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ABSTRACT

The high cost of training Mixture-of-Experts (MoE) models from scratch has
spurred interest in converting pre-trained dense models into sparse MoE models.
However, existing dense-to-sparse MoE methods are constrained by a fundamen-
tal trade-off between initial expert diversity and knowledge inheritance, often re-
quiring extensive post-training to be effective. We address this by proposing a new
expert construction paradigm that repurposes data-driven model compression, and
validate that low-rank factorization is uniquely effective at balancing this trade-off.
Based on this insight, we introduce MIDAS, a framework that crafts specialized
experts by applying low-rank factorization to a base model, guided by distinct
calibration datasets. Under limited compute budgets, MIDAS significantly outper-
forms existing dense-to-sparse approaches through a parameter-efficient strategy
that trains only its gating network and low-rank adapters. Crucially, we demon-
strate that MIDAS improves model stability by mitigating the severe load imbal-
ance found in prior work, while also producing experts with clear, interpretable
specializations that align with established Transformer functional theory. Overall,
MIDAS presents a robust and efficient pathway for MoE construction, addressing
the diversity-knowledge trade-off through an information-preserving approach.

1 INTRODUCTION

The Transformer architecture (Vaswani et al., 2017) has become the cornerstone of modern Large
Language Models (LLMs), enabling unprecedented capabilities in natural language understanding
and generation, as exemplified by models like the GPT series (Radford et al., 2018; 2019; Brown
et al., 2020; Ouyang et al., 2022; OpenAI et al., 2024). A key factor contributing to this success is
the principle of scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022), which shows that model
performance improves with the scale of model parameters, training data, and compute. However, for
conventional dense architectures, this pursuit of scale leads to a prohibitive surge in computational
costs for both training and inference, posing a significant barrier to further progress.

As an alternative, the sparsely-gated Mixture-of-Experts (MoE) architecture (Shazeer et al., 2017)
has emerged as a promising solution to decouple model capacity from computational cost. By ac-
tivating only a subset of parameters (the “experts,” often entire Feed-Forward Network (FFN)) for
each input token, MoE models can achieve the performance of extremely large models while main-
taining a manageable computational footprint. This design offers inherent benefits in computational
efficiency, parallelism, and functional specialization among experts. Nevertheless, training MoE
models presents its own challenges. Training a large-scale MoE model from scratch is exceptionally
resource-intensive. Furthermore, the training dynamics are notoriously difficult to manage; a failure
to develop sufficient diversity among experts often leads to severe load imbalance, where the gating
network disproportionately favors a few experts. This can culminate in representation collapse (Chi
et al., 2022), nullifying the architectural advantages of the MoE paradigm.

To circumvent the prohibitive costs of training from scratch, a prominent line of research focuses
on converting pre-trained dense models into sparse MoE architectures. This dense-to-sparse MoE
conversion aims to inherit the rich knowledge of a foundational model while introducing the com-
putational benefits of sparsity. However, designing an effective conversion strategy is non-trivial.
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Previous approaches relied on two directions: parameter duplication and structural alteration. Pa-
rameter duplication (Komatsuzaki et al., 2023) preserves the exact parameters of the base model by
duplicating its layers to form experts. While this perfectly preserves pre-trained knowledge, it yields
a set of identical experts that lack initial diversity, necessitating extensive post-training to special-
ize. Structural alteration (Zhang et al., 2022b; Zhu et al., 2024; Feng et al., 2025), typically based on
structured pruning or neuron partitioning, creates distinct experts by selectively removing parame-
ters from the original network. While effective at generating diversity, this process fundamentally
alters the model’s architecture, carrying an inherent risk of disrupting the learned synergistic struc-
tures and compromising the integrity of the inherited knowledge.

This landscape reveals a critical, unanswered question: Is it possible to construct a diverse set
of experts while preserving the knowledge integrity? In this work, we introduce the MIxture of
efficient DAta-driven low-rank expertS (MIDAS), a novel framework for specialization through
information-preserving low-rank approximation. The core insight of MIDAS is to repurpose
data-driven model compression as an expert construction algorithm. By applying a low-rank factor-
ization technique guided by distinct calibration data, MIDAS crafts a set of experts that exhibit both
functional diversity and high-fidelity knowledge inheritance. Our main contributions are threefold:

1. We propose a data-driven compression expert construction paradigm, validating the superi-
ority of low-rank factorization over other compression methods and thereby addressing the
fundamental diversity-knowledge trade-off in dense-to-sparse MoE conversion.

2. We demonstrate that MIDAS not only achieves competitive performance on benchmarks
but also improves model stability by mitigating load imbalance issues in prior methods.

3. We verify through in-depth analysis that MIDAS exhibits high expert interpretability, evi-
denced by the alignment of its expert specialization with Transformer functional theory.

2 RELATED WORK

Dense-to-Sparse MoE Conversion. The significant computational cost of training MoE models
from scratch has spurred research into converting pre-trained dense models into sparse MoE archi-
tectures. An early approach in this direction is MoEfication (Zhang et al., 2022b), which conceptu-
alizes the FFN layers of a Transformer as a collection of latent experts. It then employs clustering
algorithms, based either on parameter similarity or data-driven co-activation patterns, to partition
the neurons within a single FFN into distinct expert groups. While MoEfication established a foun-
dational framework for decomposition, subsequent work identified that its strict partitioning could
disrupt important functional synergies between neurons. Building upon these insights, Llama-MoE
(Zhu et al., 2024) proposed more sophisticated, data-driven strategies that allow for partial neuron
overlap between experts. This neuron sharing approach, which identifies and preserves universally
important neurons while assigning specialized ones to different experts, better retains the founda-
tional knowledge of the base model while still fostering expert diversity. More recently, DIVE (Feng
et al., 2025) introduced an alternative perspective, leveraging structured pruning techniques to con-
struct experts. By observing that a dense model yields functionally diverse sub-networks when
pruned with different domain-specific calibration data, DIVE repurposes this sensitivity to create a
set of specialized experts, thereby enhancing the initial diversity of the resulting MoE model.

Data-Driven Parameter Space Reduction in LLMs. The goal of creating smaller, specialized
experts from a larger network shares conceptual parallels with the field of model compression. One
major branch of this field is structured pruning, which aims to remove entire architectural com-
ponents. For instance, LLM-Pruner (Ma et al., 2023) identifies functionally inseparable ”coupled
structures” to minimize architectural disruption. Shifting from component removal to proactive
transformation, SliceGPT (Ashkboos et al., 2024) reshapes the model into a more compressible form
by leveraging the computational invariance in Transformers with RMSNorm. In contrast, FLAP
(An et al., 2024) removes channels with low fluctuation across calibration samples and applies a
retraining-free bias compensation to mitigate performance loss by approximating the contribution
of the pruned channels. An alternative paradigm to structural removal is low-rank factorization.
Early works sought to refine truncation criteria; FWSVD (Hsu et al., 2022), for instance, moved
beyond relying solely on singular value magnitude by utilizing Fisher information to assess param-
eter importance for a target task. Subsequently, ASVD (Yuan et al., 2024) identified the critical
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limitation of ignoring input activations, addressing this by scaling the weight matrix and optimizing
for layer-wise compression sensitivity. However, these methods lacked a direct mapping between
singular values and compression loss. SVD-LLM (Wang et al., 2025) resolves this by introducing
“truncation-aware data whitening”, which uses a whitening matrix from calibration data to establish
a theoretically-proven equivalence between singular value magnitudes and compression loss.

3 METHODOLOGY

3.1 PRELIMINARY

Current dense-to-sparse MoE conversion approaches are governed by a fundamental trade-off be-
tween initial expert diversity and the fidelity of knowledge inheritance. Parameter duplication (Ko-
matsuzaki et al., 2023), for instance, ensures perfect knowledge inheritance by replicating origi-
nal layers but yields identical experts that lack initial diversity. Conversely, approaches based on
structural alteration, such as partitioning neurons (Zhang et al., 2022b) or structured pruning (Feng
et al., 2025), generate diverse experts but risk disrupting learned patterns and compromising inher-
ited knowledge. This dilemma motivates our work to explore a path toward information-preserving
expert construction. To this end, we conduct a preliminary study on compression techniques, in-
cluding structured pruning (FLAP (An et al., 2024), LLM-Pruner (Ma et al., 2023)) and low-rank
factorization (SVD-LLM (Wang et al., 2025)), to characterize their properties regarding knowledge
inheritance and to assess their potential for generating expert diversity.

Initial Expert Diversity. We posit that a key prerequisite for model compression methods to gen-
erate diverse experts is the high sensitivity of their mechanisms to variations in the data distribution.
Our evaluation, therefore, examines how the choice of calibration data impacts the downstream per-
formance of models compressed by structured pruning and low-rank factorization. We compress
Llama-2-7B (Touvron et al., 2023b) using FLAP, LLM-Pruner, and SVD-LLM, each with several
distinct calibration data (full results are in Appendix A.2).

Table 1: CSS of Llama-2-7B after 20% compression via
FLAP, LLM-Pruner, and SVD-LLM. Bold values indicate
the largest CSS in each benchmark.

Method ARC-E HellaS. GSM8K C4 WikiText-2

FLAP 0.044 0.025 0.010 0.43 1.14
LLM-Pruner 0.039 0.021 0.009 0.29 1.05
SVD-LLM 0.157 0.094 0.011 11.02 29.59

This sensitivity is measured by
our proposed Calibration Sensitivity
Score (CSS), defined as the absolute
difference between a method’s max-
imum and minimum performance
scores on a task across various cali-
bration data. A higher CSS indicates
greater sensitivity to the calibration
data, implying a stronger potential for
creating functionally distinct experts.

Table 2: Performance of Llama-2-7B after 20% compres-
sion via SVD-LLM, using different calibration data. Bold
and underline values indicate the best and worst performing
calibration data for each benchmark, respectively.

Calibration Data ARC-E HellaS. GSM8K C4 WikiText-2

C4 0.502 0.490 0.025 24.23 32.60
WikiText-2 0.536 0.478 0.021 34.70 11.62

Alpaca 0.580 0.504 0.022 28.77 35.25
OpenBookQA 0.659 0.527 0.025 35.25 36.37

PIQA 0.569 0.572 0.032 35.25 41.21

CSS 0.157 0.094 0.011 11.02 29.59

For proper interpretation of the re-
sults, it is crucial to note the underly-
ing metrics used for calculating CSS:
C4 and WikiText-2 are measured
by perplexity (PPL, lower is better),
whereas all other benchmarks are
measured by accuracy (ACC, higher
is better). The results in Table 1 show
a stark contrast between the meth-
ods. SVD-LLM exhibits a dramat-
ically higher CSS across nearly all
benchmarks compared to the struc-
tured pruning approaches. For instance, its performance spread of 0.157 on ARC-Easy is approxi-
mately 4x larger than that of FLAP (0.044) and LLM-Pruner (0.039).

Table 2 further reveals that this high sensitivity is not random but rather reflects a meaningful func-
tional bias injected by the calibration data. A clear pattern emerges where models calibrated on plain
text corpora (e.g., C4, WikiText-2) tend to yield better performance on language modeling bench-
marks, whereas those calibrated on question-answering datasets (e.g., OpenBookQA, PIQA) pro-
duce models better suited for reasoning tasks. For example, the model calibrated on OpenBookQA
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achieves the highest accuracy (0.659) on ARC-Easy, while the model calibrated on WikiText-2 at-
tains the best perplexity (11.62) on its corresponding benchmark.

This variance confirms that SVD-LLM can produce functionally distinct models from a single
source. While lower sensitivity might be desirable for general-purpose compression, SVD-LLM’s
high sensitivity and its ability to induce a predictable, task-aligned functional bias make it an excep-
tionally effective mechanism for constructing a diverse set of specialized experts.

Knowledge Inheritance Fidelity. Beyond creating diversity, an effective expert construction
mechanism must also preserve the foundational knowledge of the original model with high fidelity.
We assess this critical property by compressing Llama-7B (Touvron et al., 2023a) and compar-
ing SVD-LLM against leading structured pruning methods, FLAP and LLM-Pruner. The results,
detailed in Table 3, reveal a critical trade-off: while FLAP and LLM-Pruner achieve competitive
accuracy on downstream tasks, their foundational language modeling capabilities collapse under
aggressive compression. At an 80% ratio, their perplexity scores surge dramatically, indicating a
catastrophic loss of core linguistic competence. In stark contrast, SVD-LLM exhibits a much more
graceful degradation, maintaining significantly better perplexity across all compression levels. This
superior preservation of the model’s fundamental knowledge demonstrates that SVD-LLM inherits
knowledge with higher fidelity, providing a more robust foundation for building experts that can be
effectively fine-tuned.

Table 3: Performance of Llama-7B compressed by various compression methods under different
compression ratios. Bold values indicate the best performing methods at each compression ratio.

Compression Ratio Method ARC-E HellaS. GSM8K Average C4 WikiText-2

0% Vanilla 0.75 0.57 0.09 0.47 7.34 5.68

20%
FLAP 0.67 0.71 0.05 0.48 9.20 6.37

LLM-Pruner 0.65 0.69 0.04 0.46 9.20 6.57
SVD-LLM 0.67 0.55 0.08 0.43 12.23 7.73

40%
FLAP 0.56 0.58 0.03 0.39 14.47 8.78

LLM-Pruner 0.50 0.50 0.03 0.34 18.29 11.99
SVD-LLM 0.59 0.52 0.07 0.39 15.63 9.27

60%
FLAP 0.38 0.37 0.01 0.25 35.25 17.45

LLM-Pruner 0.32 0.31 0.01 0.22 92.88 50.50
SVD-LLM 0.42 0.31 0.04 0.26 26.26 15.00

80%
FLAP 0.30 0.29 0.01 0.20 457.15 260.47

LLM-Pruner 0.27 0.27 0.00 0.18 1030.19 605.62
SVD-LLM 0.23 0.14 0.02 0.13 43.71 31.79

3.2 MIXTURE OF EFFICIENT DATA-DRIVEN LOW-RANK EXPERTS

Our pilot experiments confirm that low-rank factorization via SVD-LLM offers both high-fidelity
knowledge inheritance and a powerful mechanism for inducing data-driven diversity. Capitalizing on
this dual capability, we introduce the MIxture of efficient DAta-driven low-rank expertS (MIDAS)
framework, as illustrated in Figure 1. MIDAS repurposes data-driven compression as an expert
construction algorithm, addressing the diversity-knowledge trade-off by creating specialized, low-
rank experts from a pre-trained dense model. The pseudocode of MIDAS is in Appendix A.1.

Backbone Initialization. The shared backbone of MIDAS is initialized by creating a deep copy
of all parameters from the base model (Θbase), excluding the FFN layers slated for conversion into
low-rank experts.

Expert Construction. Following backbone initialization, specialized experts are constructed iter-
atively. For each target expert Ei, the procedure detailed below is performed using its corresponding
calibration data Di.

First, a whitening matrix Si is derived to capture the statistical properties of the data distribution
specific to Di. This is achieved by feeding the calibration data through the model to collect the
input activations Hi of the original FFN, from which we compute the second-moment matrix Mi.
This matrix encapsulates the second-order statistics of the FFN’s input activations for the given
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Figure 1: An overview of the MIDAS framework.

data domain; its diagonal elements represent the sum of squares of each input feature, while the
off-diagonal elements represent the raw correlation between feature pairs. We then apply Cholesky
decomposition to Mi to obtain the whitening matrix Si, as shown in Equation 1.∑

n∈Di

HT
inHin = Mi = SiS

T
i (1)

Next, the whitening matrix Si is used to transform the original FFN weights WFFN, yielding a
specialized weight matrix W̃FFN,i. Truncated SVD is then performed on this transformed matrix to
find its best rank-r approximation, forming the final specialized expert, Ei, as shown in Equation 2.

WFFNSi = W̃FFN,i ≈ UiΣi,rV
T
i = Ei (2)

Integration. Finally, the complete MIDAS model is assembled by integrating the shared backbone
and specialized experts with a newly initialized gating network (G) and several LoRA modules. The
gating network is responsible for learning a routing policy that directs input tokens to the appropriate
experts. Concurrently, LoRA (Hu et al., 2022) modules are attached to specific linear layers to
facilitate efficient fine-tuning, as detailed in Algorithm 1 of Appendix A.1.

Training Strategy. Once assembled, the MIDAS model undergoes a two-stage training strategy us-
ing parameter-efficient fine-tuning to harmonize its new components and recover any performance
degradation from the architectural changes. The first stage, Continual Pre-Training (CPT), uses a
1.3 billion token corpus sampled from SlimPajama (Soboleva et al., 2023). Its goal is to stabilize
the model’s foundational language abilities and train the randomly initialized gating network. Fol-
lowing CPT, the Supervised Fine-Tuning (SFT) stage aligns the model with instruction-following
and conversational patterns using approximately 0.4 billion tokens from the LaMini-Instruction (Wu
et al., 2024) dataset.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Evaluation and Datasets. Our comprehensive evaluation of MIDAS spans twelve benchmarks
across three key domains. For reasoning and comprehension, we select nine established datasets:

5
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ARC-Challenge and ARC-Easy (Clark et al., 2018), BoolQ (Clark et al., 2019), HellaSwag (Zellers
et al., 2019), LogiQA (Liu et al., 2021), OpenBookQA (Mihaylov et al., 2018), PIQA (Bisk et al.,
2020), SciQ (Welbl et al., 2017), and WinoGrande (Sakaguchi et al., 2021). We gauge the model’s
general knowledge using MMLU (Hendrycks et al., 2021) and assess its foundational linguistic
proficiency with C4 (Raffel et al., 2020) and WikiText-2 (Merity et al., 2017) corpora. We report
accuracy (ACC) for downstream tasks and perplexity (PPL) for language modeling.

To facilitate a more nuanced comparison, we introduce two additional metrics. The first is the Data
Efficiency Score (DES), which leverages scaling laws to measure information acquisition efficiency
relative to model and data size (higher is better). The second, the Coefficient of Variation (CV)
of the expert load distribution, assesses utilization uniformity, where a lower value indicates a more
balanced system. Detailed definitions for these metrics are provided in Appendix A.3.2.

Implementation Details. We implement MIDAS on the Llama-2-7B backbone. Four specialized
experts are constructed by applying SVD-LLM to the FFN layers, each targeting a 25% compression
ratio (rank 746) using one of four distinct calibration datasets: Alpaca, OpenBookQA, PIQA, or
WikiText-2. For a fair comparison, both MIDAS and the dense-to-sparse MoE baselines follow an
identical training strategy, whereas the pre-trained dense baselines are evaluated off-the-shelf. All
experiments are conducted on NVIDIA H100 GPUs.

4.2 COMPARISON WITH PRE-TRAINED DENSE MODELS

Performance on Downstream Tasks. While MIDAS, as expected, does not surpass the heav-
ily pre-trained dense models across most tasks due to the significant disparity in training data, it
nonetheless achieves competitive and even superior performance on several benchmarks. As de-
tailed in Table 4, for instance, MIDAS (CPT+SFT) model outperforms all listed dense baselines
on BoolQ (0.805) and LogiQA (0.320). This early competitiveness highlights the effectiveness of
MIDAS, demonstrating its ability to learn from limited data.

Analysis of Data Efficiency. MIDAS’s true strength is revealed in its data efficiency. As shown
by the data efficiency score in Table 4, MIDAS demonstrates a striking superiority over all dense
baselines across every benchmark. This result underscores MIDAS’s ability to more effectively
translate inherited knowledge into high performance using a fraction of the data.

Implications for General Knowledge Acquisition. MIDAS’s capacity for general knowledge
acquisition is best illustrated by its MMLU performance. After supervised fine-tuning, MIDAS
achieves a score of 0.354, remarkably closing the gap with its base model, Llama-2 (0.408). While
it does not yet match heavily-trained models like Qwen1.5 (0.540), this result demonstrates MIDAS’s
powerful ability to build a broad knowledge base from a comparatively small amount of data.

4.3 COMPARISON WITH DENSE-TO-SPARSE MOE APPROACHES

Impact of Expert Initialization. Our proposed expert initialization strategy provides a substan-
tial advantage over a random baseline. Under an identical computational budget, MIDAS (CPT)
significantly outperforms the Random model across nearly all benchmarks, with the sole exception
of WinoGrande. This stark performance gap highlights that a meaningful initialization is crucial for
unlocking the potential of MoE models, particularly under constrained training conditions.

Comparison with Sharing-Inter. The comparison between MIDAS and Sharing-Inter, another
dense-to-sparse approach, presents a more nuanced picture. While MIDAS demonstrates superior
average performance on the nine common sense and reading comprehension benchmarks, Sharing-
Inter excels on tasks requiring broad general knowledge (MMLU) and foundational language mod-
eling, as evidenced by its stronger perplexity scores. Specifically, Sharing-Inter outperforms MIDAS
(CPT) on both C4 (12.57 vs. 14.70 PPL) and WikiText-2 (9.79 vs. 11.09 PPL). This trade-off,
particularly Sharing-Inter’s strength in language modeling, motivates a deeper analysis of its expert
load balancing behavior, which we discuss in Section 4.4.
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Table 4: Comparison with pre-trained dense models. The baseline models are categorized into
two groups based on parameter counts comparable to MIDAS: those with similar active parameters
(INCITE-Base-V1, Open-Llama-V2, Qwen1.5) and those with similar total parameters (Falcon,
OPT, Pythia). Underline and bold values indicate the best score when comparing MIDAS models
against the active and total parameter baselines, respectively.

Model
Common Sense & Reading Comprehension

ARC-C ARC-E BoolQ HellaS. LogiQA OBQA

ACC DES ACC DES ACC DES ACC DES ACC DES ACC DES

Llama-2 0.461 0.194 0.746 0.314 0.779 0.328 0.759 0.320 0.306 0.129 0.438 0.185

INCITE-Base-V1 0.345 0.170 0.619 0.306 0.670 0.331 0.631 0.312 0.284 0.140 0.380 0.188
Open-Llama-V2 0.358 0.170 0.636 0.302 0.652 0.309 0.700 0.332 0.286 0.136 0.376 0.178

Qwen1.5 0.397 0.170 0.618 0.265 0.777 0.333 0.714 0.306 0.304 0.130 0.400 0.171

Falcon 0.436 0.189 0.709 0.307 0.736 0.318 0.763 0.330 0.275 0.119 0.442 0.191
OPT 0.346 0.183 0.601 0.319 0.660 0.350 0.673 0.357 0.289 0.153 0.370 0.196

Pythia 0.342 0.173 0.604 0.305 0.625 0.316 0.633 0.320 0.293 0.148 0.374 0.189

MIDAS (CPT) 0.294 0.257 0.526 0.459 0.650 0.567 0.528 0.461 0.313 0.273 0.364 0.318
MIDAS (CPT+SFT) 0.341 0.298 0.588 0.513 0.805 0.703 0.493 0.430 0.320 0.279 0.356 0.311

Model
Common Sense & Reading Comprehension World Knowledge Language Modeling

PIQA SciQ WinoG. MMLU C4 WikiText-2

ACC DES ACC DES ACC DES ACC DES ACC DES ACC DES

Llama-2 0.788 0.332 0.910 0.384 0.617 0.260 0.408 0.172 7.28 0.058 5.49 0.077

INCITE-Base-V1 0.737 0.364 0.857 0.423 0.553 0.273 0.249 0.123 11.81 0.042 9.64 0.051
Open-Llama-V2 0.780 0.370 0.880 0.418 0.592 0.281 0.254 0.121 9.94 0.048 7.28 0.065

Qwen1.5 0.773 0.331 0.898 0.384 0.603 0.258 0.540 0.231 13.59 0.032 8.91 0.048

Falcon 0.805 0.348 0.919 0.397 0.603 0.261 0.250 0.108 22.76 0.019 13.59 0.032
OPT 0.763 0.404 0.848 0.449 0.593 0.314 0.251 0.133 12.57 0.042 10.92 0.049

Pythia 0.763 0.385 0.823 0.416 0.546 0.276 0.260 0.131 13.59 0.037 9.79 0.052

MIDAS (CPT) 0.718 0.627 0.841 0.734 0.564 0.492 0.248 0.216 14.70 0.059 11.09 0.079
MIDAS (CPT+SFT) 0.711 0.621 0.876 0.765 0.546 0.477 0.354 0.309 19.17 0.046 18.87 0.046

Table 5: Comparison with dense-to-sparse MoE approaches. Underline and bold values indicate the
better score when comparing MIDAS against the Random and Sharing-Inter baselines, respectively.

Model Common Sense & Reading Comprehension

ARC-C ARC-E BoolQ HellaS. LogiQA OBQA

Random 0.279 0.473 0.497 0.313 0.257 0.268
Sharing-Inter 0.304 0.531 0.639 0.525 0.283 0.288

MIDAS (CPT) 0.294 0.526 0.650 0.528 0.313 0.364

Model Common Sense & Reading Comprehension World Knowledge Language Modeling

PIQA SciQ WinoG. MMLU C4 WikiText-2

Random 0.668 0.508 0.572 0.238 48.18 23.48
Sharing-Inter 0.696 0.798 0.561 0.269 12.57 9.79
MIDAS (CPT) 0.718 0.841 0.564 0.248 14.70 11.09

4.4 LOAD BALANCE ANALYSIS

Load Imbalance in Sharing-Inter. An analysis of Sharing-Inter’s expert utilization reveals a sig-
nificant load imbalance. As shown in Figure 2, this imbalance is particularly severe in shallow layers
(1, 2, 5, 6) and deep layers (29, 30, 31), which are critical for semantic processing and output gen-
eration. This phenomenon, where a few “preferred” experts receive a disproportionate volume of
tokens, likely explains its strong initial performance on foundational tasks (as seen in its PPL scores).
However, this reliance on a fixed subset of parameters intensifies with continued training. Conse-
quently, the MoE routing mechanism becomes ineffective, causing the model to functionally degen-
erate into a smaller, less capable architecture. The Llama-MoE study (Zhu et al., 2024) provides
evidence for this degradation, showing that the Random method eventually surpasses Sharing-Inter
on the ARC-Challenge and HellaSwag benchmarks after approximately 15 billion training tokens.
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Improved Load Balancing in MIDAS. In stark contrast, MIDAS demonstrates a significantly
more balanced expert load distribution across all layers (Figure 3). This uniformity provides a key
advantage by promoting expert parallelization and preventing the functional degradation observed
in Sharing-Inter. Crucially, this balanced load does not come at the cost of specialization. On
the contrary, MIDAS effectively allocates tokens to experts based on their relevant relevance—a
capability we will further demonstrate in Section 4.5.

4.5 EXPERT INTERPRETABILITY

Figure 2: The load distribution of Sharing-Inter
on C4. Expert 0 is a shared expert, distinct from
the sparsely activated Experts 1-3.

We validate the interpretability of MIDAS’s
specialized experts by analyzing their load dis-
tribution against the established principles of
Transformer layer functionality (Tenney et al.,
2019; Geva et al., 2021). This analysis is based
on the premise that shallow layers capture
core semantic representations, while deep lay-
ers manage complex reasoning and instruction-
following. Therefore, if MIDAS routes to-
kens to the appropriately specialized experts at
the correct functional layers, it would provide
strong evidence of a successful and meaningful
expert construction and routing mechanism.

First, we examine the specialization of the
“instruction expert,” derived from the Alpaca
dataset. Based on the principle that deep lay-
ers handle instruction-following, we hypothe-
size that this expert’s activity should be concen-
trated in the final layers of the model. The re-
sults, shown in Figures 4a through 4d, confirm this hypothesis unequivocally. Across all evaluated
tasks and training stages, the Alpaca expert’s load is overwhelmingly concentrated in the deepest
layers of the network (20-31). This precise alignment between the expert’s intended function and its
activation pattern provides powerful evidence that MIDAS has successfully specialized its experts
and that its routing mechanism operates as intended.

Figure 3: The coefficient of variation of load across layers for
MIDAS and baselines on C4.

Next, we evaluate MIDAS’s ca-
pacity for semantic routing—its
ability to activate experts based
on the input domain. On the
general-purpose C4 bench-
mark, the model correctly
routes tokens to its general-
language expert (WikiText-2),
as shown in Figures 4a and
4b. More tellingly, when pre-
sented with the scientific-QA
ARC-Challenge benchmark,
the router correctly deactivates
the irrelevant WikiText-2 ex-
pert and instead activates the
QA-focused OpenBookQA and
PIQA experts (Figures 4c).
This dynamic, context-aware
activation demonstrates that the
routing is not arbitrary but is driven by a meaningful semantic understanding of the task.

Furthermore, the routing mechanism exhibits a highly granular level of semantic discernment. For
instance, when processing the ARC-Challenge task, the model not only selects QA experts but
correctly prioritizes the scientific-QA expert (OpenBookQA) over the common-sense QA expert

8
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(PIQA), as shown in Figure 4d. This ability to differentiate between even closely related domains
confirms that MIDAS’s routing operates on subtle thematic variations, not just broad task types.

(a) The load distribution of MIDAS (CPT) on C4. (b) The load distribution of MIDAS (CPT+SFT) on
C4.

(c) The load distribution of MIDAS (CPT) on ARC-
Challenge.

(d) The load distribution of MIDAS (CPT+SFT) on
ARC-Challenge.

Figure 4: The load distribution heatmaps of MIDAS on C4 and ARC-Challenge benchmarks. The
expert specializations are defined as: Alpaca expert (instruction-following), OpenBookQA expert
(scientific-QA), PIQA expert (common-sense QA), and WikiText-2 expert (general language).

5 CONCLUSION

This work addresses the fundamental trade-off between initial expert diversity and knowledge in-
heritance in dense-to-sparse Mixture-of-Experts (MoE) conversion. We introduced MIDAS, a novel
framework that mitigates this dilemma by repurposing data-driven low-rank factorization as an
information-preserving paradigm for expert construction. By leveraging distinct calibration data
to guide the creation of specialized, low-rank experts, MIDAS successfully generates a set of experts
that are both functionally diverse and inherit the rich knowledge of the base model.

Our extensive experiments validate the effectiveness of this approach. Under limited computational
budgets, MIDAS significantly outperforms existing conversion strategies, demonstrating the value
of its principled, data-driven initialization. Crucially, we have shown that MIDAS not only improves
model stability by mitigating the severe load imbalance issues found in prior work, but also yields
a set of experts with clear, interpretable specializations. The alignment of these specializations with
established Transformer functional theory confirms that our method produces not just performant,
but also meaningful and well-understood experts. By successfully balancing diversity and knowl-
edge fidelity, MIDAS pioneers a robust and efficient pathway for dense-to-sparse MoE conversion.
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REPRODUCIBILITY STATEMENT

The source code for our work is provided in the supplementary material (a ZIP file) to facilitate
reproducibility and allow for the verification of our results.
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A APPENDIX

A.1 PSEUDOCODE OF MIDAS

Algorithm 1 MIDAS Expert Construction and Initialization.

Require: Pre-trained dense model parameters Θbase, including its FFN weights WFFN; a set of k
distinct calibration data C = {D1, . . . ,Dk}; target rank for SVD truncation r.

Ensure: Initialized MIDAS model with parameters ΘMIDAS; set of k low-rank experts
{E1, . . . ,Ek}; gating network G.

Backbone Initialization Phase:
1: Step 1: Initialize base structure from the pre-trained dense model.
2: Initialize ΘMIDAS with all non-FFN weights from Θbase.

Expert Construction Phase:
3: for all i ∈ {1, . . . , k} do
4: Step 2: Derive a whitening matrix for calibration data Di.
5: Hi ← GetActivations(Di,WFFN)
6: Mi ← SecondMoment(Hi)
7: Si ← Cholesky(Mi)
8:
9: Step 3: Create a specialized expert via whitened SVD.

10: W̃FFN,i ←WFFN · Si

11: Ei ← TruncatedSVD(W̃FFN,i, r)

Integration Phase:
12: Step 4: Initialize gating network and LoRA adapters.
13: Initialize gating network G.
14: Initialize LoRA adapters on q proj, k proj, v proj, and o proj for all attention

layers in ΘMIDAS.
15: Initialize LoRA adapters on gate proj, up proj, and down proj for all constructed

experts {E1, . . . ,Ek}.

16: return ΘMIDAS, {E1, . . . ,Ek},G

A.2 FULL RESULTS OF INITIAL EXPERT DIVERSITY PILOT EXPERIMENT

The following two tables report the performance of each method, measured by accuracy (ACC,
higher is better) and perplexity (PPL, lower is better). For each benchmark, bold and underline
values indicate the best and worst results, respectively. The Calibration Sensitivity Score (CSS) in
the final row is the absolute difference between the highest and lowest performance scores a method
achieves on a task across the various calibration data.

Table 6: Performance of Llama-2-7B after 20% compression via FLAP, using different calibration
data.

Calibration Data ARC-E HellaS. GSM8K C4 WikiText-2

C4 0.697 0.731 0.036 8.91 6.73
WikiText-2 0.673 0.707 0.046 9.20 6.37

Alpaca 0.717 0.724 0.041 9.34 7.51
OpenBookQA 0.710 0.720 0.041 9.20 6.94

PIQA 0.714 0.732 0.043 9.34 7.11

CSS 0.044 0.025 0.010 0.43 1.14
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Table 7: Performance of Llama-2-7B after 20% compression via LLM-Pruner, using different cali-
bration data.

Calibration Data ARC-E HellaS. GSM8K C4 WikiText-2

C4 0.650 0.704 0.039 9.49 7.62
WikiText-2 0.652 0.694 0.039 9.20 6.57

Alpaca 0.677 0.709 0.032 9.49 7.51
OpenBookQA 0.676 0.688 0.041 9.49 7.22

PIQA 0.689 0.709 0.039 9.34 7.22

CSS 0.039 0.021 0.009 0.29 1.05

A.3 MORE EXPERIMENTAL SETTINGS

A.3.1 KEY STATISTICS FOR MIDAS AND ALL BASELINE MODELS

Table 8: Key statistics for MIDAS and all baseline models. The table is organized into five groups
(from top to bottom): (1) the base model for MIDAS and Llama-MoE baselines, Llama-2-7B; (2)
dense baselines with comparable active parameters; (3) dense baselines with comparable total pa-
rameters; (4) dense-to-sparse MoE methods; and (5) our proposed MIDAS model.

Model
Parameters (B) Experts

Trained Tokens (B) Release Date#Non-Embedding
Activated #Activated #Total #Activated #Total

Llama-2-7B
(Touvron et al., 2023b) 6.48 6.61 6.61 - - 2000 2023/07

INCITE-Base-3B-V1
(Together, 2023) 2.52 2.65 2.65 - - 800 2023/05

Open-Llama-3B-V2
(Geng & Liu, 2023) 3.22 3.32 3.32 - - 1000 2023/07

Qwen1.5-4B
(Qwen, 2024) 3.17 3.56 3.56 - - 3000 2024/01

Falcon-7B
(Penedo et al., 2023) 6.63 6.92 6.92 - - 1500 2023/04

OPT-6.7B
(Zhang et al., 2022a) 6.44 6.66 6.66 - - 180 2022/05

Pythia-6.9B
(Biderman et al., 2023) 6.44 6.65 6.65 - - 300 2023/04

LlamaMoE-Random 4.31 4.44 6.61 2 4 1.3 -
LlamaMoE-Sharing-Inter 4.31 4.44 6.61 2 4 1.3 -

MIDAS 4.31 4.44 6.61 2 4 1.3 -

A.3.2 METRICS DEFINITION

Accuracy. Accuracy is the fraction of correct predictions over the number of examples (Equa-
tion 3).

Accuracy =
1

|D|

|D|−1∑
i=0

I(ŷi = yi) (3)

In this equation, |D| represents the size of the dataset, yi is the ground-truth answer for the i-
th instance, ŷi is the model’s prediction, and I(·) is the indicator function, which yields 1 if the
condition is met and 0 otherwise.

For generative language models, determining the prediction ŷ cannot reliably be based on uncon-
strained text generation due to its inherent stochasticity and format sensitivity. Instead, modern
evaluation frameworks like the Language Model Evaluation Harness (lm-eval) (Gao et al., 2023)
reframe the task. Given a context C (the question and any supporting information) and a set of
candidate answers {A0, A1, . . . , Ak−1}, the model’s task is to identify the most plausible answer.
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This is achieved by selecting the candidate with the highest normalized log-likelihood score. The
model’s final prediction (ŷ) is formally defined as Equation 4.

ŷ = argmax
Aj∈{A0,...,Ak−1}

 1

|Aj |
∑
t∈Aj

log pθ(t|C,Aj,<t)

 (4)

Here, Aj is the j-th candidate answer, |Aj | is its token count, and pθ(t|C,Aj,<t) is the probability
assigned by the model θ to a token t, conditioned on the context C and the preceding tokens within
that answer. This log-likelihood-based approach provides a more stable and principled measure of a
model’s understanding than free-form generation.

Perplexity. Perplexity evaluates how well a probabilistic model predicts a sample; a lower score
indicates a higher-quality language model. It is formally defined as a sequence’s exponentiated
average negative log-likelihood (Equation 5).

PPL(X) = exp

(
− 1

N

N−1∑
i=0

log pθ(xi|x<i)

)
(5)

In this equation, X = (x0, x1, . . . , xN−1) represents a sequence of N tokens, and pθ(xi|x<i) is the
conditional probability assigned by the model θ to the token xi given the preceding context tokens
x<i.

In practice, for evaluating long documents, the text is segmented using a sliding window approach
to manage computational constraints. The total log-likelihood is calculated by summing the log-
likelihoods of these individual segments, and the final perplexity score is then computed over the
entire document.

Data Efficiency Score. Directly comparing raw performance scores is misleading for models with
vastly different data (T ) and parameter (N ) scales. We introduce the Data Efficiency Score (DES)
to facilitate a fair assessment, informed by scaling law studies (Kaplan et al., 2020; Hoffmann et al.,
2022). The DES normalizes for scale and is defined as:

DES =

{
P/(NαT β) for higher-is-better metrics (P )

1/(LNαT β) for lower-is-better metrics (L)
(6)

The scaling exponents α and β represent the impact of parameters and data, respectively. Following
the scaling laws study (Kaplan et al., 2020), we set α = 0.076 and β = 0.095. A higher DES value
signifies superior data efficiency.

Coefficient of Variation. We use the coefficient of variation (CV) to evaluate expert load balanc-
ing in MoE models. The CV is a standardized, scale-invariant measure of statistical dispersion where
a lower value signifies a more uniform distribution of computation, indicating a better-balanced
model. It is defined as the ratio of the standard deviation σ to the mean µ (Equation 7).

CV =
σ

µ
=

√
1
M

∑M
i=1(ci − µ)2

1
M

∑M
i=1 ci

(7)

In this equation, M is the total number of experts, and ci represents the number of tokens processed
by the i-th expert over a given dataset. Consequently, µ is the mean number of tokens any expert
handles, and σ is the standard deviation of these token counts.

The CV’s load balancing utility stems from its relative variability measurement. Unlike the scale-
dependent standard deviation, the CV normalizes dispersion by the mean, yielding a dimensionless
quantity comparable across different scales. A low CV score, therefore, precisely indicates a well-
balanced system where token counts are tightly clustered around the average.
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A.4 PARAMETER-EFFICIENT FINE-TUNING EFFECTIVENESS ANALYSIS

To assess the effectiveness of Parameter-Efficient Fine-Tuning (PEFT) in MIDAS, we analyze the
performance progression of our MIDAS model from its initial state through two key training stages:
continual pre-training (CPT) and supervised fine-tuning (SFT). The results, detailed in Table 9,
demonstrate that PEFT is a highly effective strategy for enhancing MIDAS model capabilities at
both stages.

First, applying PEFT during the CPT stage yields substantial improvements over the initialized
model (MIDAS (Init.)). The most striking gains appear in fundamental language modeling capabili-
ties, evidenced by a drastic reduction in perplexity on both C4 (from 624.84 to 14.70) and WikiText-2
(from 605.62 to 11.09), representing a decrease of over 97%. This enhanced linguistic proficiency
translates directly to downstream tasks, where the average score on common sense and reading
comprehension benchmarks improves significantly from 0.328 to 0.533. These results confirm that
PEFT-based CPT effectively imbues the model with core language understanding and the ability to
apply this knowledge to reasoning tasks.

Building upon this strong foundation, the addition of SFT further refines the model’s capabilities.
The MIDAS (CPT+SFT) model achieves a new peak average score of 0.560 on common sense and
reading comprehension tasks and receives a significantly boosts the MMLU benchmark, rising to
0.354. However, this specialization introduces a nuanced trade-off. While most task-specific scores
improve, we observe a slight performance regression on several common-sense benchmarks, such as
HellaSwag, PIQA, and WinoGrande. This regression indicates minor catastrophic forgetting, a well-
documented phenomenon where fine-tuning for specific tasks can marginally compromise a model’s
broader generative fluency. The concurrent increase in the model’s language modeling perplexity
provides direct evidence for this effect. Overall, these findings validate PEFT as a versatile and
potent methodology effective for foundational pre-training and specialized fine-tuning.

Table 9: Performance progression of MIDAS from its initial state (Init.) through continual pre-
training (CPT) and supervised fine-tuning (SFT) with PEFT. Values in parentheses (...) denote the
absolute improvement over the initial state for accuracy (ACC) and the percentage decrease for
perplexity (PPL). Higher ACC is better, while lower PPL is better.

Model ARC-Challenge ARC-Easy BoolQ HellaSwag LogiQA

MIDAS (Init.) 0.228 0.296 0.378 0.267 0.224
MIDAS (CPT) 0.294 (+0.066) 0.526 (+0.230) 0.650 (+0.272) 0.528 (+0.261) 0.313 (+0.089)

MIDAS (CPT+SFT) 0.341 (+0.113) 0.588 (+0.292) 0.805 (+0.427) 0.493 (+0.226) 0.320 (+0.096)

Model OpenBookQA PIQA SciQ WinoGrande Average

MIDAS (Init.) 0.248 0.523 0.295 0.493 0.328
MIDAS (CPT) 0.364 (+0.116) 0.718 (+0.195) 0.841 (+0.546) 0.564 (+0.071) 0.533 (+0.205)

MIDAS (CPT+SFT) 0.356 (+0.108) 0.711 (+0.188) 0.876 (+0.581) 0.546 (+0.053) 0.560 (+0.232)

Model MMLU C4 WikiText-2

MIDAS (Init.) 0.230 624.84 605.62
MIDAS (CPT) 0.248 (+0.018) 14.70 (↓97.8%) 11.09 (↓98.2%)

MIDAS (CPT+SFT) 0.354 (+0.124) 19.17 (↓97.1%) 18.87 (↓96.9%)

A.5 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were utilized during the preparation of this paper to enhance pro-
ductivity. Specifically, we employed Google’s Gemini 2.5 Pro model to assist with manuscript
polishing, improving the fluency of phrasing and grammatical clarity. For code development, we
used a combination of Gemini 2.5 Pro and GitHub Copilot to help generate boilerplate code and
standard functions.

We must emphasize that the core research ideas, experimental design, and primary code architecture
were conceived and developed entirely by the authors. The role of LLMs in this work was strictly
limited to that of an auxiliary tool for improving efficiency and did not contribute to any of the core
research findings.
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