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Abstract

We consider the problem of provable and effective uncertainty quantification (UQ) for multi-
target regression tasks where we need to predict multiple related target variables. This is
important in many safety-critical applications in domains including healthcare, engineering,
and finance. Conformal prediction (CP) is a promising framework for calibrating predic-
tive models for UQ with guaranteed finite sample coverage. There is relatively less work
on multi-target CP compared to single-target CP, and existing methods tend to produce
large prediction regions that are not useful in real-world applications. This paper proposes
a novel approach referred to as Adaptive Prediction Regions (APR) to produce provably
smaller prediction regions by exploiting heterogeneity in the input data. APR is inspired
by the principle behind localized CP for single-target Guan (2023) and extends it to multi-
target settings. The key idea behind APR is to perform adaptive calibration by assigning
differential weights to multi-dimensional calibration examples based on their similarity to
a test input. We theoretically analyze APR and show that it (a) achieves finite-sample
coverage guarantees; and (b) constructs smaller prediction regions. Our experiments on
diverse real-world datasets with various numbers of targets show that APR outperforms ex-
isting methods by producing significantly smaller prediction regions (achieving up to 85.51%
reduction in region area) over state-of-the-art multi-target CP methods.

1 Introduction

Many real-world applications across domains such as healthcare, engineering, and finance involve predicting
multiple related target output variables (aka multi-target regression). For example, in Patient Monitoring
using wearable devices, accurately predicting both heart rate and blood pressure is essential LaFreniere et al.
(2016); Moseley & Linden (2006). Similarly, in engineering, predictive maintenance systems for industrial
equipment rely on models that can jointly predict vibration levels, temperature, and operational efficiency
to prevent costly failures Compare et al. (2020). Advances in machine learning have enabled us to develop
predictive models with high accuracy for multi-target regression tasks. However, high-stakes applications
such as healthcare require more than just accurate predictions; they demand trustworthy and theoretically
sound uncertainty quantification to enable safe and reliable decision-making by clinicians. For example, a
prediction/uncertainty region in the multi-dimensional space that covers the true multi-target output with
high probability (e.g., 95%). Conformal prediction (CP) Vovk et al. (2005); Romano et al. (2019); Guan
(2019); Angelopoulos & Bates (2021); Vazquez & Facelli (2022); Angelopoulos et al. (2023) is a promising
framework for achieving such provable uncertainty quantification (UQ). CP relies on a calibration approach
given a black-box predictor and user-specified coverage 1−α (e.g., 95%) to construct prediction intervals and
sets that contain the true output with probability (1−α) for regression and classification tasks, respectively.
While localized conformal prediction (LCP) Guan (2023) provides a powerful theoretical framework for
input-dependent calibration in the single-target setting, our work can be viewed as a multi-target, empirically
grounded extension of this idea, showing that localized calibration remains effective and tractable on a broad
suite of real-world multi-output regression tasks.

Much of the existing work on CP focuses on single-target regression, and there is little work on CP for
multi-target regression tasks. A naive approach for multi-target tasks is to apply CP to each target output
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independently, but it can result in highly conservative (aka large) prediction/uncertainty regions, as it
doesn’t exploit the existing correlations between multiple target variables. Directional Quantile Regression
(DQR) approach leverages the correlations among target variables to avoid their unlikely combinations in the
prediction region Boček & Šiman (2017); Charlier et al. (2020). The spherically-transformed DQR approach
(henceforth SOTA) Feldman et al. (2023), currently the leading conformal prediction method for multi-target
regression, leverages a conditional deep generative model to learn representations of the target variables and
thereby enhance DQR. However, its main limitation is that the resulting prediction regions are excessively
large, making them impractical for real-world use. In healthcare domain, for instance, compact prediction
regions are essential since they enable clinicians to quickly determine whether a patient is within a healthy
range or at risk, and to take timely medical action.

Motivated by this challenge, this paper asks the following question: How can we produce provably small
prediction regions satisfying the marginal coverage constraint for multi-target regression tasks? To answer
this question, we develop a novel approach referred to as Adaptive Prediction Regions (APR). APR is inspired
by the principle behind localized CP for single-target Guan (2023) and extends it to multi-target settings.
The key idea behind APR is to exploit the heterogeneity in the conditional distribution of output given
input to use a test-input conditioned quantile threshold to construct valid and small prediction regions.
The effectiveness of this general idea depends on the specific localization mechanism which has not received
attention. Additionally, to the best of our knowledge, localized CP method hasn’t been empirically tested
on real-world applications in both single-target and multi-target settings. In our work, we specify and
empirically evaluate multiple instantiations of localization to address this gap in the CP literature.

To achieve this with guaranteed marginal coverage, particularly when using input-dependent weighting
(APR-W), APR utilizes an α̃-level adjustment Guan (2023) which is critical for restoring the validity of
the localized quantiles. In contrast, existing multi-target CP methods such as DQR and its variants em-
ploy a uniform quantile threshold for all test inputs. We prove that APR achieves distribution-free and
model-agnostic (invariant to the choice of the underlying multi-target regression method) marginal coverage
guarantee. We also prove that under mild conditions on the quantiles, APR produces small prediction re-
gions when compared to multi-target CP methods based on a uniform quantile threshold for all test inputs.
Our comprehensive experiments on several real-world datasets demonstrate that APR produces significantly
smaller prediction regions (by up to 85.51% reduction) compared to state-of-the-art methods, and the results
validate our theory.

Contributions. The key contribution of this paper is the development, theoretical analysis, and evaluation
of the Adaptive Prediction Regions (APR) algorithm for multi-target regression tasks.

Specific contributions include:

• Development of the APR algorithm, which constructs valid and small prediction regions based on the
idea of test input-conditioned quantile threshold: extending the framework of localized CP Guan
(2023) to multi-target regression, including the α̃-level adjustment necessary for maintaining the
marginal coverage guarantee in the weighted localized setting.

• Theoretical analysis to show that APR achieves coverage guarantee and produces smaller prediction
regions compared to using uniform threshold for all test inputs.

• Localized CP is developed for single-target setting and analyzed primarily at a theoretical level.
Studying effective localization schemes and empirical evaluation on real-world applications has re-
ceived less attention. Therefore, APR extends this idea to the multi-target setting, specifies multiple
approaches for localization, and is validated on several real-world datasets.

• Empirical evaluation on diverse real-world datasets to demonstrate the efficacy of APR over state-
of-the-art baseline methods. Our code is available in the following anonymous GitHub repository
https://anonymous.4open.science/r/apr-4C4C/ for review purposes.
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2 Background and Problem Setup

Notations. Let Dtr = {(Xi, Yi)}n
i=1 be a training dataset with n samples, where X ∈ X ⊆ Rp and

Y ∈ Y ⊆ Rd are the input feature vector and output response vector defined on the input space X and
output space Y, respectively. We assume that all input-output pairs are independently drawn from an
underlying distribution P, i.e., (X, Y ) ∼ P. Let Dcal = {(Xi, Yi)}n+m

i=n+1 be a calibration data set with
m samples and Xtest be a test input feature vector with its corresponding response vector Ytest. Suppose
RY(X) ⊆ Y is a mapping to generate a region in output space Y given an input X.

Our goal is to construct trustworthy uncertainty regions (aka prediction regions) for multi-target regression
tasks illustrated in Figure 1, so that they satisfy a conformal coverage guarantee. Specifically, we say a
region-generating process RY(X) guarantees (1 − α) coverage if the following inequality holds:

P(Xtest,Ytest)∼P{Ytest ∈ RY(Xtest)} ≥ 1 − α. (1)

Throughout this paper, we omit the subscript (X, Y ) ∼ P of the probability P about where the randomness
comes from, unless otherwise specified.

Figure 1: Illustration of the APR framework for constructing small prediction regions for a health application
with two target variables (heart rate and blood pressure). Given a test input Xtest, a calibration dataset
Dcal, and pre-trained conditional variational autoencoder (CVAE) and multi-target quantile regression (QR)
models, APR generates a compact prediction region (R̂Y(Xtest), shown in orange color) that is likely to
contain the true target output (shown in blue) with a marginal coverage probability of 1 − α (say 95%).

Conformal Prediction is a general framework to provide rigorous guarantees for coverage in regression
and classification tasks Vovk et al. (2005); Romano et al. (2019; 2020); Gibbs et al. (2023); Tibshirani et al.
(2019). CP typically relies on a non-conformity scoring function which measures how different a data sample
is from existing ones Vovk et al. (2005). For example, in single-target regression tasks, the absolute residual
|ŷ − y| due to a regression model is a commonly used definition for the non-conformity scoring function
Romano et al. (2019), where ŷ and y denote the predicted and true output, respectively. Moreover, the
underlying regression model is trained and fixed during both calibration and testing stages.

Let V : X × Y → R denote a non-conformity scoring function.

For simplicity, we denote the non-conformity score for calibration sample (Xj , Yj) ∈ Dcal by Vj := V (Xj , Yj).

Given a user-specified mis-coverage parameter α, CP methods typically compute an empirical quantile on
the calibration dataset as follows:

Q̂(α) = inf
{

τ : 1
m

∑
j∈Dcal

1{Vj ≤ τ} ≥ 1 − α

}
. (2)
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For a test input Xtest, we use this quantile as a threshold to selectively add candidate output responses into
the prediction set:

Ĉ(Xtest) = {y ∈ Y : V (Xtest, y) ≤ Q̂(α)}.

It is a well-known result that if calibration data samples in Dcal and (Xtest, Ytest) are exchangeable, then
this CP procedure guarantees a marginal coverage Vovk et al. (2005):

P{Ytest ∈ Ĉ(Xtest)} ≥ 1 − α.

The key difference between the above general coverage result and that in the multi-target regression setting
in (1) is how the prediction set is constructed. In our problem setting, the region-generating function RY(X)
builds the prediction region in the multi-dimensional output space (generalization of prediction interval in
the single-target regression tasks). This is a significant challenge because the coverage in high-dimensional
output space can be unnecessarily statistically inefficient, i.e., producing very large prediction regions to
cover the true multi-target response.

Multi-target CP algorithm. We propose a wrapper-based solution that can use any existing multi-target
method. Since we implemet our solution on top of the SOTA Feldman et al. (2023), we provide its key
algorithmic steps for the sake of completeness.

SOTA begins by training a conditional variational autoencoder (CVAE) on the training dataset Dtr. Specif-
ically, we denote the CVAE by (E , D), where E and D are the encoder and decoder, respectively. Ideally,
CVAE aims to fit the data to complete a two-way transform, by which it can reconstruct the conditional
distribution P (Y |X). The first transform is from Y to a latent space Z ⊆ Rr by the encoder, i.e., to a
transformed latent data point Zy = E(Y ; X = x), where r is the dimensionality of the latent space and can
be tuned as a hyper-parameter in practice. The ideal case is that all possible latent data points are drawn
from a standard Normal distribution Zy ∼ N (0, 1). The second transform is from the latent space Z to the
original response space Y by the decoder D(Zy; X = x) = Ŷ .

Figure 2: Overview of conditional variational autoencoder (CVAE) and multi-target quantile regression
(QR) models training. The CVAE (on the left) and multi-target QR (on the right) models are trained on the
training dataset to derive the encoder for mapping to the latent space Z and the decoder for reconstructing
the original space Y. The multi-target QR model is trained on the input (x) and latent target (z) to generate
the base prediction region in the latent space Z.

The goal of the encoder-decoder structure is to ensure that the reconstruction Ŷ is equivalent to the true
response Y in distribution, i.e., D(Zy; X = x) d= Y |X = x.

Once the CVAE (E , D) is trained, proceed to train a standard directional quantile regression (DQR) in the
latent space Z. For an input X, this creates a convex region in Z (since DQR only generates convex regions),
denoted by RZ(X), which is then transformed using the decoder D to Y space. Particularly, we denote the
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region in Y that is transformed from the latent space by RY(X) = D(RZ(X)), which serves as a base region
in Y.

DQR either provides over- or under-coverage in Y, so it needs further calibration on (i) whether the coverage
achieved by RY(X) is too large or too small, and (ii) how much it needs to adjust (shrink if too large, or
expand if too small) the prediction region RY(X) in Y space. In the case of under-coverage, it uses the
following non-conformity scoring function, calibration step, and region-generating process:

V +
j = min

a∈RY (Xj)
dist(a, Yj), ∀j ∈ Dcal,

⇒ γ+ = min
{

τ : 1
m

n+m∑
j=n+1

1[V +
j ≤ τ ] ≥ 1 − α

}
,

⇒ R+
Y (Xtest) =

{
y ∈ Y : min

a∈RY (Xtest)
dist(a, y) ≤ γ+

}
(3)

In the case of over-coverage, the non-conformity scoring function, calibration step, and prediction region can
be defined as follows:

V −
j = min

a∈Rc
Y (Xj)

dist(a, Yj), ∀j ∈ Dcal,

⇒ γ− = min
{

τ : 1
m

n+m∑
j=n+1

1[V −
j ≤ τ ] ≤ α

}
,

⇒ R−
Y (Xtest) =

{
y ∈ Y : min

a∈RY (Xtest)
dist(a, y) ≥ γ−

}
,

where the Rc
Y(Xj) = Y\RY(Xj) denotes the region that is not included by the quantile region RY(Xj).

After either calibration step, the coverage in (1) is guaranteed to hold.

However, the calibration in SOTA does not consider the heterogeneity in the conditional probability dis-
tribution P (Y |X). This is reflected in determining the quantile γ+ and γ−, both of which are defined in
the marginal sense and are not adaptive to different realizations of test input Xtest. The challenge of het-
erogeneous distribution P (Y |X) is increasingly more important in the recent CP literature, especially when
different kinds of conditional coverage notions have been proposed and investigated Gibbs et al. (2023); Vovk
(2012); Ding et al. (2023). The main challenge to reduce the size of prediction regions is figuring out an
algorithmic principle to capture the heterogeneity in the conditional distribution P (Y |X) for multi-target
conformal calibration.

Localized Conformal Prediction. While standard CP employs a single, global quantile threshold Q̂(α)
for all test inputs Xtest, localized CP aims to compute a test input-specific quantile Q(Xtest). One method to
achieve this is to use weighted non-conformity scores. For a test input Xtest, a localized quantile Q̂(Xtest, γ)
for a candidate confidence level γ is defined as:

Q̂(Xtest, γ) = min
{

τ :
∑

i∈Dcal

wi(Xtest)1{Vi ≤ τ} ≥ γ

}
, (4)

where wi(Xtest) ≥ 0 are weights such that
∑

i∈Dcal
wi(Xtest) = 1, and Vi are the non-conformity scores. A

common issue with using 1 − α directly as γ is that it does not guarantee the marginal coverage (P(Ytest ∈
Ĉ(Xtest)) ≥ 1−α) required by classic CP. To restore the marginal coverage guarantee in the weighted setting,
Guan (2023) proposed learning a corrected confidence level α̃ from the calibration set.

Specifically, for each calibration point Xi, let q̂Xi(γ) be its localized quantile at level γ. Let Γ be the set of
all cumulative weight values attainable from the weighted CDFs. The data-driven global correction level α̃
is computed as:

α̃ = min
γ∈Γ

{
γ : 1

m

∑
i∈Dcal

1[Vi ≤ q̂Xi
(γ)] ≥ 1 − α

}
. (5)
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The prediction region is then constructed using the localized quantile at level α̃ for the test point Xtest:
Ĉ(Xtest) = {y ∈ Y : V (Xtest, y) ≤ Q̂(Xtest, α̃)}. This α̃-correction ensures the finite-sample marginal
coverage guarantee.

The goal of this paper is to develop an adaptive multi-target CP algorithm that is statistically efficient to
produce small prediction regions to guarantee the target marginal coverage.

3 Related Work

This section summarizes the related work on conformal prediction for regression tasks. Most of the existing
CP work focuses on the simpler setting of single-task regression, and there is relatively little work on CP for
the multi-target setting.

CP for single-target regression. Conformal prediction Vovk et al. (2005); Shafer & Vovk (2008); An-
gelopoulos & Bates (2021); Angelopoulos et al. (2023) leverages the assumption of data exchangeability to
generate prediction intervals with guaranteed coverage levels for single-target regression tasks. The standard
CP approach employs the distance to the conditional mean as the conformity scoring function for calibration.
Conformalized quantile regression Romano et al. (2019) integrates CP with quantile regression Regression
(2017); Romano et al. (2019); Koenker & Bassett Jr (1978) estimates to construct prediction intervals. Re-
cent work Guan (2019); Lin et al. (2021); Guan (2023) has focused on improving the calibration process to
reduce the size of prediction intervals without any theoretical guarantees. To reduce the size of prediction
intervals when the output distribution is complex, a recent method Guha et al. (2024) considers a reduction
from regression to classification and leverages recent advances in CP for classification Angelopoulos et al.
(2020); Stutz et al. (2021); Huang et al. (2023); Ding et al. (2023). However, this approach is inherently
limited to single-target regression and cannot be extended to multi-target regression due to the intricate
nature of its multi-dimensional continuous target space. Furthermore, no existing work has explored CP in
the context of joint multi-target classification.

CP for multi-target regression. A naive extension of single-target CP to the multi-target setting is by
independently constructing prediction intervals for each output variable, which often results in overly con-
servative prediction regions Feldman et al. (2023). Extending CP to the multi-target regression setting poses
significant challenges. There is relatively less work in this direction and no theoretical work on analyzing the
size of prediction regions. Copula-based CP Messoudi et al. (2021) leverages copulas to provide valid cov-
erage guarantees and reliable multi-target regions. However, it produces regions that are hyper-rectangular
shaped, which are typically very large and difficult to interpret. Recent works Feldman et al. (2023); Dheur
et al. (2025) used recent advances in representation learning to create smaller and arbitrarily shaped predic-
tion regions that guarantee the desired coverage. It builds on the concept of directional quantile regression
(DQR) Boček & Šiman (2017); Charlier et al. (2020) by mapping the target variable to a latent convex
space, constructing quantile regions in the latent space using DQR, mapping the regions back to the original
output space, and then calibrating the regions for coverage using the calibration set. However, this method
constructs relatively large prediction regions, which are not useful in real-world applications because it uses
a uniform quantile threshold for all testing inputs.

Probabilistic CP with approximate conditional validity. Plassier et al. Plassier et al. (2025) propose
probabilistic conformal prediction sets that combine conformal inference with an estimate of the conditional
distribution PY |X , and derive non-asymptotic guarantees for approximate conditional validity whose tight-
ness explicitly depends on the conditional distribution estimation error (e.g., via discrepancies such as total
variation). Our work is complementary in both goal and mechanism. While probabilistic CP constructs sets
by thresholding probability mass under P̂Y |X=x (e.g., HPD/level-set type regions) to improve conditional
behavior when accurate distribution estimation is available, we focus on multi-target regression and ask:
given a strong predictive/generative model, how can we obtain tighter regions while preserving the stan-
dard distribution-free finite-sample marginal coverage guarantee? APR answers this by localized calibration
of nonconformity scores using neighborhood-based weighting in either the input space or a learned repre-
sentation (e.g., the CVAE latent space), together with the corrected global confidence level α̃ to maintain

6



Under review as submission to TMLR

marginal validity under exchangeability. Consequently, APR can yield efficiency gains even when P̂Y |X is
not accurate enough to support conditional-coverage bounds, since our validity guarantee does not rely on
conditional density accuracy and the learned model affects efficiency rather than validity.

Theoretical comparison. In summary, Plassier et al. Plassier et al. (2025) obtain approximate conditional
validity with bounds controlled by distribution-estimation error, whereas APR guarantees finite-sample
marginal validity (via α̃) and pursues efficiency through localized score calibration in input/latent space.

4 Adaptive Prediction Regions Algorithm

In this section, we describe our proposed algorithm, Adaptive Prediction Regions (APR), in detail. Unlike
the Naive and other multi-target CP methods, which apply a uniform quantile threshold across all test inputs
to construct prediction regions, APR introduces a more adaptive approach. Specifically, APR utilizes a test-
input-conditioned quantile threshold to create more efficient (i.e., smaller) prediction regions. Real-world
problems often involve conditional distributions P (Y |X) that are inherently heterogeneous. APR leverages
this heterogeneity by defining a non-uniform quantile threshold that adapts uniquely to each test input. This
adaptive threshold is determined based on the top-k weighted subset of calibration inputs that lie within a
certain radius around the test input Xtest, resulting in the construction of more adaptive prediction regions
that better correspond to the true conditional distribution P (Y |X).

Figure 3: High-level overview of the APR algorithm illustrating the calibration and inference phases. The
multi-target quantile regression model produces the initial (uncalibrated) prediction region, while the CVAE
decoder maps the latent space back to the original target output space. During calibration and inference, the
calibration dataset and weighting function are employed to construct a refined, smaller calibrated prediction
region (R̂Y(Xtest)) for the given test input Xtest.

Following the procedure in Figure 2, we fit a CVAE, which comprises encoder E(·) and decoder D(·), on
Dtr. The trained CVAE transforms the target vector Y into an r-dimensional standard normal distribution
Z. The transformation of CVAE ensures that Zi represents the expectation of Yi|Xi. We then train a DQR
model QZ on {(Xi, Zi)}n

i=1 : i ∈ Dtr in the latent space, such that QZ : Rp −→ Z ⊆ Rr which constructs the
base prediction region QZ(X) ⊆ Rr. Transforming QZ(X) back to the original Y space yields QY(X) ⊆ Rd.
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4.1 Adaptive Quantile Threshold via α̃ Correction

Adaptive Calibration in APR. APR introduces a test-input conditioned quantile threshold q̂APR
Xtest

to
adapt the size of the prediction region based on local data density, enabling the construction of smaller
regions in heterogeneous settings. The general form of the prediction region R̂Y(Xtest) for a test input Xtest
is:

R̂Y(Xtest) = {y ∈ Y : V (Xtest, y) ≤ q̂APR
Xtest

} (6)

where V (·, ·) is a non-conformity score (defined below as either V + or V −) and q̂APR
Xtest

is the final calibrated
quantile threshold.

Localized Quantile Definition. The test-conditional quantile q̂Xtest(γ) for a candidate confidence level γ
is computed using weighted non-conformity scores Vj from the calibration set Dcal:

q̂Xtest(γ) = min
{

τ :
∑

j∈Dcal

w(Xtest, Xj)1{Vj ≤ τ} ≥ γ

}
, (7)

where w(Xtest, Xj) is the weighting function (detailed below) that determines the influence of each calibration
sample Xj based on its proximity to Xtest.

Marginal Coverage Restoration via α̃ Correction. For non-uniform weighting functions, using
γ = 1−α in Equation (7) only guarantees conditional coverage. To ensure the desired finite-sample marginal
coverage P

[
Ytest ∈ R̂Y(Xtest)

]
≥ 1−α, APR employs the α̃-level correction established in localized confor-

mal prediction (LCP) Guan (2023). The corrected global confidence level α̃ (where α̃ ≤ 1 − α) is calculated
using the calibration set Dcal:

α̃ = min
γ∈Γ

{
γ : 1

m

∑
i∈Dcal

1[Vi ≤ q̂Xi(γ)] ≥ 1 − α

}
, (8)

where Γ is the set of attainable cumulative weight values from the localized weighted CDFs {F̂Xi}i∈Dcal
.

The final calibrated threshold for the test input is then set as q̂APR
Xtest

= q̂Xtest(α̃).

Weighting Schemes (APR-U and APR-W). APR primarily uses k-Nearest Neighbor (k-NN) based
localization. Let Nk(Xtest) be the set of k nearest neighbors of Xtest in Dcal, where dist(·, ·) is a user-chosen
metric on the representation vectors used for neighborhood search. In all experiments in this paper, we use
the standard Euclidean (L2) distance after feature standardization to form Nk(Xtest). For APR-W, we use
inverse-distance weights within Nk(Xtest), i.e., w(Xtest, Xj) ∝ 1/(dist(Xtest, Xj) + ε) with a small ε > 0.

Nk(Xtest) =
{

Xj ∈ Dcal :
∑

Xk∈Dcal

1[dist(Xtest, Xk) ≤ dist(Xtest, Xj)] ≤ k
}

There are several ways of defining the weighting function w(Xtest, Xj):

(i) Standard-uniform weights over Dcal:

w(Xtest, Xj) = 1/m. (9)

This reduces the adaptive calibration strategy of APR back to the standard calibration that is not
adaptive to the realization of test input Xtest.

(ii) APR-U (Uniform k-NN): Uniform weights are assigned to the k neighbors, which makes the lo-
calized weighted CDF depend only on the k neighbor scores; however, because the neighborhood
depends on the realized test input, we still use the corrected global level α̃ (Eq. 8) to guarantee
finite-sample marginal coverage.

w(Xtest, Xj) = 1/k · 1[Xj ∈ Nk(Xtest)] (10)
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(iii) APR-W (Weighted k-NN): Inverse-distance weights are assigned to the k neighbors. This non-
uniform weighting scheme is more adaptive but necessitates the full α̃ computation (Equation 8) to
guarantee marginal coverage.

w(Xtest, Xj) = 1/dist(Xtest, Xj)∑
k∈Nk(Xtest) 1/dist(Xtest, Xk) · 1[Xj ∈ Nk(Xtest)] (11)

(iv) Ball-based Localizer:

w(Xtest, Xj) = 1[ϕ(Xj) ∈ B(ϕ(Xtest))]∑
k∈Dcal

1[ϕ(Xk) ∈ B(ϕ(Xtest))]
(12)

where ϕ(X) is a feature mapping and B(·) is a Euclidean ball.

In this paper, we focus on the k-NN weighting functions: APR-U (Equation 10) and APR-W (Equation 11).

Initial Base Region. APR adapts a two-sided calibration approach to handle heterogeneity in the under-
lying predictor. This process starts by defining an initial base region R0

Xtest
(Xj) for each calibration input

Xj ∈ Nk(Xtest) based on its uncalibrated region QY(Xj) and a fixed initialization quantile q̂init
Xtest

:

R0
Xtest

(Xj) =
{

y ∈ Rd : min
yin∈QY (Xj)

dist(yin, y) ≤ q̂init
Xtest

}
, (13)

where QY(Xj) = D(QZ(Xj)) is the uncalibrated region projected back to Y. The q̂init
Xtest

is an arbitrary
initialization quantile (e.g., the (1−α) quantile of the distance between near points in QY(Xtest)) and dist(·)
is the L2 distance.

The initial coverage rate (covinit) for this base region is calculated over the k-NN set:

covinit = 1
k

∑
j∈Nk(Xtest)

1[Yj ∈ R0
Xtest

(Xj)]. (14)

Calibration via Score Selection. Based on covinit, APR selects a non-conformity score (V + or V −) and
uses the α̃ method to compute the final calibrated threshold q̂APR

Xtest
(Equation 8 applied to the chosen score

set).

Case (i): Under-Coverage (covinit ≤ 1 − α). If the desired coverage is not achieved, we use the inward-
distance score V + to expand the region. V + measures the distance from the true target Yj to the closest
point in the initial region QY(Xj).

V
+

j = min
yin∈QY (Xj)

dist(yin, Yj), ∀j ∈ Nk(Xtest). (15)

The final calibrated prediction region R̂Y(Xtest) is constructed using the threshold q̂APR
Xtest

= q̂Xtest(α̃) com-
puted on the set of {V +

j } scores:

R̂Y(Xtest) =
{

y ∈ Rd : min
yin∈QY (Xtest)

dist(yin, y) ≤ q̂APR
Xtest

}
. (16)

This q̂APR
Xtest

is the localized, α̃-corrected version of the uncorrected q̂w(Xtest) from the initial adaptive cali-
bration idea.

Case (ii): Over-Coverage (covinit > 1−α). If the initial region over-covers, we use the outward-distance
score V − to shrink the region. V − measures the distance from the true target Yj to the closest input in the
complement region Qc

Y(Xj), effectively calibrating the boundary of the region.

V
−

j = min
yin∈Qc

Y (Xj)
dist(yin, Yj), ∀j ∈ Nk(Xtest), (17)

9
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where Qc
Y(Xj) is the complement of QY(Xj). The final calibrated prediction region R̂Y(Xtest) is constructed

using the threshold q̂APR
Xtest

= q̂Xtest(α̃) computed on the set of {V −
j } scores:

R̂Y(Xtest) =
{

y ∈ Rd : min
yin∈QY (Xtest)

dist(yin, y) ≤ q̂APR
Xtest

}
. (18)

The key steps of the proposed APR algorithm are summarized in Algorithm 1 and illustrated in Figures 2
and 3, offering a general overview.

Algorithm 1 Adaptive Prediction Regions (APR)
1: Input:

Data {(Xi, Yi)}n
i=1 ⊆ Rp × Rd; Multi-target QR algorithm QZ ;

VAE(y : E, D) = (E(z|y), D(y|z)); Test input Xtest; error rate α ∈ (0, 1)

2: Training CVAE and Multi-target-QR:
3: Randomly split the training data into two disjoint sets: training (Dtr) and calibration (Dcal).
4: Train VAE(y : E, D) on Dtr

5: Train QZ on (Xi, E(z|Yi)), where E(z|Yi) = Zi : i ∈ Dtr and Zi ∼ N (0, 1)r.
QZ constructs the quantile region QZ(X) ⊆ Rr in the latent space Z.

6: APR calibration and Inference:
7: Obtain Nk(Xtest) ⊆ Dcal and define w(Xtest, Xj) according to Eq (9) (11), (10) or (12)
8: Obtain base regions R0

Xtest
(Xi), i ∈ Nk(Xtest) using Eq (13) and compute covinit using Eq (14).

9: if covinit ≤ 1 − α: then
10: – Compute scores {V

+
j } from Eq (15) and construct region R̂Y(Xtest) using Eq (16)

11: else
12: – Compute scores {V

−
j } from Eq (17) and construct region R̂Y(Xtest) using Eq (18)

13: end if
14: Output: Prediction region, R̂Y(Xtest) ⊆ Rd

4.2 Theoretical Analysis

In this section, we present our theoretical analysis for the coverage guarantee of APR and its improved
predictive region efficiency over the baseline. Our analysis focuses on the weighting function choice of (10)
in Algorithm 1, the test input-conditional calibration with the uniform weight on k-NN calibration samples
for test input Xtest. All our complete proofs can be found in Appendix A.1.

We start with the standard definition of exchangeability for sequences of random variables.
Definition 1. A sequence of random variables (Z1, . . . , Zn) is exchangeable if for any permutation π of
{1, . . . , n},

(Z1, . . . , Zn) d= (Zπ(1), . . . , Zπ(n)).

In our setting, we apply this to the sequence of examples (Xi, Yi) (calibration) together with the test example
(Xtest, Ytest).

Importantly, selecting a neighborhood (e.g., k-NN) based on the realized test input can break exchangeability
within the selected subset. Therefore, rather than claiming exchangeability of the k-NN subset, our coverage
guarantee follows the localized/weighted conformal framework using the corrected global confidence level α̃
(Eq. 8), which restores finite-sample marginal validity Guan (2023).
Theorem 1. (Finite-sample marginal coverage of APR with localization) Assume the calibration
examples {(Xi, Yi)}i∈Dcal

and the test example (Xtest, Ytest) are exchangeable. Let the localized quantile q̂X(γ)
be defined via the (possibly sparse) weighting function w(X, ·) and the corresponding weighted empirical CDF,

10
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and let α̃ be chosen according to Eq. 8. Then the APR prediction region constructed using the calibrated
threshold q̂APR

Xtest
= q̂Xtest(α̃) satisfies the distribution-free finite-sample marginal coverage guarantee

P{Ytest ∈ R̂Y(Xtest)} ≥ 1 − α.

Remark 1. The guarantee above is marginal (unconditional) coverage. The role of localization is to improve
efficiency (smaller regions) under heterogeneity, while the corrected level α̃ ensures finite-sample marginal
validity under exchangeability.

A key subtlety is that the localized rule uses weights (or a kNN neighborhood) that depend on the realized test
input Xtest; hence the set of calibration scores receiving nonzero weight is not, in general, an exchangeable
subset, and we do not assume exchangeability of the derived indicators (A1, . . . , Am, Atest). Instead, our
finite-sample marginal validity follows the localized conformal prediction argument based on pseudo-test
centers (cf. localized CP): we choose the corrected level α̃ to control the average pseudo-test inclusion rate
across calibration centers, and exchangeability of the augmented sample yields the desired marginal coverage
for the held-out test point. See Appendix A.1 for the detailed proof.

Moreover, we highlight that the predictive region efficiency (aka area of prediction region) of different CP
methods can be significantly distinct even though they guarantee the same coverage performance. Below,
we show that under the concentrated condition of quantiles, our APR algorithm is more efficient in terms
of the expected size of prediction regions when compared to the baseline multi-target CP method (SOTA in
our study).
Definition 2. (Preserving relative order of expected volume). Let Rk

Z(X) denote a kNN-localized (weighted)
latent-space region generator and let R̃Z(X) denote any (possibly non-localized) latent-space region generator;
both map an input X to a measurable subset of the latent space Z. We write | · | for region volume (Lebesgue
measure). We say that a decoder D : Z → Y preserves the relative order of expected volume if

EX

[
|Rk

Z(X)|
]

≤ EX

[
|R̃Z(X)|

]
=⇒ EX

[
|D(Rk

Z(X))|
]

≤ EX

[
|D(R̃Z(X))|

]
.

The preservation of the relative order of expected volume from Z to Y allows us to analyze the predictive effi-
ciency. Based on the ideal CVAE, the latent variable in the latent space Z follows the multivariate Gaussian
distribution N (0, 1)r, which enables many statistical tools to understand how the density is distributed. We
use the superscript “k” to explicitly indicate kNN-localization with respect to the test input X. Concretely:
(i) Rk

Z(X) denotes the kNN-based (localized/weighted) latent-space prediction region constructed using only
the k nearest calibration inputs to X; (ii) RZ(X) denotes the non-localized (global) latent-space prediction
region constructed without kNN localization. We then define the corresponding target-space regions by
decoding: Rk

Y(X) := D
(
Rk

Z(X)
)

and RY(X) := D
(
RZ(X)

)
.

Theorem 2. (Improved prediction region efficiency of APR). Suppose all calibration samples
(Xi, Yi) ∈ Dcal and the test pair (X, Y ) are exchangeable. Let Rk

Z(X) be the kNN-localized latent-space
prediction region produced by APR (i.e., constructed using weights supported on the k nearest calibration in-
puts to X), and let RZ(X) be the corresponding non-localized (global) latent-space prediction region obtained
without kNN localization. Define the decoded target-space regions

Rk
Y(X) := D

(
Rk

Z(X)
)

and RY(X) := D
(
RZ(X)

)
.

Assume that the conditional VAE (E , D) and the underlying multi-target quantile regression are trained ide-
ally, and that the decoder D preserves the relative order of expected volume in the sense of Definition 2. Then
APR’s kNN-localized target-space regions are no larger in expected volume than the non-localized regions, i.e.,

EX

[
|Rk

Y(X)|
]

≤ EX

[
|RY(X)|

]
.

The above result demonstrates that the uniform k-NN weighting function improves the predictive efficiency
of uncertainty regions while ensuring that the coverage is achieved. The improvement mainly comes from
the concentration of Gaussian random variables in Z when the CVAE is ideally learned. We report the
extensive empirical results below to support the theoretical insights.

11



Under review as submission to TMLR

Remark 2. Assumptions and generality of Theorem 2. Theorem 2 is an efficiency result (region
size) and is not required for the marginal validity guarantee in Theorem 1. Its assumptions are stylized
sufficient conditions that make the comparison analytically tractable. First, the “Gaussian latent” condition
is motivated by the standard VAE prior Z ∼ N (0, I); exact Gaussianity is idealized, but the same concen-
tration intuition extends to approximately isotropic sub-Gaussian / log-concave latent distributions where
high-probability mass concentrates. Second, “ideal” training of the underlying multi-target quantile model is
used to simplify the geometry of the uncalibrated region in Z (approximately radial / symmetric), enabling
clean volume comparisons. Third, the decoder assumption (preserving relative order of expected volume) is
a sufficient regularity condition. For example, if the decoder D is approximately bi-Lipschitz on the relevant
latent region, i.e., there exist constants 0 < c ≤ C such that

c∥z1 − z2∥ ≤ ∥D(z1) − D(z2)∥ ≤ C∥z1 − z2∥,

then volumes scale within constants: cd|R| ≤ |D(R)| ≤ Cd|R|, which preserves ordering up to multiplicative
factors. In practice, these assumptions are not expected to hold exactly; rather, Theorem 2 provides a princi-
pled explanation of when localization yields smaller regions (heterogeneity + concentrated representations),
which we corroborate empirically.

5 Experiments and Results

In this section, we present the experimental evaluation of the proposed APR method, comparing it against
a naive baseline and the state-of-the-art SOTA method. We discuss the results in terms of the validity and
size of the prediction region area (generally interpreted as hypervolume). For simplicity, we refer to this as
“area” throughout the paper.

5.1 Experimental Setup

Datasets. We employed multiple real-world datasets, consistent with those used in Romano et al. (2019);
Feldman et al. (2023), and additional datasets spanning three broad application domains: 1) Healthcare,
2) Social sciences, and 3) Engineering. These datasets include Communities and Crime Dataset (Commu-
nities_2, Communities_3, Communities_4 for two, three, and four targets respectively) Redmond (2002),
a dataset on physicochemical properties of protein tertiary structure (Bio) Rana (2013), House Sales in
King County, USA (House) hou (2015), Blog feedback (Blog) Buza (2014), and the AI4I 2020 Predictive
Maintenance Datasets (Maint._2, Maint._3, and Maint._4 for two, three, and four targets respectively)
mis (2020). We additionally evaluate on the BIWI Kinect Head Pose dataset Fanelli et al. (2013) (denoted
BIWI_2/, BIWI_3 depending on the number of pose targets), where each example is a face image and the
targets are head-pose angles. Following the experimental protocol used in our prior draft, we featurize each
image by flattening it to a 307,200-dimensional vector and then reducing the dimension to 3,072 via PCA
before training. This ensures that the k-NN localization is performed on a low-dimensional, well-conditioned
representation rather than in the raw pixel space. For datasets that originally featured 1-D targets (such as
Bio, House, and Blog), we adapted them to include 2-D targets, following the approach in Feldman et al.
(2023), making them appropriate for multi-target regression tasks. Further details on the number of targets
and training, testing, validation, and calibration samples for each dataset are provided in Appendix A.2.

Configuration of algorithms and baselines. We compare two variants of our proposed APR method
wrapped around SOTA, namely, APR-U (with uniform weights) and APR-W (with non-uniform weights),
against baseline methods including Naive (independent CP for each target variable) and SOTA Feldman
et al. (2023). Unless otherwise stated, we set the desired coverage level to (1 − α) = 0.9. We additionally
evaluate α ∈ {0.1, 0.05} (i.e., 90% and 95% prediction regions) and report α = 0.05 results in Appendix A.3.
We focus on these two operating points because very small α (e.g., α < 0.01) often yields extremely large
multi-target regions that are difficult to visualize and compare meaningfully across datasets. For APR, we
choose the neighborhood size k via a systematic sweep over k ∈ [0.3m, 0.9m] (where m = |Dcal|) and select
the value that minimizes the prediction-region area; Table 5 reports the resulting average k values. We split
the dataset as follows: 20% for testing, 16% for validation (used for early stopping), 12.8% for calibration,
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Relative Reduction(%) Reduction(%)
Dataset Targets Methods Cov. Region Area ↓ from Naive ↑ from SOTA ↑

BIWI_2 2

Naive 0.92 1.74 – –
SOTA 0.91 1.18 32.42% –
APR-U 0.90 1.10 37.03% 6.81%
APR-W 0.89 1.00 42.61% 15.08%

BIWI_3 3

Naive 0.93 3.06 – –
SOTA 0.92 1.28 57.95% –
APR-U 0.91 1.17 61.63% 8.76%
APR-W 0.90 1.00 67.27% 22.17%

Community_2 2

Naive 0.90 2.36 – –
SOTA 0.91 1.07 54.59% –
APR-U 0.89 1.01 57.28% 5.91%
APR-W 0.89 1.00 57.57% 6.55%

Community_3 3

Naive 0.90 4.99 – –
SOTA 0.90 1.10 77.94% –
APR-U 0.91 1.02 79.65% 7.75%
APR-W 0.90 1.00 79.96% 9.18%

Community_4 4

Naive 0.90 11.60 – –
SOTA 0.91 1.16 90.02% –
APR-U 0.90 1.03 91.16% 11.37%
APR-W 0.90 1.00 91.38% 13.56%

Bio 2

Naive 0.90 1.17 – –
SOTA 0.90 1.00 14.33% –
APR-U 0.90 1.01 13.60% -0.86%
APR-W 0.90 1.01 13.70% -0.74%

House 2

Naive 0.90 1.18 – –
SOTA 0.90 1.04 11.52% –
APR-U 0.89 1.00 14.91% 3.83%
APR-W 0.89 1.00 15.05% 3.98%

Blog 2

Naive 0.90 1.13 – –
SOTA 0.90 1.20 -5.98% –
APR-U 0.87 1.01 10.74% 15.78%
APR-W 0.87 1.00 11.73% 16.71%

Maint._2 2

Naive 0.90 22.03 – –
SOTA 0.99 6.96 68.41% –
APR-U 0.86 1.00 95.46% 85.63%
APR-W 0.95 1.01 95.42% 85.51%

Maint._3 3

Naive 0.91 4.87e2 – –
SOTA 0.98 1.44 99.70% –
APR-U 0.88 1.17 99.76% 18.87%
APR-W 0.94 1.00 99.79% 30.56%

Maint._4 4

Naive 0.91 1.24e4 – –
SOTA 0.98 1.39 99.99% –
APR-U 0.98 1.00 99.99% 28.20%
APR-W 0.87 1.00 99.99% 28.12%

Table 1: Coverage rates, relative region size, and reduction in region area size of APR relative to SOTA
method in target space Y presented for eleven datasets with multiple targets at α = 0.1. Results for each
dataset are averaged over 20 experimental runs with standard errors provided. Detailed raw experimental
data and standard errors are provided in Appendix A.3.

and the remaining 51.2% for training. This is achieved by first allocating 20% of the dataset to testing.
Then, from the remaining data, 20% is set aside for validation, 20% of what remains after that is used for
calibration, and the rest is used for training. To provide a common basis for comparison, we set the latent
space Z for SOTA and APR to r = 3 and evaluated performance (coverage and prediction region area).
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Relative Reduction(%) Reduction(%)
Dataset Targets Methods Cov. Region Area ↓ from Naive ↑ from SOTA ↑

BIWI_2 2

Naive 0.97 2.60 – –
SOTA 0.96 1.25 51.86% –
APR-U 0.94 1.08 58.42% 13.63%
APR-W 0.93 1.00 61.54% 20.10%

BIWI_3 3

Naive 0.96 5.11 – –
SOTA 0.96 1.24 75.81% –
APR-U 0.95 1.18 76.98% 4.84%
APR-W 0.94 1.00 80.43% 19.08%

Blog 2

Naive 0.95 1.34 – –
SOTA 0.96 1.14 14.94% –
APR-U 0.93 1.01 24.43% 11.16%
APR-W 0.93 1.00 25.24% 12.11%

Bio 2

Naive 0.94 1.22 – –
SOTA 0.95 1.02 16.74% –
APR-U 0.94 1.00 17.86% 1.35%
APR-W 0.95 1.00 17.98% 1.49%

Community_3 3

Naive 0.96 6.36 – –
SOTA 0.96 1.14 82.11% –
APR-U 0.95 1.02 84.02% 10.70%
APR-W 0.95 1.00 84.28% 12.15%

Community_4 4

Naive 0.95 13.72 – –
SOTA 0.96 1.12 91.86% –
APR-U 0.95 1.03 92.53% 8.19%
APR-W 0.95 1.00 92.71% 10.45%

Community_2 2

Naive 0.96 2.82 – –
SOTA 0.96 1.08 61.70% –
APR-U 0.95 1.01 64.26% 6.68%
APR-W 0.95 1.00 64.55% 7.42%

House 2

Naive 0.95 1.30 – –
SOTA 0.95 1.07 17.58% –
APR-U 0.94 1.00 22.79% 6.33%
APR-W 0.94 1.00 22.96% 6.53%

Maint._2 2

Naive 0.94 107.45 – –
SOTA 0.99 8.92 91.70% –
APR-U 0.92 1.00 99.07% 88.79%
APR-W 0.97 1.07 99.00% 87.98%

Maint._3 3

Naive 0.95 3275.57 – –
SOTA 0.98 4.24 99.87% –
APR-U 0.93 1.00 99.97% 76.41%
APR-W 0.97 1.00 99.97% 76.35%

Maint._4 4

Naive 0.95 210671.15 – –
SOTA 0.97 10.87 99.99% –
APR-U 0.93 1.13 100.00% 89.62%
APR-W 0.99 1.00 100.00% 90.80%

Table 2: Coverage rates, relative region size, and reduction in region area size of APR relative to SOTA
method in target space Y presented for eleven datasets with multiple targets at α = 0.05. Results for each
dataset are averaged over 20 experimental runs with standard errors provided. Detailed raw experimental
data and standard errors are provided in Appendix A.3.
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The Naive and SOTA methods were implemented using the official code available at https://github.com/
Shai128/mqr. The experiments were run on a machine with Rocky Linux 8.10 (Green Obsidian) OS, an
AMD EPYC 7573X 32-Core Processor, and two NVIDIA A40 GPUs (each with 46 GB of memory), using
GPU Driver Version 555.42.02 and CUDA Version 12.5.

Evaluation methodology. We evaluate all methods using two metrics: 1) coverage and 2) prediction
region area. Coverage is computed as the proportion of test samples for which the correct multi-target
output is included within the predicted region. The prediction region area is calculated by discretizing
the target output space Y into a grid and counting the number of grid points within the prediction region
Feldman et al. (2023). We report coverage, region area, and the percentage reduction in region area relative
to the Naive and SOTA baselines. When needed (e.g., in Figures 5–6), we normalize region areas by the
smallest method so that the best method has relative area = 1.0. The results reported in this work average
over 20 runs across all methods and datasets. Unless otherwise stated, we set the desired coverage level to
(1−α) = 0.9 and also report results for α ∈ {0.1, 0.05}. We select the hyperparameter value λ using validation
data. To choose k for the test input-conditioned quantile threshold in APR, we performed a systematic search
between 30% and 90% of the calibration set, selecting the k value that provides the smallest region size in
the validation phase. We provide the average k value (as a percentage of the calibration set) used by APR
across all datasets in Appendix A.2.

Region Relative Reduction(%)
Dataset Targets Methods Cov. Area ↓ Region Area ↓ from SOTA ↑

Community_2 2
SOTA 0.89 21354.32 1.03 –
APR-U 0.89 20943.52 1.01 1.92%
APR-W 0.89 20728.20 1.00 2.93%

Community_3 3
SOTA 0.92 19500.43 1.08 –
APR-U 0.90 18288.69 1.01 6.21%
APR-W 0.90 18107.41 1.00 7.14%

Community_4 4
SOTA 0.91 23378.38 1.09 –
APR-U 0.93 21758.72 1.01 6.93%
APR-W 0.93 21504.10 1.00 8.02%

Bio 2
SOTA 0.91 18869.40 1.07 –
APR-U 0.89 17709.60 1.00 6.15%
APR-W 0.89 17645.01 1.00 6.49%

House 2
SOTA 0.90 17013.68 1.06 –
APR-U 0.88 16158.43 1.00 5.03%
APR-W 0.88 16130.17 1.00 5.19%

Blog 2
SOTA 0.89 18363.30 1.03 –
APR-U 0.89 18075.51 1.01 1.57%
APR-W 0.88 17818.78 1.00 2.97%

Maint._2 2
SOTA 0.95 26836.81 1.00 –
APR-U 0.94 26468.54 1.02 1.37%
APR-W 0.94 26426.70 1.00 1.53%

Maint._3 3
SOTA 0.95 19941.66 1.02 –
APR-U 0.96 19700.93 1.00 1.21%
APR-W 0.96 19649.40 1.00 1.47%

Maint._4 4
SOTA 0.93 12832.50 1.01 –
APR-U 0.93 12721.29 1.00 0.87%
APR-W 0.93 12689.18 1.00 1.12%

Table 3: Coverage rates, relative region size, and reduction in region area size of APR relative to SOTA
method in latent space Z presented for eleven datasets with multiple targets. Results for each dataset are
averaged over 20 experimental runs, with standard errors provided.

5.2 Synthetic Data for Heterogeneity Analysis

We perform experiments on two synthetic datasets shown in Figure 8 to demonstrate the efficacy of APR in
constructing smaller prediction regions when the conditional distribution P (Y |X) is highly heterogeneous,
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Figure 4: Relative region areas for Maintenance datasets. a) shows the relative region areas for APR, SOTA, and
Naive methods in the target space Y, while b) shows the areas for APR and SOTA methods in the latent space Z
over 20 runs. The results show that in both Y and Z spaces, APR-based methods produce the smallest region (with
relative area = 1), more prominent in our target space of interest Y.

Figure 5: Relative region areas for House, Bio., and Blog datasets. a) shows the relative region areas for APR,
SOTA, and Naive methods in the target space Y, while b) shows the areas for APR and SOTA methods in the latent
space Z over 20 runs. The results show that in both Y and Z spaces, APR-based methods generally produce the
smallest region (with relative area = 1).

Figure 6: Relative region areas for Community and Crimes datasets. a) shows the relative region areas for APR,
SOTA, and Naive methods in the target space Y, while b) shows the areas for APR and SOTA methods in the latent
space Z over 20 runs. The results show that in both Y and Z spaces, APR-based methods produce the smallest
region (with relative area = 1).
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Figure 7: Empirical coverage for APR-based methods, SOTA, and Naive methods in target space Y (for Naive) and
latent space Z over 20 runs. The results show that all methods generally achieve empirical coverage closer to the
target level of 0.9.

Table 4: Final results on clustered_close_1d and clustered_spread_1d with test ratio 0.2 and calibration
ratio 0.1. Reported values are averaged over 20 runs.

Dataset Method Area Rel. area Reduction vs. SOTA (%)

clustered_close_1d
SOTA 100.55 1.37 –
APR 73.37 1.00 27.01

clustered_spread_1d
SOTA 274.60 1.66 –
APR 165.02 1.00 39.91

particularly when the input data X exhibits clustering. Since APR uses localized calibration via k-NN
weights, it can effectively restrict the calibration set to inputs that are most likely drawn from the same
local data generation process as the test input Xtest. This dramatically reduces the prediction region size
compared to standard Conformal Prediction (CP) methods that calibrate globally.

Dataset Generation. Both synthetic datasets feature a 1-dimensional input X ∈ R and a 2-dimensional
target Y = (Y1, Y2) ∈ R2. The data is generated from a mixture of K = 3 Gaussian clusters, where the
cluster index K is sampled uniformly, K ∼ Unif{1, 2, 3}.

For the clustered_spread_1d dataset, we use three well-separated clusters centered at −3, 0, and 3:

µ
(spread)
1 = −3, µ

(spread)
2 = 0, µ

(spread)
3 = 3,

X | K = k ∼ N
(
µ

(spread)
k , σ2

spread
)
,

for a small variance σ2
spread > 0 so that the three components are clearly separated on the real line. This

scenario represents strong input clustering and heterogeneity.

For the clustered_close_1d dataset, we instead place the clusters closer together, with centers at −1, 0,
and 1:

µ
(close)
1 = −1, µ

(close)
2 = 0, µ

(close)
3 = 1,

X | K = k ∼ N
(
µ

(close)
k , σ2

close
)
,

with σ2
close > σ2

spread so that the components overlap and the resulting clusters in X are much less clearly
separated. This represents weak input clustering.
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Figure 8: Synthetic clustered datasets used in our experiments. Panel (a) shows the clustered_close_1d data, where
the one-dimensional covariate X is approximately unimodal and the two targets (Y1, Y2) vary smoothly with X. Panel
(b) shows the clustered_spread_1d data, where X forms three well-separated clusters and the corresponding targets
form distinct, cluster-specific patterns.The clear separation of clusters in clustered_spread_1d highlights the strong
input-dependent heterogeneity that APR exploits.

In both synthetic datasets, the two targets are generated from smooth nonlinear functions of X with inde-
pendent Gaussian noise:

Y1 = X + 0.5 sin(2X) + ε1,

Y2 = 0.5X2 + ε2,

ε1, ε2
i.i.d.∼ N (0, σ2

y),

for some noise variance σ2
y > 0. Thus, the conditional distribution P (Y | X) is smooth within each cluster,

while the marginal distribution of X provides the main source of heterogeneity in the input space.

The results for the synthetic data experiments in Table4 show that APR substantially shrinks the prediction
region area relative to SOTA, with the largest gains appearing on clustered_spread_1d where the input
clusters are well separated. In this setting, APR can focus its kernel weights on calibration inputs drawn
from the same cluster as the test input, yielding an area reduction of 39.91% compared to SOTA, whereas
on clustered_close_1d the corresponding reduction is 27.01%. These synthetic experiments therefore
provide a controlled illustration of APR’s main advantage: when covariates form well-separated clusters,
localized calibration around each test input produces markedly tighter multi-target prediction regions without
compromising coverage.

5.3 Results and Discussion

Our experimental results are summarized in Tables 1 and 3. Table 1 shows the coverage, relative region area,
and reduction in prediction region area with respect to Naive and SOTA, the state-of-the-art multi-target
CP method in the target output space Y. Table 3 shows similar results for the best-performing variant of
APR (APR-W) and SOTA in the latent space Z. Figure 7 shows the empirical coverages obtained by the
Naive, SOTA, and APR-based methods. We summarize our key experimental findings below.

Empirical validation of the APR theory. We make the following observations from Tables 1 and 3,
and Figures 4, 5, 6, and 7. 1) APR methods generally achieve empirical marginal coverage on all datasets,
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validating Theorem 1. 2) APR’s coverage distribution in Figures 7 is closer to the target coverage level
(0.9), providing robust empirical support for the theoretical guarantee in Theorem 1. 3) Results in Tables 1
and 3 demonstrate the effectiveness of APR in reducing the prediction region area over the SOTA method,
which uses a uniform threshold for all test inputs. 4) Across both target space Y and latent space Z, APR
constructs smaller prediction regions than the baseline for all datasets, which empirically shows that the
decoder preserved the relative order of the expected volume when transforming from Z to Y space as posited
in Theorem 2.

APR-based methods vs. state-of-the-art. We make the following observations from Tables 1 and 3. 1)
All multi-target CP methods, including APR variants and SOTA, produce smaller prediction regions when
compared to the Naive baseline. This result demonstrates the importance of joint reasoning by exploiting
the correlations between target variables to construct prediction regions. 2) APR-W variant with non-
uniform weights for k-NN calibration examples performs better than APR-U in most cases. This result
demonstrates the importance of distance-based non-uniform weighting. 3) While all methods approximately
achieve the nominal target coverage level, APR-based methods consistently produced significantly smaller
and more adaptive prediction regions. When compared to the state-of-the-art SOTA method, APR achieves
a maximum reduction of 85.51% in the prediction region area in the target output space Y. This result
demonstrates the importance of the test input-conditional quantile threshold approach in reducing prediction
region sizes. Further detailed experimental results and comparisons showcasing the efficacy of APR-based
methods over baseline methods are provided in Appendix A.3.

6 Summary and Future Work

This paper studied a provable conformal prediction approach for multi-target regression tasks called Adap-
tive Prediction Regions (APR). APR relies on test input-conditioned quantile threshold to generate small
and valid prediction regions that adapt to each test input. Our experiments on diverse real-world datasets
demonstrate that APR significantly reduces the size of prediction regions over state-of-the-art methods. Fu-
ture work includes conformal training for multi-target regression and deployment in healthcare applications.
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A Appendix

A.1 Technical Proof

Theorem 1. Assume the calibration examples {(Xi, Yi)}i∈Dcal
and the test example (Xtest, Ytest) are

exchangeable. Let Vi denote the nonconformity score computed for (Xi, Yi) (and similarly Vtest for
(Xtest, Ytest)). For any center X, define normalized weights

w̄j(X) := w(X, Xj)∑
ℓ∈Dcal

w(X, Xℓ)
, j ∈ Dcal,

and the weighted empirical CDF

F̂X(t) :=
∑

j∈Dcal

w̄j(X) 1{Vj ≤ t}.

Let the corresponding weighted γ-quantile be

q̂X(γ) := inf{t : F̂X(t) ≥ γ}.

Choose the corrected global level α̃ according to Eq. 8. Then the APR prediction region R̂Y(Xtest) constructed
using q̂APR

Xtest
= q̂Xtest(α̃) satisfies the distribution-free finite-sample marginal coverage guarantee

P{Ytest ∈ R̂Y(Xtest)} ≥ 1 − α.

Proof. The main subtlety is that localization uses weights w(Xtest, ·) (or a k-NN neighborhood) that depend
on the realized test input Xtest; thus, the subset of scores receiving nonzero weight is not, in general, an
exchangeable subset. Hence, we do not rely on the exchangeability of the localized neighborhood. Instead, we
follow the localized conformal prediction argument Guan (2023) that restores finite-sample marginal validity
via a corrected global confidence level.

For each calibration center Xi, define the (pseudo-test) inclusion indicator

Ai(γ) := 1{Vi ≤ q̂Xi
(γ)}, i ∈ Dcal.

By construction of α̃ (Eq. 8), we have

1
m

∑
i∈Dcal

Ai(α̃) ≥ 1 − α, m := |Dcal|. (1)

Now define the corresponding test inclusion indicator

Atest(α̃) := 1{Vtest ≤ q̂Xtest(α̃)}. (2)

At this point, we emphasize that exchangeability of {(Xi, Yi)} does not imply exchangeability of the derived
indicators (A1, . . . , Am, Atest); indeed, localization is test-adaptive through Xtest. Instead, the guarantee in
(3) follows from the localized conformal prediction argument based on pseudo-test centers (Guan (2023)),
which analyzes exactly the corrected level construction in Eq. 8. In particular, under exchangeability of
the data and for any nonnegative normalized weights {w̄j(X)}, choosing α̃ so that the empirical average
pseudo-test inclusion in (1) is at least 1 − α implies the finite-sample marginal validity of the held-out test
point, i.e.,

P{Atest(α̃) = 1} = P{Vtest ≤ q̂Xtest(α̃)} ≥ 1 − α. (3)

Finally, by definition of the APR prediction region,

Atest(α̃) = 1 ⇐⇒ Ytest ∈ R̂Y(Xtest). (4)

Combining (3) and (4) proves P{Ytest ∈ R̂Y(Xtest)} ≥ 1 − α.
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Theorem 2. Suppose all calibration samples (Xi, Yi) ∈ Dcal and the test pair (X, Y ) are exchangeable. Let
Rk

Z(X) be the kNN-localized latent-space prediction region produced by APR (i.e., constructed using weights
supported on the k nearest calibration inputs to X), and let RZ(X) be the corresponding non-localized (global)
latent-space prediction region obtained without kNN localization. Define the decoded target-space regions

Rk
Y(X) := D

(
Rk

Z(X)
)

and RY(X) := D
(
RZ(X)

)
.

Assume that the conditional VAE (E , D) and the underlying multi-target quantile regression are trained
ideally, and that the decoder D preserves the relative order of expected volume in the sense of Definition 2.
Then APR’s kNN-localized target-space regions are no larger in expected volume than the non-localized
regions, i.e.,

EX

[
|Rk

Y(X)|
]

≤ EX

[
|RY(X)|

]
.

Proof. Under the condition that the conditional VAE (E , D) is trained ideally such that Zy = E(Y |X) ∼
N (0, 1)r, where r is the dimensionality of the latent space. If the underlying multi-target quantile regression
model is also trained ideally, then it has a threshold that is uniform in each direction in the Z space. The
ideal training ensures that the latent representations are isotropic and standardized, making the calibrated
region in Z a multi-dimensional ball (or hyper-sphere) centered at the mean. Thus, quantifying the volume
of the calibrated region in Z space reduces to quantifying the radius of this ball, as the volume is c ·vr where
c is a dimension-dependent constant and v is the radius. Since the decoder preserves the relative order of
expected volumes and vr is monotonic in v for v > 0, comparing the (expected) radii suffices to compare the
(expected) volumes.

Now the question is how to quantify the radius produced by the two region-generating procedures RZ(X)
and Rk

Z(X). We establish this through the following lemmas and then combine them.

Lemma 1. The radius v produced by RZ(X) satisfies

v ≥
√

2 log(1/α).

Proof. Given a Gaussian distribution N (0, 1), the well-known tail bound for a single direction is:

P (X − E[X] ≥ v) ≤ exp(−v2/2σ2).

where σ = 1 in our case.
Setting exp(−v2/2) ≤ α yields

v ≥
√

2 log(1/α),

To achieve coverage at least 1 − α, the radius must satisfy this bound (noting that the actual quantile may
be smaller, but this provides a conservative estimate used for the universal threshold).

Lemma 2. The expected radius produced by Rk
Z(X) satisfies

EX [vk(X)] ≤
√

2
π

+ Ḡ,

where Ḡ = EX [G(X)] and G(X) = vk(X) − E(X).

Proof. Because the proposed APR algorithm generates the region Rk
Z(X) in a test-conditional way, for each

realization of X, the quantile threshold and the region Rk
Z(X) are different. We analyze the expected radius,

accounting for randomness over all possible realizations of X.

Denote G(X) = vk(X) − E(X) as the distance between E(X) (the center in Z for X) and the adaptive
quantile radius vk(X) determined by the k-NN of X in Z. Let Ḡ = E[G(X)]. Recall that the PDF of a
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Gaussian distribution N (0, 1) is P (v) = exp(−v2/2)√
2π

. The expected value of the absolute deviation (folded
normal) is relevant for the typical radius contribution:

EX [vk(X)] =EX [E(X) + G(X)] ≤ EX [E(X)] + Ḡ

=
∫ ∞

0
v · 2 exp(−v2/2)√

2π
dv + Ḡ

(a)=2 · 1√
2π

∫ ∞

0
exp(−u) du + Ḡ

= 2√
2π

+ Ḡ =
√

2
π

+ Ḡ,

where (a) follows from the substitution u = v2/2, so du = v dv.

Combining Lemmas 1 and 2, if Ḡ ≤
√

2 log(1/α) −
√

2/π, then EX [vk(X)] ≤ v. This holds because Ḡ
represents the expected additional margin due to variability in the k-NN estimates. Due to the concentration
properties of Gaussian random variables in the ideally learned Z (where most mass is near the origin), the
local k-NN samples exhibit low variability for sufficiently large k, bounding Ḡ sufficiently small to satisfy
the inequality, as supported by the empirical results.

This implies
EX [|Rk

Z(X)|] ≤ EX [|RZ(X)|].
By the assumption that the decoder D preserves the relative order of the expected volume, we have

EX [|D(Rk
Z(X))|] ≤ EX [|D(RZ(X))|],

or equivalently,
EX [|Rk

Y(X)|] ≤ EX [|RY(X)|].

A.2 Dataset Splits and Hyperparameter k for k-NN

This section provides further details about the number of data points used for training, testing, validation,
calibration (for other methods), and average k calibration inputs (for both variants of APR) across all
datasets. To choose k for the test input-conditioned quantile threshold in APR, we performed a systematic
search within 30% to 90% of the calibration set (i.e., we sweep k ∈ {0.3m, 0.4m, . . . , 0.9m} with m = |Dcal|)
and report the best-performing k; we also observe stable behavior across a broad range of k values., selecting
the k value that provides the smallest region size. d is the number of target outputs for each multi-target
regression task.

Dataset Targets Training Testing Validation Calibration mean k (%)
BIWI_2 2 512 200 160 128 104.00(82.00%)
BIWI_3 3 512 200 160 128 104.00(82.00%)

Community_2 2 1020 399 319 256 180.15 (70.4%)
Community_3 3 1020 399 319 256 189.15 (73.9%)
Community_4 4 1020 399 319 256 203.25 (79.3%)

Bio 2 5120 2000 1600 1280 1100.80 (86.0%)
House 2 11065 4323 3458 2767 1259.75 (45.5%)
Blog 2 11264 4400 3520 2816 1239.10 (44.0%)

Maint._2 2 1024 400 320 256 152.80 (60.0%)
Maint._3 3 1024 400 320 256 168.15 (65.7%)
Maint._4 4 1024 400 320 256 141.20 (55.2%)

Table 5: Number of training, testing, validation, calibration (for other methods), and the number of APR
calibration points k (averaged over 20 runs) across all datasets.
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A.3 Real Experimental Results

GitHub Repository. The code necessary for implementing APR and replicating the results of our paper
can be found in the following anonymous GitHub repository: https://anonymous.4open.science/r/
apr-4C4C/

Compute Machine Specifications: All experiments were conducted on the following hardware and soft-
ware setup:

• Operating System: Rocky Linux 8.10 (Green Obsidian), Processor: AMD EPYC 7573X 32-Core
Processor

• GPUs: Two NVIDIA A40 GPUs (each with 46 GB of memory), GPU Driver Version: 555.42.02,
CUDA Version: 12.5
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Reduction(%) Reduction(%)
Dataset Targets Methods Coverage Region Area ↓ from Naive ↑ from SOTA ↑

BIWI_2 2

Naive 0.92 (0.006) 521.92 (38.24) – –
SOTA 0.91 (0.013) 352.69 (56.76) 32.42% –
APR-U 0.90 (0.013) 328.67 (51.18) 37.03% 6.81%
APR-W 0.89 (0.013) 299.51 (46.15) 42.61% 15.08%

BIWI_3 3

Naive 0.93 (0.008) 12373.15 (1429.73) – –
SOTA 0.92 (0.009) 5202.63 (951.92) 57.95% –
APR-U 0.91 (0.010) 4747.07 (941.92) 61.63% 8.76%
APR-W 0.90 (0.010) 4049.22 (771.71) 67.27% 22.17%

Community_2 2

Naive 0.90 (0.004) 885.48 (26.13) – –
SOTA 0.91 (0.005) 402.07 (12.48) 54.59% –
APR-U 0.89 (0.006) 378.31 (10.36) 57.28% 5.91%
APR-W 0.89 (0.006) 375.74 (10.26) 57.57% 6.55%

Community_3 3

Naive 0.90 (0.006) 21933.56 (1050.76) – –
APR-W 0.90 (0.007) 4394.57 (202.64) 77.94% –
SOTA 0.91 (0.005) 4838.51 (231.29) 79.65% 7.75%
APR-U 0.90 (0.006) 4463.30 (206.48) 79.96% 9.18%

Community_4 4

Naive 0.90 (0.006) 35745.29 (2689.90) – –
SOTA 0.91 (0.004) 3566.06 (292.63) 90.02% –
APR-U 0.90 (0.005) 3160.70 (214.17) 91.16% 11.37%
APR-W 0.90 (0.005) 3082.39 (208.17) 91.38% 13.56%

Bio 2

Naive 0.90 (0.002) 504.75 (7.84) – –
SOTA 0.90 (0.003) 432.41 (6.16) 14.33% –
APR-U 0.90 (0.003) 436.11 (6.31) 13.60% -0.86%
APR-W 0.90 (0.003) 435.61 (6.31) 13.70% -0.74%

House 2

Naive 0.90 (0.002) 384.00 (5.08) – –
SOTA 0.90 (0.002) 339.75 (8.73) 11.52% –
APR-U 0.89 (0.002) 326.75 (9.89) 14.91% 3.83%
APR-W 0.89 (0.002) 326.23 (9.89) 15.05% 3.98%

Blog 2

Naive 0.90 (0.001) 245.15 (6.65) – –
SOTA 0.90 (0.002) 259.81 (11.65) -5.98% –
APR-U 0.87 (0.003) 218.82 (12.99) 10.74% 15.78%
APR-W 0.87 (0.003) 216.41 (12.91) 11.73% 16.71%

Maint._2 2

Naive 0.90 (0.006) 466.12 (173.51) – –
SOTA 0.99 (0.001) 147.27 (15.00) 68.41% –
APR-U 0.86 (0.009) 21.16 (1.45) 95.46% 85.63%
APR-W 0.95 (0.005) 21.34 (1.44) 95.42% 85.51%

Maint._3 3

Naive 0.91 (0.006) 1213850.9 (408676) – –
SOTA 0.98 (0.002) 3590.52 (752.77) 99.70% –
APR-U 0.88 (0.008) 2913.02 (712.51) 99.76% 18.87%
APR-W 0.94 (0.006) 2493.11 (641.75) 99.79% 30.56%

Maint._4 4

Naive 0.91 (0.005) 53031241 (26324344) – –
SOTA 0.98 (0.002) 5957.45 (1298.19) 99.99% –

APR-W 0.98 (0.006) 4277.23 (2066.71) 99.99% 28.20%
APR-U 0.87 (0.010) 4282.11 (2066.65) 99.99% 28.12%

Table 6: Coverage rates, region size, and reduction in region size of APR relative to SOTA method in the
space Y presented for eleven datasets with multiple targets from different areas at α = 0.1.
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Reduction(%) Reduction(%)
Dataset Targets Methods Coverage Region Area ↓ from Naive ↑ from SOTA ↑

Bio 2

Naive 0.94 715.83 – –
SOTA 0.95 596.02 16.74% –
APR-U 0.94 587.96 17.86% 1.35%
APR-W 0.95 587.15 17.98% 1.49%

BIWI_2 2

Naive 0.97 1266.76 – –
SOTA 0.96 609.81 51.86% –
APR-U 0.94 526.68 58.42% 13.63%
APR-W 0.93 487.22 61.54% 20.10%

BIWI_3 3

Naive 0.96 30841.33 – –
SOTA 0.96 7459.55 75.81% –
APR-U 0.95 7098.47 76.98% 4.84%
APR-W 0.94 6036.01 80.43% 19.08%

Blog 2

Naive 0.95 475.96 – –
SOTA 0.96 404.87 14.94% –
APR-U 0.93 359.69 24.43% 11.16%
APR-W 0.93 355.85 25.24% 12.11%

Community_3 3

Naive 0.96 55285.24 – –
SOTA 0.96 9890.66 82.11% –
APR-U 0.95 8832.62 84.02% 10.70%
APR-W 0.95 8688.65 84.28% 12.15%

Community_4 4

Naive 0.95 92377.72 – –
SOTA 0.96 7520.86 91.86% –
APR-U 0.95 6904.66 92.53% 8.19%
APR-W 0.95 6735.23 92.71% 10.45%

Community_2 2

Naive 0.96 1611.00 – –
SOTA 0.96 616.96 61.70% –
APR-U 0.95 575.77 64.26% 6.68%
APR-W 0.95 571.18 64.55% 7.42%

House 2

Naive 0.95 554.69 – –
SOTA 0.95 457.18 17.58% –
APR-U 0.94 428.25 22.79% 6.33%
APR-W 0.94 427.33 22.96% 6.53%

Maint._2 2

Naive 0.94 2045.03 – –
SOTA 0.99 169.80 91.70% –
APR-U 0.92 19.03 99.07% 88.79%
APR-W 0.97 20.42 99.00% 87.98%

Maint._3 3

Naive 0.95 4187810.75 – –
SOTA 0.98 5419.40 99.87% –
APR-U 0.93 1278.50 99.97% 76.41%
APR-W 0.97 1281.79 99.97% 76.35%

Maint._4 4

Naive 0.95 238938747.50 – –
SOTA 0.97 12328.73 99.99% –
APR-U 0.93 1279.99 100.00% 89.62%
APR-W 0.99 1134.18 100.00% 90.80%

Table 7: Coverage rates, region size, and reduction in region size of APR relative to SOTA method in the
space Y presented for eleven datasets with multiple targets from different areas at α = 0.05.
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