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Abstract

In federated optimization, data heterogeneity is
the main reason that existing theoretical analy-
ses are pessimistic about the convergence error
caused by local updates. However, experimen-
tal results have shown that more local updates
can improve the convergence rate and reduce the
communication cost when data are heterogeneous.
This paper bridges this gap between theoretical
understanding and the practical performance by
providing a general theoretical analysis for feder-
ated averaging (FedAvg) with non-convex objec-
tive functions from a new perspective on data het-
erogeneity. Identifying the limitations in the com-
monly used assumption of bounded gradient diver-
gence, we propose a new assumption, termed the
heterogeneity-driven Lipschitz assumption, which
characterizes the fundamental effect of data het-
erogeneity on local updates. We find the widely
used local Lipschitz constant is affected by data
heterogeneity, which is neglected in the literature.
The proposed heterogeneity-driven Lipschitz con-
stant can capture the information about data het-
erogeneity contained in local Lipschitz constant.
At the same time, the information about the gradi-
ent smoothness is captured by the global Lipschitz
assumption. Based on the new assumption, we
derive novel convergence bounds for both full
participation and partial participation, which are
tighter and show that more local updates can im-
prove the convergence rate even when data are
highly heterogeneous. Furthermore, the assump-
tions used in this paper are weaker than those used
in the literature.
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1. Introduction
Federated learning (FL) has emerged as an important tech-
nique for locally training machine learning models over
geographically distributed workers. It has advantages in
improving training efficiency and data privacy. We consider
the following optimization problem in federated learning:

minx

{
f(x) := 1

N

∑N
i=1 Fi(x)

}
, (1)

where N is the number of workers and Fi(x) is the expected
loss function of worker i,

Fi(x) := Eξi∼Di [ℓ(x; ξi)], (2)

where ℓ(·) is the loss function, ξi is the random data sample
on worker i, and Di is the data distribution on worker i.
In addition, let D be the global data distribution. In FL,
each worker performs I > 1 local iterations using its local
dataset to reduce the communication cost, which is called
local updates. Federated averaging (FedAvg) (McMahan
et al., 2017), also known as local SGD, is the most popular
algorithm in FL.

There is a gap between the theoretical understanding
and the experimental results. Unlike centralized stochas-
tic gradient descent (SGD) where the gradients are directly
sampled from the global data distribution D, the local gradi-
ents in FedAvg are sampled from the local data distributions
{Di}, which are often highly heterogeneous (Kairouz et al.,
2021). This can deteriorate FL’s performance when using
local updates. Existing theoretical analyses for non-convex
objective functions (Yu et al., 2019a;b; Wang & Joshi, 2019;
Yang et al., 2020) are pessimistic about the convergence
error caused by local updates due to the data heterogene-
ity, since it is shown that the convergence error grows very
fast when the number of local updates I increases. Even
for convex objective functions, it is challenging to show
theoretically when local SGD (with I > 1) can outper-
form mini-batch SGD (I = 1) (Woodworth et al., 2020a;b).
However, in practice, local updates have been successfully
applied (Li et al., 2020a; Niknam et al., 2020; Rieke et al.,
2020) and showed superior experimental performance com-
pared to mini-batch SGD (McMahan et al., 2017; Lin et al.,
2020). This means that increasing I can improve the conver-
gence rate and reduce the communication cost when data are
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highly non-IID. This inconsistency between the pessimistic
theoretical results and the good experimental results for the
local updates implies that the existing theoretical analysis
may overestimate the error caused by local updates.

Figure 1: An informal and illustrative comparison between D and
ζ in local updates and centralized updates. x̄r is the global model
at rth round. The local models after k local iterations at the rth
round are denoted by xr,k

1 and xr,k
2 . The average of xr,k

1 and xr,k
2

is x̂r,k. The centralized model after k iterations is denoted by
xr,k
c . It can be seen that ζ shows the difference between xr,k

c and
xr,k
i , i = 1, 2 and D shows the difference between xr,k

c and x̂r,k.

The existing metric cannot fully characterize the effect
of data heterogeneity. The most common metric of data
heterogeneity in existing works (Yu et al., 2019b; Wang
& Joshi, 2019; Karimireddy et al., 2020; Woodworth et al.,
2020b) is called gradient divergence (ζ), which characterizes
the difference between the expected local gradient ∇Fi(x)
of worker i and the expected global gradient ∇f(x). As
shown in Figure 1, the intuition behind the gradient diver-
gence is that when ζ is large, the difference between local
models xr,k

1 , xr,k
2 and the centralized model xr,k

c becomes
large since the centralized model is updated with the gradi-
ents sampled from D while the local model is updated with
the gradients sampled from Di. Previous theoretical results
based on the gradient divergence show that when ζ is large,
I has to be small to avoid the divergence of the algorithm,
which means that a large number of aggregations are needed
to guarantee the convergence. However, as we show in Sec-
tion C, there exists a case where ζ can be arbitrarily large
while only one aggregation is sufficient. This mismatch be-
tween the large gradient divergence and the small number of
aggregations is because that the gradient divergence cannot
characterize the relationship between the averaged model
x̂r,k and the centralized model xr,k

c . If the averaged model
remains close to the centralized model after several local
updates, it indicates that the effect of data heterogeneity
on the disparity between local and centralized updates is
small. In this case, performing more local updates is benefi-
cial. However, as shown in Figure 1, when the difference
between the averaged model x̂r,k and the centralized model
xr,k
c is small, ζ can be large.

Another observation is that the widely used local Lipschitz
constant L̃ (in Assumption 5) is affected by data heterogene-
ity, which is neglected by previous theoretical results. In

the literature (Yu et al., 2019b; Yang et al., 2020; Khaled
et al., 2020), L̃ is used to characterize the smoothness of the
gradients for all local objective functions under any degree
of the data heterogeneity. However, as shown in Table 1, L̃
increases fast as the percentage of non-IID data increases,
which means that the local Lipschitz constant contains the
information about data heterogeneity. Neglecting the infor-
mation about data heterogeneity contained in L̃ can lead to
a loose convergence bound since the error term related to I
is proportional to L̃2 in the literature.

A deeper understanding of the behavior of local updates
is needed. In addition to FedAvg, there have been a number
of FL algorithms (Yu et al., 2019a; Karimireddy et al., 2020;
Reddi et al., 2020; Li et al., 2020b; Wang et al., 2020a;b).
Nevertheless, the core mechanism, local updates, is still the
foundation of all FL algorithms. Therefore, it is important
to understand the behavior of local updates when data are
highly heterogeneous so that more insights can be provided
for designing FL algorithms. However, existing theoretical
results overestimate convergence error caused by local up-
dates. It is unclear how to fully take advantage of the local
updates to reduce communication cost.

Contribution of this paper. In this paper, we reveal the
fundamental effect of the data heterogeneity on local up-
dates by introducing a new perspective shown by D, the
heterogeneity-driven Lipschitz constant in Assumption 4.
The proposed metric D captures previously overlooked in-
formation about the data heterogeneity contained in the local
Lipschitz gradient assumption. In addition, we only assume
the Lipschitz gradient for the global objective function in-
stead of for each local objective function. In Section 2,
using the new assumption, we develop a novel analysis for
FedAvg with general non-convex objective functions, which
shows that if D is small enough, even for a large ζ, the
convergence error caused by local updates is small so that a
large I can still be used to reduce communication costs. Our
analysis can incorporate partial participation where only a
subset of workers are sampled to perform the local updates
in each round. In Section C, the insights behind the new
assumption are discussed. We show that the assumptions
used in this paper are weaker than those used in the literature
and D can characterize the difference between the averaged
model and the centralized model, which the gradient diver-
gence cannot characterize. We further provide a (possibly
non-convex) quadratic example with D = 0 to explicitly
show that local SGD can be superior than mini-batch SGD
even when ζ > 0 is arbitrarily large.

2. Main Results
In this section, we present the theoretical results for non-
convex objective functions using the proposed new assump-
tion. All proofs can be found in appendix.
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Table 1: Estimated D, L̃, L with the MNIST dataset. Heterogeneity is shown by the percentage of data on each worker that are not
uniformly sampled from the global dataset.

Obj. Function Two-layer Neural Network Linear Regression
Heterogeneity 25% 50% 75% 100% 25% 50% 75% 100%

L̃ 127.62 130.97 134.24 141.92 2010.51 3577.35 20563.42 25402.19
D 0.35 0.82 1.66 2.36 226.15 916.20 3172.41 4610.54
L 122.23 122.23 122.23 122.23 869.07 869.07 869.07 869.07

In the literature, three classes of assumptions on stochastic
variance, gradient divergence and smoothness are often
made for theoretical analysis (Yu et al., 2019b; Wang et al.,
2020a; Khaled et al., 2020). We keep Assumption 1 for
stochastic gradient variance and Assumption 2 for gradient
divergence. Assumption 3 and 4 will replace Assumption 5
in appendix. In Section C, we will show that Assumptions 3
and 4 are weaker than Assumption 5.
Assumption 1 (Bounded Stochastic Gradient Variance).

E
[
∥gi(x)−∇Fi(x)∥2

]
≤ σ2,∀i,x. (3)

Assumption 2 (Bounded Gradient Divergence).

∥∇Fi(x)−∇f(x)∥2 ≤ ζ2,∀i,x. (4)

Assumption 2 is often the only metric of data heterogeneity
in the literature (Yu et al., 2019a; Wang & Joshi, 2019),
where it was shown that there is a term O(γ2L̃2I2ζ2) in
the convergence upper bound. This means that the gradient
divergence (ζ) and the number of local updates (I) are cou-
pled, and the error caused by ζ grows fast as I increases and
the effect of I2ζ2 is amplified by L̃2. In this paper, we find
that this result can be pessimistic since it can be seen from
Table 1 that L̃ can be very large, which means that the error
caused by I2ζ2 can become much larger due to the large
L̃2. In the next section, we will solve this problem using
our new assumption and analysis.
Assumption 3 (Global Lipschitz Gradient). The global
objective function f(x) satisfies

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ ,∀x,y. (5)

In our analysis, the Lipschitz gradient condition is only
needed for the global objective function instead of for each
local objective function as in Assumption 5 or for each data
sample as in (Khaled et al., 2020).
Assumption 4 (Heterogeneity-driven Lipschitz Condition
on Averaged Gradients). There exists a constant D ≥ 0
such that ∀xi,∥∥∥ 1

N

∑N
i=1∇Fi(xi)−∇f (x̄)

∥∥∥2 ≤ D2

N

∑N
i=1 ∥xi − x̄∥2 ,

(6)

where x̄ = 1
N

∑N
i=1 xi and D is referred to as the

heterogeneity-driven Lipschitz constant.

Assumption 4 can be regarded as a new perspective on
data heterogeneity. First, it has been shown in Table 1 that
when the percentage of heterogeneous data increases, D be-
comes larger. Second, D shows how the difference between
1
N

∑
i=1∇Fi(xi) and ∇f (x̄) on the LHS of (6) depends

on the difference between the local models {xi} and the
global model x̄ on the RHS of (6). When data are less
heterogeneous, ∇Fi(x) is similar to ∇f(x). The LHS of
(6) mainly depends on the difference between local models
{xi} and the global model x̄, which can be characterized
by RHS of (6) so D is small. When data are highly het-
erogeneous, the LHS of (6) does not only depend on the
difference on the models but also depend on the difference
between the local gradients {∇Fi(x)} and the global gra-
dient∇f(x) so D can be large. We will show in Section C
that D can indeed characterize the difference between the
averaged model and centralized model, which is not fully
characterized by the gradient divergence ζ in Assumption 2.
Next, we present the theoretical results for full participation.

Theorem 1 (General Non-convex Objective Functions). As-
suming Assumptions 1, 2, 3, 4 hold, when γ ≤ 1

30(D+L)I

and γη ≤ 1
4IL , then after R rounds of FedAvg,

min
r∈[R]

E ∥∇f(x̄r)∥2 = O
(
F

γηRI
+

γηLσ2

N︸ ︷︷ ︸
error caused by SGD

+ γ2D2(I − 1)2ζ2 + γ2D2(I − 1)σ2︸ ︷︷ ︸
error caused by local updates

)
, (7)

where F := f(x0)− f∗.

A tighter bound by using new assumption. In (7), the
stochastic variance in the error caused by SGD depends L
while the error caused by local updates depend D. In the
literature, all the mentioned errors depend on L̃ instead of
D and L. However, as shown by the experimental results in
Table 1, both D and L are smaller than L̃. In Section C, we
also prove theoretically that D and L are smaller than L̃. In
particular, D can be far less than L̃. Therefore, existing the-
oretical results overestimate both the error caused by SGD
and the error caused by local updates while the convergence
upper bound using new assumption is tighter.

New insights about the effect of data heterogeneity. It
can be observed that only one term in the error caused by
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local updates depends on ζ while both terms in the error
caused by local updates depend on D. A key message is
that when ζ2 is large, as long as D2 is small enough, the
error caused by local updates can still be small. Since
D and ζ characterize the effect of the data heterogeneity
in different perspectives, we show that it is possible that
D = 0 while ζ can be arbitrarily large by providing an
example in Section C. In this case, no matter how large ζ
is, the convergence error of local SGD is the same as that
of centralized SGD, which means that I can be arbitrarily
large and only one aggregation is sufficient. Moreover,
when D = 0, we can see that the impacts of γ and η on
the convergence upper bound are the same since the error
caused by local updates is zero and the error caused by SGD
is a function of γη. In this case, the two-sided learning rates
may not help and only a single learning rate, e.g., let η = 1,
suffices to achieve the desired convergence upper bound.

It is noteworthy that although the value of D increases with
the percentage of heterogeneous data, it is possible for D to
be small even when the percentage of heterogeneous data
is large as shown by the experimental results for the two-
layer neural network in Table 1 and the experimental results
for CNN in Section D. The following corollary shows that
when D is small, more local iterations can improve the
convergence rate.
Corollary 1. Given c > 0, when D ≤ c

I , let γη = 1
c ·√

4FN
RILσ2 and γ = 1

c ·
1√
RIN

, when R is sufficiently large

so that γ ≤ 1
30(D+L)I and γη ≤ 1

4IL are satisfied, we have

min
r∈[R]

E ∥∇f(x̄r)∥2 = O

(√
FLσ2

RIN
+

ζ2 + σ2/I

RIN

)
.

(8)

From (8), it can be seen that it achieves linear speedup in
the number of iterations RI with respect to the total number
of workers N . The constant c controls the tradeoff between
the learning rates η, γ and the number of local iterations
I . Given D, if c is small, the learning rates are large, I
will have to be small to satisfy D ≤ c

I , and vice versa.
The constant c is absorbed by the O(·) in (8). Corollary 1
shows that as long as the condition of D ≤ c

I holds, the
convergence error decreases if I increases. Although ζ can
be large, if D is small enough, more local updates can still
improve the convergence rate. In addition, to achieve the
same accuracy, we can decrease R and increase I so that the
communication cost can be reduced, as long as the condition
D ≤ c

I still holds.

Analysis for Partial Participation. We also use the new
assumption to develop the theoretical analysis for partial
participation. Here we consider the sampling strategy where
M workers are uniformly sampled with replacement at the
start of each round. The result can show the insights into the

relationship between local updates and partial participation.
It is worth noting that the technique for partial participation
in the literature cannot be directly applied in our analysis
since the Lipschitz gradient (see Assumption 5) is assumed
for each local objective function. Therefore, we develop
new techniques to incorporate the partial participation using
D and L, which can be found in the supplementary material.

Theorem 2 (Partial Participation). Consider uniformly sam-
pling M (1 ≤ M ≤ N ) workers in each round of FedAvg.
Assuming Assumptions 1, 2, 3, 4 hold, when γ ≤ 1

30(D+L)I

and γη ≤ 1
4IL , after R rounds of FedAvg,

min
r∈[R]

E ∥∇f(x̄r)∥2 = O
(
F

γηRI
+

γηLσ2

M︸ ︷︷ ︸
error caused by SGD

+
γηLIζ2

M︸ ︷︷ ︸
error caused by p.p.

+ γ2D2(I − 1)2ζ2 + γ2D2(I − 1)σ2︸ ︷︷ ︸
error caused by local updates

)
, (9)

where “p.p.” means partial participation.

Compared with Theorem 1, there are two differences in
the convergence bound. First, the stochastic variance term
in the error caused by SGD depends on M . This means
that more workers sampled in each round can reduce the
stochastic variance. Second, there is an extra term γηLIζ2

M
in the convergence bound for partial participation, which
denotes the error caused by partial participation. This term
depends on L and not on D. This means that a small D can-
not reduce the error caused by partial participation, which
can be shown explicitly by Corollary 2.

3. Conclusion
In this paper, we bridge the gap between the pessimistic the-
oretical results and the good experimental performance for
FL algorithms by introducing a new theoretical perspective
of the data heterogeneity, which is shown by the proposed
heterogeneity-driven Lipschitz constant D. Using the new
assumption, we develop a novel convergence analysis for
FedAvg and identify the regions where local updates can
help to improve the convergence even when data are highly
heterogeneous. Our convergence bounds for both full par-
ticipation and partial participation are tighter compared to
the state of the art in the literature. At the same time, the
assumptions used in this paper are weaker. The proposed
heterogeneity-driven Lipschitz condition can be applied to
the non-convex analysis for FL algorithms (not limited to
FedAvg) through a key step shared by the literature for non-
convex analysis for FL algorithms (see details in related
works). This key step shows the potential of extending the
proposed analysis to other FL algorithms to reveal more in-
sights. Future works include applying the proposed analysis
in other federated algorithms and incorporating advanced
sampling strategy for partial participation in our analysis.
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A. Related Works
There have been a considerable amount of works analyzing the convergence rate of federated learning algorithms (not limited
to FedAvg), with non-convex objective functions (Haddadpour, Farzin et al., 2019; Yu et al., 2019b; Wang & Joshi, 2019;
Karimireddy et al., 2020; Reddi et al., 2020). A key step shared by these analyses is to relate the difference of gradients,∥∥ 1
N

∑N
i=1∇Fi(xi)−∇f(x̄)

∥∥, to the model divergence 1
N

∑N
i=1 ∥xi − x̄∥, which can be found, for example, in inequality

(10) in the supplementary of (Yu et al., 2019b), the inequality (6) in the supplementary of (Reddi et al., 2020), and the proof
of Lemma 19 in (Karimireddy et al., 2020). In this step, the local Lipschitz gradient assumption is often applied, which
amplifies the effect of data heterogeneity. In this paper, the heterogeneity-driven Lipschitz constant D is applied in this step
so that the convergence error is much smaller than that based on L̃, since it can be seen in Table 1 that D is often far smaller
than L̃.

There are two papers (Wang et al., 2022; Das et al., 2022) closely related to our work. Both works assume the Lipschitz
gradient for each local objective function while we only assume it for the global objective function. Therefore, the
information about data heterogeneity contained in L̃ is not characterized in either work. The aim of (Wang et al., 2022) is to
re-characterize the data heterogeneity by extending the single gradient divergence assumption ((4) in (Wang et al., 2022)) to
the averaged gradient divergence assumption ((15) in (Wang et al., 2022)). The authors in (Wang et al., 2022) consider the
convex objective function and their analysis cannot guarantee convergence to a stationary point while we consider general
non-convex objective function and our results can guarantee convergence to a stationary point. In (Das et al., 2022), the
authors introduce a parameter α in the process of relating the difference of gradients to the model divergence, which can be
covered by D in this paper. But α cannot cover what D can show since they still assume Lipschitz gradient for each local
objective function. They only use α as an intermediate step instead of theoretically analyzing the effect of data heterogeneity.
In their theoretical results, the convergence error increases with I even when α = 0.

B. Setup
In FedAvg, each round is composed of the local update phase and the global update phase. The global model is initialized as
x̄0. At the start of round r, the server distributes the global model x̄r to all workers. During the local update phase, each
worker updates its local model with the local learning rate γ and the stochastic gradients sampled from their own local data
distribution Di,

xr,k+1
i = xr,k

i − γg(xr,k
i ; ζi), (10)

where xr,k
i is the local model at the rth round and kth iteration. For simplicity, we use gi(·) to denote the gradient g(·; ζi).

In addition, ḡ(·) denotes the gradient sampled from the global dataset D. We assume that the local stochastic gradient is an
unbiased estimate of the expected local gradient E

[
gi(x

r,k
i )
∣∣xr,k

i

]
= ∇Fi(x

r,k
i ). After I local iterations, worker i sends

the local model update at rth round ∆r
i := x̄r − xr,I

i to the server. During the global update phase, the server updates the
global model using the following equality:

x̄r+1 = x̄r − η · 1
N

∑N
i=1 ∆

r
i , (11)

where η is the global learning rate. Let x̂r,k be the “virtual” averaged model during the local update phase and

x̂r,k+1 := 1
N

∑N
i=1 x

r,k+1
i = x̂r,k − γ · 1N

∑N
i=1 gi(x

r,k
i ), (12)

where k ∈ {0, 1, 2, . . . , I − 1}. Note that the virtual model x̂r,k may not be observed in the system, and is mainly used for
the theoretical analysis. We define xr,k

c as the model obtained by applying centralized updates1 at kth iteration of rth round
given the averaged model x̂r,k, which means that the gradient is sampled from the global data distribution D. Specifically,

xr,k+1
c := x̂r,k − γḡ(x̂r,k), (13)

where E
[
ḡ(x̂r,k)

]
= ∇f(x̂r,k). The summary of FedAvg algorithm can be found in Algorithm 1. The following assumption

is widely used in the literature.

1Note that the model xr,k
c is different from the model obtained by applying the centralized updates from the beginning of the algorithm.

We use this for ease of analysis, and leave the consideration of the “actual” centralized model for future work.
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Assumption 5 (Local Lipschitz Gradient).

∥∇Fi(x)−∇Fi(y)∥ ≤ L̃ ∥x− y∥ ,∀x,y, i. (14)

There are also some works (Khaled et al., 2020) assuming that Lipschitz gradient condition holds for each data sample
∥∇ℓ(x; ξ)−∇ℓ(y; ξ)∥ ≤ L′ ∥x− y∥ ,∀x,y, ξ, which is stronger and can imply local Lipschitz gradient condition.

C. Additional Results and Discussions
In this section, we reveal how D captures the information about the data heterogeneity from L̃ and why D can determine the
error caused by local updates. Then we explicitly provide an example with D = 0. By analyzing this example, we identify a
region where local SGD can outperform mini-batch SGD when ζ can be arbitrarily large.

Corollary 2 (Partial Participation with A Small D). Consider uniformly sampling M workers during each round in FedAvg.
Given c > 0, when D ≤ c

I , let γη = 1
c ·
√

MF
LIR(σ2+Iζ2) and γ = 1

c ·
1√
RIN

, when R is sufficiently large, we have

min
r∈[R]

E ∥∇f(x̄r)∥2 = O

(√
FLζ2
RM

+

√
FLσ2

RIM
+

ζ2 + σ2/I

RIN

)
. (15)

It can be seen from Corollary 2 that when D is small, increasing I can still reduce the convergence error. However, the error
caused by partial participation, which is represented by the first term in (15), cannot be reduced by increasing I . This is
because that D characterizes the difference between the averaged model over all workers and the centralized model (we will
formally explain this property in Section C). However, with partial participation, the global model on the server becomes a
stochastic estimate of the average models over all workers since only a subset of workers are randomly sampled in each
round. The stochastic variance caused by the sampling strategy is not characterized by D. In addition, the dominant term in
(15) becomes O

(√
1/RM

)
. This means that given the sampling strategy, to achieve a small convergence error, performing a

large number of aggregations is necessary. However, increasing I can still accelerate the convergence by reducing the other
two terms.

Assumptions in this paper are weaker. In the following proposition, we show that Assumptions 3 and 4 are weaker than
the commonly used Assumption 5 in the literature.

Proposition 1. If Assumption 5 holds, then Assumption 3 holds by choosing L = L̃ and Assumption 4 holds by choosing
D = L̃.

Proposition 1 also shows how the information about the data heterogeneity contained in L̃ is captured. The information about
the smoothness of the gradients remains in L, which does not change with the data heterogeneity, while D characterizes
the effect of data heterogeneity. In addition, Proposition 1 implies that L ≤ L̃ and D ≤ L̃. However, as shown in Table 1,
D can be much smaller than L̃. We examine the intricate relationship between D and L̃ through a deeper analysis of the
quadratic2 (potentially non-convex) objective function:

Fi(x) =
1
2x

TAix+ bT
i x+ ci. (16)

By (1), we directly obtain that the global objective function is given by f(x) = 1
2x

TAx+bTx+c, where A = 1
N

∑N
i=1 Ai

and b = 1
N

∑N
i=1 bi. In this case, we can derive the explicit forms of D and L̃ as shown by the following proposition.

Proposition 2. For quadratic objective functions defined in (16), Assumptions 5 and 4 hold with L̃ = maxi∈[N ] |λ(Ai)|,
D = 2 ·maxi∈[N ] |λ(Ai −A)|, respectively, where |λ(A)| denotes the largest absolute value of the eigenvalues of A.

From Proposition 2, it can be seen that both D and L̃ capture the properties of Hessian matrices for quadratic objective
functions. The heterogeneity-driven Lipschitz constant D characterizes the largest eigenvalue of the “deviation” of {Ai}
from the global Hessian matrix A, while L̃ characterizes the largest eigenvalue of {Ai} themselves. It can be observed that
when Ai = A,∀i, which means that the difference of local Hessian matrices is zero, Assumption 4 holds with D = 0. Note
that, at the same time, we can pick an Ai such that L̃ = maxi∈[N ] |λ(Ai)| is much larger than zero. This observation shows

2Here we do not assume the Hessian matrix is positive definite so that the quadratic objective function can be non-convex.
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that while the difference among Hessian matrices of local objective functions, shown by D, can be small, the eigenvalues of
the individual Hessian matrix, shown by L̃ can still be very large.

Explanation of D. Assumption 4 captures the difference between the averaged model and centralized model, which can be
seen from the following proposition. At the kth iteration of the rth round, we consider the virtual averaged model in (12)
and the centralized model in (13).

Proposition 3. Given the virtual averaged model at the rth round and kth iteration x̂r,k, we have∥∥E[x̂r,k+1|x̂r,k]− E[xr,k+1
c |x̂r,k]

∥∥2 ≤ γ2 · D
2

N

∑N
i=1

∥∥∥xr,k
i − x̂r,k

∥∥∥2 . (17)

Proposition 3 shows that although the difference among local models, captured by
∥∥xr,k

i − x̂r,k
∥∥2 (depends on both ζ and

σ), can be large after multiple local iterations, the difference between the averaged model and centralized model can still
be small if D is small. This means that while the variance among local models depends on ζ and σ, D determines how
the averaged model is affected by this variance among local models, which is consistent with the theoretical results in
Theorem 1. Now we show that when D = 0, ζ can be arbitrarily large.

Proposition 4. For quadratic objective functions defined in (16), when ζ = 0, Assumption 4 holds with D = 0, while when
D = 0, ζ can be arbitrarily large.

Proposition 4 shows that D = 0 is not a sufficient condition for ζ = 0, which implies that only using ζ can overestimate the
effect of the data heterogeneity. This is because that as we have seen in Proposition 2, for quadratic objective functions, the
key effect of heterogeneity on the local updates is shown on the difference between A and Ai while ζ depends not only on
the difference between A and Ai but also on the difference between b and bi. In addition, we notice that in multi-label
learning (Zhang & Zhou, 2014), when A = Ai, b can be very different from bi since data examples sharing the same
feature can have different labels. This means that D = 0 but ζ > 0 is possible in practice.

Extended discussion about Local SGD v.s. Mini-batch SGD. In the following theorem, we consider the case of D = 0,
by which we show that local SGD can outperform mini-batch SGD even when ζ is arbitrarily large. Instead of directly
applying D = 0 to Theorem 1, we develop a new technique for Theorem 3. The difference on the techniques can be shown
by the requirement on the learning rate, which no longer depends on I while in Theorem 1, it depends on I . In Theorem 1,
it is shown that when D = 0, two-sided learning rates do not have advantage over a single learning rate for non-convex
objective functions. Without loss of generality, we consider η = 1 in the following.

Theorem 3 (Special Case of D = 0). For quadratic objective functions defined in (16), with a common Hessian A = Ai,∀i,
if γ ≤ 1

|λ(A)| and η = 1, for local SGD with I local iterations,

min
r∈[R],k∈[I]

E
[∥∥∇f(x̂r,k)

∥∥2] = O( F
γRI

+
γL

N
σ2

)
; (18)

for mini-batch SGD with the batch size I ,

min
r∈[R],k∈[I]

E
[∥∥∇f(x̂r,k)

∥∥2] = O( F
γR

+
γL

NI
σ2

)
. (19)

A fair comparison between local SGD and mini-batch SGD. In Theorem 3, the cost of communication and computation
is the same for both local SGD and mini-batch SGD since the number of aggregations is R and the total number of gradients
sampled is NRI for both algorithms. The restriction for the learning rate is also the same. Comparing (18) with (19), we
see that the difference is on the place where I appears. For local SGD, I is in the first term of (18), which means that local
SGD uses more computation to reduce the error caused by the initialization. For mini-batch SGD, I is in the second term of
(19), which means that mini-batch SGD uses more computation to reduce the error caused by the stochastic variance. When
the stochastic variance σ2 is small (i.e., σ2 → 0), the first terms of (18) and (19) dominate, and it becomes beneficial to
choose γ to be as large as possible, so we can choose γ = 1

|λ(A)| for both cases. Then, as σ2 → 0, the convergence rate of
local SGD goes to O( 1

RI ) while the convergence rate of mini-batch SGD goes to O( 1
R ). This implies that when σ2 is small,

the speed of convergence for local SGD can be much faster than that for mini-batch SGD, which will also be validated in the
experiments in the next section.
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Table 2: Estimated D, L̃, L for a CNN model trained with the CIFAR-10 dataset.

Obj. Function CNN
Heterogeneity 25% 50% 75% 100%

L̃ 447.59 898.49 1131.36 1662.24
D 0.96 1.21 1.63 2.15
L 323.35 323.35 323.35 323.35

(a) Training-50%. (b) Test-50%. (c) Training-75%. (d) Training-75%.

Figure 2: Results with CNN. The dataset is CIFAR-10. The learning rates are chosen as η = 2 and γ = 0.05. Results for 50% of the
heterogeneous data are shown in (a) and (b). Results for 75% of the heterogeneous data are shown in (c) and (d).

D. Experiments
For the non-IID setting, the data on each worker is sampled in two steps. First, X% of the data on one worker is sampled
from a single label. Then we uniformly partition the remaining dataset into all workers and we say that the percentage of
heterogeneous data on this worker is X%.

Results with MNIST dataset. In Table 1, a two-layer neural network with cross-entropy loss and a linear regression model
with mean squared error (MSE) is trained with the MNIST dataset (LeCun et al., 1998). The MNIST dataset is partitioned
into 10 workers.

Results with CIFAR-10 dataset. A CNN model with cross-entropy loss is trained with the CIFAR-10 dataset (Krizhevsky
& Hinton, 2009). The CIFAR-10 dataset is partitioned into 100 workers, and we randomly sample 10 workers in each round.
The results for the general non-convex functions with partial participation are shown in Table 2 and Figure 2. In Table 2,
it can be seen that D is far smaller than L̃. In Corollary 2, it is shown that when D is small, increasing I can reduce the
convergence error. This is validated by experimental results in Figure 2. It can be observed that for both 50% and 75% of
heterogeneous data, I = 80 is the best curve and increasing I can accelerate the convergence.

Results with synthetic data. For the special case of D = 0, we construct quadratic examples to validate the insights from
Theorem 3. We construct the objective function as Fi(x) =

1
2 ∥Ux− vi∥2, where U ∈ R100×100, vi ∈ R100. Each column

of U and vi are sampled from a normal distribution N (0, I). In this case, the gradient divergence is ∥U(vi − v)∥2 > 0.
Table 3 shows the results for quadratic objective functions. To distinguish the number of local updates from the mini-batch
size in the experiments, we use a separate variable s to indicate the mini-batch size. Theorem 1 shows that when D = 0,
using two-sided learning rates does not have advantages over a single learning rate. This is validated by the experiments
shown in Table 3, where there is no difference among the results with different learning rates when keeping the product
of learning rates. Comparing results with I = 1, I = 5, and I = 10 with s = 1 in Table 3, it can be seen that more local
updates can reduce the communication cost, which validates the results in Theorem 3. By the comparison between the
results of I = 1, s = 5 and I = 5, s = 1 and the comparison between the results of I = 1, s = 10 and I = 10, s = 1, we
can see that keeping the number of gradients sampled in one round the same, local SGD (I > 1) converges faster than
mini-batch SGD (I = 1) when σ2 is small, which validates the discussion for Theorem 3.
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Table 3: Special case of D = 0 with the quadratic objective functions. I = 1 is equivalent to mini-batch SGD. The number of rounds is
the communication rounds needed for achieving a target function value of 0.8. For (η, γ), we fix I = 10 and for (I, s), we fix η = 1,
γ = 0.005.

(η, γ) (1, 0.005) (2, 0.0025) (5, 0.001) (10, 0.0005)
Number of Rounds 86± 1 86± 1 86± 1 86± 1

(I, s) (1, 1)&(1, 5) (1, 10) (5, 1) (10, 1)
Number of Rounds 927± 3 925± 1 187± 2 95± 2

E. Proofs
The description of FedAvg with two-sided learning rates can be found in Algorithm 1. For full participation, we have
Sr = {1, 2, . . . , N},∀r and M = N . For partial participation, we have M < N .

Algorithm 1: FedAvg with two-sided learning rates

Input: γ, η, x̄0, I
Output: Global averaged model x̄R

for r = 0 to R− 1 do
Sample a subset of workers Sr, |Sr| = M ;
Distribute the current global model x̄r to workers in Sr;
for Each worker i in Sr, in parallel do

/* Local Update Phase */
k = 0;
while k < I do

Sample the stochastic gradient gi(x
r,k
i );

Update the local model
xr,k+1
i ← xr,k

i − γgi(x
r,k
i );

k ← k + 1;
Send ∆r

i ← x̄r − xr,I
i to the server;

/* Global Update Phase */
Update the global model
x̄r+1 ← x̄r − η · 1

M

∑
i∈Sr

∆r
i ;

E.1. Additional Lemmas

In the proof, we use xi to denote the local model of worker i regardless of the number of iterations, and use x̄ := 1
N

∑N
i=1 xi

to denote the averaged model. Following lemmas are useful in the proof for main theorems.

Lemma 1 (Local Gradient Deviation). With Assumption 2, 3 and 4, we have

1

N

N∑
j=1

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(xi)−∇Fj (xj)

∥∥∥∥∥
2

≤ 3(D2 + L2) · 1
N

N∑
j=1

∥x̄− xj∥2 + 3ζ2. (20)

Lemma 2 (Model Divergence). With γ ≤ 1
30(D+L)I , we have

I−1∑
k=0

D2

N

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 ≤ 3c(I − 1)3γ2D2ζ2 + c(I − 1)2γ2D2σ2, (21)

where c = 3 and x̂r,k = 1
N

∑N
i=1 x

r,k
i .
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Lemma 3 (The Change of Averaged Models). With γ ≤ 1
3IL , at rth round, we have

E
∥∥x̂r,k − x̄r

∥∥2 ≤ 5(I − 1) · γ
2σ2

N
+ 30Iγ2

I−1∑
k=0

D2

N

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 + 30I(I − 1)γ2E ∥∇f(x̄r)∥2 . (22)

E.2. Proof of Lemma 1

We start with the LHS of the inequality in Lemma 1.

1

N

N∑
j=1

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(xi)−∇Fj (xj)

∥∥∥∥∥
2

=
1

N

N∑
j=1

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(xi)−∇f(x̄) +∇f(x̄)−∇f(xj) +∇f(xj)−∇Fj (xj)

∥∥∥∥∥
2

≤ 3

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(xi)−∇f(x̄)

∥∥∥∥∥
2

+ 3 · 1
N

N∑
j=1

∥∇f(x̄)−∇f(xj)∥2 + 3 · 1
N

N∑
j=1

∥∇f(xj)−∇Fj (xj)∥2

(a)

≤ 3

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(xi)−∇f(x̄)

∥∥∥∥∥
2

+ 3L2 · 1
N

N∑
j=1

∥x̄− xj∥2 + 3ζ2

(b)

≤ 3 · D
2

N

N∑
i=1

∥x̄− xi∥2 + 3L2 · 1
N

N∑
j=1

∥x̄− xj∥2 + 3ζ2

= 3(D2 + L2) · 1
N

N∑
j=1

∥x̄− xj∥2 + 3ζ2, (23)

where (a) is due to Assumption 2 and 3 and (b) is due to Assumption 4.

E.3. Proof of Lemma 2

At rth round, we have

D2

N

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2

=
γ2D2

N

N∑
i=1

E

∥∥∥∥∥∥
k−1∑
m=0

gi(x
r,m
i )− 1

N

N∑
j=1

gj(x
r,m
j )

∥∥∥∥∥∥
2

=
γ2D2

N

N∑
i=1

E

∥∥∥∥∥
k−1∑
m=0

(
gi(x

r,m
i )−∇Fi(x

r,m
i ) +∇Fi(x

r,m
i )

. − 1

N

N∑
j=1

∇Fj(x
r,m
j ) +

1

N

N∑
j=1

∇Fj(x
r,m
j )− 1

N

N∑
j=1

gj(x
r,m
j )

∥∥∥∥∥
2

≤ 2 · γ
2D2

N

N∑
i=1

E

∥∥∥∥∥∥
k−1∑
m=0

∇Fi(x
r,m
i )− 1

N

N∑
j=1

∇Fj(x
r,m
j )

∥∥∥∥∥∥
2

+ 2 · γ
2D2

N

N∑
i=1

∥∥∥∥∥∥
k−1∑
m=0

gi(x
r,m
i )−∇Fi(x

r,m
i ) +

1

N

N∑
j=1

∇Fj(x
r,m
j )− 1

N

N∑
j=1

gj(x
r,m
j )

∥∥∥∥∥∥
2
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(a)

≤ 2 · γ
2D2

N

N∑
i=1

E

∥∥∥∥∥∥
k−1∑
m=0

∇Fi(x
r,m
i )− 1

N

N∑
j=1

∇Fj(x
r,m
j )

∥∥∥∥∥∥
2

+ 2 · γ
2D2

N

N∑
i=1

E

∥∥∥∥∥
k−1∑
m=0

(
gi(x

r,m
i )−∇Fi(x

r,m
i )

)∥∥∥∥∥
2

≤ 2 · γ
2D2

N

N∑
i=1

E

∥∥∥∥∥∥
k−1∑
m=0

∇Fi(x
r,m
i )− 1

N

N∑
j=1

∇Fj(x
r,m
j )

∥∥∥∥∥∥
2

+ 2γ2D2kσ2

≤ 2k · γ
2D2

N
·

N∑
i=1

k−1∑
m=0

E

∥∥∥∥∥∥∇Fi(x
r,m
i )− 1

N

N∑
j=1

∇Fj(x
r,m
j )

∥∥∥∥∥∥
2

+ 2γ2D2kσ2

(b)

≤ 2kγ2D2
k−1∑
m=0

(
3(D2 + L2)

1

N

N∑
k=1

E ∥x̂r,m − xr,m
k ∥2 + 3ζ2

)
+ 2γ2D2kσ2

= 6kγ2D2(D2 + L2)
k−1∑
m=0

1

N

N∑
i=1

E ∥x̂r,m − xr,m
i ∥2 + 6k2γ2D2ζ2 + 2γ2D2kσ2, (24)

where (a) is due to 1
N

∑N
i=1 ∥yi − ȳ∥2 ≤ 1

N

∑N
i=1 ∥yi∥2 and we let yi =

∑k−1
m=0 [gi(x

r,m
i )−∇Fi(x

r,m
i )], and (b) is due

to Lemma 1.

Note that when k = I , we have xr,k
i = xr+1,0

i = x̄r+1 and when k = 0, we have xr,k
i = x̄r. So we have

∥∥∥xr,I
i − x̂r,I

∥∥∥2 =

0, for k = 0, I . Then sum over k for one round on both sides, we have

I∑
k=1

D2

N

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2

≤
I∑

k=1

(
6kγ2D2(D2 + L2)

k−1∑
m=0

1

N

N∑
i=1

E ∥x̂r,m − xr,m
i ∥2 + 6k2γ2D2ζ2 + 2γ2D2kσ2

)

≤ 3γ2D2(D2 + L2)I(I − 1)

I−1∑
m=0

1

N

N∑
i=1

E ∥xr,m
i − x̂r,m∥2 + 6(I − 1)3γ2D2ζ2 + 2(I − 1)2γ2D2σ2. (25)

Move the first term on RHS of (25) to LHS, we have(
D2 − 3γ2D2(D2 + L2)I(I − 1)

) I−1∑
k=0

1

N

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 ≤ 6(I − 1)3γ2D2ζ2 + 2(I − 1)2γ2D2σ2. (26)

With γ ≤ 1
30(D+L)I , we have

D2 − 3γ2D2(D2 + L2)I(I − 1) > 0. (27)

Since 2
1−3γ2(D2+L2)I(I−1) < 3, we can choose c = 3 such that

I−1∑
k=0

D2

N

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 ≤ 3c(I − 1)3γ2D2ζ2 + c(I − 1)2γ2D2σ2. (28)

E.4. Proof of Lemma 3

At rth round, for k = 0, we have

E
∥∥x̂r,k − x̄r

∥∥2 = 0. (29)
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At rth round, for 1 ≤ k ≤ I − 1, we have

E
∥∥x̂r,k − x̄r

∥∥2
= E

∥∥∥∥∥x̂r,k−1 − γ

N

N∑
i=1

gi(x
r,k−1
i )− x̄r

∥∥∥∥∥
2

= E

∥∥∥∥∥x̂r,k−1 − x̄r − γ

(
1

N

N∑
i=1

gi(x
r,k−1
i )− 1

N

N∑
i=1

∇Fi(x
r,k−1
i ) +

1

N

N∑
i=1

∇Fi(x
r,k−1
i )

−∇f(x̂r,k−1) +∇f(x̂r,k−1)−∇f(x̄r) +∇f(x̄r)

)∥∥∥∥∥
2

(a)

≤
(
1 +

1

2I − 1

)
E
∥∥x̂r,k−1 − x̄r

∥∥2 + γ2σ2

N
+ 6Iγ2E

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(x
r,k−1
i )−∇f(x̂r,k−1)

∥∥∥∥∥
2

+ 6Iγ2E
∥∥∇f(x̂r,k−1)−∇f(x̄r)

∥∥2 + 6Iγ2E∥∇f(x̄r)∥2

(30)

(b)

≤
(
1 +

1

2I − 1
+ 6Iγ2L2

)
E
∥∥x̂r,k−1 − x̄r

∥∥2 + γ2σ2

N
+

6Iγ2D2

N

N∑
i=1

E
∥∥∥xr,k−1

i − x̂r,k−1
∥∥∥2

+ 6Iγ2E∥∇f(x̄r)∥2

(31)

(c)

≤ 5(I − 1) · γ
2σ2

N
+ 30Iγ2

I−1∑
k=0

D2

N

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 + 30I(I − 1)γ2E ∥∇f(x̄r)∥2 , (32)

where (a) is due to that ∥x+ y∥2 ≤ (1 + p) ∥x∥2 + (1+ 1
p ) ∥y∥

2
,∀p > 0, (b) is due to Assumption 3 and 4 and (c) is due

to (1 + 1
q )

q < e,∀q > 0, where e is the natural exponent.

E.5. Proof of Theorem 1

With Assumption 3, we have

E
[
f(x̄r+1)

]
≤ E [f(x̄r)]− γηE

〈
∇f(x̄r),

1

N

N∑
i=1

I−1∑
k=0

gi(x
r,k
i )

〉
+

γ2η2L

2
E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

gi(x
r,k
i )

∥∥∥∥∥
2

= E [f(x̄r)]− γηE

〈
∇f(x̄r),

1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

〉
+

γ2η2L

2
E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

gi(x
r,k
i )

∥∥∥∥∥
2

. (33)

The second term in the RHS of (33) can be computed as follows.

− γηE

〈
∇f(x̄r),

1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

〉

= −γη

I
E

〈
I∇f(x̄r),

1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

〉

=
γη

2I
E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

(
∇Fi(x

r,k
i )−∇f(x̄r)

)∥∥∥∥∥
2

− I2 ∥∇f(x̄r)∥2 −

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

=
γη

2I

E

∥∥∥∥∥
I−1∑
k=0

(
1

N

N∑
i=1

∇Fi(x
r,k
i )−∇f(x̂r,k)

)
+

I−1∑
k=0

(
∇f(x̂r,k)−∇f(x̄r)

)∥∥∥∥∥
2

13
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−I2E ∥∇f(x̄r)∥2 − E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2


≤ γη

2I

2I

I−1∑
k=0

E

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(x
r,k
i )−∇f(x̂r,k)

∥∥∥∥∥
2

+ 2I

I−1∑
k=0

E
∥∥∇f(x̂r,k)−∇f(x̄r)

∥∥2
−I2E ∥∇f(x̄r)∥2 − E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2


(a)

≤ γη

2I

{
2ID2

N

I−1∑
k=0

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 + 2IL2

I−1∑
k=0

E
∥∥x̂r,k − x̄r

∥∥2
−I2E ∥∇f(x̄r)∥2 − E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2
 , (34)

where (a) is due to Assumption 3 and Assumption 4.

The third term in the RHS of (33) can be computed as follows.

γ2η2L

2
E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

gi(x
r,k
i )

∥∥∥∥∥
2

=
γ2η2L

2

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

+
γ2η2L

2
E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

[
gi(x

r,k
i )−∇Fi(x

r,k
i )
]∥∥∥∥∥

2

≤ γ2η2L

2

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

+
γ2η2ILσ2

2N
. (35)

Substitute (34) and (35) to (33), we have

E
[
f(x̄r+1)

]
≤ E [f(x̄r)] +

γηD2

N

I−1∑
k=0

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 + γηL2

I−1∑
k=0

E
∥∥x̂r,k − x̄r

∥∥2
− γηI

2
E ∥∇f(x̄r)∥2 − γη

2

(
1

I
− γηL

)
E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

+
γ2η2ILσ2

2N

(a)

≤ E [f(x̄r)] +
γηD2

N

I−1∑
k=0

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 + γηL2

I−1∑
k=0

E
∥∥x̂r,k − x̄r

∥∥2 − γηI

2
E ∥∇f(x̄r)∥2 + γ2η2ILσ2

2N

(b)

≤ E [f(x̄r)] +
γηD2

N

I−1∑
k=0

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 − γηI

2
E ∥∇f(x̄r)∥2 + γ2η2ILσ2

2N

+ γηL2I

(
5(I − 1)

γ2σ2

N
+ 30Iγ2

I−1∑
k=0

D2

N

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 + 30I(I − 1)γ2E ∥∇f(x̄r)∥2

)

≤ E [f(x̄r)] + 2γη

I−1∑
k=0

D2

N

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 − γηI

4
E ∥∇f(x̄r)∥2 + γ2η2ILσ2

N

(c)

≤ E [f(x̄r)] + 2γη
[
3c(I − 1)3γ2D2ζ2 + c(I − 1)2γ2D2σ2

]
− γηI

4
E ∥∇f(x̄r)∥2 + γ2η2ILσ2

N
, (36)

where (a) is due to γη < 1
4IL , (b) is due to Lemma 3 and (c) is due to Lemma 2.
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Rearrange the above inequality and average over r, we obtan

min
r∈[R]

E ∥∇f(x̄r)∥2 ≤ 1

R

R−1∑
r=0

E ∥∇f(x̄r)∥2 ≤ 4[f(x0)− f∗]

γηRI
+

γηLσ2

N
+ 24cγ2D2(I − 1)2ζ2 + 8cγ2D2(I − 1)σ2.

(37)

Then we have

min
r∈[R]

E ∥∇f(x̄r)∥2 = O
(
f(x0)− f∗

γηRI
+

γηLσ2

N
+ γ2D2(I − 1)2ζ2 + γ2D2(I − 1)σ2

)
. (38)

E.6. Proof of Theorem 2

Consider the partial participation shown in Algorithm 1. In each round, M workers are uniformly sampled with replacement.
Then ∀r, k, we have

ESr

 1

M

∑
j∈Sr

∇Fj(x
r,k
j )

 =
1

N

N∑
i=1

∇Fi(x
r,k
j ). (39)

With Assumption 3, after one round of FedAvg, we have

E
[
f(x̄r+1)

]
≤ E [f(x̄r)]− γηE

〈
∇f(x̄r),

1

M

∑
i∈Sr

I−1∑
k=0

gi(x
r,k
i )

〉
+

γ2η2L

2
E

∥∥∥∥∥ 1

M

∑
i∈Sr

I−1∑
k=0

gi(x
r,k
i )

∥∥∥∥∥
2

= E [f(x̄r)]− γηE

〈
∇f(x̄r),

1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

〉
+

γ2η2L

2
E

∥∥∥∥∥ 1

M

∑
i∈Sr

I−1∑
k=0

gi(x
r,k
i )

∥∥∥∥∥
2

. (40)

It can be seen that the inner-product term is the same as that in (34). So we have

− γηE

〈
∇f(x̄r),

1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

〉

≤ γη

2I

{
2ID2

N

I−1∑
k=0

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 + 2IL2

I−1∑
k=0

E
∥∥x̂r,k − x̄r

∥∥2
−I2E ∥∇f(x̄r)∥2 − E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2
 . (41)

In this case, xr,k
i , i /∈ Sr is the virtual local model on worker i, which cannot be seen in the system. The virtual local model

in mainly used for theoretical analysis. For the third term in the RHS of (40), we have

E

∥∥∥∥∥ 1

M

∑
i∈Sr

I−1∑
k=0

gi(x
r,k
i )

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

M

∑
i∈Sr

I−1∑
k=0

[
gi(x

r,k
i )−∇Fi(x

r,k
i ) +∇Fi(x

r,k
i )
]∥∥∥∥∥

2

= E

∥∥∥∥∥ 1

M

∑
i∈Sr

I−1∑
k=0

[
gi(x

r,k
i )−∇Fi(x

r,k
i )
]∥∥∥∥∥

2

+ E

∥∥∥∥∥ 1

M

∑
i∈Sr

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

≤ Iσ2

M
+ E

∥∥∥∥∥ 1

M

∑
i∈Sr

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

. (42)
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For simplicity, we use Qi to denote the sum of expected gradients of worker i during rth round in the following. Then for
the second term in the RHS of (42), we have

E

∥∥∥∥∥ 1

M

∑
i∈Sr

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

M

∑
i∈Sr

Qi

∥∥∥∥∥
2

= E

∥∥∥∥∥∥ 1

M

∑
i∈Sr

Qi −
1

N

N∑
j=1

Qj +
1

N

N∑
j=1

Qj

∥∥∥∥∥∥
2

(a)
= E

∥∥∥∥∥∥ 1

M

∑
i∈Sr

Qi −
1

N

N∑
j=1

Qj

∥∥∥∥∥∥
2

+ E

∥∥∥∥∥∥ 1

N

N∑
j=1

Qj

∥∥∥∥∥∥
2

, (43)

where (a) is due to ESr

[
1
M

∑
i∈Sr

Qi

]
= 1

N

∑N
j=1 Qj by (39). Further we have

E

∥∥∥∥∥∥ 1

M

∑
i∈Sr

Qi −
1

N

N∑
j=1

Qj

∥∥∥∥∥∥
2

=E

 1

M2

∑
i∈Sr

∥∥∥∥∥∥Qi −
1

N

N∑
j=1

Qj

∥∥∥∥∥∥
2

+
1

M2

∑
i,j∈Sr,i̸=j

〈
Qi −

1

N

N∑
m=1

Qm, Qj −
1

N

N∑
m=1

Qm

〉
(a)
=

1

M2

∑
i∈Sr

E

∥∥∥∥∥∥Qi −
1

N

N∑
j=1

Qj

∥∥∥∥∥∥
2

=
1

M2

∑
i∈Sr

E ∥Qi∥2 − E

∥∥∥∥∥∥ 1

N

N∑
j=1

Qj

∥∥∥∥∥∥
2


=
1

MN

N∑
i=1

E ∥Qi∥2 −
1

M
E

∥∥∥∥∥∥ 1

N

N∑
j=1

Qj

∥∥∥∥∥∥
2

, (44)

where (a) is due to that the sampling is with replacement so ith sampling and jth sampling are independent. Then we have

E

∥∥∥∥∥ 1

M

∑
i∈Sr

Qi

∥∥∥∥∥
2

=
1

MN

N∑
i=1

E ∥Qi∥2 +
M − 1

M
E

∥∥∥∥∥∥ 1

N

N∑
j=1

Qj

∥∥∥∥∥∥
2

. (45)

Substituting above results back to (42), we obtain

E

∥∥∥∥∥ 1

M

∑
i∈Sr

I−1∑
k=0

gi(x
r,k
i )

∥∥∥∥∥
2

≤ Iσ2

M
+

1

MN

N∑
i=1

E

∥∥∥∥∥
I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

+
M − 1

M
E

∥∥∥∥∥∥ 1

N

N∑
j=1

I−1∑
k=0

∇Fj(x
r,k
j )

∥∥∥∥∥∥
2

. (46)

For the second term of (46), we have

E

∥∥∥∥∥
I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

= E

∥∥∥∥∥
I−1∑
k=0

∇Fi(x
r,k
i )−∇f(xr,k

i ) +∇f(xr,k
i )−∇f(x̂r,k) +∇f(x̂r,k)−∇f(x̄r) +∇f(x̄r)

∥∥∥∥∥
2

(a)

≤ 4I2ζ2 + 4L2I

I−1∑
k=0

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 + 4L2I

I−1∑
k=0

E
∥∥x̂r,k − x̄r

∥∥2 + 4I2E ∥∇f(x̄r)∥2 , (47)
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where (a) is due to Assumption 2 and Assumption 3. Substituting back and rearranging, we have

γ2η2L

2
E

∥∥∥∥∥ 1

M

∑
i∈Sr

I−1∑
k=0

gi(x
r,k
i )

∥∥∥∥∥
2

≤ γ2η2LIσ2

2M
+

γ2η2L(M − 1)

2M
E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

+
2γ2η2LI2ζ2

M
+

2γ2η2L3I

MN

N∑
i=1

I−1∑
k=0

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2

+
2γ2η2L3I

MN

N∑
i=1

I−1∑
k=0

E
∥∥x̂r,k − x̄r

∥∥2 + 2γ2η2LI2

M
E ∥∇f(x̄r)∥2 . (48)

Substituting all terms back to (40), we have

E
[
f(x̄r+1)

]
≤ E [f(x̄r)]−

(
γηI

2
− 2γ2η2LI2

M

)
E ∥∇f(x̄r)∥2

−
(
γη

2I
− γ2η2L(M − 1)

2M

)
E

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

∇Fi(x
r,k
i )

∥∥∥∥∥
2

+
γ2η2LIσ2

2M
+

2γ2η2LI2ζ2

M
+

(
γηD2 +

2γ2η2L3I

M

)
· 1
N

I−1∑
k=0

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2

+

(
γηL2 +

2γ2η2L3I

M

) I−1∑
k=0

E
∥∥x̂r,k − x̄r

∥∥2. (49)

With γη ≤ 1
4IL and Lemma 3, we have

E
[
f(x̄r+1)

]
≤ E [f(x̄r)]−

(
γηI

2
− 2γ2η2LI2

M

)
E ∥∇f(x̄r)∥2 + γ2η2LIσ2

2M
+

2γ2η2LI2ζ2

M

+

(
γηD2 +

2γ2η2L3I

M

)
· 1
N

I−1∑
k=0

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2

+

(
γηIL2 +

2γ2η2L3I2

M

)
·

(
5(I − 1) · γ

2σ2

N
+ 30Iγ2

I−1∑
k=0

D2

N

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 + 30I(I − 1)γ2E ∥∇f(x̄r)∥2

)
. (50)

With γη ≤ 1
4IL and γ < 1

30(L+D)I , we have

E
[
f(x̄r+1)

]
≤ E [f(x̄r)]− γηI

8
E ∥∇f(x̄r)∥2 + γ2η2LIσ2

2M
+

2γ2η2LI2ζ2

M
+

γησ2

N

+

(
2γηD2 +

2γ2η2L3I

M

)
· 1
N

I−1∑
k=0

N∑
i=1

E
∥∥∥xr,k

i − x̂r,k
∥∥∥2 . (51)

With Lemma 2, we have

E
[
f(x̄r+1)

]
≤ E [f(x̄r)]− γηI

8
E ∥∇f(x̄r)∥2 + γ2η2LIσ2

2M
+

2γ2η2LI2ζ2

M
+

γησ2

N

+

(
2γηD2 +

2γ2η2L3I

M

)
·
(
3c(I − 1)3γ2ζ2 + c(I − 1)2γ2σ2

)
. (52)

Then we obtain

min
r∈[R]

E ∥∇f(x̄r)∥2 ≤ 1

R

R−1∑
r=0

E ∥∇f(x̄r)∥2 ≤ 8(f0 − f∗)

γηIR
+

4γηLσ2

M
+

16γηLIζ2

M
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+

(
16D2 +

16γηL3I

M

)
·
(
3c(I − 1)2γ2ζ2 + c(I − 1)γ2σ2

)
. (53)

Rearrange,

min
r∈[R]

E ∥∇f(x̄r)∥2 = O
(
(f0 − f∗)

γηIR
+

γηLσ2

M
+

γηLIζ2

M
+ γ2D2(I − 1)σ2 + γ2D2(I − 1)2ζ2

)
. (54)

E.7. Proof of Proposition 1

First, using ∇f(x) = 1
N

∑N
i=1∇Fi(x), it is straightforward to show that Assumption 5 implies Assumption 3 holds by

choosing L = L̃.

Second, we can see that ∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(xi)−∇f (x̄)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

N

N∑
i=1

[]∇Fi(xi)−∇Fi (x̄)]

∥∥∥∥∥
2

≤ 1

N

N∑
i=1

∥∇Fi(xi)−∇Fi (x̄)∥2

(a)

≤ L̃2

N

N∑
i=1

∥xi − x̄∥2 , (55)

where (a) is due to Assumption 5. By choosing D = L̃, Assumption 4 holds.

E.8. Proof of Proposition 2

For quadratic functions, we have

∇Fi(x) = Aix+ bi,x ∈ Rd. (56)

Let Ā := 1
N

∑N
i=1 Ai and b̄ := 1

N

∑N
i=1 bi. We have∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(xi)−∇f (x̄)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

N

N∑
i=1

(Aixi + bi)−
(
Āx̄+ b̄

)∥∥∥∥∥
2

=

∥∥∥∥∥ 1

N

N∑
i=1

Aixi − Āx̄

∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

N2

N∑
i=1

N∑
j=1

(Aixi −Aixj)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

N2

N∑
i=1

N∑
j=1

[(
Ai − Ā

)
(xi − x̄)−

(
Ai − Ā

)
(xj − x̄)

]∥∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∥ 1

N2

N∑
i=1

N∑
j=1

(
Ai − Ā

)
(xi − x̄)

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥ 1

N2

N∑
i=1

N∑
j=1

(
Ai − Ā

)
(xj − x̄)

∥∥∥∥∥∥
2

≤ 2

N2

N∑
i=1

N∑
j=1

∥∥(Ai − Ā
)
(xi − x̄)

∥∥2 + 2

N2

N∑
i=1

N∑
j=1

∥∥(Ai − Ā
)
(xj − x̄)

∥∥2
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(a)

≤ 2|λdiff |2max

N2

N∑
i=1

N∑
j=1

∥xi − x̄∥2 + 2|λdiff |2max

N2

N∑
i=1

N∑
j=1

∥xj − x̄∥2

≤ 4|λdiff |2max

N2

N∑
i=1

∥xi − x̄∥2 , (57)

where (a) is due to Cauchy’s inequality and |λdiff | := maxi∈[N ] |λ(Ai −A)|.

E.9. Proof of Proposition 3

Recall that x̂r,k is the virtual averaged model defined in (12). During one local iteration, we have

E[x̂r,k+1|x̂r,k] = x̂r,k − γ · 1
N

N∑
i=1

∇Fi(x
r,k
i ). (58)

Using (13), if we use centralized update at this iteration, we have

E[xr,k+1
c |x̂r,k] = x̂r,k − γ∇f(x̂r,k). (59)

Using Assumption 4, we obtain

∥∥E[x̂r,k+1|x̂r,k]− E[xr,k+1
c |x̂r,k]

∥∥2 = γ2

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(x
r,k
i )−∇f

(
x̂r,k

)∥∥∥∥∥
2

≤ γ2 · D
2

N

N∑
i=1

∥∥∥xr,k
i − x̂r,k

∥∥∥2 . (60)

E.10. Proof of Theorem 3

It can be observed that for quadratic objective functions when Ai = A,∀i, we have D = 0 and L = |λ(A)|. In this section,
we use t to denote the index of the total number of iterations and x̂t is defined as

x̂t =

{
x̂r,k, t = rI + k, k ̸= 0,

x̄r, t = rI.

With Assumption 3, after one local iteration, we have

E
[
f(x̂t+1)

]
≤ E

[
f(x̂t)

]
− γE

〈
∇f(x̂t),

1

N

N∑
i=1

gi(x
t
i)

〉
+

γ2L

2
E

∥∥∥∥∥ 1

N

N∑
i=1

gi(x
t
i)

∥∥∥∥∥
2

= E
[
f(x̂t)

]
− γE

〈
∇f(x̂t),

1

N

N∑
i=1

∇Fi(x
t
i)

〉
+

γ2L

2
E

∥∥∥∥∥ 1

N

N∑
i=1

gi(x
t
i)

∥∥∥∥∥
2

. (61)

For the second term in the RHS of (61), we have

− γE

〈
∇f(x̂t),

1

N

N∑
i=1

∇Fi(x
t
i)

〉

=
γ

2

E

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(x
t
i)−∇f(x̂t)

∥∥∥∥∥
2

− E
∥∥∇f(x̂t)

∥∥2 − E

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(x
t
i)

∥∥∥∥∥
2


≤ γ

2

D2

N

N∑
i=1

E
∥∥xt

i − x̂t
∥∥2 − E

∥∥∇f(x̂t)
∥∥2 − E

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(x
t
i)

∥∥∥∥∥
2
 . (62)
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(a) Training Loss. (b) Test Accuracy.

Figure 3: Results with MNIST dataset. The model is a two-layer neural network with the cross-entropy loss. The percentage of
heterogeneous data is 50%. The learning rates are chosen as η = 2 and γ = 0.1.

For the third term of (61), we have

γ2L

2
E

∥∥∥∥∥ 1

N

N∑
i=1

gi(x
t
i)

∥∥∥∥∥
2

≤ γ2L

2
E

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(x
t
i)

∥∥∥∥∥
2

+
γ2Lσ2

2N
. (63)

Substitute (62) and (63) back to (61), we obtain

E
[
f(x̂t+1)

]
≤ E

[
f(x̂t)

]
+

γD2

2N

N∑
i=1

E
∥∥xt

i − x̂t
∥∥2 − γ

2
E
∥∥∇f(x̂t)

∥∥2 − (γ

2
− γ2L

2

)
E

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(x
t
i)

∥∥∥∥∥
2

+
γ2Lσ2

2N

(a)

≤ E
[
f(x̂t)

]
+

γD2

2N

N∑
i=1

E
∥∥xt

i − x̂t
∥∥2 − γ

2
E
∥∥∇f(x̂t)

∥∥2 + γ2Lσ2

2N
, (64)

where (a) is due to γ < 1
L . Rearrange the above inequality with D = 0, we have

E
∥∥∇f(x̂t)

∥∥2 ≤ 2E [f(x̂t)]− 2Ef(x̂t+1)

γ
+

D2

N

N∑
i=1

E
∥∥xt

i − x̂t
∥∥2 + γLσ2

N

=
2E [f(x̂t)]− 2Ef(x̂t+1)

γ
+

γLσ2

N
. (65)

Take the average over t on both sides, we obtain

min
t∈[T ]

E
∥∥∇f(x̂t)

∥∥2 ≤ 1

T

T−1∑
t=0

E
∥∥∇f(x̂t)

∥∥2 ≤ 2f(x̂t)− 2f∗

γT
+

γLσ2

N
. (66)

F. Additional Details and Results of Experiments
In this section, we provide additional details of our experiments. More experimental results are provided for full participation
with the MNIST dataset.

Environment. All our experiments are implemented in PyTorch and run on a server with four NVIDIA 2080Ti GPUs. The
mini-batch size of SGD is 20. We run each experiment 5 times then plot their average.

Model. For experimental results with CIFAR-10 dataset in Section D, we use a CNN model. The structure of the CNN
is 5× 5× 32 Convolutional→ 2× 2 MaxPool→ 5× 5× 32 Convolutional→ 2× 2 MaxPool→ 4096× 512 Dense→
512× 128 Dense→ 128× 10 Dense→ Softmax. For experimental results with MNIST dataset, we use a two-layer neural
network with cross-entropy loss and a linear regression model with MSE loss.
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(a) Training Loss. (b) Test Accuracy.

Figure 4: Results with MNIST dataset. The model is a two-layer neural network with the cross-entropy loss. The percentage of
heterogeneous data is 75%. The learning rates are chosen as η = 2 and γ = 0.1.

(a) Training Loss. (b) Test Accuracy.

Figure 5: Results with MNIST dataset. The model is linear regression with the MSE loss. The percentage of heterogeneous data is 50%.
The learning rates are chosen as η = 2 and γ = 0.01.

Further explanation of the percentage of heterogeneous data. For example, the percentage of heterogeneous data is
50% means that 50% of the data on each worker are with the same label, e.g., 50% of the data on worker 1 are with label 1.
Another 50% of the data are sampled uniformly from the remaining dataset.

The estimate of D. Let the global model be x̄ and the local models be xi, i = 1, 2, . . . , N in the beginning of a round, then
we estimate D using the following equations.

D2 ≈

∥∥∥∇f(x̄)− 1
N

∑N
i=1∇fi(xi)

∥∥∥2
1
N

∑N
i=1 ∥xi − x̄∥2

.

Starting from a global model that is close to convergence, we perform FedAvg for 10 rounds and estimate D2 in each round.
Then we use the averaged D2 over 10 rounds as the estimate for D2. The reason for starting from a global model that is

(a) Training Loss. (b) Test Accuracy.

Figure 6: Results with MNIST dataset. The model is linear regression with the MSE loss. The percentage of heterogeneous data is 75%.
The learning rates are chosen as η = 2 and γ = 0.01.
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close to convergence is that this can make the variance of the estimate smaller.

Additional Experimental Results. We partition the MNIST dataset into 10 workers. During each round, all workers will
perform the local updates. Results with a two-layer neural network and the cross-entropy loss are shown in Figure 3 and
4. As shown in Table 1 of the main paper, D is very small in this case. In Corollary 1, with full participation, it is shown
that when D is small, increasing I can improve the convergence even when data are highly heterogeneous. As shown in
both Figure 3 and 4, the curve with the largest number of local iterations, I = 40, converges the fastest and achieves best
accuracy, which validates Corollary 1. Results with linear regression and the MSE loss are shown in Figure 3 and 4. Since
D and L are larger compared to that of the two-layer neural network, a smaller γ and smaller I’s are chosen according to
Corollary 1. It can be seen in both Figure 5 and 6, the curve with the largest number of local iterations, I = 20 converges
the fastest and achieves the best accuracy.
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