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ABSTRACT

Several companies–such as Google, Microsoft, and OpenAI–have deployed tech-
niques to watermark AI-generated images to enable proactive detection. However,
existing literature mainly focuses on user-agnostic detection. Attribution aims to
further trace back the user who generated a detected AI-generated image. Despite
its growing importance, attribution is largely unexplored. In this work, we aim
to bridge this gap by providing the first systematic study on watermark-based,
user-aware detection and attribution of AI-generated images. Specifically, we theo-
retically study the detection and attribution performance via rigorous probabilistic
analysis. Moreover, we develop an efficient algorithm to select watermarks for
the users to enhance attribution performance. Both our theoretical and empirical
results show that watermark-based detection and attribution inherit the accuracy
and (non-)robustness properties of the watermarking method.

1 INTRODUCTION

Generative AI (GenAI) can synthesize very realistic-looking images. Beyond its societal bene-
fits, GenAI also raises ethical concerns. For instance, they can be misused to generate harmful
images (Yang et al., 2024); they can be used to aid disinformation and propaganda campaigns by gen-
erating realistic-looking images (Dhaliwal, 2023); and people can falsely claim copyright ownership
of images generated by them (Escalante-De Mattei, 2023).

Watermark-based detection and attribution of AI-generated images is a promising technique to miti-
gate these ethical concerns. For instance, several companies–such as Google, OpenAI, Stability AI,
and Microsoft–have deployed such techniques to watermark their AI-generated images. Specifically,
OpenAI inserts a visible watermark into the images generated by its DALL-E 2 (Ramesh et al., 2022);
Google’s SynthID (Gowal & Kohli, 2023) inserts an invisible watermark into images generated by its
Imagen; Stability AI deploys a watermarking method in its Stable Diffusion (Rombach et al., 2022);
and Microsoft watermarks all AI-generated images in Bing (Mehdi, 2023).

However, existing literature mainly focuses on user-agnostic detection of AI-generated images. In
particular, the same watermark is inserted into all the images generated by a GenAI service; and an
image is detected as generated by the GenAI service if a similar watermark can be decoded from
it. Attribution aims to further trace back the registered user of the GenAI service who generated a
given image.1 Such attribution can aid the GenAI service provider or law enforcement in forensic
analysis of cyber-crimes, such as disinformation and propaganda campaigns, that involve a given
AI-generated image. Despite the growing importance of attribution, it is largely unexplored.

In this work, we bridge this gap by conducting the first systematic study on the theory, algorithm, and
evaluation of watermark-based detection and attribution of AI-generated images. Our work assumes
an image watermarking method has been designed. Our contribution is to study the theory and
algorithm of leveraging this watermarking method for AI-generated image detection and attribution
(illustrated in Figure 1). When a user registers in a GenAI service, a watermark (i.e., a bitstring) is
selected for him/her and stored in a watermark database. When a user generates an image using the
GenAI service, the user’s watermark is embedded into the image using the watermark encoder. An
image is detected as AI-generated if the watermark decoded from the image is similar enough to at

1Attribution could also refer to tracing back the GenAI service that generated a given image, which we
discuss in Section L.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

𝑈!
𝑤!

𝑈!: 𝑤!

Watermark Database

Registration

𝑈"

𝑤"

Encoder

Generation

Watermark 
Selection 01101001

01001001

Decoder 01001001

Watermark Database

Detection 
& 

Attribution

AI-gen & 
generated by 𝑈"

Non-AI-gen

Detection & Attribution

GenAI

Figure 1: Illustration of registration, generation, and detection & attribution phases of watermark-
based detection and attribution.

least one user’s watermark in the watermark database. Moreover, the image is further attributed to
the user whose watermark is the most similar to the decoded one.

We theoretically analyze the performance of watermark-based detection and attribution. Specifically,
we define three key evaluation metrics: true detection rate (TDR), false detection rate (FDR), and
true attribution rate (TAR). We show that other relevant evaluation metrics can be derived from these
three. Based on a formal quantification of a watermarking method’s behavior, we derive lower bounds
of TDR and TAR, and an upper bound of FDR no matter how the users’ watermarks are selected.

Selecting watermarks for the users is a key component. We formulate a watermark selection problem,
which aims to select a watermark for a new registered user via minimizing the maximum similarity
between the selected watermark and the existing users’ watermarks. We find that our watermark
selection problem is equivalent to the well-known farthest string problem (Lanctot et al., 2003),
which has been studied extensively in theoretical computer science. Thus, we adapt the bounded
search tree algorithm (Gramm et al., 2003), a state-of-the-art solution to the farthest string problem,
to solve our watermark selection problem.

We empirically evaluate our method for AI-generated images on three GenAI models, i.e., Stable
Diffusion, Midjourney, and DALL-E 2. We use HiDDeN (Zhu et al., 2018), a deep-learning-based
image watermarking method that is the basis for modern image watermarks. Our results show
that detection and attribution are very accurate, i.e., TDR/TAR is close to 1 and FDR is close to 0,
when AI-generated images are not post-processed; detection and attribution are still accurate when
common post-processing, such as JPEG compression, Gaussian blur, and Brightness/Contrast, is
applied to AI-generated images; and adversarial post-processing (Jiang et al., 2023) with a small
number of queries to the detection API degrades the image quality substantially in order to evade
detection/attribution. Moreover, we show our watermark selection algorithm outperforms baselines.

2 RELATED WORK

An image watermarking method typically consists of three components: watermark, encoder, and
decoder. We consider a watermark w to be a bitstring with n bits. E(C,w) means that encoder
E embeds w into an image C, while D(C ′) is the watermark decoded from a (watermarked or
unwatermarked) image C ′ by decoder D. Note that E and w can also be embedded into the
parameters of a GenAI model such that its generated images are inherently watermarked with
w (Fernandez et al., 2023).

Non-learning-based vs. learning-based: Watermarking methods can be categorized into two
groups based on the design of E and D: non-learning-based and learning-based. Non-learning-based
methods (Pereira & Pun, 2000; Bi et al., 2007; Wang, 2021; Wen et al., 2023) design E and D based
on some hand-crafted heuristics, while learning-based methods (Zhu et al., 2018; Abdelnabi & Fritz,
2021; Luo et al., 2020; Wen & Aydore, 2019; Tancik et al., 2020; Fernandez et al., 2023) use neural
networks as E/D and automatically learn them using an image dataset. For instance, Tree-Ring (Wen
et al., 2023) is a non-learning-based watermarking method, while HiDDeN (Zhu et al., 2018) is a
learning-based method. Our theory and algorithm are applicable to both categories of watermarking
methods as long as they use bitstring-based watermarks such as HiDDeN (Zhu et al., 2018), Stable
Signature (Fernandez et al., 2023), StegaStamp (Tancik et al., 2020), and Smoothed HiDDeN (Jiang
et al., 2024). We note that our results are not applicable to Tree-Ring, which employs a non-bitstring
watermark. Since learning-based methods are more robust due to adversarial training (Zhu et al.,
2018), we adopt a learning-based method in our experiments.
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Standard vs. adversarial training: In learning-based methods, E and D are automatically learnt.
Specifically, given an image C and a random watermark w, the decoded watermark D(E(C,w)) for
the watermarked image E(C,w) should be similar to w, i.e., D(E(C,w)) ≈ w. Standard training
aims to jointly learn E and D such that D(E(C,w)) is similar to w for an image dataset (Kandi
et al., 2017). A watermarked image E(C,w) may be post-processed, e.g., a watermarked image
may be post-processed by JPEG compression during transmission on the Internet. Zhu et al. (2018)
extended adversarial training (Goodfellow et al., 2015; Madry et al., 2018), a technique to train robust
classifiers, to train watermarking encoder and decoder that are more robust against post-processing.
Specifically, adversarial training aims to learn E and D such that D(P (E(C,w))) is similar to w,
where P stands for a post-processing operation and P (E(C,w)) is a post-processed watermarked
image. In each epoch of adversarial training, a P is randomly sampled from a given set of them for
each image in the image dataset.

Robustness of watermarking: We stress that building robust watermarking methods is orthogonal
to our work and is still an ongoing effort. Non-learning-based methods (Pereira & Pun, 2000; Bi
et al., 2007; Wang, 2021; Wen et al., 2023) are known to be non-robust to common post-processing
such as JPEG compression (Zhu et al., 2018). Learning-based methods (Kandi et al., 2017; Zhu
et al., 2018; Abdelnabi & Fritz, 2021; Luo et al., 2020; Wen & Aydore, 2019; Fernandez et al., 2023;
Saberi et al., 2024) are more robust to such common post-processing because they can leverage
adversarial training. For instance, common post-processing has to substantially decrease the quality
of a watermarked image in order to remove the watermark (Luo et al., 2020; Wen & Aydore, 2019).
Adversarial post-processing (Jiang et al., 2023; Lukas et al., 2024; Zhao et al., 2023; Saberi et al.,
2024) strategically perturbs a watermarked image to remove the watermark. Learning-based image
watermarking methods are not yet robust to adversarial post-processing in the white-box setting
where an attacker has access to D. However, they have good robustness to adversarial post-processing
when an attacker can only query the detection API for a small number of times in the black-box
setting or does not have access to the detection API. In particular, adversarial post-processing
substantially decreases the quality of a watermarked image in order to remove the watermark in such
scenarios. To defend against adversarial post-processing, Jiang et al. (2024) proposed a framework to
build certifiably robust image watermarks that cannot be removed when the ℓ2 norm of the added
perturbation is bounded. We acknowledge that our watermark-based detection and attribution inherit
the watermarking method’s (non-)robustness properties discussed above.

3 PROBLEM FORMULATION

Suppose we are given a generative AI model, which is deployed as a GenAI service. A registered
user sends a prompt (i.e., a text) to the GenAI service, which returns an AI-generated image to the
user. In this work, we consider detection and attribution of AI-generated image. Detection aims to
decide whether a given image was generated by the GenAI service or not; while attribution further
traces back the user of the GenAI service who generated an image detected as AI-generated. Such
attribution can aid the GenAI service provider or law enforcement in forensic analysis of cyber-crimes,
e.g., disinformation or propaganda campaigns, that involve a given AI-generated image. We define
the detection and attribution problems as follows:

Definition 1 (Detection of AI-generated image). Given an image and a GenAI service, detection
aims to infer whether the image was generated by the GenAI service or not.

Definition 2 (Attribution of AI-generated image). Given an image, a GenAI service, and s users
U = {U1, U2, · · · , Us} of the GenAI service, attribution aims to further infer which user used the
GenAI service to generate the image after it is detected as AI-generated.

We note that the set of s users U in attribution could include all registered users of the GenAI service,
in which s may be very large. Alternatively, this set may consist of a smaller number of registered
users if the GenAI service provider has some prior knowledge on its registered users. For instance,
the GenAI service provider may exclude the registered users, who are verified offline as trusted, from
the set U to reduce its size. Moreover, malicious users may be identified by conventional network
security solutions, such as IP addresses and behavior patterns (Yuan et al., 2019; Xu et al., 2021).
How to construct the set of users U in attribution is out of the scope of this work. Given any set
U , our method aims to infer which user in U may have generated a given image. We also note that
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another relevant attribution problem is to trace back the GenAI service that generated a given image.
Our method can also be used for such GenAI-service attribution, which we discuss in Section K.

4 DETECTION AND ATTRIBUTION

Figure 1 illustrates our watermark-based detection and attribution method. When a user registers in
the GenAI service, the service provider selects a unique watermark for the user. We denote by wi the
watermark selected for user Ui, where i = 1, 2, · · · , s is the user index. During generation, when a
user Ui sends a prompt to the GenAI service to generate an image, the provider uses the watermark
encoder E to embed watermark wi into the image. During detection and attribution, a watermark is
decoded from a given image; the given image is detected as generated by the GenAI service if the
decoded watermark is similar enough to at least one of the users’ watermarks; and the given image is
further attributed to the user whose watermark is the most similar to the decoded watermark after it is
detected as AI-generated.

4.1 DETECTION

We use bitwise accuracy to measure similarity between two watermarks. Specifically, given any two
watermarks w and w′, their bitwise accuracy (denoted as BA(w,w′)) is the fraction of matched bits
in them: BA(w,w′) = 1

n

∑︁n
k=1 I(w[k] = w′[k]), where n is the watermark length, w[k] is the kth

bit of w, and I is the indicator function that has a value 1 if w[k] = w′[k] and 0 otherwise. Given an
image C, we use the decoder D to decode a watermark D(C) from it. We detect C as AI-generated
if there exists a user’s watermark that is similar enough to D(C), i.e., if the following is satisfied:
maxi∈{1,2,··· ,s} BA(D(C), wi) ≥ τ , where τ > 0.5 is the detection threshold.

4.2 ATTRIBUTION

Attribution is applied only after an image C is detected as AI-generated. Intuitively, we attribute the
image to the user whose watermark is the most similar to the decoded watermark D(C). Formally,
we attribute image C to user Ui∗ , where i∗ is as follows: i∗ = argmaxi∈{1,2,··· ,s} BA(D(C), wi).

4.3 WATERMARK SELECTION

A key component of watermark-based detection and attribution is how to select watermarks for the
users. Next, we first formulate watermark selection as an optimization problem, and then propose a
method to approximately solve it.

4.3.1 WATERMARK SELECTION PROBLEM

Intuitively, if two users have similar watermarks, then it is hard to distinguish between them for the
attribution. In fact, our theoretical analysis in Section 5 shows that attribution performance is better if
the maximum pairwise bitwise accuracy between the users’ watermarks is smaller. Thus, we propose
to select watermarks for the s users to minimize their maximum pairwise bitwise accuracy. Formally,
we formulate watermark selection as the following problem:

min
w1,w2,··· ,ws

max
i,j∈{1,2,··· ,s},i̸=j

BA(wi, wj), (1)

where BA stands for bitwise accuracy between two watermarks. This optimization problem jointly
optimizes the s watermarks simultaneously. As a result, it is very challenging to solve the optimization
problem because the GenAI service provider does not know the number of registered users (i.e., s)
in advance. In practice, users register in the GenAI service at very different times. To address the
challenge, we propose to select a watermark for a user at the time of his/her registration in the GenAI
service. For the first user U1, a random watermark is selected. Suppose watermarks for s− 1 users
have been selected. Then, the sth user registers and the GenAI service provider selects a watermark
ws whose maximum bitwise accuracy with the existing s− 1 watermarks is minimized. Formally,
we formulate a watermark selection problem as follows:

min
ws

max
i∈{1,2,··· ,s−1}

BA(wi, ws). (2)
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4.3.2 SOLVING THE PROBLEM

NP-hardness: Our watermark selection problem in Equation 2 turns out to be NP-hard. In particular,
we can reduce the well-known NP-hard farthest string problem (Lanctot et al., 2003) to our watermark
selection problem. The farthest string problem aims to find a string that is the farthest from a given
set of strings. We can view a string as a watermark in our watermark selection problem, the given
set of strings as the watermarks of the s− 1 users, and the similarity metric between two strings as
our bitwise accuracy. Then, we can reduce the farthest string problem to our watermark selection
problem, which means that our watermark selection problem is also NP-hard. This NP-hardness
implies that it is very challenging to develop an efficient exact solution for our watermark selection
problem. We note that efficiency is important for watermark selection as a watermark is selected for a
user at the time of registration. Therefore, we aim to develop an efficient algorithm that approximately
solves the watermark selection problem.

Random: The most straightforward method to approximately solve the watermark selection problem
in Equation 2 is to generate a n-bit bitstring uniformly at random as ws. We denote this method as
Random. The limitation of this method is that the selected watermark ws may be very similar to some
existing watermarks, i.e., maxi∈{1,2,··· ,s−1} BA(wi, ws) is large, making attribution less accurate,
as shown in our experiments.

Decision problem: To develop an efficient algorithm to approximately solve our watermark selection
problem, we first define its decision problem. Specifically, given the maximum number of matched
bits between ws and the existing s−1 watermarks as m, the decision problem aims to find such a ws if
there exists one and return NotExist otherwise. Formally, the decision problem is to find any watermark
ws in the following set if the set is nonempty: ws ∈ {w|maxi∈{1,2,··· ,s−1} BA(wi, w) ≤ m/n},
where n is the watermark length. Next, we discuss how to solve the decision problem and then turn
the algorithm to solve our watermark selection problem.

Approximate bounded search tree algorithm (A-BSTA): Our A-BSTA is an adapted version of
the bounded search tree algorithm (BSTA), the state-of-the-art exact algorithm to solve the decision
problem version of the farthest string problem. The details of BSTA can be found in Appendix A. Our
A-BSTA makes two adaptions of BSTA. First, we constrain the recursion depth d to be a constant
(e.g., 8 in our experiments) instead of m, which makes the algorithm approximate but improves the
efficiency substantially. Second, instead of initializing ws as ¬w1, we initialize ws as an uniformly
random watermark. As our experiments in Table 2 in Appendix show, our initialization further
improves the performance of A-BSTA. This is because a random initialization is more likely to have
small bitwise accuracy with all existing watermarks. Note that A-BSTA returns NotExist if it cannot
find a solution ws to the decision problem.

Solving our watermark selection problem: Given an algorithm (e.g., A-BSTA) to solve the
decision problem, we turn it as a solution to the watermark selection problem. Our idea is to start
from a small m, and then solve the decision problem. If we cannot find a watermark ws for the
given m, we increase it by 1 and solve the decision problem again. We repeat this process until
finding a watermark ws. Note that we start from m = maxi∈{1,2,··· ,s−2} n ·BA(wi, ws−1), i.e., the
maximum number of matched bits between ws−1 and the other s− 2 watermarks. This is because an
m smaller than this value is unlikely to produce a watermark ws as it failed to do so when selecting
ws−1. Algorithm 3 in Appendix shows our method.

5 THEORETICAL ANALYSIS

We first formally define three key metrics to evaluate the performance of detection and attribution.
Then, we theoretically analyze the evaluation metrics. All our proofs are shown in Appendix.

Image distributions: We denote the s users’ watermarks as a set W = {w1, w2, · · · , ws}. When a
user Ui generates an image via the GenAI service, the service provider uses the encoder E to embed
the watermark wi into the image. We denote by Pi the probability distribution of watermarked images
generated by Ui. Note that two users Ui and Uj may have different AI-generated, watermarked
image distributions Pi and Pj . This is because two users have different watermarks and they may
be interested in generating different types of images. Moreover, we denote by Q the probability
distribution of non-AI-generated images.

5
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5.1 EVALUATION METRICS

(User-dependent) True Detection Rate (TDR): TDR is the probability that an AI-generated image
is correctly detected. Note that different users may have different AI-generated image distributions.
Therefore, TDR depends on users. We denote by TDRi the true detection rate for the watermarked
images generated by user Ui, i.e., TDRi is the probability that an image C sampled from Pi uniformly
at random is correctly detected as AI-generated. Formally, we have:

TDRi = PrC∼Pi
( max
j∈{1,2,··· ,s}

BA(D(C), wj) ≥ τ), (3)

where the notation ∼ indicates an image is sampled from a distribution uniformly at random.

False Detection Rate (FDR): FDR is the probability that an image C sampled from the non-AI-
generated image distributionQ uniformly at random is detected as AI-generated. Note that FDR does
not depend on users. Formally, we have:

FDR = PrC∼Q( max
j∈{1,2,··· ,s}

BA(D(C), wj) ≥ τ). (4)

(User-dependent) True Attribution Rate (TAR): TAR is the probability that an AI-generated image
is correctly attributed to the user that generated the image. Like TDR, TAR also depends on users. We
denote by TARi the true attribution rate for watermarked images generated by user Ui, i.e., TARi is
the probability that an image sampled from Pi uniformly at random is correctly attributed to user Ui.
Formally, we have:

TARi = PrC∼Pi
( max
j∈{1,2,··· ,s}

BA(D(C), wj) ≥ τ (5)

∧BA(D(C), wi)> max
j∈{1,2,··· ,s}/{i}

BA(D(C), wj)),

where the first term maxj∈{1,2,··· ,s} BA(D(C), wj) ≥ τ means that C is detected as AI-generated,
and the second term BA(D(C), wi)>maxj∈{1,2,··· ,s}/{i} BA(D(C), wj) means that C is attributed
to user Ui. Note that we have the first term because attribution is only applied after detecting an
image as AI-generated.

Other metrics: In Appendix B, we show other relevant metrics can be derived from TDRi, FDR,
and TARi.

5.2 FORMAL QUANTIFICATION OF WATERMARKING

Intuitively, to theoretically analyze the detection and attribution performance (i.e., TDRi, FDR, and
TARi), we need a formal quantification of a watermarking method’s behavior at decoding watermarks
in AI-generated and non-AI-generated images. Towards this end, we formally define β-accurate
watermarking and γ-random watermarking, the details of which are in Appendix C.

β-accurate watermarking is used to characterize the accuracy of the watermarking method at en-
coding/decoding a watermark in an AI-generated image. In particular, the watermarking method
is more accurate when β is closer to 1. γ-random watermarking characterizes the behavior of the
watermarking method for non-AI-generated images. In particular, the decoded watermark for a
non-AI-generated (i.e., non-watermarked) image is close to a uniformly random watermark, where
γ quantifies the difference between them. The watermarking method is more random for non-AI-
generated images if γ is closer to 0.

User-dependent βi: Since the users’ AI-generated images may have different distributions Pi, the
same watermarking method may have different β for different users. To capture this phenomena, we
consider the watermarking method is βi-accurate for user Ui’s AI-generated images embedded with
watermark wi. Note that the same γ is used across different users since it is used to characterize the
behavior of the watermarking method for non-AI-generated images, which is user-independent.

Incorporating post-processing: Our β-accurate and γ-random watermarking can also incorporate
post-processing (e.g., JPEG compression) that an attacker may apply to AI-generated or non-AI-
generated images. In particular, we can replace D(C) as D(P (C)) in definitions, where P stands for
post-processing of the image C. When the AI-generated image is post-processed, the watermarking
method may become less accurate, i.e., β may decrease. The parameters β and γ can be estimated
using a set of AI-generated and non-AI-generated images, as shown in our experiments.
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5.3 DETECTION PERFORMANCE

Theorem 1 (Lower bound of TDRi). Suppose we are given s users with any s watermarks W =
{w1, w2, · · · , ws}. When the watermarking method is βi-accurate for user Ui, we have a lower
bound of TDRi:

TDRi ≥ Pr(ni ≥ τn) + Pr(ni ≤ n− τn− αin), (6)

where 0.5<τ<βi, αi = minj∈{1,2,··· ,s}/{i} BA(wi, wj), and ni ∼ B(n, βi) (binomial distribution).
Corollary 1. When the watermarking is more accurate, i.e., βi is closer to 1, the lower bound of
TDRi is larger.
Theorem 2 (Upper bound of FDR). Suppose we are given s users with s watermarks W =
{w1, w2, · · · , ws} and watermark w1 is selected uniformly at random. We have an upper bound of
FDR as follows:

FDR ≤ Pr(n1 ≥ τn) + Pr(n1 ≤ n− τn+ α1n), (7)

where α1 = maxj∈{2,3,··· ,s} BA(w1, wj) and n1 ∼ B(n, 0.5).

Note that the upper bound of FDR in Theorem 2 does not depend on γ-random watermarking since
we consider w1 is picked uniformly at random. However, we found such upper bound is loose.
This is because the second term of the upper bound considers the worst-case scenario of the s
watermarks. The next theorem shows that when the s watermarks are constrained, in particular
selected independently, we can derive a tighter upper bound of FDR.
Theorem 3 (Alternative upper bound of FDR). Suppose we are given s users with s watermarks
W = {w1, w2, · · · , ws} selected independently. When the watermarking method is γ-random for
non-AI-generated images, we have an upper bound of FDR as follows:

FDR ≤ 1− Pr(n′<τn)s, (8)

where n′ ∼ B(n, 0.5 + γ).
Corollary 2. When the watermarking method is more random for non-AI-generated images, i.e., γ is
closer to 0, the upper bound of FDR is smaller.

Impact of s on the bounds: Intuitively, when there are more users, i.e., s is larger, it is more
likely to have at least one user whose watermark has a bitwise accuracy with the decoded watermark
D(C) that is no smaller than τ . As a result, both TDRi and FDR may increase as s increases, i.e.,
s controls a trade-off between TDRi and FDR. Our theoretical results align with this intuition. On
one hand, Theorem 1 shows that the lower bound of TDRi is larger when s is larger. In particular,
when s increases, the parameter αi may become smaller. Thus, the second term of the lower bound
increases, leading to a larger lower bound of TDRi. On the other hand, the upper bound of FDR in
both Theorem 2 and Theorem 3 increases as s increases. In particular, in Theorem 2, α1 becomes
larger when s increases, leading to a larger second term of the upper bound.

User-agnostic vs. user-aware detection: Existing watermark-based detection is user-agnostic, i.e.,
it does not distinguish between different users when embedding a watermark into an AI-generated
image. The first term of the lower bound in our Theorem 1 is a lower bound of TDR for user-agnostic
detection; the first term of the upper bound in our Theorem 2 is an upper bound of FDR for user-
agnostic detection; and the upper bound with s = 1 in our Theorem 3 is an alternative upper bound of
FDR for user-agnostic detection. Compared to user-agnostic detection, user-aware detection achieves
larger TDR but also larger FDR.

5.4 ATTRIBUTION PERFORMANCE

Theorem 4 (Lower bound of TARi). Suppose we are given s users with any s watermarks W =
{w1, w2, · · · , ws}. When the watermarking method is βi-accurate for user Ui, we have a lower
bound of TARi as follows:

TARi ≥ Pr(ni ≥ max{⌊1 + αi

2
n⌋+ 1, τn}), (9)

where αi = maxj∈{1,2,··· ,s}/{i} BA(wi, wj) and ni ∼ B(n, βi).
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Our Theorem 4 shows that the lower bound of TARi is larger when βi is closer to 1, i.e., attribution
performance is better when the watermarking method is more accurate. Moreover, the lower bound
is larger when αi is smaller because it is easier to distinguish between users. This is a theoretical
motivation on why our watermark selection problem aims to select watermarks for the users such that
they have small pairwise bitwise accuracy.

Detection implies attribution: When τ> 1+αi

2 , the lower bound of TARi in Theorem 4 becomes
TARi ≥ Pr(ni ≥ τn). The second term of the lower bound of TDRi in Theorem 1 is usually much
smaller than the first term. In other words, the lower bound of TDRi is also roughly Pr(ni ≥ τn).
Therefore, when τ is large enough (i.e., > 1+αi

2 ), TDRi and TARi are very close, which is also
confirmed in our experiments. This result indicates that once an AI-generated image is correctly
detected, it would also be correctly attributed.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets: We consider both AI-generated and non-AI-generated images. For AI-generated, we use
three public datasets (Wang et al., 2023; Turc & Nemade, 2022; Images, 2023) generated respectively
by Stable Diffusion, Midjourney, and DALL-E 2. Following HiDDeN (Zhu et al., 2018), for each
dataset, we sample 10,000 images for training watermark encoders and decoders; and we sample
1,000 images for testing. For non-AI-generated, we combine the images in COCO (Lin et al., 2014),
ImageNet (Deng et al., 2009), and Conceptual Caption (Sharma et al., 2018), and sample 1,000
images from the combined set uniformly at random as our non-AI-generated dataset. We scale the
image size in all datasets to be 128 × 128.

Watermarking method: We use the learning-based method HiDDeN (Zhu et al., 2018) because
it is the basis of modern image watermarks like Stable Signature (Fernandez et al., 2023), StegaS-
tamp (Tancik et al., 2020), and Smoothed HiDDeN (Jiang et al., 2024). Unless otherwise mentioned,
we use standard training with the default parameter settings in the publicly available code. For each
GenAI model, we train a watermark encoder/decoder using the corresponding AI-generated image
training set and evaluate performance on the testing set.

Evaluation metrics: We use TDR, FDR, and TAR. FDR is the fraction of the 1,000 non-AI-generated
images that are falsely detected as AI-generated. For each user Ui, we embed its watermark into 100
images randomly sampled from a testing AI-generated image dataset; and then we calculate the TDRi

and TARi for the user. In most of our experiments, we report the average TDR and average TAR,
which respectively are the average TDRi and TARi among the s users. However, average TDR and
average TAR cannot reflect the detection/attribution performance for the worst-case users, i.e., some
users may have quite small TDRi/TARi, but the average TDR/TAR may still be very large. Therefore,
we further consider the 1% users (at least 1 user) with the smallest TDRi (or TARi) and report their
average TDR (or TAR), which we call worst 1% TDR (or worst 1% TAR).

Parameter settings: By default, we set s = 100, 000 (due to limited computation resource), n = 64,
and τ = 0.9. We also explore s = 1, 000, 000. Unless otherwise mentioned, we show results for the
Stable Diffusion dataset.

6.2 DETECTION AND ATTRIBUTION RESULTS

Without post-processing: We first show results when the AI-generated, watermarked images are
not post-processed. For each GenAI model, we compute the TDRi/TARi of each user and the FDR.
The FDRs for the three GenAI models are nearly 0. Then, we rank the users’ TARi (or TDRi) in a
non-descending order. Figure 2a shows the ranked TARi of the 100,000 users for the three GenAI
models. Note that the curve of TDRi overlaps with that of TARi for a GenAI model and thus is
omitted in the figure for simplicity. TDRi and TARi overlap because τ = 0.9 > 1+αi

2 (0.89 in our
experiments), which is consistent with our theoretical analysis in Section 5.4 that shows detection
implies attribution in such settings. Our results show that watermark-based detection and attribution
are accurate when the AI-generated, watermarked images are not post-processed. Specifically, the
worst TARi or TDRi is larger than 0.94; less than 0.1% of users have TARi/TDRi smaller than 0.98;
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Figure 3: Detection and attribution results when AI-generated and non-AI-generated images are
post-processed by common post-processing methods with different parameters. SSIM measures the
quality of an image after post-processing.

and 85% of users have TARi/TDRi of 1 for Midjourney and DALL-E 2, and 60% of such users for
Stable Diffusion.
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Figure 2: (a) Ranked TARi of the 100,000 users.
(b) Average SSIM between watermarked images
and their adversarially post-processed versions as
query budget varies in the black-box setting.

Impact of s, n, and τ : Figure 9 in Appendix
shows the average TDR, average TAR, worst 1%
TDR, worst 1% TAR, and FDR when s, n, or τ
varies. Both average TDR and average TAR are
close to 1, and FDR is close to 0, as s varies
from 10 to 1,000,000. The average TDR and
average TAR slightly decrease when n increases
from 64 to 80, while the worst 1% TDR/TAR
slightly increases as n increases from 32 to 48
and then decreases as n further increases. Our
result implies that HiDDeN may be unable to
accurately encode/decode very long watermarks.
When τ increases, both average TDR and TAR
decrease, while FDR also decreases. Such trade-
off of τ is consistent with Theorem 1, 3, and 4.

Common post-processing: Common post-processing is often used to evaluate the robustness
of watermarking in non-adversarial settings. We use JPEG, Gaussian noise, Gaussian blur, and
Brightness/Contrast, whose details are shown in Appendix J. We use adversarial training to train
HiDDeN and the training details can be found in Appendix J. Figure 3 shows the detection/attribution
results when a common post-processing method with different parameters is applied to the (AI-
generated and non-AI-generated) images. Figure 3 also shows the average SSIM (Wang et al.,
2004) between a (AI-generated and non-AI-generated) image and its post-processed version. Our
results show that detection and attribution are robust to common post-processing. In particular, the
average TDR and TAR are still high when a common post-processing does not sacrifice image quality
substantially. For instance, average TDR and TAR start to decrease sharply when the quality factor
Q of JPEG is smaller than 40. However, the average SSIM between watermarked images and their
post-processed versions also drops quickly. Figure 6 in Appendix shows a watermarked image and
the versions post-processed by different methods.

Adversarial post-processing: Adversarial post-processing (Jiang et al., 2023) carefully perturbs
a watermarked image to evade detection/attribution. HiDDeN is not robust to adversarial post-
processing in white-box setting. Thus, HiDDeN-based detection/attribution is also not robust in such
setting, i.e., TDR/TAR can be reduced to 0 while maintaining image quality.

Figure 2b shows the average SSIM between watermarked images and their adversarially post-
processed versions in the black-box setting (i.e., WEvade-B-Q (Jiang et al., 2023)) as a function of
the number of queries to the detection API for each watermarked image. Both TDR and TAR are 0
in these experiments since WEvade-B-Q always guarantees evasion (Jiang et al., 2023). However,
adversarial post-processing substantially sacrifices image quality in the black-box setting (i.e., SSIM
is small) even if an attacker can query the detection API for a large number of times. Figure 7
in Appendix shows several examples of adversarially post-processed images with degraded visual
quality. Our results show that HiDDeN and thus our HiDDeN-based detection/attribution have good
robustness to adversarial post-processing in the black-box setting.
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6.3 COMPARING WATERMARK SELECTION METHODS
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Figure 4: (a) Ranked TARi of the worst 1K users
for the three watermark selection methods. (b)
Theoretical vs. empirical results.

We compare three watermark selection meth-
ods: Random, NRG (Chen et al., 2016), and
A-BSTA. NRG is the state-of-the-art approxi-
mate algorithm to the farthest string problem
and we extend it to select watermarks (details in
Appendix A). We do not use BSTA because it is
not scalable, e.g., it takes more than 8 hours to
select even 16 watermarks.

Running time: Table 3 in Appendix shows the
running time to generate a watermark averaged
among the 100,000 watermarks. Although A-
BSTA is slower than Random and NRG, the
running time is acceptable, i.e., it takes only
24ms to generate a watermark on average.

TAR: Figure 4a shows the ranked TARi of the worst 1,000 users, where the AI-generated images
are post-processed by JPEG compression with quality factor Q = 90 and HiDDeN is adversarially
trained. The results indicate that A-BSTA outperforms NRG, which outperforms Random. This is
because A-BSTA selects watermarks with smaller αi, while Random selects watermarks with larger
αi as shown in Figure 11 in Appendix.

6.4 THEORETICAL VS. EMPIRICAL RESULTS

Table 1: Theoretical lower bounds of TDR/TAR and upper
bound of FDR when there are 100 million users.

Bound of TDR Bound of FDR Bound of TAR
99.99% 6.00% 99.99%

We calculate the theoretical lower
bounds of TDRi and TARi of a user
respectively using Theorem 1 and 4,
while the theoretical upper bound of
FDR using Theorem 3. We estimate
βi as the bitwise accuracy between
the decoded watermark and wi aver-
aged among the testing AI-generated
images, and estimate γ using the fraction of bits in the decoded watermarks that are 1 among the
non-AI-generated images. Figure 4b shows the average theoretical vs. empirical TDR/TAR, and
theoretical vs. empirical FDR, when no post-processing is applied (Figure 12 in Appendix shows the
results when JPEG with Q = 90 is applied). The results show that our theoretical lower bounds of
TDR and TAR match with empirical results well, which indicates that our derived lower bounds are
tight. The theoretical upper bound of FDR is notably higher than the empirical FDR. This is because
some bits may have larger probabilities to be 1 or 0 in the experiments, but our theoretical analysis
treats the bits equally, leading to a loose upper bound of FDR.

Theoretical results when there are 100 millions users: Due to limited computational resources,
we show theoretical results on 100 million users in Table 1, assuming βi = 0.99, αi = 0.2, γ = 0.05,
and αi = 0.8. We notice that TDR and TAR remain very close to 1.

7 CONCLUSION AND FUTURE WORK

We show that watermark can be used for user-aware detection and attribution of AI-generated image.
Moreover, via both theoretical analysis and empirical evaluation, we find that such detection and
attribution inherit the accuracy/(non-)robustness properties of the watermarking method. We also
find that selecting dissimilar watermarks for users enhances attribution performance.

Text watermarking: Our theory and algorithm may not be applicable to text watermarking (Kirchen-
bauer et al., 2023) that does not use bitstring as watermark, but is applicable to text watermarking (Ab-
delnabi & Fritz, 2021) that uses bitstring as watermark (Appendix K shows more details). Interesting
future work is to extend our work to text or audio watermarking.
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Algorithm 1 BSTA(ws, d,m)

Input: Initial watermark ws, recursion depth d, and m.
Output: ws or NotExist.

1: if d < 0 then
2: return NotExist
3: end if
4: i∗ ← argmaxi∈{1,2,··· ,s−1} BA(wi, ws)

5: if BA(wi∗ , ws)>(m+ d)/n then
6: return NotExist
7: else if BA(wi∗ , ws) ≤ m/n then
8: return ws

9: end if
10: B ← {k|ws[k] = wi∗ [k], k = 1, 2, · · · , n}
11: Choose any B′ ⊂ B with |B′| = m+ 1
12: for all k ∈ B′ do
13: w′

s ← ws

14: w′
s[k]← ¬w′

s[k]
15: w′

s ← BSTA(w′
s, d− 1,m)

16: if w′
s is not NotExist then

17: return w′
s

18: end if
19: end for
20: return NotExist

A WATERMARK SELECTION ALGORITHMS

Bounded search tree algorithm (BSTA) (Gramm et al., 2003): Recall that our watermark selection
problem is equivalent to the farthest string problem. Thus, our decision problem is equivalent to that
of the farthest string problem, which has been studied extensively in the theoretical computer science
community. In particular, BSTA is the state-of-the-art exact algorithm to solve the decision problem
version of the farthest string problem. We apply BSTA to solve the decision problem version of our
watermark selection problem exactly, which is shown in Algorithm 1 in Appendix. The key idea
of BSTA is to initialize ws as ¬w1 (i.e., each bit of w1 flips), and then reduce the decision problem
to a simpler problem recursively until it is easily solvable or there does not exist a solution ws. In
particular, given an initial ws, BSTA first finds the existing watermark wi∗ that has the largest bitwise
accuracy with ws. If BA(wi∗ , ws) ≤ m/n, then ws is already a solution to the decision problem and
thus BSTA returns ws. Otherwise, BSTA chooses any m+ 1 bits that ws and wi∗ match. For each of
the chosen m+ 1 bits, BSTA flips the corresponding bit in ws and recursively solves the decision
problem using the new ws as an initialization. The recursion is applied m times at most, i.e., the
recursion depth d is set as m when calling Algorithm 1.

A key limitation of BSTA is that it has an exponential time complexity Gramm et al. (2003). In fact,
since the decision problem is NP-hard, all known exact solutions have exponential time complexity.
Therefore, to enhance computation efficiency, we resort to approximate solutions. Next, we discuss
the state-of-the-art approximate solution that adapts BSTA and a new approximate solution that we
propose.

Non Redundant Guess (NRG) (Chen et al., 2016): Like BSTA, this approximate solution also first
initializes ws as ¬w1 and finds the existing watermark wi∗ that has the largest bitwise accuracy with
ws. If BA(wi∗ , ws) ≤ m/n, then NRG returns ws. Otherwise, NRG samples n ·BA(wi∗ , ws)−m
bits that ws and wi∗ match uniformly at random. Then, NRG flips these bits in ws and recursively
solve the decision problem using the new ws as an initialization. Note that NRG stops the recursion
when m bits of the initial ws have been flipped. Algorithm 2 in Appendix shows NRG.

Approximate bounded search tree algorithm (A-BSTA): The algorithm of our A-BSTA is shown
as Algorithm 3. Note that binary search is another way to find a proper m. Specifically, we start
with a small m (denoted as ml) that does not produce a ws and a large m (denoted as mu) that does
produce a ws. If m = (ml + mu)/2 produces a ws, we update mu = (ml + mu)/2; otherwise

14
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Algorithm 2 NRG(ws,m)

Input: Initial watermark ws and m.
Output: ws or NotExist.

1: F← ∅
2: d← m
3: while d > 0 do
4: i∗ ← argmaxi∈{1,2,··· ,s−1} BA(wi, ws)

5: if BA(wi∗ , ws)>2m/n then
6: return NotExist
7: else if BA(wi∗ , ws) ≤ m/n then
8: return ws

9: end if
10: B ← {k|ws[k] = wi∗ [k] ∧ k /∈ F, k = 1, 2, · · · , n}
11: l← n ·BA(wi∗ , ws)−m
12: Sample B′ ⊂ B with |B′| = l uniformly at random
13: for all k ∈ B′ do
14: ws[k]← ¬ws[k]
15: end for
16: d← d− l
17: F ← F ∪B′

18: end while
19: return NotExist

Algorithm 3 Solving our watermark selection problem

Input: Existing s− 1 watermarks w1, w2, · · · , ws−1.
Output: Watermark ws.

1: m← maxi∈{1,2,··· ,s−2} n ·BA(wi, ws−1)
2: while ws is NotExist do
3: if BSTA then
4: ws ← ¬w1

5: ws ← BSTA(ws,m,m)
6: end if
7: if NRG then
8: ws ← ¬w1

9: ws ← NRG(ws,m)
10: end if
11: if A-BSTA then
12: ws ← sampled uniformly at random
13: ws ← BSTA(ws, d,m)
14: end if
15: if ws is NotExist then
16: m← m+ 1
17: end if
18: end while
19: return ws

we update ml = (ml + mu)/2. The search process stops when ml ≥ mu. However, we found
that increasing m by 1 as in our Algorithm 3 is more efficient than binary search. This is because
increasing m by 1 expands the search space of ws substantially, which often leads to a valid ws. On
the contrary, binary search would require solving the decision problem multiple times with different
m until finding that m+ 1 is enough.

Time complexity: We analyze the time complexity of the algorithms to solve the decision problem.
For Random, the time complexity is O(n). For BSTA, the time complexity to solve the decision
problem with parameter m is O(snmm) according to (Gramm et al., 2003). For NRG, the time
complexity is O(sn+ s

√
m · 5m) according to (Chen et al., 2016). For A-BSTA, the time complexity

is O(snmd), where d is a constant.
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Figure 5: Detection and attribution results when AI-generated and non-AI-generated images are
post-processed by common post-processing methods with different parameters. HiDDeN is trained
using standard training.

(a) Watermarked (b) JPEG (c) Gaussian noise (d) Gaussian blur (e) Bright-
ness/Contrast

Figure 6: A watermarked image and the versions post-processed by JPEG with Q=20, Gaussian
noise with σ=0.3, Gaussian blur with σ=1.2, and Brightness/Contrast with a=4.0.

(a) 100 (b) 500 (c) 1k (d) 10k (e) 100k

Figure 7: Perturbed watermarked images obtained by adversarial post-processing with different
number of queries to the detection API in the black-box setting.

B OTHER EVALUATION METRICS CAN BE DERIVED FROM TDRi, FDR, AND
TARi

We note that there are also other relevant detection and attribution metrics, e.g., the probability that
an AI-generated image is incorrectly attributed to a user. We show that other relevant detection and
attribution metrics can be derived from TDRi, FDR, and TARi, and thus we focus on these three
metrics in our work. Specifically, Figure 8 shows the taxonomy of detection and attribution results for
non-AI-generated images and AI-generated images generated by user Ui. In the taxonomy trees, the
first-level nodes represent ground-truth labels of images; the second-level nodes represent possible
detection results; and the third-level nodes represent possible attribution results (note that attribution
is only performed after an image is detected as AI-generated).

In the taxonomy trees, there are 5 branches in total, which are labeled as ①, ②, ③, ④, and ⑤ in the
figure. Each branch starts from a root node and ends at a leaf node, and corresponds to a metric that
may be of interest. For instance, our TDRi is the probability that an image C ∼ Pi goes through
branches ④ or ⑤; FDR is the probability that an image C ∼ Q goes through branch ②; and TARi

is the probability that an image C ∼ Pi goes through branch ④. The probability that an image
goes through other branches can be calculated using TDRi, FDR, and/or TARi. For instance, the
probability that a non-AI-generated image C ∼ Q is correctly detected as non-AI-generated is the
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Ground-truth label Non-AI-gen
Content 𝐶𝐶~𝒬𝒬 

AI-gen
Content 𝐶𝐶~𝒫𝒫𝑖𝑖

Detection

Attribution

Non-AI-gen AI-gen

Incorrect 
attribution

Non-AI-gen AI-gen

Incorrect 
attribution

Correct 
attribution

①

②

③

④ ⑤

Figure 8: Taxonomy of detection and attribution results. Nodes with red color indicate incorrect
detection/attribution.

probability that C goes through the branch ①, which can be calculated as 1−FDR. The probability
that an AI-generated image C ∼ Pi is incorrectly detected as non-AI-generated is the probability
that C goes through the branch ③, which can be calculated as 1−TDRi. The probability that a user
Ui’s AI-generated image C ∼ Pi is correctly detected as AI-generated but incorrectly attributed to
a different user Uj is the probability that C goes through the branch ⑤, which can be calculated as
TDRi−TARi.

C DEFINITIONS OF β-ACCURATE AND γ-RANDOM WATERMARKING

Definition 3 (β-accurate watermarking). For a randomly sampled AI-generated image C ∼ P
embedded with the watermark w, the bits of the decoded watermark D(C) are independent and each
bit matches with that of w with probability β, where β ∈ [0, 1]. Formally, we have Pr(D(C)[k] =
w[k]) = β, where C ∼ P , D is the decoder, and [k] represents the kth bit of a watermark. We say a
watermarking method is β-accurate if it satisfies the above condition.

Definition 4 (γ-random watermarking). For a randomly sampled non-AI-generated image C ∼ Q
without any watermark embedded, the bits of the decoded watermark D(C) are independent and
each bit is 1 with probability at least 0.5− γ and at most 0.5 + γ, where γ ∈ [0, 0.5]. Formally, we
have |Pr(D(C)[k] = 1) − 0.5| ≤ γ, where C ∼ Q and [k] represents the kth bit of a watermark.
We say a watermarking method is γ-random if it satisfies the above condition.

D PROOF OF THEOREM 1

For C ∼ Pi, we denote w = D(C), ni = BA(w,wi)n, and nj = BA(w,wj)n for j ∈
{1, 2, · · · , s}/{i}. Then we have the following:

|w − ¬wi|1 = ni,

|¬wi − wj |1 = BA(wi, wj)n,

|w − wj |1 = n− nj ,

where ¬wi means flipping each bit of the watermark wi, | · |1 is ℓ1 distance between two binary
vectors. According to the triangle inequality, we have:

|w − wj |1 ≤ |w − ¬wi|1 + |¬wi − wj |1
= ni +BA(wi, wj)n.

Therefore, we derive the lower bound of nj for j ∈ {1, 2, · · · , s}/{i} as follows:

nj = n− |w − wj |1
≥ n− ni −BA(wi, wj)n.
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Table 2: The maximum pairwise bitwise accuracy among the watermarks generated by NRG and
A-BSTA for different initializations.

¬w1 initialization Random initialization
NRG 0.766 0.750

A-BSTA 0.875 0.734

Table 3: The average running time for different watermark selection methods to generate a watermark.

Random NRG A-BSTA
Time (ms) 0.01 2.11 24.00

Thus, we derive the lower bound of TDRi as follows:

TDRi =1− Pr(ni<τn ∧ max
j∈{1,2,··· ,s}/{i}

nj<τn))

≥1− Pr(ni<τn ∧ max
j∈{1,2,··· ,s}/{i}

n− ni −BA(wi, wj)n<τn))

=1− Pr(ni<τn ∧ n− ni − αin<τn)

=1− Pr(n− τn− αin<ni<τn)

=Pr(ni ≥ τn) + Pr(ni ≤ n− τn− αin),

where ni ∼ B(n, βi) and αi = minj∈{1,2,··· ,s}/{i} BA(wi, wj).

E PROOF OF COROLLARY 1

According to Theorem 1, the lower bound of TDRi is 1− Pr(n− τn− αin<ni<τn). For an integer
r ∈ (n− τn− αin, τn) and ni ∼ B(n, βi), we have the following:

Pr(ni = r) =
(︁
n
r

)︁
βr
i (1− βi)

n−r.

Then we compute the partial derivative of the probability with respect to βi as follows:

∂Pr(ni = r)

∂βi
=

(︁
n
r

)︁
βr−1
i (1− βi)

n−r−1(r(1− βi)− (n− r)βi)

<
(︁
n
r

)︁
βr−1
i (1− βi)

n−r−1(τ − βi)n.

The partial derivative is smaller than 0 when τ<βi. Therefore, the probability Pr(ni = r) decreases
as βi increases for any integer r ∈ (n− τn− αin, τn). Thus, the lower bound of TDRi increases as
βi becomes closer to 1.

F PROOF OF THEOREM 2

For C ∼ Q, we denote n1 = BA(D(C), w1)n and nj = BA(D(C), wj)n for j ∈ {1, 2, · · · , s}.
Then, we have the following:

FDR = 1− Pr( max
j∈{1,2,··· ,s}

nj<τn)

= 1− Pr(n1<τn ∧ max
j∈{2,3,··· ,s}

nj<τn).

To derive an upper bound of FDR, we denote:

|w − w1|1 = n− n1,

|w1 − wj |1 = n−BA(w1, wj)n,

|w − wj |1 = n− nj .

According to the triangle inequality, we have the following:

|w − wj |1 ≥ |w1 − wj |1 − |w − w1|1
= n1 −BA(w1, wj)n.
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Therefore, we derive the upper bound of nj for j ∈ {2, 3, · · · , s} as follows:

nj = n− |w − wj |1
≤ n− n1 +BA(w1, wj)n.

Thus, we derive the upper bound of FDR as follows:

FDR = 1− Pr(n1<τn ∧ max
j∈{2,3,··· ,s}

nj<τn)

≤ 1− Pr(n1<τn ∧ max
j∈{2,3,··· ,s}

n− n1 +BA(w1, wj)n<τn))

= 1− Pr(n1<τn ∧ n− n1 + α1n<τn))

= 1− Pr(n− τn+ α1n<n1<τn)

= Pr(n1 ≥ τn) + Pr(n1 ≤ n− τn+ α1n),

where n1 ∼ B(n, 0.5) and α1 = maxj∈{2,3,··· ,s} BA(w1, wj).

G PROOF OF THEOREM 3

For C ∼ Q, we denote nj = BA(D(C), wj)n for j ∈ {1, 2, · · · , s}, and we have the following:

FDR = 1− Pr( max
j∈{1,2,··· ,s}

nj<τn)

= 1−
∏︂

j∈{1,2,··· ,s}

Pr(nj<τn).

According to Definition 4, for any k ∈ {1, 2, · · · , n} and any j ∈ {1, 2, · · · , s}, the decoding of
each bit is independent and the probability that D(C)[k] matches with wj [k] is at most 0.5 + γ no
matter wj [k] is 1 or 0. Therefore, we have the following:

FDR =1−
∏︂

j∈{1,2,··· ,s}

Pr(nj<τn)

≤1− Pr(n′ < τn)s,

where n′ follows the binomial distribution with parameters n and 0.5 + γ, i.e., n′ ∼ B(n, 0.5 + γ).

H PROOF OF COROLLARY 2

According to Theorem 3, the probability Pr(n′<τn) increases when γ decreases. Therefore, the
upper bound of FDR decreases as γ becomes closer to 0.

I PROOF OF THEOREM 4

For C ∼ Pi, we denote w = D(C), ni = BA(w,wi)n, and nj = BA(w,wj)n for j ∈
{1, 2, · · · , s}. Then we have the following:

|w − ¬wi|1 = ni,

|¬wi − wj |1 = BA(wi, wj)n,

|w − wj |1 = n− nj .

According to the triangle inequality, we have:

|w − wj |1 ≥ |w − ¬wi|1 − |¬wi − wj |1
= ni −BA(wi, wj)n.

Therefore, we derive the upper bound of nj for j ∈ {1, 2, · · · , s}/{i} as follows:

nj = n− |w − wj |1
≤ n− ni +BA(wi, wj)n.
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Figure 9: Impact of number of users s, watermark length n, and detection threshold τ on detection
and attribution performance.

Thus, we derive the lower bound of TARi as follows:

TARi =Pr( max
j∈{1,2,··· ,s}

nj ≥ τn ∧ ni> max
j∈{1,2,··· ,s}/{i}

nj)

≥Pr( max
j∈{1,2,··· ,s}

nj ≥ τn ∧ ni> max
j∈{1,2,··· ,s}/{i}

n− ni +BA(wi, wj)n)

=Pr( max
j∈{1,2,··· ,s}

nj ≥ τn ∧ ni>
n+ αin

2
)

=Pr( max
j∈{1,2,··· ,s}

nj ≥ τn ∧ ni>
n+ αin

2
| ni ≥ τn) · Pr(ni ≥ τn)

+ Pr( max
j∈{1,2,··· ,s}

nj ≥ τn ∧ ni>
n+ αin

2
| ni<τn) · Pr(ni<τn)

≥Pr(ni>
n+ αin

2
| ni ≥ τn) · Pr(ni ≥ τn)

=Pr(ni>
n+ αin

2
∧ ni ≥ τn)

=Pr(ni ≥ max{⌊1 + αi

2
n⌋+ 1, τn}),

where ni ∼ B(n, βi) and αi = maxj∈{1,2,··· ,s}/{i} BA(wi, wj).

J COMMON POST-PROCESSING AND ADVERSARIAL TRAINING

Common post-processing: Each of these post-processing methods has some parameters, which
control the size of perturbation added to a (watermarked or unwatermarked) image.

JPEG. JPEG method (Zhang et al., 2020) compresses an image via a discrete cosine transform. The
perturbation introduced to an image is determined by the quality factor Q. An image is perturbed
more when Q is smaller.

Gaussian noise. This method perturbs an image via adding a random Gaussian noise to each pixel.
In our experiments, the mean of the Gaussian distribution is 0. The perturbation introduced to an
image is determined by the parameter standard deviation σ.

Gaussian blur. This method blurs an image via a Gaussian function. In our experiments, we fix
kernel size s = 5. The perturbation introduced to an image is determined by the parameter standard
deviation σ.

Brightness/Contrast. This method perturbs an image via adjusting the brightness and contrast.
Formally, the method has contrast parameter a and brightness parameter b, where each pixel x is
converted to ax+ b. In our experiments, we fix b = 0.2 and vary a to control the perturbation.

Adversarial training (Zhu et al., 2018): We use adversarial training to train HiDDeN. Specifically,
during training, we randomly sample a post-processing method from no post-processing and common
post-processing with a random parameter to post-process each watermarked image in a mini-batch.
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Figure 10: Results of watermark-based detection and attribution for AI-generated texts.

Following previous work (Zhu et al., 2018), we consider the following range of parameters during
adversarial training: Q ∈ [10, 99] for JPEG, σ ∈ [0, 0.5] for Gaussian noise, σ ∈ [0, 1.5] for Gaussian
blur, and a ∈ [1, 20] for Brightness/Contrast.

K DETECTION AND ATTRIBUTION OF AI-GENERATED TEXTS

Our method can also be used for the detection and attribution of AI-generated texts based on text
watermarking that uses bitstring as watermark. For text watermarking, we use a learning-based
method called Adversarial Watermarking Transformer (AWT) (Abdelnabi & Fritz, 2021). Given a
text, AWT encoder embeds a bitstring watermark into it; and given a (watermarked or unwatermarked)
text, AWT decoder decodes a watermark from it. Following the original paper (Abdelnabi & Fritz,
2021), we train AWT on the word-level WikiText-2 dataset, which is derived from Wikipedia
articles (Merity et al., 2017). We use most of the hyperparameter settings in the publicly available
code of AWT except the weight of the watermark decoding loss. To optimize watermark decoding
accuracy, we increase this weight during training. The detailed hyperparameter settings for training
can be found in Table 4.

We use A-BSTA to select users’ watermarks. For each user, we sample 10 text segments from the test
corpus uniformly at random, and perform watermark-based detection and attribution. Moreover, we
use the unwatermarked test corpus to calculate FDR. Figure 10 shows the detection and attribution
results when there is no post-processing and paraphrasing (Damodaran, 2021) is applied to texts,
where n = 64, τ = 0.85, and s ranges from 10 to 100,000. Due to the fixed-length nature of AWT’s
input, we constrain the output length of the paraphraser to a certain range. When paraphrasing is
used, we extend adversarial training to train AWT. Specifically, we employ T5-based paraphraser
to post-process the watermarked texts generated by AWT. Due to the non-differentiable nature of
the paraphrasing process, we cannot jointly adversarially train the encoder and decoder since the
gradients cannot back-propagate to the encoder. To address the challenge, we first use the standard
training to train AWT encoder and decoder. Then, we use the encoder to generate watermarked texts,
paraphrase them, and use the paraphrased watermarked texts to fine-tune the decoder. The detail
parameter settings of fine-tuning are shown in Table 4.

Note that the average TDR/TAR and FDR are all nearly 0 when AWT is trained by standard training
and paraphrasing is applied to texts. The results show that our method is also applicable for AI-
generated texts, and adversarially trained AWT has better robustness to paraphrasing.

L ATTRIBUTION OF GENAI SERVICES

In this work, we focus on attribution of the image to users for a specific GenAI service. Another
relevant attribution problem is to trace back the GenAI service (e.g., Google’s Imagen, OpenAI’s
DALL-E 3, or Stable Diffusion) that generated a given image. Our method can also be applied to
such GenAI-service-attribution problem by assigning a different watermark to each GenAI service.
When GenAI service generates an image, its corresponding watermark is embedded into it. Then, our
method can be applied to detect whether an image is AI-generated and further attribute the GenAI
service if the image is detected as AI-generated.
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Figure 11: The cumulative distribution function (CDF) of αi.
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Figure 12: Theoretical vs. empirical results when JPEG with Q = 90 is applied.

Table 4: Default parameter settings for the training of AWT.

Phase Standard Training Fine-Tuning
Optimizer Adam
# epochs 200 10

Batch size 16
Learning rate 3× 10−5

# warm-up iterations 6000 1000
Length of text 250 250± 16

Generation weight 1.5 1
Message weight 10000

Reconstruction weight 1.5 2

In service attribution, selecting watermarks for different GenAI services can be coordinated by a
central authority, who runs our watermark selection algorithm to pick unique watermarks for the
GenAI services. A GenAI service registers to the central authority in order to obtain a unique water-
mark. Such a central authority is similar to the certificate authority in the Public Key Infrastructure
(PKI) that is widely used to secure communications on the Internet. The central authority may also
perform detection and attribution of AI-generated images since it has access to all GenAI services’
watermarks. However, the central authority may become a bottleneck in such detection and attribution.
To mitigate this issue, the watermarks of all GenAI services can be shared with each GenAI service,
so each GenAI service can perform detection and attribution. We note that a central authority is not
needed in user attribution of a particular GenAI service. This is because the GenAI service can select
watermarks for its users and perform detection/attribution.

Hierarchical attribution: We can perform attribution to GenAI service and user simultaneously.
Specifically, we can divide the watermark space into multiple subspaces; and each GenAI service
uses a subspace of watermarks and assigns watermarks in its subspace to its users. In this way, we
can trace back both the GenAI service and its user that generated a given image.
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