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ABSTRACT

Several companies—such as Google, Microsoft, and OpenAl-have deployed tech-
niques to watermark Al-generated images to enable proactive detection. However,
existing literature mainly focuses on user-agnostic detection. Attribution aims to
further trace back the user who generated a detected Al-generated image. Despite
its growing importance, attribution is largely unexplored. In this work, we aim
to bridge this gap by providing the first systematic study on watermark-based,
user-aware detection and attribution of Al-generated images. Specifically, we theo-
retically study the detection and attribution performance via rigorous probabilistic
analysis. Moreover, we develop an efficient algorithm to select watermarks for
the users to enhance attribution performance. Both our theoretical and empirical
results show that watermark-based detection and attribution inherit the accuracy
and (non-)robustness properties of the watermarking method.

1 INTRODUCTION

Generative Al (GenAl) can synthesize very realistic-looking images. Beyond its societal bene-
fits, GenAl also raises ethical concerns. For instance, they can be misused to generate harmful
images (Yang et al.,|2024); they can be used to aid disinformation and propaganda campaigns by gen-
erating realistic-looking images (Dhaliwal, 2023)); and people can falsely claim copyright ownership
of images generated by them (Escalante-De Matteil 2023)).

Watermark-based detection and attribution of Al-generated images is a promising technique to miti-
gate these ethical concerns. For instance, several companies—such as Google, OpenAl, Stability Al,
and Microsoft-have deployed such techniques to watermark their Al-generated images. Specifically,
OpenAl inserts a visible watermark into the images generated by its DALL-E 2 (Ramesh et al.,[2022);
Google’s SynthID (Gowal & Kohli, [2023) inserts an invisible watermark into images generated by its
Imagen; Stability Al deploys a watermarking method in its Stable Diffusion (Rombach et al.|[2022);
and Microsoft watermarks all Al-generated images in Bing (Mehdi, 2023)).

However, existing literature mainly focuses on user-agnostic detection of Al-generated images. In
particular, the same watermark is inserted into all the images generated by a GenAl service; and an
image is detected as generated by the GenAl service if a similar watermark can be decoded from
it. Attribution aims to further trace back the registered user of the GenAl service who generated a
given image Such attribution can aid the GenAl service provider or law enforcement in forensic
analysis of cyber-crimes, such as disinformation and propaganda campaigns, that involve a given
Al-generated image. Despite the growing importance of attribution, it is largely unexplored.

In this work, we bridge this gap by conducting the first systematic study on the theory, algorithm, and
evaluation of watermark-based detection and attribution of Al-generated images. Our work assumes
an image watermarking method has been designed. Our contribution is to study the theory and
algorithm of leveraging this watermarking method for Al-generated image detection and attribution
(illustrated in Figure . When a user registers in a GenAl service, a watermark (i.e., a bitstring) is
selected for him/her and stored in a watermark database. When a user generates an image using the
GenAl service, the user’s watermark is embedded into the image using the watermark encoder. An
image is detected as Al-generated if the watermark decoded from the image is similar enough to at

!Attribution could also refer to tracing back the GenAl service that generated a given image, which we
discuss in Section |}
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Figure 1: Illustration of registration, generation, and detection & attribution phases of watermark-
based detection and attribution.

least one user’s watermark in the watermark database. Moreover, the image is further attributed to
the user whose watermark is the most similar to the decoded one.

We theoretically analyze the performance of watermark-based detection and attribution. Specifically,
we define three key evaluation metrics: true detection rate (TDR), false detection rate (FDR), and
true attribution rate (TAR). We show that other relevant evaluation metrics can be derived from these
three. Based on a formal quantification of a watermarking method’s behavior, we derive lower bounds
of TDR and TAR, and an upper bound of FDR no matter how the users’ watermarks are selected.

Selecting watermarks for the users is a key component. We formulate a watermark selection problem,
which aims to select a watermark for a new registered user via minimizing the maximum similarity
between the selected watermark and the existing users’ watermarks. We find that our watermark
selection problem is equivalent to the well-known farthest string problem (Lanctot et al., [2003)),
which has been studied extensively in theoretical computer science. Thus, we adapt the bounded
search tree algorithm (Gramm et al.| [2003), a state-of-the-art solution to the farthest string problem,
to solve our watermark selection problem.

We empirically evaluate our method for Al-generated images on three GenAl models, i.e., Stable
Diffusion, Midjourney, and DALL-E 2. We use HiDDeN (Zhu et al., |2018), a deep-learning-based
image watermarking method that is the basis for modern image watermarks. Our results show
that detection and attribution are very accurate, i.e., TDR/TAR is close to 1 and FDR is close to 0,
when Al-generated images are not post-processed; detection and attribution are still accurate when
common post-processing, such as JPEG compression, Gaussian blur, and Brightness/Contrast, is
applied to Al-generated images; and adversarial post-processing (Jiang et al., [2023)) with a small
number of queries to the detection API degrades the image quality substantially in order to evade
detection/attribution. Moreover, we show our watermark selection algorithm outperforms baselines.

2 RELATED WORK

An image watermarking method typically consists of three components: watermark, encoder, and
decoder. We consider a watermark w to be a bitstring with n bits. E(C,w) means that encoder
E embeds w into an image C, while D(C") is the watermark decoded from a (watermarked or
unwatermarked) image C’ by decoder D. Note that E and w can also be embedded into the
parameters of a GenAl model such that its generated images are inherently watermarked with
w (Fernandez et al.,[2023).

Non-learning-based vs. learning-based: Watermarking methods can be categorized into two
groups based on the design of E' and D: non-learning-based and learning-based. Non-learning-based
methods (Pereira & Punl, |2000; Bi et al.| 2007; |Wang]| [2021; [Wen et al.| 2023) design £ and D based
on some hand-crafted heuristics, while learning-based methods (Zhu et al., 2018};|Abdelnabi & Fritz,
20215 Luo et al., 2020; |Wen & Aydore, |2019; [Tancik et al., 2020; [Fernandez et al.,|2023)) use neural
networks as F/D and automatically learn them using an image dataset. For instance, Tree-Ring (Wen
et al.} 2023) is a non-learning-based watermarking method, while HiDDeN (Zhu et al., 2018) is a
learning-based method. Our theory and algorithm are applicable to both categories of watermarking
methods as long as they use bitstring-based watermarks such as HiDDeN (Zhu et al.| [2018)), Stable
Signature (Fernandez et al., 2023)), StegaStamp (Tancik et al., [2020), and Smoothed HiDDeN (Jiang
et al.,[2024). We note that our results are not applicable to Tree-Ring, which employs a non-bitstring
watermark. Since learning-based methods are more robust due to adversarial training (Zhu et al.,
2018)), we adopt a learning-based method in our experiments.
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Standard vs. adversarial training: In learning-based methods, E and D are automatically learnt.
Specifically, given an image C' and a random watermark w, the decoded watermark D (E(C, w)) for
the watermarked image E(C, w) should be similar to w, i.e., D(E(C,w)) ~ w. Standard training
aims to jointly learn E and D such that D(E(C,w)) is similar to w for an image dataset (Kandi
et al.l 2017). A watermarked image F(C,w) may be post-processed, e.g., a watermarked image
may be post-processed by JPEG compression during transmission on the Internet.|[Zhu et al.| (2018)
extended adversarial training (Goodfellow et al.l 2015} Madry et al.l 2018)), a technique to train robust
classifiers, to train watermarking encoder and decoder that are more robust against post-processing.
Specifically, adversarial training aims to learn E and D such that D(P(E(C, w))) is similar to w,
where P stands for a post-processing operation and P(F(C,w)) is a post-processed watermarked
image. In each epoch of adversarial training, a P is randomly sampled from a given set of them for
each image in the image dataset.

Robustness of watermarking: We stress that building robust watermarking methods is orthogonal
to our work and is still an ongoing effort. Non-learning-based methods (Pereira & Pun, [2000; |B1
et al.,[2007; |Wangl| 2021; Wen et al., 2023) are known to be non-robust to common post-processing
such as JPEG compression (Zhu et al.| 2018). Learning-based methods (Kandi et al., 2017; |Zhu
et al.} 2018;|Abdelnabi & Fritz, [2021; Luo et al.,2020; /Wen & Aydore, |2019; Fernandez et al., 2023}
Saberi et al., [2024) are more robust to such common post-processing because they can leverage
adversarial training. For instance, common post-processing has to substantially decrease the quality
of a watermarked image in order to remove the watermark (Luo et al.,|2020; |Wen & Aydore, [2019).
Adversarial post-processing (Jiang et al.,[2023; [Lukas et al.| 2024; Zhao et al., [2023} [Saberi et al.,
2024) strategically perturbs a watermarked image to remove the watermark. Learning-based image
watermarking methods are not yet robust to adversarial post-processing in the white-box setting
where an attacker has access to D. However, they have good robustness to adversarial post-processing
when an attacker can only query the detection API for a small number of times in the black-box
setting or does not have access to the detection API. In particular, adversarial post-processing
substantially decreases the quality of a watermarked image in order to remove the watermark in such
scenarios. To defend against adversarial post-processing, Jiang et al.|(2024) proposed a framework to
build certifiably robust image watermarks that cannot be removed when the {5 norm of the added
perturbation is bounded. We acknowledge that our watermark-based detection and attribution inherit
the watermarking method’s (non-)robustness properties discussed above.

3 PROBLEM FORMULATION

Suppose we are given a generative Al model, which is deployed as a GenAl service. A registered
user sends a prompt (i.e., a text) to the GenAl service, which returns an Al-generated image to the
user. In this work, we consider defection and attribution of Al-generated image. Detection aims to
decide whether a given image was generated by the GenAl service or not; while attribution further
traces back the user of the GenAl service who generated an image detected as Al-generated. Such
attribution can aid the GenAl service provider or law enforcement in forensic analysis of cyber-crimes,
e.g., disinformation or propaganda campaigns, that involve a given Al-generated image. We define
the detection and attribution problems as follows:

Definition 1 (Detection of Al-generated image). Given an image and a GenAl service, detection
aims to infer whether the image was generated by the GenAl service or not.

Definition 2 (Attribution of Al-generated image). Given an image, a GenAl service, and s users
U = {U;,Us,---,Us} of the GenAl service, attribution aims to further infer which user used the
GenAl service to generate the image after it is detected as Al-generated.

We note that the set of s users U in attribution could include all registered users of the GenAl service,
in which s may be very large. Alternatively, this set may consist of a smaller number of registered
users if the GenAl service provider has some prior knowledge on its registered users. For instance,
the GenAl service provider may exclude the registered users, who are verified offline as trusted, from
the set U to reduce its size. Moreover, malicious users may be identified by conventional network
security solutions, such as IP addresses and behavior patterns (Yuan et al., 2019; Xu et al.| [2021)).
How to construct the set of users U in attribution is out of the scope of this work. Given any set
U, our method aims to infer which user in U may have generated a given image. We also note that
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another relevant attribution problem is to trace back the GenAl service that generated a given image.
Our method can also be used for such GenAl-service attribution, which we discuss in Section [K]

4 DETECTION AND ATTRIBUTION

Figure|l|illustrates our watermark-based detection and attribution method. When a user registers in
the GenAl service, the service provider selects a unique watermark for the user. We denote by w; the
watermark selected for user U;, where ¢ = 1,2, - - - | s is the user index. During generation, when a
user U; sends a prompt to the GenAl service to generate an image, the provider uses the watermark
encoder F to embed watermark w; into the image. During detection and attribution, a watermark is
decoded from a given image; the given image is detected as generated by the GenAl service if the
decoded watermark is similar enough to at least one of the users’ watermarks; and the given image is
further attributed to the user whose watermark is the most similar to the decoded watermark after it is
detected as Al-generated.

4.1 DETECTION

We use bitwise accuracy to measure similarity between two watermarks. Specifically, given any two
watermarks w and w’, their bitwise accuracy (denoted as BA(w, w")) is the fraction of matched bits
in them: BA(w,w’) = £ 3/ I(w[k] = w'[k]), where n is the watermark length, w(k] is the kth
bit of w, and I is the indicator function that has a value 1 if w[k] = w’[k] and O otherwise. Given an
image C, we use the decoder D to decode a watermark D(C') from it. We detect C' as Al-generated
if there exists a user’s watermark that is similar enough to D(C), i.e., if the following is satisfied:
max;ey,2,... s} BA(D(C),w;) > 7, where 7 > 0.5 is the detection threshold.

4.2 ATTRIBUTION

Attribution is applied only after an image C' is detected as Al-generated. Intuitively, we attribute the
image to the user whose watermark is the most similar to the decoded watermark D(C'). Formally,
we attribute image C' to user U;«, where i* is as follows: i* = argmax;c gy 5... ;} BA(D(C), w;).

4.3 WATERMARK SELECTION

A key component of watermark-based detection and attribution is how to select watermarks for the
users. Next, we first formulate watermark selection as an optimization problem, and then propose a
method to approximately solve it.

4.3.1 WATERMARK SELECTION PROBLEM

Intuitively, if two users have similar watermarks, then it is hard to distinguish between them for the
attribution. In fact, our theoretical analysis in Section[5]shows that attribution performance is better if
the maximum pairwise bitwise accuracy between the users’ watermarks is smaller. Thus, we propose
to select watermarks for the s users to minimize their maximum pairwise bitwise accuracy. Formally,
we formulate watermark selection as the following problem:

BA(wi, w;), ey

min max

w1,W2,,Ws 1,5€{1,2,--- ,5},i#]
where B A stands for bitwise accuracy between two watermarks. This optimization problem jointly
optimizes the s watermarks simultaneously. As a result, it is very challenging to solve the optimization
problem because the GenAl service provider does not know the number of registered users (i.e., s)
in advance. In practice, users register in the GenAl service at very different times. To address the
challenge, we propose to select a watermark for a user at the time of his/her registration in the GenAl
service. For the first user Uj, a random watermark is selected. Suppose watermarks for s — 1 users
have been selected. Then, the sth user registers and the GenAl service provider selects a watermark
w, whose maximum bitwise accuracy with the existing s — 1 watermarks is minimized. Formally,
we formulate a watermark selection problem as follows:

i BA(w;, ws). 2
R g, ) DA @

4
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4.3.2 SOLVING THE PROBLEM

NP-hardness: Our watermark selection problem in Equation 2|turns out to be NP-hard. In particular,
we can reduce the well-known NP-hard farthest string problem (Lanctot et al.,2003) to our watermark
selection problem. The farthest string problem aims to find a string that is the farthest from a given
set of strings. We can view a string as a watermark in our watermark selection problem, the given
set of strings as the watermarks of the s — 1 users, and the similarity metric between two strings as
our bitwise accuracy. Then, we can reduce the farthest string problem to our watermark selection
problem, which means that our watermark selection problem is also NP-hard. This NP-hardness
implies that it is very challenging to develop an efficient exact solution for our watermark selection
problem. We note that efficiency is important for watermark selection as a watermark is selected for a
user at the time of registration. Therefore, we aim to develop an efficient algorithm that approximately
solves the watermark selection problem.

Random: The most straightforward method to approximately solve the watermark selection problem
in Equation [2|is to generate a n-bit bitstring uniformly at random as ws. We denote this method as
Random. The limitation of this method is that the selected watermark ws may be very similar to some
existing watermarks, i.e., max;c(12,... s—1} BA(w;, ws) is large, making attribution less accurate,
as shown in our experiments.

Decision problem: To develop an efficient algorithm to approximately solve our watermark selection
problem, we first define its decision problem. Specifically, given the maximum number of matched
bits between w, and the existing s — 1 watermarks as m, the decision problem aims to find such a wj if
there exists one and return NotExist otherwise. Formally, the decision problem is to find any watermark
w, in the following set if the set is nonempty: w, € {w|max;c(12,... s—1} BA(wi, w) < m/n},
where n is the watermark length. Next, we discuss how to solve the decision problem and then turn
the algorithm to solve our watermark selection problem.

Approximate bounded search tree algorithm (A-BSTA): Our A-BSTA is an adapted version of
the bounded search tree algorithm (BSTA), the state-of-the-art exact algorithm to solve the decision
problem version of the farthest string problem. The details of BSTA can be found in Appendix [A] Our
A-BSTA makes two adaptions of BSTA. First, we constrain the recursion depth d to be a constant
(e.g., 8 in our experiments) instead of m, which makes the algorithm approximate but improves the
efficiency substantially. Second, instead of initializing w, as —w;, we initialize ws as an uniformly
random watermark. As our experiments in Table [2| in Appendix show, our initialization further
improves the performance of A-BSTA. This is because a random initialization is more likely to have
small bitwise accuracy with all existing watermarks. Note that A-BSTA returns NotExist if it cannot
find a solution wy to the decision problem.

Solving our watermark selection problem: Given an algorithm (e.g., A-BSTA) to solve the
decision problem, we turn it as a solution to the watermark selection problem. Our idea is to start
from a small m, and then solve the decision problem. If we cannot find a watermark w; for the
given m, we increase it by 1 and solve the decision problem again. We repeat this process until
finding a watermark w,. Note that we start from m = max;c(1,2,... s—23 7 - BA(w;, ws_1), i.e., the
maximum number of matched bits between w,_7 and the other s — 2 watermarks. This is because an
m smaller than this value is unlikely to produce a watermark w; as it failed to do so when selecting
ws—1. Algorithm 3]in Appendix shows our method.

5 THEORETICAL ANALYSIS

We first formally define three key metrics to evaluate the performance of detection and attribution.
Then, we theoretically analyze the evaluation metrics. All our proofs are shown in Appendix.

Image distributions: We denote the s users” watermarks as a set W = {wy, wa, -+ ,ws}. When a
user U; generates an image via the GenAl service, the service provider uses the encoder E to embed
the watermark w; into the image. We denote by P; the probability distribution of watermarked images
generated by U;. Note that two users U; and U; may have different Al-generated, watermarked
image distributions P; and P;. This is because two users have different watermarks and they may
be interested in generating different types of images. Moreover, we denote by Q the probability
distribution of non-Al-generated images.
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5.1 EVALUATION METRICS

(User-dependent) True Detection Rate (TDR): TDR is the probability that an Al-generated image
is correctly detected. Note that different users may have different Al-generated image distributions.
Therefore, TDR depends on users. We denote by TDR; the true detection rate for the watermarked
images generated by user Uj, i.e., TDR; is the probability that an image C' sampled from P; uniformly
at random is correctly detected as Al-generated. Formally, we have:

TDR; = Prcp,( {max BA(D(C),wj) > 1), 3

je{1,2,- s}

where the notation ~ indicates an image is sampled from a distribution uniformly at random.

False Detection Rate (FDR): FDR is the probability that an image C' sampled from the non-Al-
generated image distribution Q uniformly at random is detected as Al-generated. Note that FDR does
not depend on users. Formally, we have:

FDR =Prco( max BA(D(C),wj;)>T). 4)
JE{1,2, s}

(User-dependent) True Attribution Rate (TAR): TAR is the probability that an Al-generated image
is correctly attributed to the user that generated the image. Like TDR, TAR also depends on users. We
denote by TAR; the true attribution rate for watermarked images generated by user U;, i.e., TAR; is

the probability that an image sampled from P; uniformly at random is correctly attributed to user U;.
Formally, we have:

TARZ = PI‘CN'p,L.( max BA(D(C)7 wj) >T (5)
je{1,2,--- s}
A(D(C), wy)),

A BA(D(C),w;)>
where the first term max;c (i 2.... 53 BA(D(C),w;) > 7 means that C' is detected as Al-generated,

and the second term BA(D(C),w;)>max;cq1,2,... s}/{i} BA(D(C), w;) means that C'is attributed
to user U,. Note that we have the first term because attribution is only applied after detecting an
image as Al-generated.

max B
Je{1,2,-,s}/{i}

Other metrics: In Appendix B} we show other relevant metrics can be derived from TDR;, FDR,
and TARL

5.2 FORMAL QUANTIFICATION OF WATERMARKING

Intuitively, to theoretically analyze the detection and attribution performance (i.e., TDR;, FDR, and
TAR;), we need a formal quantification of a watermarking method’s behavior at decoding watermarks
in Al-generated and non-Al-generated images. Towards this end, we formally define 5-accurate
watermarking and ~y-random watermarking, the details of which are in Appendix

[B-accurate watermarking is used to characterize the accuracy of the watermarking method at en-
coding/decoding a watermark in an Al-generated image. In particular, the watermarking method
is more accurate when [ is closer to 1. «-random watermarking characterizes the behavior of the
watermarking method for non-Al-generated images. In particular, the decoded watermark for a
non-Al-generated (i.e., non-watermarked) image is close to a uniformly random watermark, where
~ quantifies the difference between them. The watermarking method is more random for non-Al-
generated images if y is closer to 0.

User-dependent 3;: Since the users’ Al-generated images may have different distributions P;, the
same watermarking method may have different /3 for different users. To capture this phenomena, we
consider the watermarking method is 3;-accurate for user U;’s Al-generated images embedded with
watermark w;. Note that the same ~ is used across different users since it is used to characterize the
behavior of the watermarking method for non-Al-generated images, which is user-independent.

Incorporating post-processing: Our 3-accurate and y-random watermarking can also incorporate
post-processing (e.g., JPEG compression) that an attacker may apply to Al-generated or non-Al-
generated images. In particular, we can replace D(C') as D(P(C)) in definitions, where P stands for
post-processing of the image C. When the Al-generated image is post-processed, the watermarking
method may become less accurate, i.e., 8 may decrease. The parameters 3 and «y can be estimated
using a set of Al-generated and non-Al-generated images, as shown in our experiments.
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5.3 DETECTION PERFORMANCE

Theorem 1 (Lower bound of TDR;). Suppose we are given s users with any s watermarks W =
{wy,we, -+ ,ws}. When the watermarking method is 3;-accurate for user U;, we have a lower
bound of TDR;:

TDR; > Pr(n; > mn) + Pr(n; <n —71n —a;n), (6)
where 0.5<7<f3;, a; = minjeqy 2. s}/4iy BA(w;i, w;), and n; ~ B(n, B;) (binomial distribution).

Corollary 1. When the watermarking is more accurate, i.e., B; is closer to 1, the lower bound of
TDR; is larger.

Theorem 2 (Upper bound of FDR). Suppose we are given s users with s watermarks W =
{wy,wa, -+ ,ws} and watermark w; is selected uniformly at random. We have an upper bound of
FDR as follows:

FDR < Pr(ny > mn) + Pr(ny <n —1n+an), @)
where &1 = max;c(a3.... sy BA(w1,w;) andny ~ B(n,0.5).
Note that the upper bound of FDR in Theorem 2]does not depend on ~-random watermarking since
we consider wy is picked uniformly at random. However, we found such upper bound is loose.
This is because the second term of the upper bound considers the worst-case scenario of the s

watermarks. The next theorem shows that when the s watermarks are constrained, in particular
selected independently, we can derive a tighter upper bound of FDR.

Theorem 3 (Alternative upper bound of FDR). Suppose we are given s users with s watermarks

W = {wyi,wa,- - ,ws} selected independently. When the watermarking method is y-random for
non-Al-generated images, we have an upper bound of FDR as follows:
FDR <1-— Pr(n'<rn)®, ®

where n' ~ B(n,0.5 + 7).

Corollary 2. When the watermarking method is more random for non-Al-generated images, i.e., 7y is
closer to 0, the upper bound of FDR is smaller.

Impact of s on the bounds: Intuitively, when there are more users, i.e., s is larger, it is more
likely to have at least one user whose watermark has a bitwise accuracy with the decoded watermark
D(C) that is no smaller than 7. As a result, both TDR; and FDR may increase as s increases, i.e.,
s controls a trade-off between TDR; and FDR. Our theoretical results align with this intuition. On
one hand, Theorem I] shows that the lower bound of TDR; is larger when s is larger. In particular,
when s increases, the parameter o; may become smaller. Thus, the second term of the lower bound
increases, leading to a larger lower bound of TDR;. On the other hand, the upper bound of FDR in
both Theorem [2| and Theorem [3|increases as s increases. In particular, in Theorem @7 becomes
larger when s increases, leading to a larger second term of the upper bound.

User-agnostic vs. user-aware detection: Existing watermark-based detection is user-agnostic, i.e.,
it does not distinguish between different users when embedding a watermark into an Al-generated
image. The first term of the lower bound in our Theorem|I]is a lower bound of TDR for user-agnostic
detection; the first term of the upper bound in our Theorem [2]is an upper bound of FDR for user-
agnostic detection; and the upper bound with s = 1 in our Theorem [3]is an alternative upper bound of
FDR for user-agnostic detection. Compared to user-agnostic detection, user-aware detection achieves
larger TDR but also larger FDR.

5.4 ATTRIBUTION PERFORMANCE

Theorem 4 (Lower bound of TAR;). Suppose we are given s users with any s watermarks W =
{wi,wa, - ,ws}. When the watermarking method is B;-accurate for user U;, we have a lower
bound of TAR; as follows:

1+4+a;
‘n| +1,7mn}), 9)

TAR; > Pr(n; > max{|

where @ = maXjeq1 2,... s}/{i} BA(w;i, w;) and n; ~ B(n, 3;).
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Our Theorem shows that the lower bound of TAR; is larger when f3; is closer to 1, i.e., attribution
performance is better when the watermarking method is more accurate. Moreover, the lower bound
is larger when @; is smaller because it is easier to distinguish between users. This is a theoretical
motivation on why our watermark selection problem aims to select watermarks for the users such that
they have small pairwise bitwise accuracy.

Detection implies attribution: When 7>1£% the lower bound of TAR; in Theorembecomes

TAR; > Pr(n; > mn). The second term of the lower bound of TDR; in Theoremis usually much
smaller than the first term. In other words, the lower bound of TDR; is also roughly Pr(n; > mn).
Therefore, when 7 is large enough (i.e., > @), TDR; and TAR; are very close, which is also
confirmed in our experiments. This result indicates that once an Al-generated image is correctly

detected, it would also be correctly attributed.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets: We consider both Al-generated and non-Al-generated images. For Al-generated, we use
three public datasets (Wang et al., 2023} |Turc & Nemade} 2022} Images}, 2023)) generated respectively
by Stable Diffusion, Midjourney, and DALL-E 2. Following HiDDeN (Zhu et al.| 2018)), for each
dataset, we sample 10,000 images for training watermark encoders and decoders; and we sample
1,000 images for testing. For non-Al-generated, we combine the images in COCO (Lin et al., 2014),
ImageNet (Deng et al., 2009), and Conceptual Caption (Sharma et al., |2018), and sample 1,000
images from the combined set uniformly at random as our non-Al-generated dataset. We scale the
image size in all datasets to be 128 x 128.

Watermarking method: We use the learning-based method HiDDeN (Zhu et al.| 2018)) because
it is the basis of modern image watermarks like Stable Signature (Fernandez et al., 2023)), StegaS-
tamp (Tancik et al.||2020), and Smoothed HiDDeN (Jiang et al.,2024). Unless otherwise mentioned,
we use standard training with the default parameter settings in the publicly available code. For each
GenAl model, we train a watermark encoder/decoder using the corresponding Al-generated image
training set and evaluate performance on the testing set.

Evaluation metrics: We use TDR, FDR, and TAR. FDR is the fraction of the 1,000 non-Al-generated
images that are falsely detected as Al-generated. For each user U;, we embed its watermark into 100
images randomly sampled from a testing Al-generated image dataset; and then we calculate the TDR;
and TAR; for the user. In most of our experiments, we report the average TDR and average TAR,
which respectively are the average TDR; and TAR; among the s users. However, average TDR and
average TAR cannot reflect the detection/attribution performance for the worst-case users, i.e., some
users may have quite small TDR;/TAR;, but the average TDR/TAR may still be very large. Therefore,
we further consider the 1% users (at least 1 user) with the smallest TDR; (or TAR;) and report their
average TDR (or TAR), which we call worst 1% TDR (or worst 1% TAR).

Parameter settings: By default, we set s = 100, 000 (due to limited computation resource), n = 64,
and 7 = 0.9. We also explore s = 1,000, 000. Unless otherwise mentioned, we show results for the
Stable Diffusion dataset.

6.2 DETECTION AND ATTRIBUTION RESULTS

Without post-processing: We first show results when the Al-generated, watermarked images are
not post-processed. For each GenAl model, we compute the TDR;/TAR; of each user and the FDR.
The FDRs for the three GenAl models are nearly 0. Then, we rank the users’ TAR; (or TDR;) in a
non-descending order. Figure [2alshows the ranked TAR; of the 100,000 users for the three GenAl
models. Note that the curve of TDR; overlaps with that of TAR; for a GenAl model and thus is
omitted in the figure for simplicity. TDR; and TAR; overlap because 7 = 0.9 > % (0.89 in our
experiments), which is consistent with our theoretical analysis in Section [5.4|that shows detection
implies attribution in such settings. Our results show that watermark-based detection and attribution
are accurate when the Al-generated, watermarked images are not post-processed. Specifically, the
worst TAR; or TDR; is larger than 0.94; less than 0.1% of users have TAR;/TDR; smaller than 0.98;
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Figure 3: Detection and attribution results when Al-generated and non-Al-generated images are
post-processed by common post-processing methods with different parameters. SSIM measures the
quality of an image after post-processing.

and 85% of users have TAR;/TDR; of 1 for Midjourney and DALL-E 2, and 60% of such users for
Stable Diffusion.

Impact of s, n, and 7: Figure[9]in Appendix
shows the average TDR, average TAR, worst 1%
TDR, worst 1% TAR, and FDR when s, n,or 7 ' s

varies. Both average TDR and average TAR are  oon) 2007 y
close to 1, and FDR is close to 0, as s varies """ 7
from 10 to 1,000,000. The average 7TDR and
average TAR slightly decrease when n increases ooy
from 64 to 80, while the worst 1% TDR/TAR 09005 1 2 3 1 5 “’”mu 500 1k 2k 4k 10k T00k
slightly increases as n increases from 32 to 48 ke Lot Sl e et

and then decreases as n further increases. Our (@ (b)

result implies that HIDDeN may be unable to . )
accurately encode/decode very long watermarks. Figure 2: (a) Ranked TAR; of the 100,000 users.

When 7 increases, both average TDR and TAR (b) Average SSIM between watermarked images
decrease. while FD R also decreases. Such trade- and their adversarially post-processed versions as

off of 7 is consistent with Theorem [T} [§] and [} query budget varies in the black-box setting.

Common post-processing: Common post-processing is often used to evaluate the robustness
of watermarking in non-adversarial settings. We use JPEG, Gaussian noise, Gaussian blur, and
Brightness/Contrast, whose details are shown in Appendix J| We use adversarial training to train
HiDDeN and the training details can be found in Appendix [J] Figure[3|shows the detection/attribution
results when a common post-processing method with different parameters is applied to the (Al-
generated and non-Al-generated) images. Figure 3| also shows the average SSIM (Wang et al.|
2004) between a (Al-generated and non-Al-generated) image and its post-processed version. Our
results show that detection and attribution are robust to common post-processing. In particular, the
average TDR and TAR are still high when a common post-processing does not sacrifice image quality
substantially. For instance, average TDR and TAR start to decrease sharply when the quality factor
Q@ of JPEG is smaller than 40. However, the average SSIM between watermarked images and their
post-processed versions also drops quickly. Figure[6]in Appendix shows a watermarked image and
the versions post-processed by different methods.

prrbap bbb e reeed

Adversarial post-processing: Adversarial post-processing (Jiang et al.,|2023)) carefully perturbs
a watermarked image to evade detection/attribution. HiDDeN is not robust to adversarial post-
processing in white-box setting. Thus, HIDDeN-based detection/attribution is also not robust in such
setting, i.e., TDR/TAR can be reduced to O while maintaining image quality.

Figure [2b] shows the average SSIM between watermarked images and their adversarially post-
processed versions in the black-box setting (i.e., WEvade-B-Q (Jiang et al.,|2023)) as a function of
the number of queries to the detection API for each watermarked image. Both 7DR and TAR are O
in these experiments since WEvade-B-Q always guarantees evasion (Jiang et al., 2023)). However,
adversarial post-processing substantially sacrifices image quality in the black-box setting (i.e., SSIM
is small) even if an attacker can query the detection API for a large number of times. Figure
in Appendix shows several examples of adversarially post-processed images with degraded visual
quality. Our results show that HiDDeN and thus our HiDDeN-based detection/attribution have good
robustness to adversarial post-processing in the black-box setting.
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6.3 COMPARING WATERMARK SELECTION METHODS

6 === Random
NRG
—— A-BSTA

We compare three watermark selection meth-
ods: Random, NRG (Chen et al., 2016)), and
A-BSTA. NRG is the state-of-the-art approxi-
mate algorithm to the farthest string problem
and we extend it to select watermarks (details in
Appendix[A). We do not use BSTA because it is
not scalable, e.g., it takes more than 8 hours to
select even 16 watermarks. 0

S » b o

3 0.

1 2
Rank Index (Logl0 Scale)

Running time: Table [3|in Appendix shows the (a)
running time to generate a watermark averaged

among the 100,000 watermarks. Although A- Figure 4: (a) Ranked TAR; of the worst 1K users
BSTA is slower than Random and NRG, the for the three watermark selection methods. (b)
running time is acceptable, i.e., it takes only Theoretical vs. empirical results.

24ms to generate a watermark on average.

TAR: Figure shows the ranked TAR; of the worst 1,000 users, where the Al-generated images
are post-processed by JPEG compression with quality factor () = 90 and HiDDeN is adversarially
trained. The results indicate that A-BSTA outperforms NRG, which outperforms Random. This is
because A-BSTA selects watermarks with smaller &;, while Random selects watermarks with larger
@ as shown in Figure[TT]in Appendix.

6.4 THEORETICAL VS. EMPIRICAL RESULTS

We calculate the theoretical lower

boundsn of TDRi and TAR; of a user Table 1: Theoretical lower bounds of TDR/TAR and upper
respectively using Theorem [T]and @} bound of FDR when there are 100 million users.

while the theoretical upper bound of

FDR using Theorem[3] We estimate Bound of TDR | Bound of FDR | Bound of TAR

B; as the bitwise accuracy between 99.999% 6.00% 99.99%,
the decoded watermark and w; aver-

aged among the testing Al-generated

images, and estimate ~ using the fraction of bits in the decoded watermarks that are 1 among the
non-Al-generated images. Figure 4b|shows the average theoretical vs. empirical TDR/TAR, and
theoretical vs. empirical FDR, when no post-processing is applied (Figure [I2]in Appendix shows the
results when JPEG with @@ = 90 is applied). The results show that our theoretical lower bounds of
TDR and TAR match with empirical results well, which indicates that our derived lower bounds are
tight. The theoretical upper bound of FDR is notably higher than the empirical FDR. This is because
some bits may have larger probabilities to be 1 or 0 in the experiments, but our theoretical analysis
treats the bits equally, leading to a loose upper bound of FDR.

Theoretical results when there are 100 millions users: Due to limited computational resources,
we show theoretical results on 100 million users in Table assuming 3; = 0.99, o; = 0.2, v = 0.05,
and @; = 0.8. We notice that TDR and TAR remain very close to 1.

7 CONCLUSION AND FUTURE WORK

We show that watermark can be used for user-aware detection and attribution of Al-generated image.
Moreover, via both theoretical analysis and empirical evaluation, we find that such detection and
attribution inherit the accuracy/(non-)robustness properties of the watermarking method. We also
find that selecting dissimilar watermarks for users enhances attribution performance.

Text watermarking: Our theory and algorithm may not be applicable to text watermarking (Kirchen-
bauer et al.,2023) that does not use bitstring as watermark, but is applicable to text watermarking (Ab-
delnabi & Fritzl 2021) that uses bitstring as watermark (Appendix [K] shows more details). Interesting
future work is to extend our work to text or audio watermarking.

10
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Algorithm 1 BSTA (wg, d, m)

Input: Initial watermark wyg, recursion depth d, and m.
Output: w, or NotExist.

1: if d < 0 then

2 return NotExist

3: end if
4 0" < argmax;eqy o ... —1} BA(wi, ws)
5: if BA(w;~,ws)>(m + d)/n then
6.
7
8

: return NotExist
. else if BA(w;»,ws) < m/n then
: return wg
9: end if
10: B + {k|ws[k] = wi[k], k =1,2,--- ,n}
11: Choose any B’ C B with |[B'| =m +1
12: for all k € B’ do
13: wl <+ wy
14: wl[k] + —wl[k]
15: w! < BSTA(w,,d — 1,m)
16: if w!, is not Not Exist then

17: return w’,
18: end if
19: end for

20: return NotFExist

A WATERMARK SELECTION ALGORITHMS

Bounded search tree algorithm (BSTA) (Gramm et al.,|2003): Recall that our watermark selection
problem is equivalent to the farthest string problem. Thus, our decision problem is equivalent to that
of the farthest string problem, which has been studied extensively in the theoretical computer science
community. In particular, BSTA is the state-of-the-art exact algorithm to solve the decision problem
version of the farthest string problem. We apply BSTA to solve the decision problem version of our
watermark selection problem exactly, which is shown in Algorithm [l|in Appendix. The key idea
of BSTA is to initialize wg as —w; (i.e., each bit of w; flips), and then reduce the decision problem
to a simpler problem recursively until it is easily solvable or there does not exist a solution w. In
particular, given an initial ws, BSTA first finds the existing watermark w;~ that has the largest bitwise
accuracy with ws. If BA(w;+,ws) < m/n, then ws is already a solution to the decision problem and
thus BSTA returns w,. Otherwise, BSTA chooses any m + 1 bits that wy and w;» match. For each of
the chosen m + 1 bits, BSTA flips the corresponding bit in w, and recursively solves the decision
problem using the new w; as an initialization. The recursion is applied m times at most, i.e., the
recursion depth d is set as m when calling Algorithm I}

A key limitation of BSTA is that it has an exponential time complexity (Gramm et al.| (2003)). In fact,
since the decision problem is NP-hard, all known exact solutions have exponential time complexity.
Therefore, to enhance computation efficiency, we resort to approximate solutions. Next, we discuss
the state-of-the-art approximate solution that adapts BSTA and a new approximate solution that we
propose.

Non Redundant Guess (NRG) (Chen et al.,[2016): Like BSTA, this approximate solution also first
initializes ws as —~w; and finds the existing watermark w;~ that has the largest bitwise accuracy with
ws. If BA(w;=,ws) < m/n, then NRG returns wy. Otherwise, NRG samples n - BA(w;«, ws) —m
bits that w, and w;+ match uniformly at random. Then, NRG flips these bits in w, and recursively
solve the decision problem using the new w; as an initialization. Note that NRG stops the recursion
when m bits of the initial w, have been flipped. Algorithm 2]in Appendix shows NRG.

Approximate bounded search tree algorithm (A-BSTA): The algorithm of our A-BSTA is shown
as Algorithm 3] Note that binary search is another way to find a proper m. Specifically, we start
with a small m (denoted as m;) that does not produce a w; and a large m (denoted as m,,) that does
produce a ws. If m = (m; + m,,)/2 produces a w,, we update m,, = (m; + m,,)/2; otherwise

14
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Algorithm 2 NRG(w,, m)

Input: Initial watermark w, and m.
QOutput: w; or NotExist.

1: F<0

2: d<+m

3: while d > 0 do

4: 7% argmaX;c(q o ... s—1} BA(w;, wy)

5: if BA(w;,ws)>2m/n then

6: return Not Exist

7: else if BA(w;«,ws) < m/n then

8: return wg

9: end if

10: B+ {klws[k] = wi«[k] Nk ¢ F,k=1,2,--- ,n}
11: [ < n-BA(wp,ws) —m

12: Sample B’ C B with | B| = [ uniformly at random
13: for all k € B’ do

14: wgk] + ~ws[k]

15: end for

16: d«—d-1

17 F<+ FUB

18: end while

19: return NotExist

Algorithm 3 Solving our watermark selection problem

Input: Existing s — 1 watermarks w1, wa, - -+ , Ws—_1.
Output: Watermark w;.

1: m <+ maXi6{1,27... ,s—2} T BA(U)“ ws_l)

2: while wy is NotExist do

3: if BSTA then

4: Ws — W1
5: ws < BSTA(ws, m, m)
6: end if
7.
8

if NRG then

: Wg < W1
9: ws < NRG(ws, m)
10: end if
11: if A-BSTA then
12: w, < sampled uniformly at random
13: ws < BSTA(ws,d, m)
14: end if
15: if wy is NotExist then
16: m<+ m+1
17: end if

18: end while
19: return wg

we update m; = (m; + m,)/2. The search process stops when m; > m,. However, we found
that increasing m by 1 as in our Algorithm 3]is more efficient than binary search. This is because
increasing m by 1 expands the search space of w, substantially, which often leads to a valid ws. On
the contrary, binary search would require solving the decision problem multiple times with different

m until finding that m + 1 is enough.

Time complexity: We analyze the time complexity of the algorithms to solve the decision problem.
For Random, the time complexity is O(n). For BSTA, the time complexity to solve the decision
problem with parameter m is O(snm™) according to (Gramm et al., [2003). For NRG, the time
complexity is O(sn + sy/m - 5™) according to (Chen et al.; 2016). For A-BSTA, the time complexity

is O(snm?), where d is a constant.
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Figure 5: Detection and attribution results when Al-generated and non-Al-generated images are

post-processed by common post-processing methods with different parameters. HiDDeN is trained
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Figure 7: Perturbed watermarked images obtained by adversarial post-processing with different

number of queries to the detection API in the black-box setting.

B  OTHER EVALUATION METRICS CAN BE DERIVED FROM TDR;, FDR, AND
TAR;

We note that there are also other relevant detection and attribution metrics, e.g., the probability that
an Al-generated image is incorrectly attributed to a user. We show that other relevant detection and
attribution metrics can be derived from TDR;, FDR, and TAR;, and thus we focus on these three
metrics in our work. Specifically, Figure §]shows the taxonomy of detection and attribution results for
non-Al-generated images and Al-generated images generated by user U;. In the taxonomy trees, the
first-level nodes represent ground-truth labels of images; the second-level nodes represent possible
detection results; and the third-level nodes represent possible attribution results (note that attribution
is only performed after an image is detected as Al-generated).

In the taxonomy trees, there are 5 branches in total, which are labeled as @, @, ®, @, and ® in the
figure. Each branch starts from a root node and ends at a leaf node, and corresponds to a metric that
may be of interest. For instance, our TDR; is the probability that an image C' ~ P; goes through
branches @ or ®; FDR is the probability that an image C' ~ Q goes through branch @; and TAR;
is the probability that an image C' ~ P; goes through branch @. The probability that an image
goes through other branches can be calculated using TDR;, FDR, and/or TAR;. For instance, the
probability that a non-Al-generated image C' ~ Q is correctly detected as non-Al-generated is the
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Figure 8: Taxonomy of detection and attribution results. Nodes with red color indicate incorrect
detection/attribution.

probability that C' goes through the branch @, which can be calculated as 1—FDR. The probability
that an Al-generated image C' ~ P; is incorrectly detected as non-Al-generated is the probability
that C' goes through the branch @, which can be calculated as 1—-7DR;. The probability that a user
U;’s Al-generated image C' ~ P; is correctly detected as Al-generated but incorrectly attributed to
a different user Uj is the probability that C' goes through the branch ®, which can be calculated as
TDR;,—TAR,.

C DEFINITIONS OF 3-ACCURATE AND 7-RANDOM WATERMARKING

Definition 3 ($-accurate watermarking). For a randomly sampled Al-generated image C' ~ P
embedded with the watermark w, the bits of the decoded watermark D(C) are independent and each
bit matches with that of w with probability 3, where 5 € [0, 1]. Formally, we have Pr(D(C)[k] =
wlk]) = B, where C' ~ P, D is the decoder, and [k] represents the kth bit of a watermark. We say a
watermarking method is S-accurate if it satisfies the above condition.

Definition 4 (y-random watermarking). For a randomly sampled non-Al-generated image C' ~ Q
without any watermark embedded, the bits of the decoded watermark D(C') are independent and
each bit is 1 with probability at least 0.5 — v and at most 0.5 + ~, where v € [0, 0.5]. Formally, we
have |Pr(D(C)[k] = 1) — 0.5] < v, where C ~ Q and [k] represents the kth bit of a watermark.
We say a watermarking method is «-random if it satisfies the above condition.

D PROOF OF THEOREM [I]

For C ~ P;, we denote w = D(C), n, = BA(w,w;)n, and n; = BA(w,w;)n for j €
{1,2,---,s}/{i}. Then we have the following:

lw — —w;i[1 = ny,
|—\wi — ’Ujj|1 = BA(’UJZ',”UJ]‘)’IL,

lw —wj|i =n —ny,

where —w; means flipping each bit of the watermark w;, | - |1 is ¢; distance between two binary

vectors. According to the triangle inequality, we have:

lw — w1 < Jw = —wil1 + |~w; —w;lx
=n; + BA(w;, wj)n.

Therefore, we derive the lower bound of n; for j € {1,2,---,s}/{i} as follows:

nj =n—|w—wjh
>n —n; — BA(w;,w;)n.
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Table 2: The maximum pairwise bitwise accuracy among the watermarks generated by NRG and
A-BSTA for different initializations.

—wy Initialization | Random initialization
NRG 0.766 0.750
A-BSTA 0.875 0.734

Table 3: The average running time for different watermark selection methods to generate a watermark.

Random | NRG | A-BSTA
Time (ms) 0.01 2.11 24.00

Thus, we derive the lower bound of TDR; as follows:

TDR; =1 — Pr(n;<tn A max n;<tn))
j€{1>27"' 73}/{1}

>1 —Pr(n;<tn A n —n; — BA(w;, wj)n<tn))

max
JE{1,2,,s}/{a}
=1 —Pr(n;<tn An —n; — a;n<Tn)
=1—Pr(n — ™ — a;n<n;<Tn)

=Pr(n; > mn) +Pr(n; <n—71n—an),

where n; ~ B(n, 8;) and a; = minjeqy ... s/iy BA(w;, wy).

E PROOF OF COROLLARY ]

According to Theorem |1}, the lower bound of TDR; is 1 — Pr(n — 7n — a;n<n;<7n). For an integer
r € (n — ™ — a;n,™n) and n; ~ B(n, 8;), we have the following:

Pr(ni = ’I“) = (:)B:(l - ﬁi)n—r.

Then we compute the partial derivative of the probability with respect to 3; as follows:
OPr(n; =r N N
% = (DB A =BT Br) — (n = 1)B)
<(BTHA=B)" T = B

The partial derivative is smaller than 0 when 7<3;. Therefore, the probability Pr(n; = r) decreases
as 3; increases for any integer r € (n — T7n — a;n, n). Thus, the lower bound of TDR; increases as
3; becomes closer to 1.

F PROOF OF THEOREM [2]

For C' ~ @, we denote ny = BA(D(C),w1)n and n; = BA(D(C),w;)n for j € {1,2,---,s}.
Then, we have the following:

FDR=1-Pr( max n;<tn)
je{1,2, s}

=1—-Pr(ni<tn A max n,;<7Tn).
J€{2,3,+,s}

To derive an upper bound of FDR, we denote:
|lw —wi]1 =n—nq,
|lwi —w;|1 =n — BA(w1,w;)n,
lw—w;l1 =n—n,.
According to the triangle inequality, we have the following:
lw—wjl1 = lw1 — wjli = [w—wix
=ny — BA(wy, wj)n.

18



Under review as a conference paper at ICLR 2025

Therefore, we derive the upper bound of n; for j € {2,3,--- , s} as follows:
n; =n—|w—wj|
<n—mny + BA(wi,w;)n.
Thus, we derive the upper bound of FDR as follows:
FDR =1—-Pr(ni<tn A ; max n;<Tn)

€{2,3,---,s}
<1—-Pr(ni<tn A  max n—nj+ BA(wy,w;)n<rn))
j€{2,3,--,s}

=1—-Pr(mi<tn An —ny +an<rn))
=1—Pr(n —mn+agn<ni<7n)
=Pr(ny > )+ Pr(n; <n—7mn+an),

where n; ~ B(n,0.5) and a1 = maxc(a3,... s} BA(w1, w;).
G PROOF OF THEOREM 3]

For C' ~ @, we denote n; = BA(D(C),w;)n for j € {1,2,--- , s}, and we have the following:
FDR=1-Pr( max n;<tn)

JE{1,2,- s}
=1- H Pr(nj<tn).
Je{1,2, s}

According to Deﬁnition forany k € {1,2,--- ,n} and any j € {1,2,---, s}, the decoding of
each bit is independent and the probability that D(C')[k] matches with w; k] is at most 0.5 4 7 no
matter w;[k] is 1 or 0. Therefore, we have the following:

FDR =1 - H Pr(nj<tn)
F€{1,2,+ s}
<1-Pr(n’ <7n)°,

where n’ follows the binomial distribution with parameters n and 0.5 + v, i.e., n’ ~ B(n,0.5 + ).

H PROOF OF COROLLARY

According to Theorem the probability Pr(n’<7n) increases when v decreases. Therefore, the
upper bound of FDR decreases as «y becomes closer to 0.

I PROOF OF THEOREM [4]
For C ~ P;, we denote w = D(C), n; = BA(w,w;)n, and n; = BA(w,w;)n for j €
{1,2,---,s}. Then we have the following:

|w — —w;il1 = ny,

|_\U)Z' — ’LUj|1 = BA(’U.)i,’U.)j)TL,

|lw —w;l1 =n—n,.
According to the triangle inequality, we have:

lw —wjly = [w = —wily — |~wi —w; |y
=n; — BA(w;, w;)n.

Therefore, we derive the upper bound of n; for j € {1,2,--- ,s}/{i} as follows:

nj =n—|w—wjh

<n —n; + BA(w;,w;)n.
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Figure 9: Impact of number of users s, watermark length n, and detection threshold 7 on detection
and attribution performance.

Thus, we derive the lower bound of TAR; as follows:

TAR; =Pr( max n; >TnAn;> max n;)
j€{1,2,- s} jef1,2,-,s}/{i}
>Pr( max n; >TtnAn> max
je{1,2,+ s} je{1,2,-,s}/{i}
n -+ ao;n
=Pr( max n;>TnAn>———)
J€{1,2, s} 2

n—n; + BA(w;, w;)n)

=Pr( max n; >T1nA ni>w | n; > 7mn) - Pr(n; > 7mn)
j€{1,2,+ s} 2

n—+ a;n

+Pr( max n; >TnAn;> | n;<mn) - Pr(n;<tn)

je{1,2,-,s} 2

n -+ ao;n

>Pr(n;> | n; > mn) - Pr(n; > mn)

:Pr(m>w An; > Tn)
1+a;
2
where n; ~ B(n, 3;) and @; = max;je(12.... s}/{iy BA(wi, w;).

=Pr(n; > max{|

n|+1,mn}),

J COMMON POST-PROCESSING AND ADVERSARIAL TRAINING

Common post-processing: Each of these post-processing methods has some parameters, which
control the size of perturbation added to a (watermarked or unwatermarked) image.

JPEG. JPEG method (Zhang et al.,[2020) compresses an image via a discrete cosine transform. The
perturbation introduced to an image is determined by the qguality factor Q). An image is perturbed
more when @ is smaller.

Gaussian noise. This method perturbs an image via adding a random Gaussian noise to each pixel.
In our experiments, the mean of the Gaussian distribution is 0. The perturbation introduced to an
image is determined by the parameter standard deviation o.

Gaussian blur. This method blurs an image via a Gaussian function. In our experiments, we fix
kernel size s = 5. The perturbation introduced to an image is determined by the parameter standard
deviation o.

Brightness/Contrast. This method perturbs an image via adjusting the brightness and contrast.
Formally, the method has contrast parameter a and brightness parameter b, where each pixel x is
converted to ax + b. In our experiments, we fix b = 0.2 and vary a to control the perturbation.

Adversarial training (Zhu et al., 2018): We use adversarial training to train HiDDeN. Specifically,
during training, we randomly sample a post-processing method from no post-processing and common
post-processing with a random parameter to post-process each watermarked image in a mini-batch.
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Figure 10: Results of watermark-based detection and attribution for Al-generated texts.

Following previous work (Zhu et al., 2018), we consider the following range of parameters during
adversarial training: @ € [10, 99] for JPEG, o € [0, 0.5] for Gaussian noise, o € [0, 1.5] for Gaussian
blur, and a € [1, 20] for Brightness/Contrast.

K  DETECTION AND ATTRIBUTION OF AI-GENERATED TEXTS

Our method can also be used for the detection and attribution of Al-generated texts based on text
watermarking that uses bitstring as watermark. For text watermarking, we use a learning-based
method called Adversarial Watermarking Transformer (AWT) (Abdelnabi & Fritz, 2021). Given a
text, AWT encoder embeds a bitstring watermark into it; and given a (watermarked or unwatermarked)
text, AWT decoder decodes a watermark from it. Following the original paper (Abdelnabi & Fritz,
2021), we train AWT on the word-level WikiText-2 dataset, which is derived from Wikipedia
articles (Merity et al.,2017)). We use most of the hyperparameter settings in the publicly available
code of AWT except the weight of the watermark decoding loss. To optimize watermark decoding
accuracy, we increase this weight during training. The detailed hyperparameter settings for training
can be found in Table 4]

We use A-BSTA to select users’ watermarks. For each user, we sample 10 text segments from the test
corpus uniformly at random, and perform watermark-based detection and attribution. Moreover, we
use the unwatermarked test corpus to calculate FDR. Figure [10[shows the detection and attribution
results when there is no post-processing and paraphrasing (Damodaran, 2021) is applied to texts,
where n = 64, 7 = 0.85, and s ranges from 10 to 100,000. Due to the fixed-length nature of AWT’s
input, we constrain the output length of the paraphraser to a certain range. When paraphrasing is
used, we extend adversarial training to train AWT. Specifically, we employ T5-based paraphraser
to post-process the watermarked texts generated by AWT. Due to the non-differentiable nature of
the paraphrasing process, we cannot jointly adversarially train the encoder and decoder since the
gradients cannot back-propagate to the encoder. To address the challenge, we first use the standard
training to train AWT encoder and decoder. Then, we use the encoder to generate watermarked texts,
paraphrase them, and use the paraphrased watermarked texts to fine-tune the decoder. The detail
parameter settings of fine-tuning are shown in Table 4]

Note that the average TDR/TAR and FDR are all nearly O when AWT is trained by standard training
and paraphrasing is applied to texts. The results show that our method is also applicable for Al-
generated texts, and adversarially trained AWT has better robustness to paraphrasing.

L. ATTRIBUTION OF GENAI SERVICES

In this work, we focus on attribution of the image to users for a specific GenAl service. Another
relevant attribution problem is to trace back the GenAl service (e.g., Google’s Imagen, OpenAl’s
DALL-E 3, or Stable Diffusion) that generated a given image. Our method can also be applied to
such GenAl-service-attribution problem by assigning a different watermark to each GenAl service.
When GenAl service generates an image, its corresponding watermark is embedded into it. Then, our
method can be applied to detect whether an image is Al-generated and further attribute the GenAl
service if the image is detected as Al-generated.
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Figure 12: Theoretical vs. empirical results when JPEG with @@ = 90 is applied.

Table 4: Default parameter settings for the training of AWT.

Phase Standard Training | Fine-Tuning
Optimizer Adam
# epochs 200 [ 10
Batch size 16
Learning rate 3x10°°
# warm-up iterations 6000 1000
Length of text 250 250 = 16
Generation weight 1.5 1
Message weight 10000
Reconstruction weight 1.5 [ 2

In service attribution, selecting watermarks for different GenAl services can be coordinated by a
central authority, who runs our watermark selection algorithm to pick unique watermarks for the
GenAl services. A GenAl service registers to the central authority in order to obtain a unique water-
mark. Such a central authority is similar to the certificate authority in the Public Key Infrastructure
(PKI) that is widely used to secure communications on the Internet. The central authority may also
perform detection and attribution of Al-generated images since it has access to all GenAl services’
watermarks. However, the central authority may become a bottleneck in such detection and attribution.
To mitigate this issue, the watermarks of all GenAl services can be shared with each GenAl service,
so each GenAl service can perform detection and attribution. We note that a central authority is not
needed in user attribution of a particular GenAl service. This is because the GenAl service can select
watermarks for its users and perform detection/attribution.

Hierarchical attribution: We can perform attribution to GenAl service and user simultaneously.
Specifically, we can divide the watermark space into multiple subspaces; and each GenAl service
uses a subspace of watermarks and assigns watermarks in its subspace to its users. In this way, we
can trace back both the GenAl service and its user that generated a given image.
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