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Abstract

Keyphrase generation refers to the task of pro-001
ducing a set of words or phrases that sum-002
marises the content of a document. Continuous003
efforts have been dedicated to this task over004
the past few years, spreading across multiple005
lines of research, such as model architectures,006
data resources, and use-case scenarios. Yet,007
the current state of keyphrase generation re-008
mains unknown as there has been no attempt009
to review and analyse previous work. In this010
paper, we bridge this gap by presenting an anal-011
ysis of over 50 research papers on keyphrase012
generation, offering a comprehensive overview013
of recent progress, limitations, and open chal-014
lenges. Our findings highlight several critical is-015
sues in current evaluation practices, such as the016
concerning similarity among commonly-used017
benchmark datasets and inconsistencies in met-018
ric calculations leading to overestimated perfor-019
mances. Additionally, we address the limited020
availability of pre-trained models by releasing021
a strong PLM-based model for keyphrase gen-022
eration as an effort to facilitate future research.023

1 Introduction024

Keyphrase generation involves generating a set of025

words or phrases that summarise the content of a026

source document. These so-called keyphrases con-027

cisely and explicitly encapsulate the core content028

of a document, which makes them valuable for a029

variety of NLP and information retrieval tasks. For030

instance, keyphrases were proven useful for im-031

proving document indexing (Fagan, 1987; Zhai,032

1997; Jones and Staveley, 1999; Gutwin et al.,033

1999; Boudin et al., 2020), summarization (Zha,034

2002; Wan et al., 2007; Liu et al., 2021; Koto et al.,035

2022) and question-answering (Subramanian et al.,036

2018; Yang et al., 2019; Lee et al., 2021), analyzing037

topic evolution (Hu et al., 2019; Cheng et al., 2020;038

Lu et al., 2021) or assisting with reading compre-039

hension (Chi et al., 2007; Jiang et al., 2023a).040

Keyphrase generation expands on keyphrase ex- 041

traction by enabling the production of keyphrases 042

absent from the source text (Liu et al., 2011). This 043

ability is critical when dealing with short docu- 044

ments that often lack appropriate keyphrase can- 045

didates. Meng et al. (2017) provided the semi- 046

nal work on keyphrase generation, introducing a 047

sequence-to-sequence learning approach. Their 048

model builds upon an RNN encoder-decoder archi- 049

tecture (Cho et al., 2014; Sutskever et al., 2014) and 050

incorporates a copying mechanism (Gu et al., 2016) 051

to identify important phrases within the source 052

text. Equally importantly, they introduced KP20k, 053

a dataset that laid the groundwork for end-to-end 054

training of neural models for keyphrase generation. 055

Over the past few years, continuous efforts 056

have been devoted to improve the effectiveness of 057

keyphrase generation models. These efforts have 058

been spread across different lines of research, such 059

as model architectures, data resources, and use-case 060

scenarios, often pursued separately. This analysis 061

paper presents an overview of the current state of 062

keyphrase generation, discussing recent progress, 063

remaining limitations and open challenges. More 064

specifically, we compiled and analysed a collection 065

of over 50 papers on keyphrase generation, identi- 066

fying the type(s) of contribution these papers made 067

(§3.1), examining the most frequently used bench- 068

mark datasets (§3.2) and evaluation metrics (§3.3), 069

providing descriptions of proposed models while 070

highlighting important milestones (§3.4), and in- 071

vestigating how proposed models perform against 072

each other (§3.5). 073

Our findings are that: 1) commonly used bench- 074

mark datasets are so similar that reporting results 075

on more than one adds no value, 2) the performance 076

of models is often overestimated due to discrepan- 077

cies in evaluation protocols, and 3) while dedicated 078

models have been superseded by fine-tuned pre- 079

trained language models (PLMs), the overall per- 080

formance gain since early models remains limited. 081
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Our work goes beyond surveying the existing lit-082

erature and addresses some of the aforementioned083

concerns by training, documenting and releasing a084

strong PLM-based model for keyphrase generation085

along with an evaluation framework to facilitate086

future research (§4). Finally, we discuss some of087

the open challenges in keyphrase generation and088

propose actionable directions to address them (§5).089

2 Scope of the Study090

Our analysis encompasses a total of 52 research pa-091

pers selected based on the following criteria: they092

are accessible through the ACL Anthology, they093

contain the phrase “keyphrase generation” either094

in their titles or abstracts, and they have been pub-095

lished after the seminal work of Meng et al. (2017).096

For a more comprehensive coverage, we also in-097

clude papers from other NLP-related venues, com-098

prising AAAI (4 papers), SIGIR (1 paper), and099

CIKM (1 paper). To keep the number of papers100

manageable, we arbitrarily disregard papers from101

pre-print servers (e.g. arXiv) or those published in102

non-ACL venues. Nonetheless, we are confident103

that our sample represents a comprehensive portion104

of the research on keyphrase generation, encom-105

passing all papers published at major NLP venues106

in the last seven years. This includes, for instance,107

the ten most cited articles in the field.1108

For each paper in our sample, we manually col-109

lect the following information:110

• The type(s) of contribution the paper is mak-111

ing. We adopt the ACL 2023 classification112

of contribution types (Rogers et al., 2023),113

which includes: 1) NLP engineering experi-114

ment (most papers proposing methods to im-115

prove state-of-the-art), 2) approaches for low–116

compute settings, efficiency, 3) approaches117

for low-resource settings, 4) data resources,118

5) data analysis, 6) model analysis and inter-119

pretability, 7) reproduction studies, 8) position120

papers, 9) surveys, 10) theory, 11) publicly121

available software and pre-trained models.122

• For papers proposing models, we record their123

best scores on each dataset they experiment124

with, in the form of ⟨dataset,metric, value⟩125

triples. We extract scores primarily from the126

main tables of the content, supplementing127

with tables from appendices only if they re-128

port superior performance. In cases where129

1https://www.semanticscholar.org/search?q=
"keyphrase%20generation"&sort=total-citations

multiple model variants are reported, we se- 130

lect the one demonstrating the best overall 131

performance, or, when it is not clear, the one 132

that performs best on the KP20k dataset. In to- 133

tal, we extracted 826 triples from our sample, 134

corresponding to 50 distinct models. 135

• We also document the architecture of the pro- 136

posed models (e.g RNNs, Transformers), the 137

use of statistical significance tests on the re- 138

sults, and the availability of both the code and 139

the model weights. 140

All the data collected in the course of this study 141

is available at www.github.com/anonymous. 142

3 Analysis 143

In this section, we analyze the selected papers 144

across five key dimensions: types of contribution 145

(§3.1), benchmark datasets (§3.2), evaluation met- 146

rics (§3.3), model architectures (§3.4), and the best 147

reported performances (§3.5). 148

3.1 Types of contribution 149

We start our analysis by presenting statistics on 150

the types of contribution made in the papers we 151

examined (see Table 1). Most of the papers pro- 152

pose new models (87%), suggesting that the pri- 153

mary emphasis within the field is on improving the 154

performance of the state-of-the-art. This trend is 155

reinforced by the fact that the second most com- 156

mon contribution is data resources (19%), essential 157

for validating improvements. Some attention was 158

given to model analysis and interpretability (14%), 159

particularly through empirical evaluations of mul- 160

tiple models (Çano and Bojar, 2019; Meng et al., 161

2021, 2023; Wu et al., 2023) and evaluations via 162

downstream tasks (Boudin et al., 2020; Boudin and 163

Gallina, 2021). Approaches for low-resource set- 164

tings also received some attention (14%), initially 165

with data-efficient models (Lancioni et al., 2020; 166

Wu et al., 2022a), then through data augmentation 167

methods (Gao et al., 2022; Garg et al., 2023; Kang 168

and Shin, 2024) and most recently, domain adapta- 169

tion strategies (Boudin and Aizawa, 2024). 170

One underexplored area is the development of 171

low-compute approaches, maybe overlooked in the 172

race toward larger models designed to boost per- 173

formance. This trend contrasts with practical appli- 174

cations, such as document indexing, where speed 175

and efficiency are critical. Our analysis also reveals 176

the limited attention given to data analysis, repro- 177
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duction studies and surveys in the literature.2 This178

paper seeks to address this gap by providing new179

insights into the redundancy of existing datasets,180

conducting replication experiments on model eval-181

uation, and offering a comprehensive overview of182

models for keyphrase generation.183

Type of contribution %

NLP engineering experiment 86.5
Data resources 19.2
Model analysis and interpretability 13.5
Approaches for low-resource settings 13.5
Software and pre-trained models 7.7
Reproduction studies 1.9

Table 1: Percentage of papers making each type of
contribution (a paper may contribute to multiple types).

3.2 Benchmark Datasets184

We proceed with our analysis by examining the185

most frequently used datasets (see Figure 1, de-186

tailed statistics of the datasets are provided in §A.2).187

We find that 26 distinct datasets were employed188

across the examined papers, with five datasets no-189

tably more prevalent than others: KP20k (Meng190

et al., 2017), SemEval-2010 (Kim et al., 2010), In-191

spec (Hulth, 2003), Krapivin (Krapivin et al., 2009),192

and NUS (Nguyen and Kan, 2007). These datasets193

are commonly used together, with 22 out of 52 pa-194

pers (42%) employing all five, and 39 out of 52195

(75%) employing at least two. All five datasets ex-196

clusively contain scientific abstracts, whereas the197

remaining datasets are sourced from various do-198

mains, such as news, social media and web pages.199

This domain bias can be attributed to two main fac-200

tors: the availability of scientific abstracts, and the201

frequent presence of author-assigned keyphrases,202

serving as naturally occurring ground truth. When203

considering size, only a handful of datasets contain204

a sufficient number of samples (i.e. > 100k train-205

ing samples, underlined in Figure 1) to effectively206

train generative models. The majority of these207

datasets, however, are relatively small (i.e. < 1k208

samples) and are mainly used for testing purposes.209

A closer examination of the five widely-used210

datasets reveals substantial overlap. All consist of211

scientific abstracts from the Computer Science do-212

main, and at least three—KP20k, SemEval-2010,213

and Krapivin—share documents from the same214

2We note, however, that several surveys on keyphrase ex-
traction have been conducted; see Appendix A.1 for a review.
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Figure 1: Number of papers utilizing each dataset.
Underlined datasets contain 100k+ training samples.
Datasets used only once are omitted for clarity.

source, the ACM Digital Library. This raises con- 215

cerns about potential data leakage and questions 216

the value of using these datasets together in experi- 217

mental setups. 218

To shed light on these questions, we measured 219

the correlation between the model scores across 220

datasets, exploring whether models perform uni- 221

formly across different datasets. Our objective here 222

is to determine the extent to which including more 223

than one of these datasets in the experiments of a 224

paper provides additional insights. From the cor- 225

relation matrix in Figure 2, we see that the per- 226

formance of models among the five widely-used 227

datasets is almost perfectly correlated (Pearson’s 228

correlation coefficient ρ > 0.9, p-value < 0.01). 229

This observation implies that there is no practical 230

benefit in reporting the results on more than one 231

of these five datasets, despite the common practice 232

among previous studies of doing so. 233
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Figure 2: Pearson’s correlation coefficient ρ computed
between the model scores across datasets.
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3.3 Evaluation Metrics234

We move forward with our analysis by exam-235

ining the evaluation of automatically generated236

keyphrases within our sample of papers. With237

the exception of (Wu et al., 2022b), all the pro-238

posed models are solely assessed through intrinsic239

evaluation, which involves comparing their output240

with a single ground truth, typically using exact241

matching. From the extracted score triples, we find242

that 42 distinct evaluation metrics were reported243

across the papers (see Figure 3, detailed definitions244

of the evaluation metrics are provided in §A.3).245

The majority of papers describing models (40 out246

of 50, 80%) provide separate results for present247

and absent keyphrases, following the methodology248

of (Meng et al., 2017). As for the metrics, there249

is a high degree of consensus on the F1 measure,250

with two configurations standing out: F1@M (us-251

ing all the keyphrases predicted by the model) and252

F1@k (using the top-k predicted keyphrases, with253

k ∈ {5, 10}).254
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Figure 3: Number of papers employing each evaluation
metric. Metrics used < 3 times are excluded for clarity.

Upon closer inspection of the evaluation settings255

in our sample of papers, we identified two major256

inconsistencies in how metrics are calculated. First,257

two variants of F1@k co-exist. Starting with (Chan258

et al., 2019), model predictions that do not reach k259

keyphrases are extended with incorrect (dummy)260

phrases. This prevents F1@k and F1@M scores261

from being identical, but lowers the scores for mod-262

els generating fewer than k keyphrases. More criti-263

cally, this practice undermines direct comparability264

with earlier work.265

Second, we find that some form of normalization266

procedure is frequently applied prior to computing267

evaluation metrics, as observed in at least 30 out268

of 50 papers (60%).3 This procedure, commonly269

3This information is often difficult to locate, as it is fre-
quently omitted from papers and requires examining the
source code and data.

referred to as Meng et al. (2017)’s pre-processing, 270

is applied to ground-truth keyphrases and involves 271

the following steps: 1) removing all the abbrevi- 272

ations/acronyms in parentheses, 2) tokenizing on 273

non-letter characters, and 3) replacing digits with 274

symbol <digit>. This normalization impacts the 275

evaluation (see an example in Table 3 in §A.4), 276

potentially leading to an overestimation of model 277

performance and jeopardizing comparability with 278

studies that do not employ it. 279

To gain insights on this issue, we conducted 280

a series of replication experiments by reassess- 281

ing the performance of three models—catSeqTG- 282

2RF1 (Chan et al., 2019), ExHiRD-h (Chen et al., 283

2020) and SetTrans (Ye et al., 2021b)—for which 284

the authors stated that they applied this normaliza- 285

tion and provided the outputs of their model. To 286

ensure comparability and consistency, we compute 287

F1@k scores with dummy phrases when the num- 288

ber of predicted keyphrases is less than k, following 289

(Chan et al., 2019) and subsequent works. 290

From the results in Figure 4, we observe that ap- 291

plying the normalization procedure significantly in- 292

creases the scores for the majority of the evaluation 293

metrics. The impact of the normalization procedure 294

is more pronounced for present keyphrases, show- 295

ing an absolute difference of +2.2 points (F1@M ) 296

and +3.5 points (F1@5). We notice a some differ- 297

ence in scores between the original ( ) and our 298
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Figure 4: Replicated evaluation results on the KP20k
dataset, alongside the performance reported in the orig-
inal paper. Dashed bars ( ) indicate a significant de-
crease of performance compared to normalization, as de-
termined by the Student’s paired t-test (p-value < 0.01).
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replicated evaluation ( ), which we attribute to299

our method for determining whether a keyphrase300

is present or absent in the source document (see301

A.3). These observations alert that the performance302

of many models have been overestimated from us-303

ing this normalization procedure, advocating for a304

cautious comparison of results between studies.305

3.4 Proposed Models306

In this section, we take a closer look at the models307

proposed in our sample of papers. Figure 5 presents308

an overview of these models in the form of an309

evolutionary tree, highlighting five works that we310

consider important milestones for keyphrase gener-311

ation. In short, we first witness early efforts dedi-312

cated to refining the task formulation of keyphrase313

generation, followed by a transitional phase from314

RNN-based to Transformers-based models, and315

most recently, the adoption of fine-tuned PLMs.316

Below, we provide brief descriptions of each model,317

organized around these milestone works and pre-318

sented in chronological order.319

2017 Meng et al. (2017) introduced a RNN-based320

encoder-decoder model for keyphrase gen-321

eration, alongside the KP20k dataset. This322

model was further improved with addi-323

tional decoding mechanisms (Chen et al.,324

2018; Zhao and Zhang, 2019), multi-task325

learning (Ye and Wang, 2018), external re-326

sources (Chen et al., 2019a), latent topic in-327

formation (Wang et al., 2019; Zhang et al.,328

2022), better encoding techniques (Chen329

et al., 2019b; Kim et al., 2021), or self-330

training (Shen et al., 2022).331

2018 Yuan et al. (2020) introduced the ONE2MANY332

training paradigm, enabling models to gen-333

erate a variable number of keyphrases.4 Sub-334

sequent studies have improved upon this335

work through the use of reinforcement learn-336

ing (Chan et al., 2019; Luo et al., 2021),337

hierarchical decoding (Chen et al., 2020),338

GANs (Lancioni et al., 2020; Swaminathan339

et al., 2020), diversity promotion (Bahuleyan340

and El Asri, 2020), or diverse decoding strate-341

gies (Huang et al., 2021; Zhao et al., 2021;342

Santosh et al., 2021; Wang et al., 2022).343

2021 Meng et al. (2021) explored the general-344

ization capabilities of keyphrase generation345

models and were among the first to apply346

4This work was submitted to arXiv in October 2018.
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Figure 5: Evolutionary tree of the keyphrase generation
models in our analysis. Some models are omitted for
clarity. ∗ indicate that the model weights are available.

Transformers for this task. Other works 347

improved the performance of Transformers- 348

based models though manipulation of the 349

input document (Ahmad et al., 2021; Garg 350

et al., 2022) or guided decoding (Do et al., 351

2023). 352

2021 Ye et al. (2021b) proposed the ONE2SET 353

training paradigm that utilizes control codes 354

to generate a set of keyphrases. Further work 355

improved this approach through data augmen- 356

tation (Ray Chowdhury et al., 2022), model 357

calibration (Xie et al., 2022), joint keyphrase 358

extraction (Thomas and Vajjala, 2024a) or 359

LLM verification (Shao et al., 2024). 360

2022 Kulkarni et al. (2022) investigated the utiliza- 361

tion of PLMs for keyphrase generation. Sub- 362

sequent studies confirmed that fine-tuning 363

a PLM, namely BART (Lewis et al., 2020), 364

for keyphrase generation achieves SOTA re- 365

sults (Wu et al., 2021; Houbre et al., 2022; 366

Wu et al., 2022a; Meng et al., 2023; Wu et al., 367

2023), and further improved its performance 368

through output filtering (Zhao et al., 2022), 369

low-resource fine-tuning (Wu et al., 2022a; 370

Kang and Shin, 2024; Boudin and Aizawa, 371

2024), contrastive learning (Choi et al., 2023) 372

or encoder-only models (Wu et al., 2024a). 373
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Figure 6: Best scores achieved by each model in terms of F1@M , F1@5 and F1@10 for present keyphrases and
F1@M , F1@5 and R@10 for absent keyphrases on the KP20k dataset. The lines represent the state-of-the-art
performance over time. • indicate that the paper utilizes statistical tests to validate the significance of the results.

Figure 7 provides a more detailed depiction of374

the architectures used by the proposed keyphrase375

generation models over the years. Starting from376

2021, we observe a swift transition from RNNs377

to Transformers, accelerated by the recent line of378

research on fine-tuning PLMs for the task. This379

trend aligns with observations across numerous380

other NLP tasks, where (pre-trained) Transformers381

consistently achieve state-of-the-art performance.382
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Figure 7: Architectures of the proposed keyphrase gen-
eration models over the years.

While it is relatively common for studies intro-383

ducing models to release the code for reproducing384

their experiments (34 out of 50, 68%), it is much385

rarer for the model weights to be made available,386

with only 8 out of 50 studies doing so (marked387

with the symbol ∗ in Figure 5). Importantly, code388

availability alone is not enough for reproducing the389

results reported in published literature (Arvan et al., 390

2022). This lack of model weights complicates 391

fair comparisons between models and imposes un- 392

necessary computational and environmental costs 393

associated with retraining. 394

3.5 Empirical Results 395

We conclude our analysis by conducting a large- 396

scale comparison of the performance of the pro- 397

posed models in our sample of papers, focusing on 398

the best scores they achieve on the KP20k bench- 399

mark dataset (see Figure 6). We plot the state-of- 400

the-art performance over time using lines, consider- 401

ing the three most commonly used evaluation met- 402

rics for both present and absent keyphrases. To the 403

best of our knowledge, this is the comprehensive 404

overview of state-of-the-art keyphrase generation 405

model performance over time. 406

Overall, we observe a modest yet steady in- 407

crease in state-of-the-art performance, with the 408

most recent leap attributed to the use of LLMs 409

for filtering keyphrase candidates generated by a 410

fine-tuned PLM (Shao et al., 2024). Two addi- 411

tional observations can be gleaned from the Fig- 412

ure: 1) the absolute improvement in state-of-the-art 413

performance since earlier works is limited; for in- 414

stance, only 3.1% in present F1@M separates the 415
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works of Chan et al. (2019) and Thomas and Va-416

jjala (2024a); and 2) the performance in absent417

keyphrase prediction remains notably low, barely418

reaching 11% in F1@M . For the latter, we believe419

that the reasons could be traced back to the unre-420

liability of the evaluation metrics, which rely on421

strict matching against a single ground truth (see422

§3.3). This issue becomes more pronounced in the423

case of absent keyphrases where lexical variation424

is more prevalent, leading to lower scores.425

Another notable observation is the limited use426

of statistical significance testing in the results, with427

only 20 out of the 50 doing so (marked with • in428

Figure 6). We assume this is a consequence of429

the scarce availability of model weights (see §3.4),430

which hinders the reproducibility of prior research431

and the ability to directly compare model outputs.432

Yet, statistical significance testing is crucial to as-433

sess the likelihood of potential improvements to434

models occurring by chance (Dror et al., 2018),435

casting doubts on the actual progress of the task.436

4 A strong baseline model437

Our analysis highlights the progress achieved by438

current keyphrase generation models, while draw-439

ing attention to the lack of standardized evalua-440

tion procedures and the limited availability of pre-441

trained models. To address these challenges, we442

provide a strong baseline model for keyphrase gen-443

eration, along with an evaluation framework to fa-444

cilitate future research.445

Upon analysing the proposed model scores (see446

§3.5), we find that fine-tuning a PLM for the task447

consistently yields the best performance. Based448

on this observation, we adopt this approach for449

our baseline model, leveraging BART-large (Lewis450

et al., 2020) as the initial PLM, in line with re-451

cent studies (Meng et al., 2023; Wu et al., 2023).452

The model is fine-tuned on the KP20k training453

set for 10 epochs in a ONE2MANY setting (Yuan454

et al., 2020), that is, given a source text as input,455

the task is to generate keyphrases as a single se-456

quence of delimiter-separated phrases. During fine-457

tuning, gold keyphrases are arranged in the present-458

absent order which was found to give the best re-459

sults (Meng et al., 2021). Notably, we do not apply460

any pre-processing to either the source texts or the461

ground-truth keyphrases, thereby fixing the issues462

we identified in §3.3.463

At test time, we evaluate the model using greedy464

decoding to generate the most probable keyphrases,465

or beam search (K=20) to assemble the top-k 466

keyphrases across all beams. To select the best- 467

performing model, we save a checkpoint at the 468

end of each epoch and evaluate its performance on 469

the validation set of KP20k, using F1@{M, 5, 10} 470

scores against the ground truth keyphrases. Over- 471

all, fine-tuning for 9 epochs produces the highest 472

scores (see Figure 8), leading us to select the corre- 473

sponding checkpoint as our baseline model. 474

Code for training, inference and evaluation is 475

available at github.com/anonymous. Addition- 476

ally, all model weights, including checkpoints, are 477

accessible at huggingface.co/anonymous. Im- 478

plementation details are given in Appendix A.5. 479
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24
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Figure 8: Performance of our baseline model on the
KP20k validation set across training epochs, measured
by F1@M (◦), F1@5 (△) and F1@10 (+) for present,
absent and combined keyphrases.

Here, we evaluate the performance of our base- 480

line model on KP20k test set and compare it against 481

previously proposed models. Table 2 summarizes 482

the results for both present and absent keyphrase 483

prediction. Our model achieves strong overall per- 484

formance, surpassing most prior models and achiev- 485

ing state-of-the-art results in absent keyphrase pre- 486

diction in terms of F1@5. We believe that this level 487

of performance establishes our baseline model as a 488

robust point of reference for future research. 489

Metric Ours Best # ↓ # ↑

F1@M
Present 39.9 45.3 19 6
Absent 4.5 11.2 9 13

F1@5
Present 37.7 42.6 19 6
Absent 8.2 7.3 23 0

Table 2: Performance of our baseline model on the
KP20k test set, compared to the best-reported scores in
literature, with the number of previous models under-
performing (# ↓) or outperforming (# ↑) the baseline.
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5 Open Challenges and Discussion490

We wrap up this paper by highlighting two chal-491

lenges in keyphrase generation and suggesting ac-492

tionable strategies to address them. Finally, we493

discuss what LLMs can do for the task.494

5.1 Benchmark Datasets495

Our analysis revealed alarming levels of redun-496

dancy between the most frequently used bench-497

mark datasets, stressing the need to deviate from498

the common practice of relying on the same five499

datasets. Thus, the first challenge we identified is500

the lack of diverse, sizeable benchmark datasets for501

keyphrase generation. While recent efforts have502

been devoted to building new datasets, they either503

reuse most samples from KP20k (Mahata et al.,504

2022), contain too few samples (Piedboeuf and505

Langlais, 2022) or are restricted to a specific do-506

mains (Houbre et al., 2022; Boudin and Aizawa,507

2024) or goals (Wu et al., 2024b).508

Creating a new dataset is undoubtedly difficult,509

as manual annotation of keyphrases is both costly510

and requires domain expertise. A practical solution511

is to look for naturally occurring keyphrases, and512

scientific papers with their author-provided key-513

words are a well-known match. Another common514

issue of existing datasets is their lack of proper515

document sourcing. For instance, the documents in516

KP20k were collected from “various online digital517

libraries” and lack crucial metadata such as DOIs,518

authorship details or licences. Given these consid-519

erations, we suggest leveraging arXiv for creating520

a new dataset as it aligns with our requirements: it521

offers content under Creative Commons, provides522

a substantial volume of categorized, identified and523

machine-readable (LATEX) documents.524

5.2 Evaluation Metrics525

The second challenge we identified, which con-526

nects to the benchmark datasets, concerns the ques-527

tionable robustness of automatic evaluation. There528

are two main issues with current evaluation meth-529

ods. First, keyphrases are task-dependent. For ex-530

ample, keyphrases relevant for document indexing531

may differ from those relevant for reading compre-532

hension. This aspect is rarely addressed in previous533

studies, despite its significant implications, notably534

on the need for distinct ground truth keyphrases de-535

pending on the targeted task. Second, commonly-536

used evaluation metrics rely on simple matching537

against a single ground truth, which is likely to be538

incomplete. 539

One potential solution to address these issues 540

is to rely on extrinsic evaluation, that is, as- 541

sessing the performance of keyphrase generation 542

models through downstream tasks. For instance, 543

prior works have proposed to evaluate models 544

through their impact on document retrieval effec- 545

tiveness (Boudin et al., 2020; Boudin and Gallina, 546

2021). Two other notable works in this direction 547

are Jiang et al. (2023b), which evaluates keyphrases 548

in a task-oriented setting to assist reader compre- 549

hension, and Wu et al. (2024c), which examines the 550

alignment between keyphrases and LLM-generated 551

queries. However, the additional computational 552

costs associated with conducting such extrinsic 553

evaluations may hinder their adaption. Here, we 554

suggest testing the ability of LLMs to evaluate gen- 555

erated keyphrases, as this approach has proven suc- 556

cessful in several tasks (Chiang and Lee, 2023). 557

5.3 LLMs for Keyphrase Generation 558

Keyphrase generation stands out as one of the few 559

NLP tasks where LLMs have not yet replaced ded- 560

icated supervised models. Nonetheless, initial ef- 561

forts to leverage LLMs for this task, primarily using 562

in-context learning (Song et al., 2023b; Martínez- 563

Cruz et al., 2023; Bai et al., 2024), have demon- 564

strated promising results. Recently, Shao et al. 565

(2024) validated the effectiveness of LLMs as a 566

keyphrase reranking method for dedicated models. 567

Here, we highlight two important considerations 568

when using LLMs for keyphrase generation. 569

The first is data contamination, which occurs 570

when test data is included in the model’s training 571

data. Given the extensive size and diverse sources 572

of pre-training datasets used for LLMs, it is likely 573

that widely available documents composing the 574

current benchmarks have been included. Solutions 575

to address this issue are not straightforward, but 576

applying pre-training data detection methods (Zhou 577

et al., 2024; Zhang et al., 2024) to identify and 578

mitigate data leakage is a necessary first step. 579

The second is the computational costs. Generat- 580

ing keyphrases using LLMs across a vast collection 581

of documents is prohibitively expensive. While 582

“lightweight” models (Grattafiori et al., 2024) or 583

fast inference strategies (Liu et al., 2024) are be- 584

ing developed to reduce these costs, scalable so- 585

lutions remain an open challenge. Reporting the 586

performance-inference speed trade-off of future 587

models would help better position their practical 588

usefulness. 589
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Limitations590

Scope of the analysis591

While we are confident that the sample of papers592

covered in this analysis provides a comprehensive593

representation of the research on keyphrase genera-594

tion, our selection is not exhaustive. Specifically,595

it does not account for papers published in non-596

ACL journals or hosted on pre-print servers, which597

may present additional perspectives or recent ad-598

vancements in the field. Our analysis focuses on599

keyphrase generation and does not cover the closely600

related field of keyphrase extraction, which con-601

verges on the datasets and evaluation metrics.602

Manual extraction of best scores603

Our analysis focuses on the best scores reported604

for the models and could be extended to include605

baselines and ablation studies. Collecting the best606

scores from the selected papers was not always pos-607

sible due to typos or ambiguities in the tables. Fur-608

thermore, our disambiguation strategy—selecting609

either the model demonstrating the best overall per-610

formance or, when unclear, the one performing best611

on the KP20k dataset—may result in suboptimal612

scores for other datasets.613
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A Appendix1422

A.1 Related Surveys1423

To our knowledge, this is the first attempt at com-1424

piling and analyzing the performance of keyphrase1425

generation models. In contrast, several surveys1426

have been carried out on keyphrase extraction, start-1427

ing with (Hasan and Ng, 2014), which focused on1428

pre-deep-learning unsupervised methods. Subse-1429

quent surveys, such as (Çano and Bojar, 2019),1430

(Papagiannopoulou and Tsoumakas, 2020) and1431

(Firoozeh et al., 2020), included additional, more1432

recent methods and presented comparative experi-1433

mental studies. More recently, Song et al. (2023a)1434

carried out a comprehensive review of keyphrase1435

extraction methods, covering PLM-based models,1436

and Xie et al. (2023) performed a large-scale anal-1437

ysis of keyphrase prediction methods, which in-1438

cluded results from some generative models. De-1439

spite marked differences, notably in the model ar-1440

chitectures and training procedures, previous re-1441

search on keyphrase extraction and generation con-1442

verge on the datasets and evaluation metrics, mak-1443

ing these surveys complementary to ours.1444

A.2 Statistics of the Benchmark Datasets1445

Detailed statistics of the datasets are provided in1446

Table 4.1447

A.3 Details of Evaluation Metrics1448

For a given document d, the performance of a1449

model is evaluated by comparing its predicted1450

keyphrases P = {p1, p2, · · · , pM} with a set1451

of gold truth keyphrases Y = {y1, y2, · · · , yO}.1452

Keyphrases are lowercased, stemmed with the1453

Porter Stemmer (Porter, 1997), and duplicates are1454

removed prior to score calculation. When only the1455

top-k predictions P:k = {p1, · · · , pmin(k,M)} are1456

used for evaluation, the precision, recall and F11457

measure are computed as follows:1458

P@k =
|P:k ∩ Y|
|P:k|

R@k =
|P:k ∩ Y|

|Y|
1459

F1@k = 2× P@k ×R@k

P@k +R@k
1460

The most commonly used metrics are defined as:1461

• F1@5: F1@k when k = 5.1462

• F1@10: F1@k when k = 10.1463

• F1@M : M denotes the number of predicted1464

keyphrases. Here, all the predicted phrases are1465

used for evaluation, i.e. without truncation.1466

• F1@O: O denotes the number of gold truth 1467

keyphrases. 1468

• R@10: R1@k when k = 10. 1469

• R@50: R1@k when k = 50. 1470

Noting that when using the top-k predictions and 1471

the number of predicted keyphrases M is lower 1472

than k, incorrect phrases are appended to P until 1473

that M reaches k. 1474

A keyphrase is labelled as present if it consti- 1475

tutes a subsequence of token of d (in stemmed 1476

form), and absent otherwise. This method is stricter 1477

than regex-based matching commonly used in pre- 1478

vious work. When results for present and absent 1479

are reported separately, only the present or absent 1480

keyphrases from P and Y and used for score cal- 1481

culation. Papers usually report the macro-average 1482

scores over all the data examples in a benchmark 1483

dataset. 1484

A.4 Example of normalized keyphrases 1485

An example of data normalization as in Meng et al. 1486

(2017)5 is presented in Table 3. 1487

A.5 Implementation Details 1488

We use the BART-large model weights6 as our ini- 1489

tial pre-trained language model and perform fine- 1490

tuning on the KP20k training set7 for 10 epochs. 1491

We use the AdamW optimizer with a learning rate 1492

of 1e-5 and a batch size of 4. Fine-tuning the model 1493

using 2 Nvidia GeForce RTX 2080 took 400 hours. 1494

5https://github.com/memray/
OpenNMT-kpg-release/blob/
d16bf09e21521a6854ff3c7fe6eb271412914960/
notebook/json_process.ipynb

6https://huggingface.co/facebook/bart-large
7https://huggingface.co/datasets/taln-ls2n/

kp20k
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Title: Autoimmune polyendocrinopathy can-
didiasis ectodermal dystrophy: known and
novel aspects of the syndrome

Abstract: Autoimmune polyendocrinopathy
candidiasis ectodermal dystrophy (APECED)
is a monogenic autosomal recessive disease
caused by mutations in the autoimmune reg-
ulator (AIRE) gene and, as a syndrome, is
characterized by chronic mucocutaneous can-
didiasis and the presentation of various au-
toimmune diseases. During the last decade,
research on APECED and AIRE has provided
immunologists with several invaluable lessons
regarding tolerance and autoimmunity. This
review describes the clinical and immunologi-
cal features of APECED and discusses emerg-
ing alternative models to explain the patho-
genesis of the disease.

Keyphrases: apeced – aire – chronic mucocu-
taneous candidiasis – il-17 – il-22
Normalized: apeced – aire – chronic muco-
cutaneous candidiasis – il <digit>

Table 3: Example of document from KP20k (S2CID:
32645143) with its associated keyphrases and their nor-
malized forms.
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Dataset train / dev / test #kp |kp| %abs

KP20k (Meng et al., 2017) 514k / 20k / 20k 5.3 2.1 36.7
SemEval-2010 (Kim et al., 2010) 144 / – / 100 15.7 2.1 55.5
Inspec (Hulth, 2003) 1k / 500 / 500 9.6 2.3 21.5
Krapivin (Krapivin et al., 2009) 1844 / - / 460 5.2 2.2 43.8
NUS (Nguyen and Kan, 2007) – / – / 211 11.5 2.2 48.7
DUC2001 (Wan and Xiao, 2008) – / – / 308 8.1 2.1 2.7
KPTimes (Gallina et al., 2019) 260k / 10k / 20k 5.0 1.5 54.4
StackEx (Yuan et al., 2020) 298k / 16k / 16k 2.7 – 42.5
Weibo (Wang et al., 2019) 37k / 4.6k / 4.6k 1.1 2.6 75.8
StackEx (Wang et al., 2019) 39.6k / 4.9k / 4.9k 2.4 1.4 54.3

Table 4: Statistics of the benchmark datasets taken from (Wan and Xiao, 2008; Gallina et al., 2019; Wang et al.,
2019; Yuan et al., 2020; Do et al., 2023)
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