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ABSTRACT

Most prior work on the convergence of gradient descent (GD) for overparameterized
neural networks relies on strong assumptions on the step size (infinitesimal), the
hidden-layer width (infinite), or the initialization (large, spectral, balanced). Recent
work relaxes these assumptions for two-layer linear networks trained with the
squared loss. In this work, we derive a linear convergence rate for training two-layer
linear neural networks with GD for general losses and under relaxed assumptions
on the step size, width, and initialization. A key challenge in deriving this result is
that classical ingredients for deriving convergence rates for nonconvex problems,
such as the Polyak-Łojasiewicz (PL) condition and Descent Lemma, do not hold
globally for overparameterized neural networks. Here, we prove that these two
conditions hold locally with constants that depend on the weights. Then, we provide
bounds on these local constants, which depend on the initialization of the weights,
the current loss, and the PL and smoothness constants of the non-overparameterized
model. Based on these bounds, we derive a linear convergence rate for GD that can
be shown to be asymptotically almost optimal w.r.t. the non-overparametrized GD.
Our convergence analysis not only improves upon prior results but also suggests a
better choice for the step size, as verified through our numerical experiments.

1 INTRODUCTION

Neural networks have shown great empirical success in many real-world applications, such as
computer vision (He et al., 2016) and natural language processing (Vaswani et al., 2017). However,
our theoretical understanding of why neural networks work so well is still scarce. One unsolved
question is why neural networks trained via vanilla gradient descent (GD) enjoy fast convergence
despite that their loss landscape is non-convex. Recent work has focused on deriving convergence
rates for overparameterized neural networks. However, most prior work on the linear convergence of
GD for overparametrized neural networks requires strong assumptions on the step size (infinitesimal),
width (infinitely large), initialization (large, spectral), or restrictive choices of the loss function
(squared loss) (See Table 1 for details).

Recently, many works have pointed out that the strong assumptions listed above are unrealistic, and
neural networks that satisfy these assumptions perform poorly in practice. For example, one line
of work (Du et al., 2018b; Lee et al., 2019; Liu et al., 2022) studies the convergence of GD in the
neural tangent kernel (NTK) regime which requires the networks to have large or infinite widths and
large initialization. However, Chizat et al. (2019); Chen et al. (2022) show that the NTK regime
prohibits feature learning, and the generalization performance of neural networks in this regime
degrades substantially. To relax the assumptions on the width, some recent works have focused on
linear networks trained via gradient flow (GF) where GF can be viewed as GD with infinitesimal step
size. Despite the fact that the dynamics of GF are generally easy to analyze, neural networks are never
trained with infinitesimal step size in practice, and the corresponding analysis on the convergence rate
of GF rarely provides meaningful information about the discrete counterpart (GD). Moreover, Barrett
& Dherin (2020); Smith et al. (2021) show the step sizes of GD have implicit regularization, and the
effect of regularization vanishes as the step sizes decrease to zero, which suggests the assumption of
infinitesimal step size is inconsistent with the practical setting of GD. Hence, there is a need for an
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Table 1: Comparison with prior work
Work Loss Step Size Width Initialization

Nonlinear
networks

(Du et al., 2018b; Lee et al.,
2019; Jacot et al., 2018;
Liu et al., 2022; Nguyen &
Mondelli, 2020)

Squared
loss Finite Large Large

(Mei et al., 2018; Chizat &
Bach, 2018; Sirignano &
Spiliopoulos, 2020; Ding
et al., 2022)

Squared
loss Infinitesimal Large General

Linear
networks

(Saxe et al., 2013; Gidel
et al., 2019; Tarmoun et al.,
2021)

Squared
loss Infinitesimal Finite Spectral

(Arora et al., 2018; Du
et al., 2018a)

Squared
loss Finite Finite

Large margin and
small imbalance

(Xu et al., 2023) Squared
loss Finite Finite General

This work General Finite Finite General

analysis that establishes the convergence of neural networks trained using GD under more relaxed
assumptions and with more accurate predictions of the actual rates of convergence.

1.1 MAIN CONTRIBUTION

In this work, we derive (asymptotically) tight linear convergence rates for GD on overparameterized
two-layer linear networks with a general loss, finite width, finite step size, and general initialization.
The main contributions of the paper are:

• We analyze the Hessian of two-layer linear networks and show that the optimization problem
satisfies a local PL condition and local Descent Lemma, where we characterize the local PL
constant and local smoothness constant along the descent direction around GD iterates1 by their
corresponding loss values and the singular values of the weight matrices.

• We show that when the step size satisfies certain constraints (not infinitesimal), the imbalance2 of
the network weights remains close to its initial value. Based on this property, we show that the
local PL and smoothness constants can be bounded along the trajectory of GD, which leads to a
linear convergence rate for GD. Moreover, our results cover GD with decreasing, constant, and
increasing step sizes while prior work (Du et al., 2018a; Arora et al., 2018; Xu et al., 2023) only
covers GD with decreasing and constant step sizes.

• We show that the local smoothness constant decreases along the GD trajectory under certain
constraints on the step size, which suggests the optimization landscape gets more benign as the
training proceeds. Based on this observation, we design an adaptive step size scheduler that
accelerates the convergence (See Appendix G).

• Our analysis allows us to show that when GD iterates are around a global minimum, the difference
between the local rate of convergence of the overparametrized model and the rate of the non-
overparametrized model is up to one condition number of an operator (see §2.2 for definitions)
which can be made arbitrarily close to one by proper initialization. Thus showing that the non-
convexity induced by the overparametrization mildly affects convergence.

1.2 RELATED WORK

We now provide a detailed description of prior work in addition to the discussion above.

One line of work (Du et al., 2018b; Lee et al., 2019; Liu et al., 2022; Nguyen & Mondelli, 2020)
studies the convergence of GD under the assumption that the width and initialization of neural
networks are sufficiently large, which is also known as the neural tangent kernel (NTK) regime.
Under these assumptions, the training trajectories of a neural network are governed by a kernel
determined at initialization and the network weights stay close to their initial values. Such properties

1In the paper, we adopt the term local smoothness constant as a convenient shorthand to refer to the
smoothness constant along the descent direction around GD.

2The imbalance is a quantity that measures the difference between the weights of two adjacent layers.
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help them derive a linear convergence rate of GD. However, Chizat et al. (2019); Chen et al. (2022)
show that the NTK regime prohibits feature learning, and the performance of neural networks in this
regime degrades substantially. Another line of work (Mei et al., 2018; Rotskoff & Vanden-Eijnden,
2018a;b; Sirignano & Spiliopoulos, 2020) studies the convergence of GD in the (mean-field) limit
of infinitely wide neural networks with the infinitesimal step size assumption, where the dynamics
of network weights follow a partial differential equation. However, such analysis imposes strong
assumptions on the width (infinite) and step size (infinitesimal), and the convergence is shown without
an explicit bound on the rate.

To relax the assumptions on the width, step size, or initialization, many work focus on deriving
convergence rates of gradient-based algorithms for neural networks with linear activation functions,
based on the observation that linear networks exhibit similar nonlinear learning phenomena to those
seen in simulations of nonlinear networks (Saxe et al., 2013). In the finite-width setting, most
existing results consider linear networks trained using GF. GF can be seen as GD with infinitesimal
step size, but its dynamics in this setting are generally easier to analyze. For example, Saxe et al.
(2013); Tarmoun et al. (2021); Min et al. (2022) show that linear networks enjoy linear convergence
under different assumptions on the initialization. However, all results require infinitesimal step
size. In the finite step size regime, Arora et al. (2018); Du et al. (2018a); Xu et al. (2023) show
the linear convergence of GD. Specifically, Arora et al. (2018); Du et al. (2018a) derive the linear
convergence of GD when there is sufficient margin and small imbalance at initialization where the
margin measures how close the initialization is to the global minimum. However, such initialization is
impractical since commonly used random initialization schemes, such as Xavier initialization (Glorot
& Bengio, 2010) and He initialization (He et al., 2015), both lead to a large imbalance. Recently,
Xu et al. (2023) derive a convergence rate for GD under general initialization where there is either
sufficient imbalance or sufficient margin. Moreover, they design an adaptive step size scheme that
accelerates the convergence. However, the convergence rate of the adaptive step size in (Xu et al.,
2023) only holds under stringent assumptions on some auxiliary constants which leads to a slower
convergence rate. Despite the relaxed assumptions on the width, step size, or initialization in (Arora
et al., 2018; Du et al., 2018a; Xu et al., 2023), all these works considers squared loss, and the analyses
are based on the PL condition and Descent lemma of the non-overparameterized models and do not
fully capture the optimization properties of linear networks.

A classical approach to deriving the convergence rate of GD for non-convex optimization problems is
based on Descent lemma and PL condition Karimi et al. (2020), both of which are closely related to
the Hessian. However, most results for neural networks focus on characterizing the structure of the
Hessian and do not connect to the convergence rate of GD. For example, Sagun et al. (2017); Wei &
Schwab (2019); Alain et al. (2019); Ghorbani et al. (2019); Sun et al. (2020) empirically study the
evolution of eigenvalues of the Hessian during training. Some theoretical work mainly focuses on
finding certain structures of the Hessian, such as low-rank (Singh et al., 2021; Wu et al., 2022) or
characterization of the top eigenvalue under a constrained setting (Zhou & Liang, 2017). The only
work that we are aware of that uses the properties of Hessian to derive the convergence rate of GD for
overparameterized neural networks is (Liu et al., 2022), which shows that when the width is very
large, the Hessian is almost constant during training. Under the assumption that the optimization
problem satisfies the PL condition at initialization and the smoothness condition everywhere, they
prove the linear convergence of GD. However, neural networks are not globally Lipschitz-smooth,
and the statement that Hessian is almost constant is inconsistent with practical observations (Sagun
et al., 2017; Ghorbani et al., 2019). Therefore, an analysis that fully exploits information of the neural
network’s Hessian in the derivation of the convergence rate is still missing.

Notation. We use lower case letters a to denote a scalar, and capital letters A and A
> to denote a

matrix and its transpose. We use �max(A) and �min(A) to denote the largest and smallest singular
values of A, kAkF and kAk2 to denote its Frobenius and spectral norms, and A[i, j] to denote its
(i, j)-th element. For a function f(Z), we use rf(Z) := @

@Z f(Z) to denote its gradient.

2 PRELIMINARIES

In this paper, we consider using the GD algorithm to solve the following optimization problem

min
W2Rn⇥m

`(W ) , (1)
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and its overparametrized version
min

W12Rn⇥h,W22Rm⇥h
L(W1,W2) = `(W1W

>
2 ) . (2)

We are mostly interested in solving Problem 2, which covers many problems, such as matrix factoriza-
tion (Koren et al., 2009), matrix sensing (Chen & Chi, 2013), training linear neural networks (Arora
et al., 2018; Du et al., 2018a; Xu et al., 2023). In particular, when `(W ) = 1

2kY �XWk
2
F , where

X,Y are data matrices, Problem 2 corresponds to training a two-layer linear neural network with n

inputs, h hidden neurons, m outputs, and weight matrices W1 and W2 using the squared loss.

2.1 CONVERGENCE RATE OF GD FOR PROBLEM 1

In this section, we review the analysis for deriving the convergence rate of GD for Problem 1.

We seek to derive the convergence rate of GD for Problem 1 with the following iterations,
W (t+1) = W (t)� ⌘tr`(W (t)), (3)

where we will use `(t),r`(t) as a shorthand for `(W (t)),r`(W (t)) respectively.

Throughout the paper, we make the following assumptions.
Assumption 2.1. The loss `(W ) is twice differentiable, K-smooth, and µ-strongly convex .
Assumption 2.2. minW `(W ) = 0 .

Assumption 2.1 ensures the solution to Problem 1 is unique. Assumption 2.2 is for the purpose of
convenience and brevity of theorems in this work. This assumption can be relaxed (to have arbitrary
`
⇤) without affecting the significance of our results. Moreover, one can have the following inequalities

based on the above assumptions for arbitrary W,V 2 Rn⇥m

`(V )  `(W ) + hr`(W ), V �W i+
K

2
kV �Wk

2
F Smoothness inequality , (4)

1

2
kr`(W )k2F � µ`(W ) PL inequality . (5)

Since strong convexity implies PL condition, equation 5 holds under Assumption 2.1. In §3, we
derive the convergence rate of Problem 2 based on the argument of the local PL condition. To be
consistent, we highlight the role of the PL condition here. Moreover, the analysis in §2.1 remains
applicable when µ-strong convexity is relaxed to µ-PL condition.

In (Polyak, 1963; Boyd & Vandenberghe, 2004), it was shown that whenever 0<⌘t<
2
K , the GD

iteration equation 3 achieves linear convergence. The derivation is based on two ingredients: Descent
lemma and the PL inequality where Descent lemma is derived from the smoothness inequality.

Descent lemma. Starting from the smoothness inequality in equation 4, one can substitute (V,W )
with the GD iterates (W (t+1),W (t)) to derive Descent lemma, i.e.,

`(t+1)`(t)+hr`(t),W (t+1)�W (t)i+
K

2
kW (t+1)�W (t)k2F =`(t)�(⌘t�

K⌘
2
t

2
)kr`(t)k2 .

Based on the PL inequality in equation 5 and Descent lemma above, one can see there is a strict
decrease in the loss at each GD step

`(t+1)  `(t)� (⌘t �
K⌘

2
t

2
)kr`(t)k2  (1� 2µ⌘t + µK⌘

2
t )`(t) , (6)

where the fact that 0 < ⌘t <
2
K , implies 0 < 1 � 2µ⌘t + µK⌘

2
t < 1. Moreover, the minimum

descent rate in equation 6 is achieved when ⌘t =
1
K , leading to the following linear convergence rate:

`(t+1) 
⇣
1�

µ

K

⌘
`(t) 

⇣
1�

µ

K

⌘t+1
`(0). (7)

Tightness of the analysis. The previous analysis guarantees a linear convergence rate for any
arbitrary non-convex function that is K-smooth and satisfies the µ-PL condition. Moreover, one can
show that the rate in equation 7 is optimal in the sense that there exists a function that is K-smooth
and satisfies the µ-PL condition for which the bound on equation 7 is met with equality. Therefore,
one would naturally be tempted to apply such an analysis to Problem 2. We will next show that
overparameterization introduces several challenges that prevent this analysis from being readily
applied.
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2.2 CHALLENGES IN THE ANALYSIS OF CONVERGENCE OF PROBLEM 2 OPTIMIZED VIA GD

In this section, we first introduce GD with adaptive step size to solve Problem 2. Then, we discuss
the main challenges in deriving the convergence rate for Problem 2 based on the analysis in §2.1.

Overparametrized GD. We consider using GD with adaptive step size ⌘t to seek optimal solutions
of Problem 2


W1(t+1)
W2(t+1)

�
=


W1(t)
W2(t)

�
� ⌘trL

�
W1(t),W2(t)

�
, (8)

where rL(W1,W2) is computed via the chain rule:

rL(W1,W2) = T (r`(W );W1,W2) :=


r`(W )W2

r`(W )>W1

�
. (9)

Here T : Rn⇥m
7! R(n+m)⇥h is a weight-dependent linear operator that acts on r`(W ). Thus,

the gradient of L in equation 9 can be viewed as a "skewed/scaled gradient" of ` that depends on
W1,W2. It is this dependence on the weights W1,W2 that makes it impossible to globally guarantee
that equation 4 and equation 5 hold, as shown next.
Proposition 2.1 (Non-existence of global PL constant and smoothness constant). Under mild
assumptions, the PL inequality and smoothness inequality can only hold globally with constants
µover = 0 and Kover = 1 for L(W1,W2).

The proof of the above proposition can be found in Appendix B.

The non-existence of global PL and smoothness constants in the over-parametrized models prevents
us from using the same proof technique in §2.1 to derive the linear convergence of GD. In §3, we
show that although these constants do not exist globally, we can characterize them along iterates of
GD. Moreover, under proper choices of the step size of GD, the PL and smoothness constants can be
controlled for all iterates of GD. Thus, the linear convergence of GD can be derived.

3 CONVERGENCE OF GD FOR PROBLEM 2

To deal with the challenges presented in §2.2, in §3.1 we propose a novel PL inequality and Descent
Lemma evaluated on the iterates of GD for Problem 2. Next, based on the results in §3.1, in §3.2 we
derive a convergence rate for GD that depends on the weights at initialization, the step size, K, and µ.
Moreover, in §3.2 we propose an adaptive step size scheduler that dynamically optimizes the rate to
accelerate convergence.

Throughout the paper, we assume that the width satisfies h�min{n,m}. This assumption ensures
`
⇤ = L

⇤ where L
⇤ = minW1,W2 L(W1,W2), and thus solving Problem 2 yields the solution to

Problem 1. When h < min{n,m}, Problem 2 enforces a rank constraint on the product. Thus,
minW `(W ) may not be equal to minW1,W2 L(W1,W2). We are therefore interested in studying
Problem 2 under the assumption h�min{n,m} which is the same setting in (Arora et al., 2018; Du
et al., 2018a; Xu et al., 2023).

3.1 LOCAL PL INEQUALITY AND DESCENT LEMMA FOR OVER-PARAMETRIZED GD

In §2.2, we saw that there does not exist a global PL constant or a global smoothness constant for
Problem 2. However, to prove that GD converges linearly to a global minimum of Problem 2, it is
sufficient for Descent lemma and PL inequality to hold for iterates of GD. The following theorem
formally characterizes the local PL inequality and Descent lemma for Problem 2.
Theorem 3.1 (Local Descent Lemma and PL condition for GD iterates). At the t-th iteration of GD
applied to the Problem 2, the Descent lemma and PL inequality hold with local smoothness constant
Kt and PL constant µt , i.e.,

L(t+1)  L(t)�
�
⌘t �

Kt⌘
2
t

2

�
krL(t)k2F ,

1

2
krL(t)k2F � µtL(t) . (10)
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Moreover, if the step size ⌘t satisfies ⌘t > 0 and ⌘tKt < 2, then the following inequality holds

L(t+1)  L(t)(1� 2µt⌘t + µtKt⌘
2
t ) := L(t)⇢(⌘t, t) , (11)

where

µt = µ�
2
min(Tt) , (12)

Kt = K�
2
max(Tt)+

p
2KL(t)+6K2

�max(W (t))L(t)⌘2t +3K�
2
max(Tt)

p
2KL(t)⌘t , (13)

and we use L(t) and Tt as shorthands for L(W1(t),W2(t)) and T ( · ;W1(t),W2(t)), resp.

The proof of the above theorem can be found in Appendix D. Notice that µt,Kt are not actually
constants since they vary w.r.t. the iteration index t. In this work, we adopt the convention to call
them local PL and smoothness constants to be consistent with the terminology in §2.

In §2.1, we showed that as long as one chooses ⌘t = ⌘̄, with 0 < ⌘̄ <
2
K , GD in equation 3

for Problem 1 achieves linear convergence, with an optimal rate (1 �
µ
K ) given when ⌘t = 1

K .
However, we argue Theorem 3.1 does not imply linear convergence of overparametrized GD even
though there always exists sufficiently small ⌘t > 0 such that ⌘tKt < 2. The difference is due
to the fact that µt and Kt are changing w.r.t. the iterations. Specifically, if lim

t!1
µt

Kt
= 0, one has

lim
t!1

inf0<⌘t< 2
Kt

⇢(⌘t, t) = 1. Thus, equation 11 does not necessarily imply that the product of the

per-iterate descent ⇧t
l=0⇢(⌘l, l) goes to zero.

Towards linear convergence. Nevertheless, if there exists ⌘t > 0 that can simultaneously satisfy
the constraint ⌘tKt < 2 and the uniformly bound 1� 2µt⌘t + µtKt⌘

2
t  ⇢̄ < 1, for all t, one can

expect the linear convergence

L(t+1)  ⇢(⌘t, t)L(t)  ⇢̄L(t)  ⇢̄
t+1

L(0) . (14)

Guaranteeing a uniform bound as in equation 14, requires one to keep track and control the evolution
of W (t), Tt, ⌘t and L(t). In the next section, we will address these issues. For the time being, we
focus next on how the µt,Kt in Theorem 3.1 depend on the µ,K, L(t), ⌘t and the current weights.

Characterization of µt,Kt. Theorem 3.1 shows how overparametrization affects the local PL
constant and smoothness constant, i.e., µt,Kt, via a time-varying linear operator Tt. Specifically,
the PL constant in equation 12 is the PL constant of `(W ), i.e., µ, scaled by �

2
min(Tt). Moreover,

the smoothness constant in equation 13 consists of two parts. The first one is K�
2
max(Tt), which

represents the smoothness constant of `(W ), i.e., K, scaled by �
2
max(Tt). The rest of the terms

decrease to zero as the loss L(t) approaches zero.

In the next section, we will show that proper choice of initialization and step sizes ⌘t does indeed
lead to linear convergence of overparametrized GD.

3.2 LINEAR CONVERGENCE OF PROBLEM 2 WITH GD

In this section, we first state a theorem which shows that GD in equation 8 converges linearly to a
global minimum of Problem 2 (See Theorem 3.2) under certain constraints on ⌘t and the initialization.
Then, based on the convergence rate in Theorem 3.2, we propose an adaptive step size scheduler that
accelerates the convergence. Finally, we present a sketch of the proof of Theorem 3.2 to highlight the
technical novelty and implications of the theorem. We refer the reader to Table 2 for the definition of
various quantities appearing in this section.

We now present our main result on the linear convergence of GD for Problem 2.
Theorem 3.2 (Linear convergence of GD for Problem 2). Assume the GD algorithm in equation 8
is initialized such that ↵1 > 0. Then there exists ⌘max > 0 such that for all ⌘0, ⌘t that satisfies
0 < ⌘0 < ⌘max and

⌘0  ⌘t  min
�
(1 + ⌘

2
0)

t
2 ⌘0,

1

Kt

�
, (15)

one can derive the following bound for each iteration

L(t+1)  L(t)⇢̄(⌘t, t)  L(t)⇢̄(⌘0, 0) . (16)
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Table 2: Notation
Symbol Definition Symbol Definition

D(t) W>
1 (t)W1(t) � W>

2 (t)W2(t) � max(�n(D(0)), 0)+max(�m(�D(0)), 0)

�� max(�max(�D(0)), 0) ↵1
��+���+

q
(�++�)2+4�2

1+
q

(��+�)2+4�2
1

2

�+ max(�max(D(0)), 0) ↵2

�++
q

�2
++4�2

2
2 +

��+
q

�2
�+4�2

2
2

�+ �+ � max(�n(D(0)), 0) �1 max
�
0,�min(W

⇤)�
q

K
µ kW (0)�W⇤kF

�

�� ���max(�m(�D(0)), 0) �2 �max(W
⇤))+

q
2
µL(0)

Moreover, based on equation 16, GD algorithm in equation 8 converges linearly
L(t+1)  L(0)⇢̄(⌘0, 0)

t+1
, (17)

where
⇢̄(⌘t, t) = 1� 2µ̄⌘t + µ̄K̄t⌘

2
t , µ̄ = µ

⇥
↵1 + 2↵2

�
1� exp(

p
⌘0)

�⇤
, � = (1 + ⌘

2
0)⇢̄(⌘0, 0) ,

K̄t =
p
2KL(0)⇢̄(⌘0, 0)t+6K2

�2L(0)⌘
2
0�

t+K exp(
p
⌘0)↵2

⇥
1+3

p
2KL(0)�t⌘0

⇤
.

The proof of the above theorem is presented in Appendix E. The above theorem states GD enjoys
linear convergence for Problem 2 under the assumptions that ↵1 > 0 and certain constraints on ⌘t.
We make the following remarks:

Conditions on the initialization for linear convergence. From Theorem 3.2, we see that if the
initialization {W1(0),W2(0)} satisfies ↵1 > 0, then GD converges linearly with an appropriate
choice of the step size. The constraints on ⌘0 ensure that µ̄ > 0. Thus, when 0 < ⌘0 <

2
K̄0

, one has
0 < ⇢̄(⌘0, 0) < 1. The assumptions on ↵1 has been studied in Min et al. (2022) where the authors
show that ↵1 > 0 when there is either 1) sufficient imbalance � > 0 or 2) sufficient margin �1 > 0,
where �,�1 is defined in Table 2. In Appendix F, we present two conditions that ensure ↵1 > 0.
Please see Appendix F for a detailed proof and discussions.

Evolution of smoothness constant. One unique feature in our Theorem is the time-varying upper
bound K̄t on the local smoothness constant Kt along GD iterates. The constraints on ⌘0 ensures
that 0 < ⇢̄(⌘0, 0),� < 1. Thus, K̄t monotonically decrease to K exp(

p
⌘0)↵2 w.r.t. t. The fact

that K̄t is monotonically decreasing w.r.t. t suggests that the local optimization landscape gets more
benign as the training proceeds. Thus in order to achieve a fast rate of convergence, there is a need
for a time-varying choice of step size that adapts to the changes in the local smoothness constant Kt

(because theoretically, the optimal choice is ⌘t = 1
Kt

, based on equation 11). In Zhang et al. (2020),
the authors show empirically that the global smoothness condition does not hold in deep neural
networks, and keeping track of the smoothness constant is important to understand the acceleration
of optimization methods, such as gradient clipping. The characterization of the smoothness constant,
i.e. Kt, K̄t, for two-layer linear networks can be the first step to help us understand the acceleration
of optimization algorithms for deep neural networks.

Requirement on the step size. We have mentioned in the previous remark that a time-varying step
size could be beneficial for convergence. However, prior analyses (Arora et al., 2018; Du et al.,
2018a; Xu et al., 2023) are all restricted to a constant or decaying step size. The main reason is
that one requires a uniform spectral bound on Tt and W (t) throughout the entire GD trajectory to
establish linear convergence and such a uniform bound has only been shown under a constant or
decaying step size. In our analysis, we show a similar spectral bound can be obtained even with a
growing step size (See Lemma 3.1 in Section 3.3), as long as ⌘t  (1 + ⌘

2
0)

t
2 ⌘0, but not too much

⌘t 
1
Kt

(ensures a sufficient decrease in the loss at every iteration). The first bound diverges to
infinity exponentially fast, and the second bound has a growing lower bound 1

K̄t
which monotonically

increases to 1
K exp(

p
⌘0)↵2

. Thus, initially, the step size is restricted to [⌘0, (1 + ⌘
2
0)

t
2 ⌘0] thus not

much larger than the initial step ⌘0. As the training goes on, the binding constraint becomes ⌘t  1
Kt

,
suggesting that GD can take a step that achieves the theoretically largest descent in the loss.

Local rate of convergence . In Lemma 3.2, we show L(t+1)  L(t)⇢̄(⌘t, t). When t is sufficiently
large, or equivalently around any global minimum of Problem 2, the ⇢̄(⌘t, t) takes a simple form, and

7
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the optimal rate of convergence is achieved as (via a proper choice of ⌘t)

min
⌘t

⇢̄(⌘t, t) = min
⌘t

1�2µ̄⌘t+µ̄K exp(
p
⌘0)↵2⌘

2
t =1�

µ

K
·
↵1+2↵2

�
1�exp(

p
⌘0)

�

exp(
p
⌘0)↵2

.

Notice the optimal local rate of convergence can be arbitrarily close to 1� µ
K ·

↵1
↵2

as ⌘0 decreases.

Table 3: Comparison of convergence rates between prior work and our work.
loss step size initialization local rate of convergence

Arora et al. (2018) squared loss constant D(0) ⇡ 0, �1 > 0 1 � ⌦(
µ↵2

1
K↵2

2
)

Du et al. (2018a) squared loss decreasing D(0) ⇡ 0, �1 > 0 no explicit rate
Xu et al. (2023) squared loss constant ↵1 > 0 1 � ⌦(

µ↵2
1

K↵2
2
)

our work general adaptive ↵1 > 0 1 � ⌦(
µ↵1
K↵2

)

Detailed Comparison with SOTA. We compare our results with prior works studying the same
problem Arora et al. (2018); Du et al. (2018a); Xu et al. (2023) (See Table 3). Moreover, we present
a detailed discussion on the difference of proof techniques used in this work and prior work, and how
it leads to different convergence rates. Please see Appendix C for details.

Choices of the step size. Recall that for non-overparamterized GD, we have `(t+1)  (1�2µ⌘t+
µK⌘

2
t )`(t), there exists an optimal choice of ⌘⇤t = 1

K that minimize the theoretical upper bound on
`(t+1). In Theorem 3.1 and Theorem 3.2, we show L(t+1)  h(⌘t, t)L(t) under certain conditions
on ⌘t where h(⌘t, t) 2 {⇢(⌘t, t), ⇢̄(⌘t, t)}. It is natural to use a similar approach to select step size at
each iteration. To achieve the optimal step size, it suffices to minimize the upper bound on L(t+1)
to achieve the most decrease at each iteration. The difference is that we have a time-varying upper
bound on L(t+1) thus the minimizer ⌘⇤t depends on time, and our choice of ⌘⇤t must respect our
constraint on step size in equation 15. This leads to the following choice for ⌘⇤t

⌘
⇤
t = argmin

⌘tmin{(1+⌘2
0)

t/2⌘0, 1
Kt

}
h(⌘t, t) . (18)

Since ⇢(⌘t, t), ⇢̄(⌘t, t) are quadratic in terms of ⌘t, so ⌘
⇤
t takes the following closed-form solutions

depending on which upper bound to use:

⌘
⇤
t =

(
min

�
(1 + ⌘

2
0)

t/2
⌘0,

1
Kt

�
if h(⌘t) = ⇢(⌘t, t) ,

min
�
(1 + ⌘

2
0)

t/2
⌘0,

1
K̄t

�
if h(⌘t) = ⇢̄(⌘t, t) .

(19)

The above choices of the adaptive step sizes satisfy the constraints in Theorem 3.2, so they both
guarantee linear convergence for over-parametrized GD. Moreover, such choices of ⌘t give us the
following theoretical bound on L(t+1), i.e.,

L(t+1)  L(0)
tY

k=1

h(⌘⇤k, k) . (20)

In Appendix G, we provide numerical verification of the close alignment between the theoretical
bounds stated above and the actual convergence rate. We also observe an accelerated convergence
when employing the step sizes specified in equation 18 compared with the one proposed in Xu et al.
(2023) and Backtracking line search. We refer the readers to Appendix G for simulation results.

3.3 PROOF SKETCH OF THEOREM 3.2

In this section, we provide a proof sketch of Theorem 3.2 that highlights the technical novelty and
implications of our results.

To show there exists a 0 < ⇢̄ < 1 such that ⇢(⌘t, t)  ⇢̄ holds for all t, we use the following two-step
approach in a similar way as it was done in (Xu et al., 2023).

Step one: uniform spectral bounds for Tt,Wt . First, we show when ⌘t is controlled, one has the
following uniform spectral bounds on Tt and W (t).

8
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Lemma 3.1 (Uniform spectral bounds on Tt,W (t).). Under the same assumption and constraints in
Theorem 3.2, one has the following uniform spectral bounds on Tt,W (t)

↵1 + 2↵2

�
1� exp(

p
⌘0)

�
 �

2
min(Tt)  �

2
max(Tt)  ↵2 exp(

p
⌘0) , (21)

�1  �min(W (t))  �max(W (t))  �2 . (22)

Similar results have been derived in (Xu et al., 2023) where the authors show uniform spectral bounds
of Tt,Wt for constant step size GD. Our proof strategy is similar to (Xu et al., 2023) which relies on
the fact that when the GD enjoys linear convergence, the change of imbalance during the training
is small. For constant step size GD, we can characterize the change using the step size ⌘ and the
convergence rate ⇢̄, i.e., kD(t)�D(0)kF  O( ⌘2

1�⇢̄ ). In this work, we discover when we allow step
size to grow but not too fast, i.e., ⌘t  (1 + ⌘

2
0)

t
2 ⌘0, we can still control the change of imbalance,

i.e., kD(t)�D(0)kF  O( ⌘2
0

1�� ). This observation helps us derive the uniform spectral bounds for
Tt,W (t) while allowing the step size to grow.

Step two. Second, we employ an induction-based argument to prove that based on Lemma 3.1, one
can show µ � µ̄,Kt  K̄t and L(t) converges linearly with the rate ⇢̄(⌘0, 0).
Lemma 3.2 (Induction step to show µt,Kt is bounded and L(t) converges linearly.). Under the
same assumption and constraints in Theorem 3.2, assume L(t) enjoys linear convergence with rate
⇢̄(⌘0, 0) until iteration k, then the following holds for iteration k+1

µk+1 � µ̄ , Kk+1  K̄k+1 , (23)

with µ̄, K̄k+1 defined in Theorem 3.2. Moreover, one can show

⇢(⌘k+1, k+1)  ⇢̄(⌘k+1, k+1)  ⇢̄(⌘0, 0) . (24)

Equation 23 is a direct consequence of Lemma 3.1 and the induction that L(t) enjoys linear conver-
gence until iteration k. We can bound µk,Kk by subsituting �min(Tk), �max(Tk),�max(W (k)), L(k)
with the bounds in equation 21, equation 22 and L(0)⇢̄(⌘0, 0)t respectively. Based on these results,
one can derive the following upper bound on L(k+1) under the same constraints on ⌘t in Theorem 3.2

L(k+1)(1�2µ̄⌘k+µ̄Kk⌘
2
k)L(k)(1�2µ̄⌘k+µ̄K̄0⌘

2
k)L(k)  ⇢̄(⌘0, 0)L(k) , (25)

where the first inequality is based on Descent lemma and PL inequality with constant µ̄ in Theorem 3.2.
The second inequality is based on the fact that Kk  K̄k  K̄0, and the third one is derived using
constraints on ⌘0 and equation 15.

4 CONCLUSION

This paper studied the convergence of GD for optimizing two-layer linear networks on general
loss. In particular, we derived a convergence rate for networks of finite width that are initialized
in a non-NTK regime. We use a common framework for studying the convergence of GD for the
non-convex optimization problem, i.e. PL condition and Descent lemma. Although the loss landscape
of neural networks does not satisfy PL condition and Descent lemma with global constants, we show
that when the step size is small, both conditions satisfy locally with constants depending on the
singular value of the weights, the current loss, and the singular value of the products. Furthermore, We
prove that the local PL constants and smoothness constants can be bounded uniformly by the initial
imbalance, the margin, the PL constant, and the smoothness constant of the non-overparametrized
models. In addition, we derive an explicit convergence rate that depends on the margin, imbalance,
and condition number of the non-overparametrized model. Finally, based on the convergence rate, we
propose an adaptive step size scheme that accelerates convergence compared with a constant step
size. Empirically, we show the convergence rate derived in our work is tighter than in previous work.
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A PRELIMINARY LEMMAS

In this section, we present a preliminary lemma which will be used in the following sections.
Lemma A.1 (Inequality on the Frobenius norm). For matrix A,B,C,D, we have

hA,Bi  kAkF · kBkF , (26)

2kABkF  kAk
2
F + kBk

2
F , (27)

kAB + CDk
2
F  [�2

max(A) + �
2
max(C)]2 · [kBk

2
F + kDk

2
F ] , (28)

kAk
2
F + kBk

2
F  2kA+Bk

2
F , (29)

�
2
min(A)kBk

2
F  kABk

2
F  �

2
max(A)kBk

2
F , (30)

�
2
min(B)kAk

2
F  kABk

2
F  �

2
max(B)kAk

2
F . (31)

Lemma A.1 has been derived and used multiple times in prior work. We refer the readers to Appendix
C in Xu et al. (2023) for detailed proof.
Lemma A.2 (Singular values of T ). The largest and smallest singular values of T are given as

�
2
min(T ) = �

2
min(W1) + �

2
min(W2) ,

�
2
max(T ) = �

2
max(W1) + �

2
max(W2) . (32)

Proof. First, one can see

T
⇤
� T (U ;W1,W2) = UW2W

>
2 +W1W

>
1 U , (33)

where T
⇤ is the adjoint of T . Then, we use Min-max theorem to show

�min(T
⇤
� T ) = �

2
min(W1) + �

2
min(W2) , �max(T

⇤
� T ) = �

2
max(W1) + �

2
max(W2) . (34)

Let the singular value decompositions of W1,W2 be

W1 = U1⌃1V
>
1 =

r1X

i=1

�1,iu1,iv
>
1,i , W2 = U2⌃2V

>
2 =

r2X

i=1

�2,iu2,iv
>
2,i , (35)

where r1 = rank(W1), r2 = rank(W2), and {�1,i}
r1
i=1, {�2,i}

r2
i=1 are of descending order. Then, one

has the following

�min(T
⇤
� T ) = min

kUkF=1
hU,UW2W

>
2 +W1W

>
1 Ui

= min
kUkF=1

hU,UW2W
>
2 i+ min

kUkF=1
hU,W1W

>
1 Ui

� �
2
min(W1) + �

2
min(W2) . (36)
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