αG =
kG1

1 + e−kG2
(t−t0)

+ kG0
, (10)

here Mi are 2-d matrix with a spatial resolution of 0.15m, d0, t0, kT , kG are hyperparameters, t
denotes current time consuming and d denotes the distance from the point goal at the current step.
We accord the highest priority to MP and MO since they represent non-traversable locations where
the robot cannot pass through. The terrain traversability scale αT decreases as the robot approaches
the target. This design is made considering that, as the robot nears the target (d decreases), taking a
detour to avoid a challenging yet traversable terrain would be an inefficient behaviour. Conversely,
the goal approaching scale αG increases with the duration t of the task.

With the integrated map MC , we select the optimal waypoint pway based on the lowest combined
cost.

pway = argmin
p∈E

1

∥pbase − p∥

(x,y)=p∑
(x,y)=pbase

MC(x, y), (11)

here E denotes the set of points on the edge of MC . For each point p in E, we calculate the
average combined cost along the path from the robot location pbase to the edge point p. The optimal
waypoint pway is then chosen as the point with the lowest path cost.

After determining the optimized local target pway, the target direction is calculated based on the
relative position ∆yaw = arctan(pway − pbase) − rbase, here rbase denotes the yaw direction of the
robot base. The linear velocity is constrained to mitigate the impact of high angular variation with
vlin = v0e

−k∆yaw , thereby preventing abrupt and substantial turning at high speeds.

In simulation, MC is configured with dimensions (1.65m, 1.5m) centered around the robot‘s loca-
tion at pmap

base = (0.45m, 0.75m). This design prioritizes a light-weight, real-time updated path plan-
ner and maintains consistency with the height map used in locomotion. The environments include
randomly generated obstacles and terrains. Each cell is equipped with at least one wall obstacle, two
column obstacles and the remaining space is divided into 1m× 1m sections. For terrain traversabil-
ity assignments, we uniformly partition the obstacle-free space into difficulty levels [0, 0.25, 0.5,
0.75, 1] and generate terrain with various heights of steps and the intensity of irregular terrain cor-
responding to the difficulty levels. This difficulty serves as ground-truth walking preferences in
simulation.
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To obtain a more comprehensive observation in the real world, we configure the cost map MC with
dimensions of (3m, 3m). The location of robot is at pmap

base = (0m, 1.5m) in real world MC . The
criteria for success include reaching the goal within the specified time constraints, consistent with
the simulation setting.

Obstacle Estimation and Localization: In simulation, the robot has access to the ground truth
location. For each point p = (x, y), MG(x, y) = ∥pgoal − p∥. In real world, we set a target
direction rgoal to compute the goal map MG(x, y) = ∥rgoal − arctan(p− pbase)∥. We construct the
obstacle estimation based on the depth channel Id. The perceived obstacles are converted into point
clouds, and for each point in MO, we compute the signed distance MSDF to the closest obstacles
within distance dmax, the cost of obstacles therefore can be computed as:

MO(x, y) =
max(0, dmax −MSDF(x, y))

dmax
. (12)

For reference, we provide the default values of the hyperparameters used in the path planner in Table
3. Parameters d0, t0 adjust the weights of MT and MG as the robot approaches the target and as
time progresses. kG0

keeps a minimum weight for the robot approaching the target. The listed values
remain consistent in simulation; however, considering the various conditions in the real world, we
make slight changes to these values in different real-world experiments for better validation of the
contribution of this work. For instance, in outdoor navigation experiments, we assign a higher value
to kT1

to expand the scale of the terrain estimator, which is effective for evaluating the accuracy of
the proposed terrain estimator.

The default commanded velcoity v0 is set to 0.5m/s in both simulation and the real world. The
maximum distance dmax we considered for computing the obstacle map MO is 0.3m.

Table 3: Hyperparameters in the path planner

Parameter d0 t0 kT1 kT2 kG0 kG1 kG2

Default Value 0.5 0.5 1.0 2.0 0.1 0.4 −10

7.3 Motion Controller Details

The motion controller is implemented following [3, 43]. Both the actor and critic networks within
the locomotion policy π have hidden layer sizes of [512, 256, 128]. The proprioception observation
op
t includes angular velocity (3), Orientation (2), velocity commands (3), joint positions (12), joint

velocities (12), and the last action (12). We store the last 10 steps of op
t into the history observation

oh
t . The depth encoder learns the exteroception latent features from onboard observation Id using

a conv-GRU structure. π is updated using PPO [44] for 20K iterations, the batch size is 160000
divided into 4 mini-batches. The depth encoder is optimized for 5k iterations. The rewards obtained
at each step are the sum of the reward functions listed in Table 4.

7.4 Proprioception Advisor Details

The default πcritic requires privileged observations, we train another value function estimation net-
work using observable motion states for the proprioception advisor to be deployed on hardware. The
estimated motion evaluation ct is normalized using a sigmoid function. The proprioception advisor
is trained with the locomotion policy π, with an exact same network architechture as πcritic. The
input only includes proprioception observation op

t and historical observation oh
t , updated through

the MSE loss with ctarg
t . The estimated value ct is normalized through sigmoid function:

Norm(ct) =
1

1 + e2∗(2.2−ct)
(13)
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Table 4: Reward Functions

Target Velocity Tracking1 min(vact, vlin)

Target Direction Tracking e−|∆yaw|

Orientation Penalty −(roll2 + pitch2)

Hip Joint Position Penalty −∥qhip∥2

z-direction velocity Penalty − | vz |2

Collision Penalty2 −
∑

i∈(calf,thigh)(F
i
c ≥ 0.1N)

Torques Variation Penalty −∥τt − τt−1∥
1 vact is the projection component of vact in the target direction.
2 F i

c is the contact force of calf and thigh indices.

In practice, and we set a minimum threshold cth for the normalized critic value be considered in the
path planner, in simulation cth = 0.8, while in the real world cth = 0.5, Norm(ct) larger than cth
will be set to 1.

MP is calculated with kP = 0.3, we demonstrate an example of MP after the robot collides
with a wall (with vision and obstacle detection disabled in this trial) in Fig 6. In this scenario, the
normalized ct returns 0.02, MP has a width of 0.75m along the moving direction of the robot with
costs greater than 0.5.

Figure 6: We demonstrate an example of MP when the robot collides with an obstacle.

Generally, the proprioception advisor engages when locomotion states are compromised. To enable
recovery from being obstructed by the unexpected terrains, we have designed the following recovery
strategy in simulation: when Norm(ct) falls below a specific threshold (0.5), we initially assign a
backward velocity command of 0.5 m/s for 0.5 seconds. Next, to address potential terrain-related
constraints that may prevent the robot from reaching planned waypoints at its default velocity, we
reduce the frequency of the path planner to 0.5 Hz until the robot reaches the waypoint or makes a
directional change of 0.3 radians.

7.5 Terrain Estimator Details

For prior data collection of the terrain estimator, we teleoperate the robot to walk for 5 minutes
on each of the concerned terrains. We capture the motion evaluations ct as well as the first-view
observations during these demonstrations. We convert the RGB observations into BEV maps and
dividing them into patches. The collected data is labelled based on the corresponding terrain from
which it was acquired. The classification network is implemented using the MobileNet backbone
and trained on a Nvidia GTX 2080 Ti for 6 hours. The proposed pipeline provides a light-weight
inference model of 8 MB to be deployed for onboard computation. During deployment, to approx-
imate the uncertainty U with predictive entropy, We perform K = 8 stochastic forward inferences
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with different data augmentations as Monte Carlo simulation, We estimate the expectation as the
average of the predicted probability Pi =

∑
k P

k
i /K.

Based on the collected motion evaluations, we compute the average ct observed during walks on
each terrain. These walking experiences provide reference values for assigning the terrain costs
defined by the operator. Table 5 presents the validation accuracy of the terrain classifier, along with
the reference terrain cost and the average collected motion evaluations Norm(ct) for each terrain.
Since the terrains encountered in the real world did not exhibit significant differences in motion
evaluations, we did not strictly set the reference cost based on linear correlation.

Table 5: Terrain Cost and Classify Accuracy

Name Bush Brick Snow Gravel Slab Cement Paved Grass
Accuracy (%) 89.58 92.28 83.20 83.47 90.67 82.87 93.81 88.36
Norm(ct) 0.481 0.523 0.445 0.507 0.581 0.580 0.580 0.572

Cost 0.7 0.6 0.9 0.7 0.0 0.0 0.0 0.2

The hyperparameters used for online corrections are fine-tuned based on the distribution of the
learned latent features L from the pre-collected data. Figure 7-(b) depicts a t-SNE visualization of
the features inferred by the terrain classifier, involving data both within and outside of Dterrain. We
observe that πterrain can learn distinctive features for specific terrains, showcasing unique clustering
in the latent space, even for previously unseen terrain types. The average cosine similarity S(o,r)

within each terrain class is 0.95, we set the middle point S0 to be 0.85 and kT3
to be 15. This allows

the terrain cost derived from historical experience to decrease rapidly when the similarity falls below
0.8.

Figure 7: (a) We illustrate the distribution of samples across different confidence levels, with the
training of the terrain classifier, the confidence values for known terrains predominantly clustered
beyond 0.9, while samples of novel terrains remained dispersed across the confidence axis. (b)T-
SNE visualization of the features inferred by the terrain classifier.

To demonstrate the effectiveness of computing confidence in deciding whether the observed terrains
is outside of Dterrain, we illustrate the distribution of samples across different confidence levels in Fig
7-(a). After 200 steps of training, the confidence values for known terrains predominantly clustered
beyond 0.9, while samples of novel terrains remained dispersed across the confidence axis. The
confidence is used to adjust the weight of online correct ions in terrain estimation. We set kT4 = 20
and C0 = 0.9 in the experiments.
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7.6 Hardware Details

We implement TOP-Nav on the Unitree-Go1 and Unitree-Go2 quadruped robot, with a weight of
approximately 12kg and dimensions of 645mm×280mm. The robot is equipped with 12 brushless
motors, each capable of producing a torque of 35.5Nm. The perception module is equipped with
a RealSense D435i camera, offering simultaneous depth and RGB channels. All computations are
processed onboard with an NVIDIA Jetson NX asynchronously, i.e. the locomotion controller oper-
ates at a fixed frequency of 50Hz and receives the latest depth latent ℓ inference from the perception
module. The path planner operates at a frequency of 3Hz.

8 Additional Experiments

In this section, we provide additional experiments to justify the effectiveness of the key components
in TOP-Nav.

8.1 Evaluations on Different Evaluation Metrics

This section gives a detailed description of the evaluation choices throughout the simulation and
hardware experiments.

Figure 8: Evaluations on different threholds for VFT and UT metrics.

We set The Timeout for Success Rate at 20 seconds, which corresponds to an expected path length
of 10 meters given the commanded velocity of 0.5m/s. Note that the target goals will be randomly
generated at least 5m away from the robot initial location within the 5m x 5m nav-cell. Therefore, 10
meters represents the longest path the robot would plan to complete the navigation episode without
backtracking. We set the relatively loose time limit to emphasize the robot’s ability to complete the
task, as avoiding challenging terrains and obstacles may require taking detours. The experimental
results demonstrate that most failure cases occur when the robot gets stuck due to obstacles or
challenging terrains. As a result, extending the timeout limit does not lead to a significant change in
the success rate. For example, when we raise the timeout limit to 30 seconds, the success rate for
TOP-Nav increases from 73.62% to 75.93%, the success rate for Obstacle-Only raises from 52.81%
to 59.39%.

We set the metrics of Unstable Time and Velocity Tracking Failure to evaluate the advantage in
motion stability when the robot follows the planned path using the proposed system. Generally,
the robot achieves higher speeds with less roll and pitch when walking on the optimal path. As
demonstrated in Fig. 8, the robot performs better on these metrics across different threshold settings.

8.2 Evaluations on Vision-Based Terrain Estimator

We conduct additional quantitative hardware experiments on terrains included in the prior datasets
(Fig 9), demonstrating superior performance compared to existing legged navigation systems.
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Figure 9: We conduct the evaluations in scene 1-3, the green line represents the trajectory of TOP-
Nav, while the red line represents Obstalce-Only.

The evaluation results are presented in Table 6. TOP-Nav successfully completes all 15 trials
with superior walking stability and minimal energy consumption. These results affirm the suc-
cessful deployment of the proposed system on real hardware, allowing the robot to select way-
points on terrains with better traversability and thus execute more natural gaits. In contrast, GA-
Nav, trained on RUGD [45], demonstrates notable limitations when confronted with open-world
navigation. We observe that the improvements of TOP-Nav over GA-Nav mainly stem from:
1) In scene 1,2, GA-Nav fails to identify the slabbed road as a low-cost terrain from the bush
and gravel. 2) In scene 3, GA-Nav incorrectly identifies the lower part of the obstacle as a
cement floor, which could be addressed by our integration of obstacles and terrain estimation.

Table 6: Evaluation Results on Vision-Based Terrain Estimator

Method SR ↑ UT(%) ↓ AEC ↓ Time(%) ↓
GA-Nav 13/15 19.80 74.42 68.76

VP-Nav 11/15 23.02 71.45 80.12

Obstacle-Only 12/15 22.75 71.09 79.72

TOP-Nav 15/15 7.79 59.07 65.03

Nevertheless, GA-Nav surpasses
VP-Nav and Obstacle-Only,
which navigates without terrain
awareness. With Obstacle-Only,
the robot gets stuck by the
stones or Grassroots, leading
to a higher time consumption.
While VP-Nav effectively alerts
the robot to locomotion failures
that could be brought by such
terrains, the absence of terrain awareness prevents the robot from successfully navigating out of
these challenging terrains, resulting in inferior locomotion performance.

8.3 Evaluations on Proprioception Advisor

In this section, we discuss the relationship between the proposed proprioception advisor and terrain
difficulties, along with ground truth reward terms such as velocity tracking and attitude stability.

We conduct a series of straight navigation tasks in simulation, as demonstrated in Fig 10. Each
robot’s waypoint is set in a straight line, covering terrains of various difficulties Dl and types:

• Irregular Surface: The height of each point in the terrain is randomly changed within the range of
(0.01 + 0.04 ∗Dl, 0.07 + 0.04 ∗Dl)m.
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Figure 10: We conduct a series of straight navigation tasks in simulation. Each robot’s waypoint is
set in a straight line, covering terrains of various difficulties [0.25, 0.5, 0.75, 1] with types covering
slopes, discrete steps and irregular surfaces.

• Discrete Steps: This terrain type consists of 12∗Dl mall steps within a 1m×1m area, where each
small step has dimensions of (0.1, 0.1, 0.08)m.

• Slope & Holes: Randomly switches between upper slopes and holes, where the maximum
height/depth of each slope/hole is set as 1.2m ∗Dl.

Table 7: Evaluation of the proprioception advisor on different types of terrains.

Method
Terrain

Slope& Holes Discrete Steps Irregular Surface
Flat

Difficulty Ground

Prop Advisor

0.25 0.7560 0.7964 0.7001

0.8600
0.50 0.3316 0.3633 0.2589

0.75 0.1893 0.1614 0.1058

1.0 0.0573 0.0837 0.0347

Decoupled Training

0.25 0.8649 0.9836 0.9811

0.9900
0.50 0.3076 0.7403 0.8141

0.75 0.2312 0.2323 0.4831

1.0 0.0770 0.3230 0.2563

Figure 11: The estimated ct and the actual
motion states of the robot has a strong lin-
ear correlation.

We conduct 30k steps of navigation for each robot
and compute the average motion evaluations estimated
by the proprioception advisor. The results are shown
in Table 7. We observe that as terrain ruggedness,
irregularity, and the presence of obstacles increase,
there is a corresponding decrease in the motion eval-
uations. Although this correlation is not strictly linear,
the results provide supportive for us to estimate terrain
traversability based on the proprioception advisor.

For comparison, we train an independent motion eval-
uation function πdeq, which is decoupled from the
training process of the motion controller. πdeq is up-
dated using the MSE loss between the ground truth
motion states and the network prediction cref. The
ground truth walking states include velocity tracking,
orientation penalty, and energy consumption:

ctarget
ref = min(vact, vlin)− (roll2 + pitch2)− 0.001 ∗ τ q̇, (14)

we train πdeq for 10k iterations, ctarget
ref is normalized using a sigmoid function.
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As shown in Table 7, cref demonstrates a noticeable decline as terrain difficulty increases, yet it does
not exhibit a significant advantage compared to the proposed proprioception advisor.

On the other hand, the same terrain may exhibit different traversability for robots with varying
locomotion capabilities. Therefore, the evaluation of walking states represents another important
metric for assessing terrain traversability. We demonstrate the correlation between the predicted
motion evaluations ct and the ground truth motion states ctarget

ref in Fig 11.

The perason correlation coefficient is 0.914, indicating a strong linear correlation between the esti-
mated ct and the actual motion states of the robot.

Building upon the discussion above, we validate that constructing the proprioception advisor with
critic output enables efficient motion evaluation, including information on both the terrain difficulty
and walking states of the robot. Moreover, the proposed advisor can be implemented without the
need for additional training or sensors, making it a more appropriate approach to provide motion
evaluations for robot path planning compared to existing methods.

8.4 Different Velocities

We conducted quantitative experiments in simulation with different velocities (0.25, 0.5, 0.75, 1.0)
(m/s), and the results demonstrate that proper velocity design does affects the performance of the
navigation system. As demonstrated in Table 8, a slower velocity command (0.25) prevents the robot
from reaching the goal on time, resulting in a lower success rate. Moreover, it can be concluded that
lower the speed would help decrease the energy consumption.

Table 8: Simulation Results with velocity comparisons

Velocity (m/s) SR (%) ↑ TD(%) ↓ UT(%) ↓ VFT(%) ↓ AEC ↓
0.25 49.69± 3.43 26.22± 0.33 26.56± 0.41 25.95± 0.45 65.55± 352.19

0.5 73.62± 1.21 22.65± 0.19 27.21± 0.24 18.14± 0.16 92.08± 24.39

0.75 73.91± 2.46 22.22± 0.26 22.53± 0.37 16.79± 0.28 80.32± 46.82

1.0 72.03± 2.80 21.65± 0.23 41.92± 0.49 21.30± 0.44 123.53± 39.61

Figure 12: The robot avoids invisble ob-
stacles with the proprioception advisor.

Metrics VP-Nav Obstacle-Only TOP-Nav

SR ↑ 5/5 0/5 5/5

UT(%) ↓ 1.45 / 0.79

AEC ↓ 42.97 / 34.63

ST(s) ↓ 3.30 +∞ 1.98

Table 9: Evaluation results on the Invisible Obstacles.

On the other hand, setting a too large velocity command will introduce locomotion instability, as
indicated by the results with a velocity of 1m/s. However, conducting a quantitative analysis of the
influence of speed is challenging in complex terrains. For instance, in slopes, robots with higher ve-
locities may navigate more effectively, whereas terrains with discrete steps could lead to locomotion
failures at faster speeds. Consequently, experiments with velocity commands of 1m/s still achieve
a high success rate.

The performances vary between 0.5m/s and 0.75m/s is not significant; therefore, we consider this
range to be an appropriate commanded velocity range for deployment. In real-world experiments,
we demonstrate the robot’s velocity set at 0.75m/s in the supplementary video.
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8.5 Invisible Obstacles

The proposed proprioception advisor provides close-loop feedback to alert the robot to invisible
obstacles. We assess this capability in Fig. 12, where a glass wall is located along the planned
path. In phase 1, the obstacle estimator is oblivious to the presence of the glass wall, and the robot
continues moving forward. In phase 2, the robot collides with the glass wall, causing a rapid increase
in MP along the direction of movement. As a result, the robot adjusts its waypoint to steer clear
of the high-cost area, successfully avoiding the glass wall. The quantitative results are provided in
Table 9.
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