
A U-turn on Double Descent: Rethinking Parameter
Counting in Statistical Learning

Alicia Curth∗

University of Cambridge
amc253@cam.ac.uk

Alan Jeffares∗
University of Cambridge
aj659@cam.ac.uk

Mihaela van der Schaar
University of Cambridge
mv472@cam.ac.uk

Abstract

Conventional statistical wisdom established a well-understood relationship between
model complexity and prediction error, typically presented as a U-shaped curve
reflecting a transition between under- and overfitting regimes. However, motivated
by the success of overparametrized neural networks, recent influential work has sug-
gested this theory to be generally incomplete, introducing an additional regime that
exhibits a second descent in test error as the parameter count p grows past sample
size n – a phenomenon dubbed double descent. While most attention has naturally
been given to the deep-learning setting, double descent was shown to emerge more
generally across non-neural models: known cases include linear regression, trees,
and boosting. In this work, we take a closer look at the evidence surrounding these
more classical statistical machine learning methods and challenge the claim that
observed cases of double descent truly extend the limits of a traditional U-shaped
complexity-generalization curve therein. We show that once careful consideration
is given to what is being plotted on the x-axes of their double descent plots, it
becomes apparent that there are implicitly multiple, distinct complexity axes along
which the parameter count grows. We demonstrate that the second descent appears
exactly (and only) when and where the transition between these underlying axes
occurs, and that its location is thus not inherently tied to the interpolation threshold
p=n. We then gain further insight by adopting a classical nonparametric statistics
perspective. We interpret the investigated methods as smoothers and propose a
generalized measure for the effective number of parameters they use on unseen
examples, using which we find that their apparent double descent curves do in-
deed fold back into more traditional convex shapes – providing a resolution to the
ostensible tension between double descent and traditional statistical intuition.

1 Introduction

Historically, throughout the statistical learning literature, the relationship between model complexity
and prediction error has been well-understood as a careful balancing act between underfitting,
associated with models of high bias, and overfitting, associated with high model variability. This
implied tradeoff, with optimal performance achieved between extremes, gives rise to a U-shaped
curve, illustrated in the left panel of Fig. 1. It has been a fundamental tenet of learning from data,
omnipresent in introductions to statistical learning [HT90, Vap95, HTF09], and is also practically
reflected in numerous classical model selection criteria that explicitly trade off training error with
model complexity [Mal73, Aka74, Sch78]. Importantly, much of the intuition relating to this U-
shaped curve was originally developed in the context of the earlier statistics literature (see e.g.
the historical note in [Nea19]), which focussed on conceptually simple learning methods such as
linear regression, splines or nearest neighbor methods [WW75, HT90, GBD92] and their expected
in-sample prediction error, which fixes inputs and resamples noisy outcomes [Mal73, HT90, RT19].

∗Equal contribution

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

U-curve

L-curve

E
rr

or

Complexity dim 1

Complexity

dim
2

Double descent

“unfolding”Complexity

dim
2

Figure 1: A 3D generalization plot with two complexity axes unfolding into double descent. A
generalization plot with two complexity axes, each exhibiting a convex curve (left). By increasing raw parameters
along different axes sequentially, a double descent effect appears to emerge along their composite axis (right).

The modern machine learning (ML) literature, conversely, focuses on far more flexible methods with
relatively huge parameter counts and considers their generalization to unseen inputs [GBC16, Mur22].
A similar U-shaped curve was long accepted to also govern the complexity-generalization relationship
of such methods [GBD92, Vap95, HTF09]– until highly overparametrized models, e.g. neural
networks, were recently found to achieve near-zero training error and excellent test set performance
[NTS14, BLLT20, Bel21]. In this light, the seminal paper of Belkin et al. (2019) [BHMM19]
sparked a new line of research by arguing for a need to extend on the apparent limitations of classic
understanding to account for a double descent in prediction performance as the total number of model
parameters (and thus – presumably – model complexity) grows. This is illustrated in the right panel of
Fig. 1. Intuitively, it is argued that while the traditional U-curve is appropriate for the regime in which
the number of total model parameters p is smaller than the number of instances n, it no longer holds in
the modern, zero train-error, interpolation regime where p>n – here, test error experiences a second
descent. Further, it was demonstrated that this modern double descent view of model complexity
applies not only in deep learning where it was first observed [BO96, NMB+18, SGd+18, ASS20],
but also ubiquitously appears across many non-deep learning methods such as trees, boosting and
even linear regression [BHMM19].

Contributions. In this work, we investigate whether the double descent behavior observed in recent
empirical studies of such non-deep ML methods truly disagrees with the traditional notion of a U-
shaped tradeoff between model complexity and prediction error. In two parts, we argue that once care-
ful consideration is given to what is being plotted on the axes of these double descent plots, the origi-
nally counter-intuitive peaking behavior can be comprehensively explained under existing paradigms:

• Part 1: Revisiting existing experimental evidence. We show that in the experimental evidence for
non-deep double descent – using trees, boosting, and linear regressions – there is implicitly more than
one complexity axis along which the parameter count grows. Conceptually, as illustrated in Fig. 1, we
demonstrate that this empirical evidence for double descent can thus be comprehensively explained as
a consequence of an implicit unfolding of a 3D plot with two orthogonal complexity axes (that both in-
dividually display a classical convex curve) into a single 2D-curve. We also highlight that the location
of the second descent is thus not inherently tied to the interpolation threshold. While this is straight-
forward to show for the tree- and boosting examples (Sec. 2), deconstructing the underlying axes in
the linear regression example is non-trivial (and involves understanding the connections between min-
norm solutions and unsupervised dimensionality reduction). Our analysis in this case (Sec. 3) could
thus be of independent interest as a simple new interpretation of double descent in linear regression.

• Part 2: Rethinking parameter counting through a classical statistics lens. We then note
that all methods considered in Part 1 can be interpreted as smoothers (Sec. 4), which are usually
compared in terms of a measure of the effective (instead of raw) number of parameters they use when
issuing predictions [HT90]. As existing measures were derived with in-sample prediction in mind, we
propose a generalized effective parameter measure p0ŝ that allows to consider arbitrary sets of inputs
I0. Using p0ŝ to measure complexity, we then indeed discover that the apparent double descent curves
fold back into more traditional U-shapes – because p0ŝ is not actually increasing in the interpolation
regime. Further, we find that, in the interpolation regime, trained models tend to use a different
number of effective parameters when issuing predictions on unseen test inputs than on previously
observed training inputs. We also note that, while such interpolating models can generalize well
to unseen inputs, overparametrization cannot improve their performance in terms of the in-sample
prediction error originally of interest in statistics – providing a new reason for the historical absence
of double descent curves. Finally, we discuss practical implications for e.g. model comparison.

2

200× 1
max× 1

max× 50

P leaf×P ens

0.1

0.4

0.6

0.8

S
q
u

ar
ed

te
st

er
ro

r

Double Descent in Trees

0 100 200 300 400 500

P leaf

Error by P leaf ,P ens fixed

P ens = 1

P ens = 5

P ens = 10

P ens = 50

0 20 40 60 80 100

P ens

Error by P ens,P leaf fixed

P leaf = 500

P leaf = 100

P leaf = 50

P leaf = 20

Figure 2: Decomposing double descent for trees. Reproducing [BHMM19]’s tree experiment (left). Test
error by P leaf for fixed P ens (center). Test error by P ens for fixed P leaf (right).

Part 1: Revisiting the evidence for double descent in non-deep ML models

Experimental setup. We center our study around the non-neural experiments in [BHMM19] as it is
the seminal paper on double descent and provides the broadest account of non-deep learning methods
that exhibit double descent. Through multiple empirical studies, [BHMM19] demonstrate that double
descent arises in trees, boosting and linear regression. Below, we re-analyze these experiments and
highlight that in each study, as we transition from the classical U-shaped regime into the subsequent
second descent regime, something else implicitly changes in the model or training definition, funda-
mentally changing the class of models under consideration exactly at the transition threshold between
the observed regimes – which is precisely the cause of the second descent phenomenon. In Sec. 2,
we begin by investigating the tree and boosting experiments, where this is straightforward to show.
In Sec. 3, we then investigate the linear regression example, where decomposing the underlying
mechanisms is non-trivial. Throughout, we closely follow [BHMM19]’s experimental setup: they use
standard benchmark datasets and train all ML methods by minimizing the squared loss1. Similarly to
their work, we focus on results using MNIST (with ntrain = 10000) in the main text. We present addi-
tional results, including other datasets, and further discussion of the experimental setup in Appendix E.

2 Warm-up: Observations of double descent in trees and boosting

2.1 Understanding double descent in trees

In the left panel of Fig. 2, we replicate the experiment in [BHMM19]’s Fig. 4, demonstrating double
descent in trees. In their experiment, the number of model parameters is initially controlled through
the maximum allowed number of terminal leaf nodes P leaf . However, P leaf for a single tree cannot
be increased past n (which is when every leaf contains only one instance), and often max(P leaf)<n
whenever larger leaves are already pure. Therefore, when P leaf reaches its maximum, in order to
further increase the raw number of parameters, it is necessary to change how further parameters are
added to the model. [BHMM19] thus transition to showing how test error evolves as one averages over
an increasing number P ens of different trees grown to full depth, where each tree will generally be
distinct due to the randomness in features considered for each split. As one switches between plotting
increasing P leaf and P ens on the x-axis, one is thus conceptually no longer increasing the number of
parameters within the same model class: in fact, when P ens>1 one is no longer actually considering
a tree, but instead an ensemble of trees (i.e. a random forest [Bre01] without bootstrapping).

Composite Axis
0.1

0.3

0.5

0.7

S
q
u

ar
ed

er
ro

r P leaf = 500

P leaf = 200

P leaf = 100

P leaf = 50

Figure 3: Shifting the peak.
Transitioning from P leaf to P ens

at different values of P leaf .

In Fig. 2, we illustrate this empirically: in the center plot we show
that, on the one hand, for fixed P ens, error exhibits a classical convex
U- (or L-)shape in tree-depth P leaf . On the other hand, for fixed
P leaf in the right plot, error also exhibits an L-shape in the number
of trees P ens, i.e. a convex shape without any ascent – which is
in line with the known empirical observation that adding trees to a
random forest generally does not hurt [HTF09, Ch. 15.3.4]. Thus,
only by transitioning from increasing P leaf (with P ens = 1) to
increasing P ens (with P leaf =n) – i.e. by connecting the two solid
curves across the middle and the right plot – do we obtain the double

1In multi-class settings, [BHMM19] use a one-vs-rest strategy and report squared loss summed across classes.
Their use of the squared loss is supported by recent work on squared loss for classification [HB21, MNS+21],
and practically implies the use of standard regression implementations of the considered ML methods.

3

10× 1 100× 1
max× 1

max× 10

P boost×P ens

0.1

0.2

0.4

0.5

S
q
u

ar
ed

te
st

er
ro

r

Double Descent in Boosting

0 50 100 150 200

P boost

Error by P boost,P ens fixed

P ens = 1

P ens = 2

P ens = 5

P ens = 20

5 10 15 20

P ens

Error by P ens,P boost fixed

P boost = 200

P boost = 50

P boost = 25

P boost = 10

Figure 4: Decomposing double descent for gradient boosting. Reproducing [BHMM19]’s boosting
experiment (left). Test error by P boost for fixed P ens (center). Test error by P ens for fixed P boost (right).

descent curve in the left plot of Fig. 2. In Fig. 3, we show that we could therefore arbitrarily move or
even remove the first peak by changing when we switch from increasing parameters through P leaf

to P ens. Finally, we note that the interpolation threshold p = n plays a special role only on the
P leaf axis where it determines maximal depth, while parameters on the P ens axis can be increased
indefinitely – further suggesting that parameter counts alone are not always meaningful2.

2.2 Understanding double descent in gradient boosting

Another experiment is considered in Appendix S5 of [BHMM19] seeking to provide evidence for
the emergence of double descent in gradient boosting. Recall that in gradient boosting, new base-
learners (trees) are trained sequentially, accounting for current residuals by performing multiple
boosting rounds which improve upon predictions of previous trees. In their experiments, [BHMM19]
use trees with 10 leaves as base learners and a high learning rate of γ = 0.85 to encourage quick
interpolation. The raw number of parameters is controlled by first increasing the number of boosting
rounds P boost until the squared training error reaches approximately zero, after which P boost is fixed
and ensembling of P ens independent models is used to further increase the raw parameter count.

In Fig. 4, we first replicate the original experiment and then again provide experiments varying each
of P boost and P ens separately. Our findings parallel those above for trees: for a fixed number of
ensemble members P ens, test error has a U- or L-shape in the number of boosting rounds P boost

and an L-shape in P ens for fixed boosting rounds P boost. As a consequence, a double descent shape
occurs only when and where we switch from one method of increasing complexity to another.

3 Deep dive: Understanding double descent in linear regression

We are now ready to consider Fig. 2 of [BHMM19], which provides experiments demonstrating
double descent in the case of linear regression. Recall that linear regression with y ∈ Rn and X ∈
Rn×d estimates the coefficients in a model y = Xβ, thus the number of raw model parameters equals
the number of input dimensions (i.e. the dimension d of the regression coefficient vector β) by design.
Therefore, in order to flexibly control the number of model parameters, [BHMM19] apply basis
expansions using random Fourier features (RFF). Specifically, given input x ∈ Rd, the number of raw
model parameters Pϕ is controlled by randomly generating features ϕp(x) = Re(exp

√
−1vT

p x) for
all p ≤ Pϕ, where each vp

iid∼ N (0, 1
52 · Id). For any given number of features Pϕ, these are stacked

to give a n× Pϕ dimensional random design matrix Φ, which is then used to solve the regression
problem y = Φβ by least squares. For Pϕ ≤ n, this has a unique solution (β̂ = (ΦTΦ)−1ΦTy)
while for Pϕ > n the problem becomes underdetermined (i.e. there are infinite solutions) which is
why [BHMM19] rely on a specific choice: the min-norm solution (β̂ = ΦT (ΦΦT)−1y).

Unlike the experiments discussed in Sec. 2, there appears to be only one obvious mechanism for
increasing raw parameters in this case study. Instead, as we show in Sec. 3.1, the change in the used
solution at Pϕ=n turns out to be the crucial factor here: we find that the min-norm solution leads to
implicit unsupervised dimensionality reduction, resulting in two distinct mechanisms for increasing
the total parameter count in linear regression. Then, we again demonstrate empirically in Sec. 3.2 that
each individual mechanism is indeed associated with a standard generalization curve, such that the
combined generalization curve exhibits double descent only because they are applied in succession.

2A related point is raised in [BM21], who notice that a double descent phenomenon in random forests appears
in [BHMM19] only because the total number of leaves is placed on the x-axis, while the true complexity of a
forest is actually better characterized by the average number of leaves in its trees according to results in learning
theory. However, this complexity measure clearly does not change once P leaf is fixed in the original experiment.

4

0 + 0
10,000 + 0

10,000 + 25,000
10,000 + 50,000

P PC+P ex

0.1

3.3

81.5

1998.2

S
q
u

ar
ed

te
st

er
ro

r

Double Descent in Regression

0 2000 4000 6000 8000 10000

P PC

Error by P PC ,P ex fixed

P ex = 0

P ex = 2500

P ex = 10000

P ex = 50000

0 10000 20000 30000 40000 50000

P ex

Error by P ex,P PC fixed

P PC = 10000

P PC = 7500

P PC = 5000

P PC = 2500

Figure 5: Decomposing double descent for RFF Regression. Double descent reproduced from
[BHMM19] (left) can be decomposed into the standard U-curve of ordinary linear regression with PPC features
(center) and decreasing error achieved by a fixed capacity model with basis improving in P ex (right).

3.1 Understanding the connections between min-norm solutions and dimensionality reduction

In this section, we show that, while the min-norm solution finds coefficients β̂ of raw dimension
Pϕ, only n of its dimensions are well-determined – i.e. the true parameter count is not actually
increasing in Pϕ once Pϕ > n. Conceptually, this is because min-norm solutions project y onto the
row-space of Φ, which is n−dimensional as rank(Φ) = min(Pϕ, n) (when Φ has full rank). To
make the consequence of this more explicit, we can show that the min-norm solution (which has Pϕ

raw parameters) can always be represented by using a n-dimensional coefficient vector applied to a
n−dimensional basis of Φ. In fact, as we formalize in Proposition 1, this becomes most salient when
noting that applying the min-norm solution to Φ is exactly equivalent to a learning algorithm that (i)
first constructs a n−dimensional basis BSV D from the n right singular vectors of the input matrix
computed using the singular value decomposition (SVD) in an unsupervised pre-processing step and
(ii) then applies standard (fully determined) least squares using the discovered n−dimensional basis3.
Proposition 1. [Min-norm least squares as dimensionality reduction.] For a full rank matrix
X ∈ Rn×d with n < d and a vector of targets y ∈ Rn, the min-norm least squares solution
β̂MN = {minβ ||β||22: Xβ = y} and the least squares solution β̂SVD = {β: Bβ = y} using the
matrix of basis vectors B ∈ Rn×n, constructed using the first n right singular vectors of X, are
equivalent; i.e. xT β̂MN = bT β̂SVD for all x ∈ Rd and corresponding basis representation b ≡ b(x).
Proof. Please refer to Appendix B.2.
Then what is really causing the second descent if not an increasing number of fitted dimensions?
While the addition of feature dimensions does correspond to an increase in fitted model parameters
while Pϕ < n, the performance gains in the Pϕ > n regime are better explained as a linear
model of fixed size n being fit to an increasingly rich basis constructed in an unsupervised step.
To disentangle the two mechanisms further, we note that the procedure described above, when
applied to a centered design matrix4 is a special case of principal component (PC) regression [Jol82],
where we select all empirical principal components to form a complete basis of Φ. The more
general approach would instead consist of selecting the top PPC principal components and fitting
a linear model to that basis. Varying PPC , the number of used principal components, is thus
actually the first mechanism by which the raw parameter count can be altered; this controls the
number of parameters being fit in the supervised step. The second, less obvious, mechanism is
then the number of excess features P ex = Pϕ − PPC ; this is the number of raw dimensions that
only contribute to the creation of a richer basis, which is learned in an unsupervised manner5 .

Based on this, we can now provide a new explanation for the emergence of double descent in this case
study: due to the use of the min-norm solution, the two uncovered mechanisms are implicitly entangled

3This application of the fundamental connection between min-norm solutions and the singular value decom-
position (see e.g. [GVL13, Ch. 5.7]) reinforces previous works which have noted related links between the
min-norm solution and dimensionality reduction [RD98, KL16].

4Centering reduces the rank of the input matrix by 1 and thus requires appending an intercept to the PC
design matrix. Without centering, the procedure is using the so-called uncentered PCs [CJ09] instead. We use
the centered version with intercept in our experiments, but obtained identical results when using uncentered PCs.

5The implicit inductive bias encoded in this step essentially consists of constructing and choosing the top-
PPC features that capture the directions of maximum variation in the data. Within this inductive bias, the role of
P ex appears to be that – as more excess features are added – the variation captured by each of the top-PPC

PCs is likely to increase. Using the directions of maximum variation is certainly not guaranteed to be optimal
[Jol82], but it tends to be an effective inductive bias in practice as noted by Tukey [Tuk77] who suggested that
high variance components are likely to be more important for prediction unless nature is “downright mean”.

5

0 20000 40000 60000

P PC + P ex

0.1

3.3

81.5

1998.2

S
q
u

ar
ed

er
ro

r P PC = 10000

P PC = 7500

P PC = 5000

P PC = 2500

(a) Shifting the peak.
Transitioning from PPC to P ex

at different values of PPC .

0 20000 40000 60000

P φ = P PC + P ex

0.1

0.3

0.5

S
q
u

ar
ed

E
rr

or

P ex = 0 fixed, P PC ↑
P PC = 5000 fixed, P ex ↑
P ex = 2500 fixed, P PC ↑
P PC = 7500 fixed, P ex ↑
P ex = 5000 fixed, P PC ↑
P PC = 10000 fixed, P ex ↑

(b) Multiple descent. Generalization curves with arbitrarily many
peaks and locations (including peaks at Pϕ > n) can be created
by switching between increasing parameters through PPC and P ex

multiple times.

Figure 6: Disentangling double descent from the interpolation threshold. The location of the peak(s)
in RFF regression generalization error is not inherently linked to the point where Pϕ = n. Instead, changes in
the mechanism for parameter increase determine the appearance of peaks.

through Pϕ = PPC+P ex, PPC=min(n, Pϕ) and P ex=max(0, Pϕ − n). Thus, we have indeed
arrived back at a setup that parallels the previous two experiments: when Pϕ≤n, PPC increases
monotonically while P ex=0 is constant, while when Pϕ > n we have constant PPC = n but P ex

increases monotonically. Below, we can now test empirically whether studying the two mechanisms
separately indeed leads us back to standard convex curves as before. In particular, we also show that –
while a transition between the mechanisms increasing PPC and P ex naturally happens at Pϕ = n
in the original experiments – it is possible to transition elsewhere across the implied complexity
axes, creating other thresholds, and to thus disentangle the double descent phenomenon from n.

3.2 Empirical resolutions to double descent in RFF regression

Mirroring the analyses in Sec. 2, we now investigate the effects of PPC and P ex in Fig. 5. In the left
plot, we once more replicate [BHMM19]’s original experiment, and observe the same apparent trend
that double descent emerges as we increase the number of raw parameters Pϕ = PPC+P ex (where
the min-norm solution needs to be applied once Pϕ =n). We then proceed to analyze the effects
of varying PPC and P ex separately (while holding the other fixed). As before, we observe in the
center plot that varying PPC (determining the actual number of parameters being fit in the regression)
for different levels of excess features indeed gives rise to the traditional U-shaped generalization
curve. Conversely, in the right plot, we observe that increasing P ex for a fixed number of PPC

results in an L-shaped generalization curve – indeed providing evidence that the effect of increasing
the number of raw parameters past n in the original experiment can be more accurately explained
as a gradual improvement in the quality of a basis to which a fixed capacity model is being fit.

As before, note that if we connect the solid lines in the center and right plots we recover exactly the
double descent curve shown in the left plot of Fig. 5. Alternatively, as we demonstrate in Fig. 6(a),
fixing PPC at other values and then starting to increase the total number of parameters through
P ex allows us to move or remove the first peak arbitrarily. In Fig. 6(b), we demonstrate that one
could even create multiple peaks6 by switching between parameter-increasing mechanisms more
than once. This highlights that, while the transition from parameter increase through PPC to P ex

naturally occurs at Pϕ = n due to the use of the min-norm solution, the second descent is not
actually caused by the interpolation threshold Pϕ=n itself – but rather is due to the implicit change
in model at exactly this point. Indeed, comparing the generalization curves in Fig. 6 with their
train-error trajectories which we plot in Appendix E.2, it becomes clear that such a second descent
can also occur in models that have not yet and will never achieve interpolation of the training data.

4 Part 2: Rethinking parameter counting through a classical statistics lens

Thus far, we have highlighted that “not all model parameters are created equal” – i.e. the intuitive
notion that not all ways of increasing the number of raw parameters in an ML method have the same

6This experiment is inspired by [CMBK21], who show multiple descent in regression by controlling the
data-generating process (DGP), altering the order of revealing new (un)informative features. Even more striking
than through changing the DGP, we show that simply reordering the mechanisms by which the same raw
parameters are added to the model allows us to arbitrarily increase and decrease test loss.

6

effect. However, as we saw in the linear regression example, it is not always trivial to deconstruct the
underlying mechanisms driving performance. Therefore, instead of having to reason about implicit
complexity axes on a case-by-case basis for different models, hyperparameters, or inductive biases, we
would rather be able to quantify the effect of these factors objectively. In what follows, we highlight
that all previously considered methods can be interpreted as smoothers (in the classical statistics sense
[HT90]). By making this connection in Sec. 4.1, we can exploit the properties of this class of models
providing us with measures of their effective number of parameters. After adapting this concept to
our setting (Sec. 4.2), we are finally able to re-calibrate the complexity axis of the original double
descent experiments, finding that they do indeed fold back into more traditional U-shapes (Sec. 4.3).

4.1 Connections to smoothers

Smoothers are a class of supervised learning methods that summarize the relationship between
outcomes Y ∈Y⊂Rk and inputs X∈X ⊂ Rd by “smoothing” over values of Y observed in training.
More formally, let k= 1 w.l.o.g., and denote by Dtrain = {(yi, xi)}ni=1 the training realizations of
(X,Y)∈X×Y and by ytrain=(y1,. . ., yn)

T the n×1 vector of training outcomes with respective train-
ing indices Itrain={1, . . . , n}. Then, for any admissible input x0∈X , a smoother issues predictions

f̂(x0) = ŝ(x0)ytrain =
∑

i∈Itrain
ŝi(x0)yi (1)

where ŝ(x0) = (ŝ1(x0), . . . , ŝ
n(x0)) is a 1×n vector containing smoother weights for input x0. A

smoother is linear if ŝ(·) does not depend on ytrain. The most well-known examples of smoothers
rely on weighted (moving-) averages, which includes k-nearest neighbor (kNN) methods and kernel
smoothers as special cases. (Local) linear regression and basis-expanded linear regressions, including
splines, are other popular examples of linear smoothers (see e.g. [HT90, Ch. 2-3]).

In Appendix C, we show that all methods studied in Part 1 can be interpreted as smoothers, and derive
ŝ(·) for each method. To provide some intuition, note that linear regression is a simple textbook exam-
ple of a linear smoother [HT90], where ŝ(·) is constructed from the so-called projection (or hat) matrix
[Eub84]. Further, trees – which issue predictions by averaging training outcomes within leaves – are
sometimes interpreted as adaptive nearest neighbor methods [HTF09, Ch. 15.4.3] with learned (i.e.
non-linear) weights, and as a corollary, boosted trees and sums of either admit similar interpretations.

4.2 A generalized measure of the effective number of parameters used by a smoother

The effective number of parameters pe of a smoother was introduced to provide a measure of model
complexity which can account for a broad class of models as well as different levels of model
regularization (see e.g. [HT90, Ch. 3.5], [HTF09, Ch. 7.6]). This generalized the approach
of simply counting raw parameters – which is not always possible or appropriate – to measure
model complexity. This concept is calibrated towards linear regression so that, as we might de-
sire, effective and raw parameter numbers are equal in the case of ordinary linear regression with
p < n. In this section, we adapt the variance based effective parameter definition discussed
in [HT90, Ch. 3.5]. Because for fixed ŝ(·) and outcomes generated with homoskedastic vari-
ance σ2 we have V ar(f̂(x0)) = ||ŝ(x0)||2σ2, this definition uses that 1

n

∑
i∈Itrain

V ar(f̂(xi)) =
σ2

n

∑
i∈Itrain

||ŝ(xi)||2 = σ2

n p for linear regression: one can define pe =
∑

i∈Itrain
||ŝ(xi)||2 and thus

have pe = p for ordinary linear regression with n < p. As we discuss further in Appendix D,
other variations of such effective parameter count definitions can also be found in the literature.
However, this choice is particularly appropriate for our purposes as it has the unique characteristic
that it can easily be adapted to arbitrary input points – a key distinction we will motivate next.

Historically, the smoothing literature has primarily focused on prediction in the classical fixed design
setup where expected in-sample prediction error on the training inputs xi, with only newly sampled
targets y′i, was considered the main quantity of interest [HT90, RT19]. The modern ML literature,
on the other hand, largely focuses its evaluations on out-of-sample prediction error in which we are
interested in model performance, or generalization, on both unseen targets and unseen inputs (see
e.g. [GBC16, Ch. 5.2]; [Mur22, Ch. 4.1]). To make effective parameters fit for modern purposes, it
is therefore necessary to adapt pe to measure the level of smoothing applied conditional on a given
input, thus distinguishing between training and testing inputs. As ||ŝ(x0)||2 can be computed for any
input x0, this is straightforward and can be done by replacing Itrain in the definition of pe by any other
set of inputs indexed by I0. Note that the scale of pe would then depend on |I0| due to the summation,

7

200× 1
max× 1

max× 50

P leaf × P ens

1

10

102

p0 ŝ
(l

og
sc

al
e)

Trees

10× 1 100× 1
max× 1

max× 10

P boost × P ens

101

102

103

Boosting

0 + 0
10,000 + 0

10,000 + 25,000
10,000 + 50,000

P PC + P ex

102

104

106

Linear Regression

Itrain
Itest

Figure 7: The effective number of parameters does not increase past the transition threshold.
Plotting ptrain

ŝ (orange) and ptest
ŝ (green) for the tree (left), boosting (centre) and RFF-linear regression (right)

experiments considered in Part 1, using the original composite parameter axes of [BHMM19].

while it should actually depend on the number of training examples n (previously implicitly captured
through |Itrain|) across which the smoothing occurs – thus we also need to recalibrate our definition
by n/|I0|. As presented in Definition 1, we can then measure the generalized effective number of
parameters p0ŝ used by a smoother when issuing predictions for any set of inputs I0.

Definition 1 (Generalized Effective Number of Parameters). For a set of inputs {x0
j}j∈I0

, define the
Generalized Effective Number of Parameters p0ŝ used by a smoother with weights ŝ(·) as

p0ŝ ≡ p(I0, ŝ(·)) = n
|I0|

∑
j∈I0

||ŝ(x0
j)||2 (2)

Note that for the training inputs we recover the original quantity exactly (pe = ptrain
ŝ). Further,

for moving-average smoothers with
∑n

i=1 ŝ
i(x0) = 1 and 0 ≤ ŝi(x0) ≤ 1 for all i, it holds that

1 ≤ p0ŝ ≤ n. Finally, for kNN estimators we have p0ŝ = n
k , so that for smoothers satisfying∑n

i=1 ŝ
i(x0) = 1 and 0 ≤ ŝi(x0) ≤ 1 for all i, the quantity k̃0ŝ = n

p0
ŝ

also admits an interesting inter-
pretation as measuring the effective number of nearest neighbors.

4.3 Back to U: Measuring effective parameters folds apparent double descent curves

Using Definition 1, we can now measure the effective number of parameters to re-examine the exam-
ples of double descent described in Sections 2 & 3. We plot the results of the 0-vs-all sub-problem in
this section as the 10 one-vs-all models in the full experiment are each individually endowed with
effective parameter counts p0ŝ . Fig. 7 presents results plotting this quantity measured on the training
inputs (ptrain

ŝ) and testing inputs (ptest
ŝ) against the original, composite parameter axes of [BHMM19],

Fig. 8 considers the behavior of ptest
ŝ for the two distinct mechanisms of parameter increase separately,

and in Fig. 9 we plot test error against ptest
ŝ , finally replacing raw with effective parameter axes.

By examining the behavior of p0ŝ in Fig. 7 and Fig. 8, several interesting insights emerge. First,
we observe that these results complement the intuition developed in Part 1: In all cases, measures
of the effective number of parameters never increase after the threshold where the mechanism for
increasing the raw parameter count changes. Second, the distinction of measuring effective number
of parameters used on unseen inputs, i.e. using ptest

ŝ instead of ptrain
ŝ , indeed better tracks the double

descent phenomenon which itself emerges in generalization error (i.e. is also estimated on unseen
inputs). This is best illustrated in Fig. 7 in the linear regression example where ptrain

ŝ = n is constant
once Pϕ ≥ n – as is expected: simple matrix algebra reveals that ŝ(xi) = ei (with ei the ith indicator
vector) for any training example xi once Pϕ ≥ n. Intuitively, no smoothing across training labels
occurs on the training inputs after the interpolation threshold as each input simply predicts its own
label (note that this would also be the case for regression trees if each training example fell into its
own leaf; this does not occur in these experiments as leaves are already pure before this point). As we

0 100 200 300 400 500

P leaf

1

10

102

pt
es

t
ŝ

(l
og

sc
al

e)

Trees

P ens = 1

P ens = 2

P ens = 5

P ens = 10

P ens = 20

0 50 100 150 200

P boost

101

102

103

Boosting

P ens = 1

P ens = 2

P ens = 5

P ens = 10

P ens = 20

0 2000 4000 6000 8000 10000

P PC

102

104

106

Linear Regression

P ex = 0

P ex = 2500

P ex = 5000

P ex = 10000

P ex = 20000

P ex = 50000

Figure 8: Understanding the behavior of the test-time effective number of parameters across
the two parameter axes of each ML method. Plotting ptest

ŝ by P leaf for fixed P ens in trees (left), by
P boost for fixed P ens in boosting (centre) and by PPC for fixed P ex in RFF-linear regression (right) highlights
that increases along the first parameter axes increase ptest

ŝ , while increases along the second axes decrease ptest
ŝ .

Larger blue and red points (,) are points from [BHMM19]’s original parameter sequence.

8

1 101 102

ptest
ŝ (log scale)

0.01

0.03

0.05

0.07

S
q
u

ar
ed

te
st

er
ro

r

Trees

P ens = 1

P ens = 2

P ens = 5

P ens = 10

P ens = 20

P ens = 50

P ens = 100

101 102 103

ptest
ŝ (log scale)

Boosting

P ens = 1

P ens = 2

P ens = 5

P ens = 10

P ens = 20

102 103 104

ptest
ŝ (log scale)

Linear Regression

P ex = 0

P ex = 2500

P ex = 5000

P ex = 10000

P ex = 20000

P ex = 50000

Figure 9: Back to U. Plotting test error against the effective number of parameters as measured by ptest
ŝ (larger

blue and red points: ,) for trees (left), boosting (centre) and RFF-linear regression (right) eliminates the
double descent shape. In fact, points from the first dimension of [BHMM19]’s composite axis () continue
to produce the familiar U-shape, while points from the second dimension of the composite axis () – which
originally created the apparent second descent – fold back into classical U-shapes. Dotted lines () show the
effect of perturbing the first complexity parameter at different fixed values of the second.

make more precise in Appendix C.2, this observation leads us to an interesting impossibility result:
the in-sample prediction error of interpolating models therefore cannot experience a second descent in
the (raw) overparameterized regime. This provides a new reason for the historical absence of double
descent shapes (in one of the primary settings in which the U-shaped tradeoff was originally motivated
[HT90]), complementing the discussion on the lack of previous observations in [BHMM19]. Third,
while ptrain

ŝ is therefore not useful to understand double descent in generalization error, we note
that for unseen inputs different levels of smoothing across the training labels can occur even in the
interpolation regime – and this, as quantified by ptest

ŝ , does result in an informative complexity proxy.

This becomes obvious in Fig. 9, where we plot the test errors of [BHMM19]’s experimental setup
against ptest

ŝ (larger blue and red points: ,). For each such point after the interpolation threshold (),
we also provide dotted contour lines () representing the effect of reducing the parameters along
the first complexity axis (P leaf , P boost and PPC), resulting in models that can no longer perfectly
interpolate (e.g. for trees, we fix their number P ens and reduce their depth through P leaf). Finally, we
discover that once we control for the effective parameters of each model in this way, we consistently
observe that each example indeed folds back into shapes that are best characterized as standard convex
(U-shaped) curves – providing a resolution to the apparent tension between traditional statistical
intuition and double descent! We also note an interesting phenomenon: increasing P ens and P ex

appears to not only shift the complexity-generalization contours downwards (decreasing error for each
value of P leaf , P boost and PPC), but also shifts them to the left (decreasing the effective complexity
implied by each value of P leaf , P boost and PPC , as also highlighted in Fig. 8) and flattens their
ascent (making error less sensitive to interpolation). That is, models in (or close to) the interpolation
regime discovered by [BHMM19] exhibit a very interesting behavior where setting P ex and P ens

larger actually decreases the test error through a reduction in the effective number of parameters used.

5 Consolidation with Related Work

In this section, we consolidate our findings with the most relevant recent work on understanding
double descent; we provide an additional broader review of the literature in Appendix A. A large
portion of this literature has focused on modeling double descent in the raw number of parameters
in linear regression, where these parameter counts are varied by employing random feature models
[BHMM19, BHX20] or by varying the ratio of n to input feature dimension d [ASS20, BLLT20,
DLM20, HMRT22]. This literature, typically studying the behavior and conditioning of feature
covariance matrices, has produced precise theoretical analyses of double descent for particular
models as the raw number of parameters is increased (e.g. [BLLT20, HMRT22]). Our insights in
Sections 3 and 4 are complementary to this line of work, providing a new perspective in terms of (a)
decomposing raw parameters into two separate complexity axes which jointly produce the double
descent shape only due to the choice of (min-norm) solution and (b) the underlying effective number of
parameters used by a model. Additionally, using theoretical insights from this line of work can make
more precise the role of P ex in improving the quality of a learned basis: as we show in Appendix B.3,
increasing P ex in our experiments indeed leads to the PC feature matrices being better conditioned.

Further, unrelated to the smoothing lens we use in Part 2 of this paper, different notions of ef-
fective parameters or complexity have appeared in other studies of double descent in specific

9

ML methods: [BM21] use Rademacher complexity (RC) in their study of random forests but
find that RC cannot explain their generalization because forests do not have lower RC than in-
dividual trees (unlike the behavior of our ptest

ŝ in this case). [MBW20] use [Mac91]’s Bayesian
interpretation of effective parameters based on the Hessian of the training loss when studying
neural networks. While this proxy was originally motivated in a linear regression setting, it can-
not explain double descent in linear regression because, as discussed further in Appendix D, it
does not decrease therein once p > n. Finally, [DLM20] compute effective ridge penalties im-
plied by min-norm linear regression, and [DSYW20] consider minimum description length princi-
ples to measure complexity in ridge regression. Relative to this literature, our work differs not
only in terms of the ML methods we can consider (in particular, we are uniquely able to ex-
plain the tree- and boosting experiments through our lens), but also in the insights we provide
e.g. we distinctively propose to distinguish between effective parameters used on train- versus test-
examples, which we showed to be crucial to explaining the double descent phenomenon in Sec. 4.3.

6 Conclusion and Discussion

Conclusion: A Resolution to the ostensible tension between non-deep double descent and statis-
tical intuition. We demonstrated that existing experimental evidence for double descent in trees,
boosting and linear regression does not contradict the traditional notion of a U-shaped complexity-
generalization curve: to the contrary, we showed that in all three cases, there are actually two
independent underlying complexity axes that each exhibit a standard convex shape, and that the
observed double descent phenomenon is a direct consequence of transitioning between these two
distinct mechanisms of increasing the total number of model parameters. Furthermore, we highlighted
that when we plot a measure of the effective, test-time, parameter count (instead of raw parameters)
on their x-axes, the apparent double descent curves indeed fold back into more traditional U-shapes.

What about deep double descent? In this work, we intentionally limited ourselves to the study of
non-deep double descent. Whether the approach pursued in this work could provide an alternative
path to understanding double descent in the case of deep learning – arguably its most prominent
setting – is thus a very natural next question. It may indeed be instructive to investigate whether
there also exist multiple implicitly entangled complexity axes in neural networks, and whether this
may help to explain double descent in that setting. In particular, one promising approach to bridging
this gap could be to combine our insights of Sec. 3 with the known connections between random
feature models and two-layer neural networks [SGT18], and stochastic gradient descent and min-
norm solutions [GWB+17]. We consider this a fruitful and non-trivial direction for future research.

What are the practical implications of these findings? On the one hand, with regards to the specific
ML methods under investigation, our empirical results in Sections 2 and 3 imply interesting trade-offs
between the need for hyperparameter tuning and raw model size. All methods appear to have one
hyperparameter axis to which error can be highly sensitive – P leaf , P boost and PPC – while along
the other axis, “bigger is better” (or at least, not worse). In fact, it appears that the higher P ens or P ex,
the less sensitive the model becomes to changes along the first axis. This may constitute anecdotal
evidence that the respective first axis can be best understood as a train-time bias-reduction axis – it
controls how well the training data can be fit (increasing parameters along this axis reduces underfit-
ting – only when set to its maximum can interpolation be achieved). The second axis, conversely,
appears to predominantly achieve variance-reduction at test-time: it decreases ||̂s(x0)||, reducing the
impact of noise by smoothing over more training examples when issuing predictions for unseen inputs.

On the other hand, our results in Sec. 4 suggest interesting new avenues for model selection more
generally, by highlighting potential routes of redemption for classical criteria trading off in-sample
performance and parameter counts (e.g. [Aka74, Mal73]) – which have been largely abandoned
in ML in favor of selection strategies evaluating held-out prediction error [Ras18]. While criteria
based on raw parameter counts may be outdated in the modern ML regime, selection criteria based
on effective parameter counts ptest

ŝ used on a test-set could provide an interesting new alternative,
with the advantage of not requiring access to labels on held-out data, unlike error-based methods. In
Appendix E.5, we provide anecdotal evidence that when choosing between models with different
hyperparameter settings that all achieve zero training error, considering each model’s ptest

ŝ could be
used to identify a good choice in terms of generalization performance: we illustrate this for the case
of gradient boosting where we use ptest

ŝ to choose additional hyperparameters. Investigating such
approaches to model selection more extensively could be another promising avenue for future work.

10

Acknowledgements

We would like to thank Fergus Imrie, Tennison Liu, James Fox, and the anonymous reviewers for
insightful comments and discussions on earlier drafts of this paper. AC and AJ gratefully acknowledge
funding from AstraZeneca and the Cystic Fibrosis Trust respectively. This work was supported by
Azure sponsorship credits granted by Microsoft’s AI for Good Research Lab.

References
[ACHL19] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep

matrix factorization. Advances in Neural Information Processing Systems, 32, 2019.
[Aka74] Hirotugu Akaike. A new look at the statistical model identification. IEEE transactions

on automatic control, 19(6):716–723, 1974.
[AP20] Ben Adlam and Jeffrey Pennington. Understanding double descent requires a fine-

grained bias-variance decomposition. Advances in neural information processing sys-
tems, 33:11022–11032, 2020.

[ASS20] Madhu S Advani, Andrew M Saxe, and Haim Sompolinsky. High-dimensional dynamics
of generalization error in neural networks. Neural Networks, 132:428–446, 2020.

[Bel21] Mikhail Belkin. Fit without fear: remarkable mathematical phenomena of deep learning
through the prism of interpolation. Acta Numerica, 30:203–248, 2021.

[BFSO84] Leo Breiman, Jerome Friedman, Charles J. Stone, and R.A. Olshen. Classification and
Regression Trees. Chapman and Hall/CRC, 1984.

[BH89] Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis:
Learning from examples without local minima. Neural networks, 2(1):53–58, 1989.

[BHMM19] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern
machine-learning practice and the classical bias–variance trade-off. Proceedings of the
National Academy of Sciences, 116(32):15849–15854, 2019.

[BHX20] Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent for weak features.
SIAM Journal on Mathematics of Data Science, 2(4):1167–1180, 2020.

[BLLT20] Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting
in linear regression. Proceedings of the National Academy of Sciences, 117(48):30063–
30070, 2020.

[BM21] Sebastian Buschjäger and Katharina Morik. There is no double-descent in random
forests. arXiv preprint arXiv:2111.04409, 2021.

[BMM18] Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need
to understand kernel learning. In International Conference on Machine Learning, pages
541–549. PMLR, 2018.

[BO96] Siegfried Bös and Manfred Opper. Dynamics of training. Advances in Neural Informa-
tion Processing Systems, 9, 1996.

[Bre01] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.
[CJ09] Jorge Cadima and Ian Jolliffe. On relationships between uncentred and column-centred

principal component analysis. Pakistan Journal of Statistics, 25(4), 2009.
[CL21] Niladri S Chatterji and Philip M Long. Finite-sample analysis of interpolating linear

classifiers in the overparameterized regime. The Journal of Machine Learning Research,
22(1):5721–5750, 2021.

[CMBK21] Lin Chen, Yifei Min, Mikhail Belkin, and Amin Karbasi. Multiple descent: Design
your own generalization curve. Advances in Neural Information Processing Systems,
34:8898–8912, 2021.

[DB22] Yehuda Dar and Richard G Baraniuk. Double double descent: on generalization errors
in transfer learning between linear regression tasks. SIAM Journal on Mathematics of
Data Science, 4(4):1447–1472, 2022.

[DFO20] Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics for machine
learning. Cambridge University Press, 2020.

11

[DLM20] Michal Derezinski, Feynman T Liang, and Michael W Mahoney. Exact expressions for
double descent and implicit regularization via surrogate random design. Advances in
neural information processing systems, 33:5152–5164, 2020.

[DMB21] Yehuda Dar, Vidya Muthukumar, and Richard G Baraniuk. A farewell to the bias-
variance tradeoff? an overview of the theory of overparameterized machine learning.
arXiv preprint arXiv:2109.02355, 2021.

[DMLB20] Yehuda Dar, Paul Mayer, Lorenzo Luzi, and Richard Baraniuk. Subspace fitting meets
regression: The effects of supervision and orthonormality constraints on double descent
of generalization errors. In International Conference on Machine Learning, pages
2366–2375. PMLR, 2020.

[dRBK20] Stéphane d’Ascoli, Maria Refinetti, Giulio Biroli, and Florent Krzakala. Double trouble
in double descent: Bias and variance (s) in the lazy regime. In International Conference
on Machine Learning, pages 2280–2290. PMLR, 2020.

[DSYW20] Raaz Dwivedi, Chandan Singh, Bin Yu, and Martin J Wainwright. Revisiting complexity
and the bias-variance tradeoff. arXiv preprint arXiv:2006.10189, 2020.

[Dui95] Robert PW Duin. Small sample size generalization. In Proceedings of the Scandinavian
Conference on Image Analysis, volume 2, pages 957–964. Citeseer, 1995.

[Eub84] RL Eubank. The hat matrix for smoothing splines. Statistics & probability letters,
2(1):9–14, 1984.

[FM23] Ronald A Fisher and Winifred A Mackenzie. Studies in crop variation. ii. the manurial
response of different potato varieties. The Journal of Agricultural Science, 13(3):311–
320, 1923.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
[GBD92] Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the

bias/variance dilemma. Neural computation, 4(1):1–58, 1992.
[GVL13] Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.
[GWB+17] Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur,

and Nati Srebro. Implicit regularization in matrix factorization. Advances in Neural
Information Processing Systems, 30, 2017.

[HB21] Like Hui and Mikhail Belkin. Evaluation of neural architectures trained with square
loss vs cross-entropy in classification tasks. International Conference on Learning
Representations (ICLR), 2021.

[HMRT22] Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises
in high-dimensional ridgeless least squares interpolation. The Annals of Statistics,
50(2):949–986, 2022.

[Hot57] Harold Hotelling. The relations of the newer multivariate statistical methods to factor
analysis. British Journal of Statistical Psychology, 10(2):69–79, 1957.

[HT90] Trevor Hastie and Robert Tibshirani. Generalized additive models. Monographs on
statistics and applied probability. Chapman & Hall, 43:335, 1990.

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome H Friedman. The elements of statistical
learning: data mining, inference, and prediction, volume 2. Springer, 2009.

[HXZQ22] Zheng He, Zeke Xie, Quanzhi Zhu, and Zengchang Qin. Sparse double descent:
Where network pruning aggravates overfitting. In International Conference on Machine
Learning, pages 8635–8659. PMLR, 2022.

[Jol82] Ian T Jolliffe. A note on the use of principal components in regression. Journal of the
Royal Statistical Society Series C: Applied Statistics, 31(3):300–303, 1982.

[Kal96] Dan Kalman. A singularly valuable decomposition: the svd of a matrix. The college
mathematics journal, 27(1):2–23, 1996.

[Ken57] Maurice G Kendall. A course in multivariate analysis: London. Charles Griffin & Co,
1957.

[KH+09] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

12

[KL16] Jesse H Krijthe and Marco Loog. The peaking phenomenon in semi-supervised learning.
In Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International
Workshop, S+ SSPR 2016, Mérida, Mexico, November 29-December 2, 2016, Proceed-
ings, pages 299–309. Springer, 2016.

[KSR+21] Ilja Kuzborskij, Csaba Szepesvári, Omar Rivasplata, Amal Rannen-Triki, and Razvan
Pascanu. On the role of optimization in double descent: A least squares study. Advances
in Neural Information Processing Systems, 34:29567–29577, 2021.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[LD21] Licong Lin and Edgar Dobriban. What causes the test error? going beyond bias-variance
via anova. The Journal of Machine Learning Research, 22(1):6925–7006, 2021.

[LDB21] Lorenzo Luzi, Yehuda Dar, and Richard Baraniuk. Double descent and other interpola-
tion phenomena in gans. arXiv preprint arXiv:2106.04003, 2021.

[LVM+20] Marco Loog, Tom Viering, Alexander Mey, Jesse H Krijthe, and David MJ Tax. A
brief prehistory of double descent. Proceedings of the National Academy of Sciences,
117(20):10625–10626, 2020.

[Mac91] David MacKay. Bayesian model comparison and backprop nets. Advances in neural
information processing systems, 4, 1991.

[Mal73] Colin L Mallows. Some comments on cp. Technometrics, 42(1):87–94, 1973.

[MBB18] Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understand-
ing the effectiveness of sgd in modern over-parametrized learning. In International
Conference on Machine Learning, pages 3325–3334. PMLR, 2018.

[MBW20] Wesley J Maddox, Gregory Benton, and Andrew Gordon Wilson. Rethinking pa-
rameter counting in deep models: Effective dimensionality revisited. arXiv preprint
arXiv:2003.02139, 2020.

[MNS+21] Vidya Muthukumar, Adhyyan Narang, Vignesh Subramanian, Mikhail Belkin, Daniel
Hsu, and Anant Sahai. Classification vs regression in overparameterized regimes: Does
the loss function matter? The Journal of Machine Learning Research, 22(1):10104–
10172, 2021.

[Moo91] John Moody. The effective number of parameters: An analysis of generalization and
regularization in nonlinear learning systems. Advances in neural information processing
systems, 4, 1991.

[Mur22] Kevin P Murphy. Probabilistic machine learning: an introduction. MIT press, 2022.

[Nea19] Brady Neal. On the bias-variance tradeoff: Textbooks need an update. arXiv preprint
arXiv:1912.08286, 2019.

[NKB+21] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya
Sutskever. Deep double descent: Where bigger models and more data hurt. Journal of
Statistical Mechanics: Theory and Experiment, 2021(12):124003, 2021.

[NMB+18] Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew Scicluna, Simon
Lacoste-Julien, and Ioannis Mitliagkas. A modern take on the bias-variance tradeoff in
neural networks. arXiv preprint arXiv:1810.08591, 2018.

[NTS14] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real in-
ductive bias: On the role of implicit regularization in deep learning. arXiv preprint
arXiv:1412.6614, 2014.

[NWC+11] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y
Ng. Reading digits in natural images with unsupervised feature learning. 2011.

[Pea01] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin philosophical magazine and journal of science,
2(11):559–572, 1901.

[PKB19] Tomaso Poggio, Gil Kur, and Andrzej Banburski. Double descent in the condition
number. arXiv preprint arXiv:1912.06190, 2019.

13

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[Ras18] Sebastian Raschka. Model evaluation, model selection, and algorithm selection in
machine learning. arXiv preprint arXiv:1811.12808, 2018.

[RD98] Sarunas Raudys and Robert PW Duin. Expected classification error of the fisher linear
classifier with pseudo-inverse covariance matrix. Pattern recognition letters, 19(5-
6):385–392, 1998.

[RT19] Saharon Rosset and Ryan J Tibshirani. From fixed-x to random-x regression: Bias-
variance decompositions, covariance penalties, and prediction error estimation. Journal
of the American Statistical Association, 2019.

[Sch78] Gideon Schwarz. Estimating the dimension of a model. The annals of statistics, pages
461–464, 1978.

[SD96] Marina Skurichina and Robert PW Duin. Stabilizing classifiers for very small sample
sizes. In Proceedings of 13th International Conference on Pattern Recognition, volume 2,
pages 891–896. IEEE, 1996.

[SGd+18] Stefano Spigler, Mario Geiger, Stéphane d’Ascoli, Levent Sagun, Giulio Biroli, and
Matthieu Wyart. A jamming transition from under-to over-parametrization affects loss
landscape and generalization. arXiv preprint arXiv:1810.09665, 2018.

[SGT18] Yitong Sun, Anna Gilbert, and Ambuj Tewari. On the approximation properties of
random relu features. arXiv preprint arXiv:1810.04374, 2018.

[SKL92] Jon M Sutter, John H Kalivas, and Patrick M Lang. Which principal components to
utilize for principal component regression. Journal of chemometrics, 6(4):217–225,
1992.

[THV22] Ningyuan Teresa, David W Hogg, and Soledad Villar. Dimensionality reduction, reg-
ularization, and generalization in overparameterized regressions. SIAM Journal on
Mathematics of Data Science, 4(1):126–152, 2022.

[Tuk77] John W Tukey. Exploratory data analysis, volume 2. Reading, MA, 1977.
[Vap95] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business

media, 1995.
[VCR89] F Vallet, J-G Cailton, and Ph Refregier. Linear and nonlinear extension of the pseudo-

inverse solution for learning boolean functions. Europhysics Letters, 9(4):315, 1989.
[VL22] Tom Viering and Marco Loog. The shape of learning curves: a review. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 2022.
[WRR03] Michael E Wall, Andreas Rechtsteiner, and Luis M Rocha. Singular value decomposition

and principal component analysis. A practical approach to microarray data analysis,
pages 91–109, 2003.

[WW75] Grace Wahba and Svante Wold. A completely automatic french curve: fitting spline
functions by cross validation. Communications in Statistics-Theory and Methods, 4(1):1–
17, 1975.

14

Appendix

This Appendix is structured as follows: In Appendix A, we present an additional, broader, literature
review. In Appendix B, we present additional background on the linear regression case study,
including the proof of Proposition 1 (Appendix B.2) and an empirical study of the effect of excess
features on the conditioning of PC feature matrices (Appendix B.3). In Appendix C, we present
additional background on smoothers, including an analysis of the impossibility of double descent in
prediction error in fixed design settings (Appendix C.2) and derivation of the smoothing matrices
associated with linear regression, trees and boosting (Appendix C.3). In Appendix D, we present
additional background and other definitions of effective parameter measures. Finally, in Appendix E,
we further discuss the experimental setup and close by presenting additional results.

A Additional literature review

Double descent as a phenomenon. Although double descent only gained popular attention since
[BHMM19]’s influential paper on the topic, the phenomenon itself had previously been observed:
[LVM+20] provide a historical note highlighting that [VCR89] may have been the first to demonstrate
double descent in min-norm linear regression; [BHMM19] themselves note that double descent-like
phase transitions in neural networks had previously been observed in [BO96, ASS20, NMB+18,
SGd+18]. As discussed above, in addition to linear regressions and neural networks, [BHMM19]
also present double descent curves for trees and boosting. Since then, a rich literature on other
deep double descent phenomena has emerged, including double descent in the number of training
epochs[NKB+21], sparsity [HXZQ22], data generation [LDB21] and transfer learning [DB22]. We
also note that the occurrence of double descent has been studied for subspace regression methods
themselves [DMLB20, THV22], but has not been linked to double descent in min-norm linear
regressions as we do here. For a recent review of double descent more broadly see [VL22].

Theoretical understanding of double descent. In addition to the studies of double descent in linear
regression discussed in the main text[ASS20, BLLT20, DLM20, BHX20, KSR+21, HMRT22], we
note that further theoretical studies of double descent in neural networks exist (see e.g. [DMB21] for
a comprehensive review). These mainly focus on exact expressions of bias and variance terms by
taking into account all sources of randomness in model training and data sampling [NMB+18, AP20,
dRBK20, LD21]. Finally, different to our peak-moving experiments in Sec. 3.2 and Appendix E.2
which show that the location of the second descent in all original non-deep experiments of [BHMM19]
is determined by a change in the underlying method or training procedure, [CMBK21] show that one
can “design your own generalization curve” in linear regression by controlling the data-generating
process through the order by which newly (un)informative features are revealed, meaning that
one could construct a learning curve with essentially arbitrary number of descents in this way.
Similarly, we show in Fig. 6(b) in the main text and Fig. 13 in Appendix E.2 that multiple peaks
can be achieved by switching between mechanisms for adding parameters multiple times. Note that
[CMBK21] consider only the effect of data-generating mechanisms and arrive at the conclusion
that the generalization curves observed in practice must arise due to interactions between typical
data-generating processes and inductive biases of algorithms and “highlight that the nature of these
interactions is far from understood” [CMBK21, p. 3] – with our paper, we contributed to the
understanding of these interactions by studying the role of changes in inductive biases in the case of
trees, boosting and linear regression.

Interpolation regime. Entangled in the double descent literature is the interpolation regime or the
benign overfitting effect (e.g. [BMM18, MBB18, BLLT20, CL21]). That is, the observation that
models with near-zero training error can achieve excellent test set performance. This insight was
largely motivated by large deep learning architectures where this is commonplace [MBB18]. While
this line of research does provide an important update to historic intuitions which linked perfect
train set performance with poor generalization, it is entirely compatible with the ideas presented
in this work. In particular, in Figure 20 we demonstrate that within the interpolation regime the
number of effective parameters used on test examples and the predictive performance on those test
examples can vary greatly. Therefore, benign overfitting may indeed result in excellent performance
without contradicting the traditional notion of a U-shaped complexity curve. Additionally, note that
while the double descent phenomenon is often presented as a consequence of benign overfitting in
the interpolation regime, we show in Appendix E.2 that the location of the second descent is not

15

inherently linked to the interpolation regime at all in the non-deep experiments of [BHMM19] – but
rather a consequence of the point of change between multiple mechanisms of increasing parameter
count.

Other related works. Finally, we briefly discuss some other works that might provide further context
on topics touched upon in this text. [BH89] study linear neural networks through the lens of principal
component analysis. Recent theoretical work suggests that, when optimized using stochastic gradient
descent, these networks tend to converge to low norm or rank solutions (e.g. [GWB+17, ACHL19]).
Aspects of double descent, which were referred to as peaking in older literature, have been associated
with the eigenvalues of the sample covariance matrix in a limited setting involving linear classifiers
as far back as [RD98]. Much of this work focused on increasing the number of samples for a fixed
model (e.g. [Dui95, SD96]). Prior to being rediscovered in the context of neural networks and larger
models, more recent work investigated the peaking phenomenon in modern machine learning settings
such as semi-supervised learning [KL16].

B More on linear regression

In this section, we first present a brief refresher on SVD, PCA and PCR to provide some further
background to the discussion in the main text and the following subsections. We then present a proof
of Proposition 1 in Appendix B.2 and finally empirically analyze the effects of excess features on the
conditioning of the PCR feature matrix in Appendix B.3.

B.1 Background on SVD, PCA and PCR

In this section we provide a brief refresher on some of the mathematical tools that are fundamental to
the insights presented in the main text. We begin with the singular value decomposition (SVD) which
acts as a generalization of the standard eigendecomposition for a non-square matrix X ∈ Rn×d (see
e.g. [Kal96, DFO20]). The SVD consists of the factorization X = UΣVT where the columns of
U ∈ Rn×n and rows of VT ∈ Rd×d consist of the left and right singular vectors of X respectively
and both form orthonormal bases of X. Then, Σ ∈ Rn×d contains the so-called singular values
σ1 ≥ . . . ≥ σmin(n,d) along the diagonal with zeros everywhere else. Analogous to eigenvalues
and eigenvectors, the SVD satisfies XVi = σiUi for all i ∈ 1, . . . ,min(n, d). We note that for any
σi = 0, the corresponding Vi lies in the nullspace of X (while Ui lies in the nullspace of XT). The
SVD results in the geometric intuition of factorizing the transformation X into three parts consisting
of a basis change in Rd, followed by a scaling by the singular values that adds or removes dimensions,
and then a further basis change in Rn. We note that any columns of U and V corresponding to either
null singular values (i.e. σi = 0) or the max(n, d) − min(n, d) non-square dimensions of X are
redundant in the SVD. Therefore we can equivalently express the SVD in its so-called compact form
with these vectors and their corresponding rows/columns in Σ removed.

The SVD is intimately linked to dimensionality reduction through principal component analysis
(PCA) [Pea01, FM23, WRR03]. Recall that PCA is a technique that finds a basis of a centered matrix
X by greedily selecting each successive basis dimension to maximize the variance within the data.
Typically, this is presented as selecting each basis vector bi = argmax||b||=1 ||X̂ib||2 where X̂i

denotes the original (centered) data matrix X with the first i − 1 directions of variation removed
(i.e. X̂i = X−∑i−1

k=1 bkb
T
kX). By expanding ||X̂ib||2 = bT X̂T

i X̂bT we can notice that the basis
vectors obtained are also the eigenvectors of XTX which is proportional to the sample covariance
matrix. The dimensionality reduction then occurs by selecting a subset of these new coordinates,
ordered by highest variance, to represent a low-rank approximation of X. The relationship to the
SVD is illuminated by noticing that, for a centered X, we can use the singular value decomposition
such that

XTX = (UΣVT)T (UΣVT)

= VΣTΣVT

= VΣ2VT .

This reveals that V, the orthonormal basis containing right singular vectors of X and obtained through
the SVD, produces exactly the eigenvectors of XTX required for PCA. Then the PCA operation
PCAk(X) : Rn×d → Rn×k (where k ≤ d is the user-defined number of principal components

16

retained) may be obtained as PCAk(X) = XVk = UkΣk where we overload notation such that
the subscript of each matrix denotes keeping only the vectors corresponding to those first k principal
components (ordered according to the magnitude of their singular values).

A natural idea that emerges from the description of PCA is to apply it in the supervised setting.
Specifically, we might wish to first perform the unsupervised dimensionality reduction step of PCA
followed by least squares linear regression on the transformed data. This is exactly the approach taken
in principal component regression (PCR) [Ken57, Hot57]. Mathematically this can be expressed as
solving β̂ = minβ(y−XVkβ)

2 for coefficients β ∈ Rk and targets y ∈ Rn. Then the least squares
solution takes the form β̂ = (VT

k X
TXVk)

−1VT
k X

Ty. The assumption of PCR is that the high
variance components are most important for modeling the targets y. While this is not necessarily
always the case7 [Jol82], PCR has historically been an important method in the statistician’s toolbox
(e.g. [HTF09]). In the main text we make use of the connection between PCR and min-norm
least squares on underdetermined problems (i.e. a fat data matrix). In particular, we show that
applying min-norm least squares in this setting is equivalent to applying PCR with all principal
components retained. We provide a proof for this proposition in Appendix B.2. Of course, related
mathematical connections between min-norm solutions and the singular value decomposition have
been made in previous work (see e.g. [GVL13, Ch. 5.7]). The regularization effect of PCR also has a
known connection to ridge regression where both methods penalize the coefficients of the principal
components [HTF09, Ch. 3.5.1]. The former discards components corresponding to the smallest
singular values while the latter shrinks coefficients in proportion to the size of the singular values8.

B.2 Proof of Proposition 1

Proposition 1. [Min-norm least squares as dimensionality reduction.] For a full rank matrix
X ∈ Rn×d with n < d and a vector of targets y ∈ Rn, the min-norm least squares solution
β̂MN = {minβ ||β||22: Xβ = y} and the least squares solution β̂SVD = {β: Bβ = y} using the
matrix of basis vectors B ∈ Rn×n, constructed using the first n right singular vectors of X, are
equivalent; i.e. xT β̂MN = bT β̂SVD for all x ∈ Rd and corresponding basis representation b ≡ b(x).

Proof. We will use the compact singular value decomposition X = UΣVT (i.e. with the d − n
redundant column vectors dropped from the full Σ and V). Specifically, the columns of U ∈ Rn×n

and VT ∈ Rn×d form orthonormal bases and Σ ∈ Rn×n is a diagonal matrix with the singular
values along the diagonal. The transformation of X to B is then given by XV = UΣ = B. It is
sufficient to show that for some test vector x ∈ Rd in the original data space and its projection to
the reduced basis space b = VTx ∈ Rn, then the predictions ŷ of both models are equal such that
xT β̂MN = bT β̂SVD.

ŷMN = xT β̂MN = xTXT (XXT)−1y

= xT (UΣVT)T ((UΣVT)(UΣVT)T)−1y

= xTVΣUT (UΣΣUT)−1y

= xTVBT (BBT)−1y

= bTBT (BBT)−1y

= bT β̂SVD

= ŷSVD

7Indeed, an alternative approach is to use standard variable selection techniques on the constructed dimensions
of the transformed data (see e.g. [SKL92]).

8This connection explains why the explicit regularization with the ridge penalty in [HMRT22] and the
implicit regularization of min-norm solutions have a consistent shrinking effect on test loss.

17

0 2000 4000 6000 8000 10000

k

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

lo
g
(σ

k
)

Singular values σk

P φ = 10000

P φ = 12500

P φ = 15000

P φ = 20000

P φ = 30000

P φ = 60000

0 2000 4000 6000 8000 10000

k

0.0

2.5

5.0

7.5

10.0

12.5

15.0

lo
g
(κ

(B
k
))

Condition number κ(Bk)

P φ = 10000

P φ = 12500

P φ = 15000

P φ = 20000

P φ = 30000

P φ = 60000

Figure 10: The effect of Pϕ on the conditioning of the PCR feature matrix. Singular values σk (left)
and κ(Bk) (right) derived from the random Fourier feature matrix Φ, as a function of k and for different raw
number of features Pϕ.

B.3 Understanding the impact of P ex: Examining its impact on singular values of the PCR
feature matrix

In this section, we empirically investigate how increasing P ex for a fixed number of PPC results in a
gradual improvement in the quality of a basis of fixed dimension, revisiting the experimental setting
of Sec. 3.2 in the main text.

In particular, we consider how excess features affect the conditioning of the feature matrix Bk =
PCAk(X) = XVk = UkΣk, used in principal components regression, for different values of k ≡
PPC . As noted in [PKB19], the condition number κ(A) of a matrix A measures how much errors in
y impact solutions when solving a system of equations Aβ = y, and is given by κ(A) = σmax(A)

σmin(A) , the
ratio of maximal to minimal singular value of A. Because in principal components regression Bk is
constructed from the top k ∈ {1, . . . , n} principal components, it is easy to see that σmax(Bk) = σ1

and σmin(Bk) = σk – the largest and k-th largest singular value of X respectively (as defined in
Appendix B.1) – so that in principal components regression we generally have κ(Bk) =

σ1

σk
.

To understand how the raw number of features Pϕ in the experimental setup of Sec. 3.2 in the main
text impacts basis quality, it is thus instructive to study the behavior of the singular values of the
random Fourier feature matrix Φ as Pϕ grows. In Fig. 10, we therefore plot σk and κ(Bk) for
different values of Pϕ and observe that indeed, as Pϕ (and therebyP ex = Pϕ − k) increases, σk

substantially increases in magnitude especially for large k ≡ PPC . This provides empirical evidence
that the conditioning of feature matrices for principal components regression at large values of k
indeed substantially improves as we add excess raw features (i.e. κ(Bk) decreases substantially –
particularly at large k – as can be seen in the right panel of Fig. 10).

C More on smoothers: Bias-variance, on the impossibility of in-sample
double descent and derivation of smoothing matrices

In this section, we give some further background on the well-known relationship between bias and
variance in smoothers, then discuss the impossibility of double descent in prediction error in fixed
design settings, and finally derive the smoothing matrices implied by the ML methods used in the
main text.

C.1 Background: Bias and variance in smoothers

In this section, we discuss the well-known bias-variance relationship in smoothers (which indeed
determines the U-shape of their original complexity-error curves), following the discussion in [HT90,
Sec. 3.3]. Under the standard assumption that targets are generated with true expectation f∗(x0) and
homoskedastic variance σ2, the bias and variance of a smoother ŝ(·) evaluated at test point x0 (for

18

fixed input points {xi}i∈Itrain and fixed smoother ŝ(·)), can be written as:

Bias(f̂ , x0) = f∗(x0)−
∑

i∈Itrain
ŝi(x0)f

∗(xi) (3)

Var(f̂ , x0) = Var(ŝ(x0)ytrain) = ||ŝ(x0)||2σ2 (4)

Note that some of the historical intuition behind the U-shaped bias-variance tradeoff with model
complexity on the x-axis appears to lead back to exactly the comparison between these two terms
evaluated for training inputs in smoothers –[Nea19] trace explicit discussion of bias-variance tradeoff
back to at least [HT90] (who indeed discuss it in the context of smoothers), preceding [GBD92]’s
influential machine learning paper on the topic. A bias-variance tradeoff is easily illustrated by
considering e.g. a kNN smoother9: a 1NN estimator has no bias when predicting outcomes for
a training input but variance σ2, while a k(> 1)NN estimator generally incurs some bias but has
variance σ2/k – we thus expect a U-shaped curve in squared prediction error as we vary k. Similarly,
note that for linear regression on a p < n-dimensional subset of the input, the bias of the fit generally
decreases in p, while the variance increases in p as 1

n

∑n
i=1 V ar(ŝ(xi)) =

pσ2

n [HTF09] – leading to
another well-known example of a U-shaped generalization curve (in p < n).

When the expected mean-squared error (MSE) is the loss function of interest, a bias-variance tradeoff
can also be motivated more explicitly by noting that the MSE can be decomposed as

E[(Y − f̂(x0))
2|X = x0] = σ2 + Bias2(f̂ , x0) + Var(f̂ , x0) (5)

C.2 On the impossibility of a second prediction error descent in the interpolation regime in
fixed design settings

[BHMM19] provide a discussion of possible cultural and practical reasons for the historical absence
of double descent shapes in the statistics literature. They note that observing double descent in the
number of parameters requires parametric families in which complexity can arbitrarily be controlled
and that therefore the classical statistics literature – which either focuses either on linear regression
in fixed p < n settings or considers highly flexible nonparametric classes but then applies heavy
regularization – could not have observed it because of this cultural focus on incompatible model
classes (in which [BHMM19] argue double descent cannot emerge due to a lack of interpolation).
Through our investigation, we find another fundamental reason for the historical absence of double
descent shapes in statistics: even when using a sufficiently flexible parametric class (e.g. unregularized
RFF linear regression), a second descent in the interpolation regime cannot emerge in fixed design
settings, the primary setting considered in the early statistics literature – where much of the intuition
regarding the bias-variance tradeoff was initially established.

After recalling some definitions in Appendix C.2.1, we demonstrate this impossibility of a second
descent in fixed design settings for general interpolating predictors in Appendix C.2.2 below, and
make some additional observations specific to smoothers in Appendix C.2.3.

C.2.1 Preliminaries.

We begin by recalling the definition of the fixed design setting of statistical learning.

Definition 2 (Fixed design setting). In the fixed design setting, the inputs x1, . . . , xn are deterministic,
while their associated targets are random (e.g. yi = f(xi) + ϵi where ϵi is a random noise term).

The fixed design setting was a core consideration of much of the statistical literature [RT19] and
was suitable for several traditional applications in e.g. agriculture. While many modern applications
require a random design setting in which the inputs are also random, several modern applications are
still suitably modeled within this framework (e.g. image denoising). Next, we will define in-sample
prediction error in line with [HTF09].

Definition 3 (In-sample prediction error). Given a set of fixed design points x1, . . . , xn, training
targets y1, . . . , yn and some model f , suppose we observe a new set of random responses at each of

9Recall that, possibly counterintuitively, a kNN smoother is most complex when k = 1, where at every
training input the prediction is simply the original training label, and least complex when k = n, where it just
outputs a sample average

19

the training points denoted y0i . Then the expected in-sample prediction error for some loss function
L is given by

ERRin =
1

n

n∑
i=1

Ey0 [L(y0i , f(xi))|{(x1, y1), . . . , (xn, yn)}]

Remark: Note that in the fixed design setting, the expected in-sample prediction error is indeed the
natural quantity of interest at test time.

Finally, we define an interpolating predictor below.

Definition 4 (Interpolating predictor.). A predictor f̂(·) interpolates the training data if for ytrain
i ∈

R,∀i ∈ Itrain

f̂(xi) = ytrain
i (6)

C.2.2 Main result: General impossibility of a second descent in test error for the
interpolation regime in fixed design settings

We may now proceed to the main observation of this section. That is, in the fixed design setting a
second descent in test error observed in the interpolation regime cannot occur. Intuitively, this is
because any improvement in fixed-design test-time performance by a more complex model would
require sacrificing the perfect performance on the train set. As a consequence, while – as we
observe in the main text – different interpolating predictors can have wildly different (out-of-sample)
generalization performance, we show below that all models in the interpolation regime have identical
expected in-sample prediction error ERRin. That is, increasing the raw number of parameters p past
n, e.g. in min-norm linear regression, does not and can not lead to a second descent in ERRin. We
express this more formally below.

Proposition 2 (Impossibility of a second error descent in the interpolation regime for fixed design
settings.). Suppose we observe inputs x1, . . . , xn in a fixed design prediction problem, with associated
random labels ytrain

1 , . . . , ytrain
n in the training set. For all interpolating models f , test-time predictions

will be identical and, therefore, a second descent in ERRin in this regime is impossible.

Proof. By definition of fixed design problems, our test set consists of examples in which the features
are duplicates from the training set and the targets are new realizations from some target distribution.
Then the test dataset consists of the pairs (x1, y

test
1), . . . , (xn, y

test
n). For any interpolating model f

we can calculate the test loss as Ltest =
∑n

i=1 L(f(xi), y
test
i). But by Definition 4 (and because

interpolating models achieve zero training error), we know that f(xi) = ytrain
i . Thus Ltest =∑n

i=1 L(ytrain
i , ytest

i), and since this is not a function of f , this quantity is independent of the number
of parameters (or any other property) of f . Therefore, any change in Ltest (or expectations thereof) in
the interpolation regime is impossible - including the second descent necessary for creating a double
descent shape.

While most, if not all, discussion of the double descent phenomenon in the ML literature is not within
the fixed design setting, we believe that the impossibility of double descent in this setting provides a
new useful partial explanation for its historical absence from the statistical discourse.

C.2.3 Additional observations specific to smoothers

For the special case of interpolating linear smoothers, we make an additional interesting observation
with regard to their smoothing weights and implied effective number of parameters. To do so, first
recall that a linear smoother is defined as follows:

Definition 5 (Linear smoother). A smoother with weights ŝ(x0) ≡ ŝ(x0;Xtrain,ytrain) is linear if
ŝ(x0) does not depend on ytrain; that is ŝ(x0;Xtrain,y

1) = ŝ(x0;Xtrain,y
2) for ∀y1,y2 ∈ Rn

We are now ready to show in Prop. 3 that all interpolating linear smoothers must have the same
smoother weights and effective parameters for training inputs.

Proposition 3 (Interpolating linear smoother.). Any interpolating linear smoother must have identical
smoother weights ŝ(xi) = ei for all i ∈ Itrain. This immediately implies also that all interpolating
linear smoothers use the same effective number of parameters pe = n in fixed design settings.

20

Proof. In linear smoothers, ŝ(xi) can not depend on ytrain by definition. To have ŝ(xi)y
′
train = y′i for

all i ∈ Itrain and any possible training outcome realization ∀y′
train ∈ Rn, we must have ŝ(xi) = ei for

i ∈ Itrain.

From this, as ||ei||2 = 1, it also follows that ptrain
ŝ = pe =

∑n
i=1 ||ei||2 = n. In fixed design settings,

training and testing inputs are identical so ptest
ŝ = n.

Note that this specific property does not hold for more general (non-linear) interpolating smoothers:
whenever ytrain contains duplicates, a non-linear interpolating smoother can have ŝ(xi) ̸= ei for
some i ∈ Itrain. When all yi observed at train-time are unique, then it is easy to see that even
non-linear interpolating smoothers must have ŝ(xi) = ei for all i ∈ Itrain.

C.3 Derivation of smoothing weights of linear regression, trees and boosting

C.3.1 Smoothing weights for RFF linear regression

Derivation of the smoothing weights for the RFF linear regression example is trivial, as linear regres-
sion is a textbook example of a smoother [HT90]. To see this, let ϕ(x0) = (ϕ1(x0), . . . , ϕP (x0))
denote the Pϕ × 1 row-vector of RFF-projections of arbitrary admissible x0 ∈ Rd and let
Φtrain = [ϕ(x1)

T , . . . , ϕ(xn)
T]T denote the n × Pϕ design matrix of the training set and note

that the least squares prediction obtained through the min-norm solution can be written as

f̂LR(x0) = ϕ(x0)βLR = ŝLR(x0)ytrain =

{
ϕ(x0)(Φ

T
trainΦtrain)

−1ΦT
trainytrain if Pϕ < n

ϕ(x0)Φ
T
train(ΦtrainΦ

T
train)

−1ytrain if Pϕ ≥ n
(7)

i.e.

ŝLR(x0) =

{
ϕ(x0)(Φ

T
trainΦtrain)

−1ΦT
train if Pϕ < n

ϕ(x0)Φ
T
train(ΦtrainΦ

T
train)

−1 if Pϕ ≥ n
(8)

Note also that by design, as alluded to in Appendix C.2.3, when Pϕ ≥ n we have
ΦtrainΦ

T
train(ΦtrainΦ

T
train)

−1 = In, implying that that ŝLR(xi) = ei for any xi observed at train
time.

C.3.2 Smoothing weights for trees and forests

Similarly, we can exploit that trees are sometimes considered adaptive nearest neighbor methods
[HTF09, Ch. 15.4.3], i.e. nearest neighbor estimators with an adaptively constructed (outcome-
oriented) kernel (or distance measure). To see this, note that regression trees, that is trees trained to
minimize the squared loss and/or classification trees that make predictions through averaging (not
voting), can all be understood as issuing predictions that simply average across training instances
within a terminal leaf. To make this more formal, consider that any tree with P leaf leaves can
be represented by P leaf contiguous axis-aligned hypercubes lp, which store the mean outcome of
all training examples that fall into this leaf: If we denote by l(x0) the leaf that x0 falls into and
nl(x0) =

∑n
i=1 1{l(x0) = l(xi)} the number of training examples in this leaf, then we have that

f̂(x0) =
1

nl(x0)

n∑
i=1

1{l(x0) = l(xi)}yi (9)

giving

ŝtree(x0) =

(
1{l(x0) = l(x1)}

nl(x0)
, . . . ,

1{l(x0) = l(x1)}
nl(x0)

)
(10)

Further, we note that sums f̂Σ(x0) =
∑M

m=1 f̂
m(x0) of smoothers f̂m(x0) = ŝm(x0)ytrain, m =

1, . . . ,M are also smoothers with ŝΣ(x0) =
∑M

m=1 ŝ
m(x0). This immediately implies that the tree

ensembles considered in Sec. 2.1 are also smoothers, and, as we show in Appendix C.3.3 below, so
are boosted trees (and ensembles thereof) as considered in Sec. 2.2.

Remark: We note that, although the smooth ŝtree(x0) can be written in linear form without explicit
reference to ytrain, trees (and their sums) are not truly linear smoothers because the smoother ŝtree(·)
does depend in its construction on ytrain, reflecting their epithet as adaptive smoothers [HTF09, Ch.

21

15.4.3]. This mainly implies that when calculating bias and variance, we can no longer consider ŝ(x0)
as fixed and Eqs. (3) and (4) no longer hold exactly. However, this is not an issue for our purposes as
we are not interested in actually estimating bias and variance in this work, rather we are interested in
smoothers because – as discussed in Sec. 4 and Appendix D – they allow us to compute the most
useful measure of effective parameters. Conceptually, this allows us to assess the effective amount of
smoothing used, which can also be interpreted relative to e.g. a standard kNN estimator. Because for
kNN estimators we have p0ŝ = n

k and for trees and forests it holds that
∑n

i=1 ŝ
i(x0) = 1, the quantity

k̃0ŝ = n
p0
ŝ

admits an interesting interpretation as measuring the effective number of nearest neighbors
examples have in a tree or forest (and this interpretation does not require fixed ŝ).

C.3.3 Smoothing weights for boosting

Deriving the smoothing weights for gradient boosting is more involved. To do so, we first re-state
the gradient boosting algorithm (as presented in [HTF09, Ch. 10.10]) and then recursively construct
weights from it.

The gradient boosted trees algorithm. We consider gradient boosting with learning rate η and
the squared loss as L(·, ·):

1. Initialize f0(x) = 0

2. For p ∈ {1, . . . , P boost}
(a) For i ∈ {1, . . . , n} compute

gi,p = −
[
∂L(yi, f(xi))

∂f(xi)

]
f=fp−1

(11)

(b) Fit a regression tree to {(xi, gi,p)}ni=1, giving leaves ljp for j = 1, . . . , Jp
(c) Compute optimal predictions for each leaf j ∈ {1, . . . , Jp}:

γjp = argmin
γ∈R

∑
xi∈ljp

L(yi, fp−1(xi) + γ) =
1

nljp

∑
xi∈ljp

(yi − fp−1(xi)) (12)

(d) Denote by f̃p(x) =
∑Jp

j=1 1{x ∈ ljp}γjp the predictions of the tree built in this fashion

(e) Set fp(x) = fp−1(x) + ηf̃p(x)

3. Output f(x) = fP boost(x)

Recursive construction of smoothing weights. Equation (12) highlights that we can recursively
construct smoothing weights similarly as for trees. In fact, note that in the first boosting round, f̃1(x)
is a standard tree with smoothing weights ŝtree,f̃1(·) computed as in Eq. (10), so that f1(x) = ηf̃1(x)

has smoothing weights ŝboost,1(·) = ηŝtree,f̃1(·). Now we can recursively consider the smoothing
weights associated with newly added residual trees f̃p(x) by realizing that its predictions can be
written as a function of standard tree weights ŝtree,f̃p(·) and a correction depending on ŝboost,1(·)
alone :

f̃p(x) =

Jp∑
j=1

1{x ∈ ljp}γjp =

Jp∑
j=1

1{x ∈ ljp}

 1

nljp

∑
xi∈ljp

(yi − fp−1(xi))


=

Jp∑
j=1

1{x ∈ ljp}

 1

nljp

∑
xi∈ljp

yi


︸ ︷︷ ︸
Standard tree prediction: ŝtree,f̃p (x)ytrain

−
Jp∑
j=1

1{x ∈ ljp}

 1

nljp

∑
xi∈ljp

ŝboost,p−1(xi)ytrain


︸ ︷︷ ︸

Residual correction: ŝcorr,fp (x)ytrain

(13)

= (ŝtree,f̃p(x)− ŝcorr,fp−1(x))ytrain (14)

where, using the 1× Jp indicator vector elp(x) = (1{x ∈ l1}, . . . ,1{x ∈ lJp}), we have

ŝcorr,fp(x) = elp(x)R̂
p (15)

22

with R̂p the Jp × n leaf-residual correction matrix with j−th row given by

R̂p =
1

nljp

∑
xi∈ljp

ŝboost,p−1(xi) (16)

Thus, we have constructed the smoothing matrix for gradient boosting recursively as:

ŝboost,p(·) = ŝboost,p−1(·) + η
(
ŝtree,f̃p(·)− ŝcorr,fp(·)

)
(17)

D More on effective parameters

In what follows, we discuss the different effective parameter definitions considered in the smoothing
literature, and follow closely the presentation in [HT90, Ch.3.4 & 3.5] and [HTF09, Ch. 7.5]. Recall
that, as discussed in Sec. 4 of the main text, these definitions are all naturally calibrated towards
linear regression so that, as we might desire, effective and raw parameter numbers are equal in the
case of ordinary linear regression with p < n.

To understand their motivation, we introduce some further notation. Assume that outcomes are
generated as y = f∗(x) + ϵ with unknown expectation f∗(x) and ϵ a zero-mean error term with
variance σ2. Let f∗ = [f∗(x1), . . . , f

∗(xn)]
T denote the vector of true expectations. Further, let

Ŝ = [ŝ(x1)
T , . . . , ŝ(xn)

T]T denote the smoother matrix for all input points, so that we can write the
vector of in-sample predictions as f̂ = Ŝytrain. For linear smoothers (and/or fixed Ŝ), bias and variance
at any input point are given by Eqs. (3) and (4), so that we have 1

n

∑
i∈Itrain

bias2(f̂(xi)) =
1
nb

T
Ŝ
bŜ

for bias vector bŜ = (f∗ − Ŝf∗) and 1
n

∑
i∈Itrain

var(f̂(xi)) =
σ2

n tr(ŜŜT).

Covariance-based effective parameter definition. In this setup, one way of defining the effective
number of parameters that is very commonly used is to consider the covariance between predictions
f̂(xi) and the observed training label yi [HTF09]:

pcove =

∑n
i=1 cov(yi, f̂(xi))

σ2
= tr(Ŝ) (18)

As expected, tr(Ŝ) = p in ordinary linear regression (p < n).

Error-based effective parameter definition. Another way considers the residual sum of squares
(RSS) in the training sample RSS(f̂) =

∑n
i=1(yi − f̂(xi))

2 = (ytrain − Ŝytrain)
T (ytrain −

Ŝytrain) and notes that it has expected value:

E[RSS(f̂)] = (n− tr(2Ŝ− ŜŜT))σ2 + bT
Ŝ
bŜ (19)

and uses
n− perre = n− tr(2Ŝ− ŜŜT) (20)

because in the linear regression case the degrees of freedom for error are n− p [HT90] and tr(2Ŝ−
ŜŜT) = p.

Variance-based effective parameter definition. Finally, the variance-based definition pe discussed
in the main text is motivated from

∑n
i=1 var(f̂(xi)) = σ2

∑n
i=1 ||ŝ(xi)||2 = σ2tr(ŜŜT) giving

pe ≡ pvare = tr(ŜŜT) (21)

as
∑n

i=1 var(f̂(xi) = pσ2 in linear regression.

Note that, in ordinary linear regression with p < n and full rank design matrix, Ŝ is idempotent so
that tr(ŜŜT) = tr(Ŝ) = tr(2Ŝ− ŜŜT) = rank(Ŝ) = p.

Why did we choose pvare ? We chose to adapt pvare because it is the definition that can most obviously
be adapted to out-of-sample settings: both the error-based definition and the covariance-based
definition focus on the effect a training outcome has in predicting itself (i.e. overfitting on the own
label), while for out-of-sample prediction, this is not of interest. Instead, we therefore rely on the
variance-based definition because ||ŝ(x0)||2 can not only be computed for every input x0 but also

23

admits a meaningful interpretation as measuring the amount of smoothing over the different training
examples: for an averaging smoother with

∑n
i=1 ŝ

i(x0) = 1, the simplest and smoothest prediction
is a sample average with ŝi(x0) =

1
n – which minimizes ||ŝ(x0)||2 =

∑n
i=1

1
n2 = 1

n . Conversely,
the least smooth weights assign all weight to a single training observation j, i.e. ŝ(x0) = ej so that
||ŝ(x0)||2 = 1 is maximized.

Effective parameters for methods that cannot be written in linear form. The effective parameter
definitions considered above all have in common that they require a way of writing predictions ŷ as
an explicit function of ytrain – which is possible for the three ML methods considered in this paper,
but not generally the case. Instead, for loss-based methods like neural networks, [HTF09, Ch. 7.7]
note that one can make a quadratic approximation to the error function R(w) and get

pαe =

p∑
j=1

θj
θj + α

(22)

where θp are the eigenvalues of the Hessian ∂2R(w)/∂w∂wT and α is the weight-decay penalty used.
This proxy effective parameters, motivated in a Bayesian context [Mac91], is used in [MBW20]’s
study of effective parameters used in overparameterized neural networks. We note that, in addition
to not being applicable to our tree-based experiments (which do not possess a differentiable loss
function), this effective parameter proxy is also usually motivated in the context where in-sample
prediction error is of interest [Moo91] – and might therefore also need updating to reflect the
modern focus on generalization to unseen inputs. This is definitely the case in the context of
linear regression: to make Eq. (22) applicable to the unregularized/ridgeless regression setup we
consider, one needs to let α tend to 0. In this case, the Hessian is X′X and we will have that
pαe → ∑p

j=1 1{θj > 0} = rank(X′X) = rank(X) = min(n, p) – which will be constant at value
n once p > n, just like ptrain

ŝ .

Other related concepts. [DLM20] theoretically study implicit regularization of min-norm solutions
by computing effective ridge penalties λn implied by min-norm solutions by solving n = tr(Σµ(Σµ+
λnIn)

−1) with Σµ = E[XXT]. Further, building on the principle of minimum description length
(MDL), [DSYW20] define a complexity measure in the context of linear regression via an optimality
criterion over the encodings induced by a good Ridge estimator class.

E Additional results

In this section, we first provide further discussion of the experimental setup in Appendix E.1 and
then present additional results: In Appendix E.2 we show that the location of the second descent can
be arbitrarily controlled for all methods under consideration, in Appendix E.3 we plot binary test
error, in Appendix E.4 we plot training error, in Appendix E.5 we provide anecdotal evidence that
ptest
ŝ could be used for model selection and in Appendix E.6 we finally present results using further

datasets.

E.1 Experimental setup

Our experimental setup largely replicates that of [BHMM19]. We describe the datasets, compu-
tation, and each experiment in detail in this section. Code is provided at https://github.com/
alanjeffares/not-double-descent.

Datasets - We perform our experiments in the main text on the MNIST image recognition dataset
[LBBH98] with inputs of dimension 784. In this section, we also repeat these experiments on
the SVHN digit recognition task [NWC+11] as well as the CIFAR-10 object classification tasks
[KH+09], both containing inputs of dimension 1024 as color images have been converted to grayscale.
All inputs are normalized to lie in the range [0, 1]. All three tasks are 10 class classification problems.
Furthermore, we randomly sample a subset of 10,000 training examples and use the full test set in our
evaluation. In SVHN we randomly sample a balanced test set of 10,000 examples. We note that the
less common choice of using squared error for this classification problem in [BHMM19] is supported
by the same authors’ work in [HB21, MNS+21] on the utility of the squared loss for classification.

Compute - All experiments are performed on an Azure FX4mds. This machine runs on an Intel Xeon
Gold 6246R (Cascade Lake) processor with 84 GiB of memory. The majority of the computational

24

https://github.com/alanjeffares/not-double-descent
https://github.com/alanjeffares/not-double-descent

cost was due to matrix inversions of a large data matrix in the case of linear regression experiments
and fitting a large number of deep trees in the tree-based experiments. Each of the three experiments
had a total runtime in the order of hours.

Trees (Sec. 2.1) - We use regression trees and random forests as implemented in scikit-learn
[PVG+11] for our tree experiments, which in turn implement an optimized version of the CART
algorithm [BFSO84]. As in [BHMM19], we disable bootstrapping throughout and consider random
feature subsets of size

√
d at each split. Like [BHMM19] rely on 10 one-vs-all models due to the

multi-class nature of the datasets.

Gradient Boosting (Sec. 2.2) - Gradient boosting is implemented as described in [HTF09, Ch.
10.10] and restated in Appendix C.3.3, using trees with P leaf = 10 and a random feature subset of
size

√
d considered at each split, and learning rate γ = .85 as used in [BHMM19]. We rely on the

scikit-learn [PVG+11] implementation GradientBoostingRegressor to make use of the squared
loss function, and like [BHMM19] rely on 10 one-vs-all models to capture the multi-class nature of
the datasets. We create ensembles of P ens different boosted models by initialing them with different
seeds.

Linear regression (Sec. 3) - As described in the main text we begin with a random Fourier Features
(RFF) basis expansion. Specifically, given input x ∈ Rd, the number of raw model parameters
Pϕ is controlled by randomly generating features ϕp(x) = Re(exp

√
−1vT

p x) for all p ≤ Pϕ, where
each vp

iid∼ N (0, 1
52 · Id). For any given number of features Pϕ, these are stacked to give a n× Pϕ

dimensional random design matrix Φ, which is then used to solve the regression problem y = Φβ
by least squares. Following the methodology of [BHMM19] we perform one-vs-all regression for
each class resulting in 10 regression problems. For principal component regression we standardize
the design matrix, apply PCA, add a bias term, and finally perform ordinary least squares regression.

E.2 “Peak-moving” experiments

In this section, we show that the first peak in generalization error can be arbitrarily (re)moved
by changing when, i.e. at which value of P leaf , P boost or PPC , we transition between the two
mechanisms for increasing the raw number of parameters in each of the three methods. We do so
for two reasons: First, as can be seen in Fig. 11, it allows us to highlight that the switch between
the two parameter-increasing mechanisms is indeed precisely the cause of the second descent in
generalization error – in all three methods considered. Second, this also implies that the second
descent itself is not inherently caused by interpolation: to the contrary, comparing the generalization
curves in Fig. 11 with their train-error trajectories in Fig. 12, it becomes clear that such a second
descent can also occur in models that have not yet and will not reach zero training error. Thus, the
interpolation threshold does not itself cause the second descent – rather, it often coincides with a
switch between parameter increasing mechanisms because parameters on the P leaf , P boost and PPC

axis can inherently not be further increased once interpolation is achieved.

Composite Axis
0.1

0.3

0.5

0.7

S
q
u

ar
ed

te
st

er
ro

r

Trees

P leaf = 500

P leaf = 200

P leaf = 100

P leaf = 50

Composite Axis
0.1

0.3

0.5

0.7
Boosting

P boost = 200

P boost = 100

P boost = 50

P boost = 25

Composite Axis

0.1

3.3

81.5

1998.2
Regression

P PC = 10000

P PC = 7500

P PC = 5000

P PC = 2500

Figure 11: Shifting the location of the double descent peak in generalization error by changing
when we switch between the two parameter-increasing mechanisms. Transitioning from P leaf to
P ens at different values of P leaf in the tree experiments (left), transitioning from P boost to P ens at different
values of P boost in the boosting experiments (middle) and transitioning from PPC to P ex at different values of
PPC in the regression experiments (right).

Finally, we note that one could also create a generalization curve with arbitrarily many peaks and
arbitrary peak locations (including peaks at raw parameter counts p > n) by switching between
parameter-increasing mechanisms more than once. In Fig. 13, we show this for the linear regression
example, where we switch between increasing parameters through PPC and P ex multiple times.
This experiment is inspired by [CMBK21], who show one can “design your own generalization curve”

25

Composite Axis

0.1

0.3

0.5

0.7

S
q
u

ar
ed

tr
ai

n
er

ro
r

Trees

P leaf = 500

P leaf = 200

P leaf = 100

P leaf = 50

Composite Axis

0.1

0.3

0.5

0.7
Boosting

P boost = 200

P boost = 100

P boost = 50

P boost = 25

Composite Axis

0.1

0.3

0.5

0.7

Regression

P PC = 10000

P PC = 7500

P PC = 5000

P PC = 2500

Figure 12: Evolution of the training error for different transitions between the two parameter-
increasing mechanisms. Transitioning from P leaf to P ens at different values of P leaf in the tree experi-
ments (left), transitioning from P boost to P ens at different values of P boost in the boosting experiments (middle)
and transitioning from PPC to P ex at different values of PPC in the regression experiments (right).

in linear regression by controlling the data-generating process through the order by which newly
(un)informative features are revealed. In our case, rather than inducing the change by changing the
data, we manipulate the location of the peak by simply changing the sequence in which parameter
counts are increased.

0 20000 40000 60000

P φ = P PC + P ex

0.0

0.2

0.4

0.6

S
q
u

ar
ed

E
rr

or

Test error

0 20000 40000 60000

P φ = P PC + P ex

Train error

P ex = 0 fixed, P PC increasing in [0, 5000]

P PC = 5000 fixed, P ex increasing in [0, 2500]

P ex = 2500 fixed, P PC increasing in [5000, 7500]

P PC = 7500 fixed, P ex increasing in [2500, 5000]

P ex = 5000 fixed, P PC increasing in [7500, 10000]

P PC = 10000 fixed, P ex increasing in [5000, 60000]

Figure 13: “Design your own generalization curve”. We show using the regression example that a
generalization curve with arbitrarily many peaks and arbitrary peak locations (including peaks at Pϕ > n) can
be created simply by switching between increasing parameters through PPC and P ex multiple times (left).
Train error remains monotonically decreasing (right).

E.3 Plots of binary test error

In Figs. 14 to 16, we revisit Figs. 2, 4 and 5 of the main text by plotting 0-1 (or binary) loss achieved
on the test-set – measuring whether the class with the largest predicted probability indeed is the true
class – instead of summed squared loss across classes as in the main text. We observe qualitatively
identical behavior in all experiments also for this binary loss.

200× 1
max× 1

max× 50

P leaf×P ens

0.2

0.4

0.6

B
in

ar
y

te
st

er
ro

r

Double Descent in Trees

0 100 200 300 400 500

P leaf

Error by P leaf ,P ens fixed

P ens = 1

P ens = 5

P ens = 10

P ens = 50

0 20 40 60 80 100

P ens

Error by P ens,P leaf fixed

P leaf = 500

P leaf = 100

P leaf = 50

P leaf = 20

Figure 14: Decomposing double descent in binary test error for trees. Reproducing the tree
experiments of [BHMM19] (left). Test error by P leaf for fixed P ens (center). Test error by P ens for fixed
P leaf (right).

26

10× 1 100× 1
max× 1

max× 10

P boost×P ens

0.1

0.2

0.3

B
in

ar
y

te
st

er
ro

r

Double Descent in Boosting

0 50 100 150 200

P boost

Error by P boost,P ens fixed

P ens = 1

P ens = 2

P ens = 5

P ens = 20

5 10 15 20

P ens

Error by P ens,P boost fixed

P boost = 200

P boost = 50

P boost = 25

P boost = 10

Figure 15: Decomposing double descent in binary test error for boosting. Reproducing the boosting
experiments of [BHMM19] (left). Test error by P boost for fixed P ens (center). Test error by P ens for fixed
P boost (right).

0 + 0
10,000 + 0

10,000 + 25,000
10,000 + 50,000

P PC+P ex

0.0

0.2

0.4

0.6

0.8

B
in

ar
y

te
st

er
ro

r

Double Descent in Regression

0 2000 4000 6000 8000 10000

P PC

0.0

0.2

0.4

0.6

0.8

Error by P PC ,P ex fixed

P ex = 0

P ex = 2500

P ex = 10000

P ex = 50000

0 10000 20000 30000 40000 50000

P ex

0.0

0.2

0.4

0.6

0.8

Error by P ex,P PC fixed

P PC = 10000

P PC = 7500

P PC = 5000

P PC = 2500

Figure 16: Decomposing double descent in binary test error for RFF regression. Reproducing the
regression experiments of [BHMM19] (left). Test error by PPC for fixed P ex (center). Test error by P ex for
fixed PPC (right).

E.4 Plots of training loss

In Figs. 17 to 19 we provide plots of summed squared training losses associated with the plots of
summed squared test loss in presented Figs. 2, 4 and 5 in the main text.

200× 1
max× 1

max× 50

P leaf×P ens

0.1

0.3

0.5

0.7

S
q
u

ar
ed

tr
ai

n
er

ro
r

Error on composite axis

0 100 200 300 400 500

P leaf

Error by P leaf ,P ens fixed

P ens = 1

P ens = 5

P ens = 10

P ens = 50

0 20 40 60 80 100

P ens

Error by P ens,P leaf fixed

P leaf = 500

P leaf = 100

P leaf = 50

P leaf = 20

Figure 17: Training error in the tree double descent experiments. Training error against [BHMM19]’s
composite axis (left). Train error by P leaf for fixed P ens (center). Train error by P ens for fixed P leaf (right).

10× 1 100× 1
max× 1

max× 10

P boost×P ens

0.1

0.2

0.3

S
q
u

ar
ed

tr
ai

n
er

ro
r

Error on composite axis

0 50 100 150 200

P boost

Error by P boost,P ens fixed

P ens = 1

P ens = 2

P ens = 5

P ens = 20

5 10 15 20

P ens

Error by P ens,P boost fixed

P boost = 200

P boost = 50

P boost = 25

P boost = 10

Figure 18: Training error in the boosting double descent experiments. Training error against
[BHMM19]’s composite axis (left). Training error by P boost for fixed P ens (center). Training error by P ens

for fixed P boost (right).

27

0 + 0
10,000 + 0

10,000 + 25,000
10,000 + 50,000

P PC+P ex

0.1

0.3

0.5

0.7

S
q
u

ar
ed

tr
ai

n
er

ro
r

Error on composite axis

0 2000 4000 6000 8000 10000

P PC

Error by P PC ,P ex fixed

P ex = 0

P ex = 2500

P ex = 10000

P ex = 50000

0 10000 20000 30000 40000 50000

P ex

Error by P ex,P PC fixed

P PC = 10000

P PC = 7500

P PC = 5000

P PC = 2500

Figure 19: Training error in the RFF regression double descent experiments. Training error against
[BHMM19]’s composite axis (left). Training error by PPC for fixed P ex (center). Training error by P ex for
fixed PPC (right).

E.5 Investigating applications of ptestŝ to model selection

In this section, we test whether a measure like ptestŝ , measuring the effective parameters used on the
test inputs, could be used for model selection purposes, possibly providing some route for redemption
for parameter count based selection criteria like [Aka74, Mal73, Sch78] that explicitly trade off
training error and parameters used (and importantly, do not require access to held-out labels). We
are motivated by empirical observations presented in Sec. 4. In particular, we note from Fig. 7 that
across all three methods, there are models in the interpolation regime that perform very well in terms
of generalization – and they happen to be those with the smallest ptest

ŝ . This observation indicates
that one straightforward model selection strategy when choosing between different hyperparameter
settings that all achieve zero training error could be to compare models by their ptest

ŝ .

Here, we test whether it is possible to exploit this in more general settings when there are multiple
other hyperparameter axes to choose among. In particular, we consider tuning two other hyperpa-
rameters in gradient boosting, tree depth P leaf ∈ {10, 50, 100, 200, 500,max} and learning rate
η ∈ {0.02, 0.05, .1, .2, .3, .5, .85}. We do so in single boosted models (i.e. P ens = 1), all trained
until squared training error reaches approximately zero, i.e. we terminate after P boost ∈ [1, 500]
rounds, where P boost is chosen as the first round (if any) where squared training error ltrain drops
below ϵ = 10−4 (conversely, whenever ltrain > ϵ for all P boost ≤ 500, we do not consider the
associated (P leaf , η) configurations an interpolating model).

10 102 103

ptest
ŝ (log scale)

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

S
q
u

ar
ed

te
st

er
ro

r

P leaf = max

P leaf = 500

P leaf = 200

P leaf = 100

P leaf = 50

P leaf = 10

Best with ltrain > ε
(oracle)

Figure 20: Interpolating models with lower ptest
ŝ are associated with lower test error. Test error vs

ptest
ŝ for interpolating gradient-boosting models with of different (P leaf , η)-combinations.

In Fig. 20 we observe that the intuition indeed carries over to this more general scenario and that
interpolating models with lower ptest

ŝ are indeed associated with lower test error. In particular, choosing
the model with lowest ptest

ŝ – which only requires access to test-time inputs x but no label information
y – would indeed lead to the best test-performance among the interpolating models (with ltrain < ϵ).
Further, using a red cross, we also plot the performance of the best non-interpolating model (with
ltrain > ϵ) among the considered (P leaf , η) configurations; this is selected among the models with
less boosting rounds P boost by an oracle with access to test-time performance. We observe that this

28

non-interpolating oracle has essentially the same performance as the best interpolating model chosen
by ptest

ŝ .

E.6 Results using other datasets

Below, we replicate our main experimental results using other datasets considered in [BHMM19],
SVHN and CIFAR-10, exhibiting the same trends as the experiments on MNIST presented in the
main paper.

E.6.1 SVHN

200× 1
max× 1

max× 50

P leaf×P ens

0.6

0.9

1.3

1.5

S
q
u

ar
ed

te
st

er
ro

r

Double Descent in Trees

0 100 200 300 400 500

P leaf

Error by P leaf ,P ens fixed

P ens = 1

P ens = 5

P ens = 10

P ens = 50

0 20 40 60 80 100

P ens

Error by P ens,P leaf fixed

P leaf = 500

P leaf = 100

P leaf = 50

P leaf = 20

Figure 21: Decomposing double descent for trees on the SVHN dataset. Reproducing the tree
experiment of[BHMM19] (left). Test error by P leaf for fixed P ens (center). Test error by P ens for fixed P leaf

(right).

10× 1 100× 1
max× 1

max× 10

P boost×P ens

0.6

0.9

1.3

1.5

S
q
u

ar
ed

te
st

er
ro

r

Double Descent in Boosting

0 50 100 150 200

P boost

Error by P boost,P ens fixed

P ens = 1

P ens = 2

P ens = 5

P ens = 20

5 10 15 20

P ens

Error by P ens,P boost fixed

P boost = 200

P boost = 50

P boost = 25

P boost = 10

Figure 22: Decomposing double descent for gradient boosting on the SVHN dataset. Reproducing
the boosting experiments of [BHMM19] (left). Test error by P boost for fixed P ens (center). Test error by P ens

for fixed P boost (right).

0 + 0
10,000 + 0

10,000 + 25,000
10,000 + 50,000

P PC+P ex

0.1

3.3

81.5

1998.2

S
q
u

ar
ed

te
st

er
ro

r

Double Descent in Regression

0 2000 4000 6000 8000 10000

P PC

Error by P PC ,P ex fixed

P ex = 0

P ex = 2500

P ex = 10000

P ex = 50000

0 10000 20000 30000 40000 50000

P ex

Error by P ex,P PC fixed

P PC = 10000

P PC = 7500

P PC = 5000

P PC = 2500

Figure 23: Decomposing double descent for RFF Regression on the SVHN dataset. Reproducing
the RFF regression experiments of [BHMM19] (left). Test error by PPC for fixed P ex (center). Test error by
P ex for fixed PPC (right).

200× 1
max× 1

max× 50

P leaf × P ens

1

10

102

p0 ŝ
(l

og
sc

al
e)

Trees

10× 1 100× 1
max× 1

max× 10

P boost × P ens

101

102

103

Boosting

0 + 0
10,000 + 0

10,000 + 25,000
10,000 + 50,000

P PC + P ex

102

104

106

Linear Regression

Itrain
Itest

Figure 24: The effective number of parameters does not increase past the transition threshold on
the SVHN dataset. Plotting ptrain

ŝ (orange) and ptest
ŝ (green) for the tree (left), boosting (center) and RFF-linear

regression (right) experiments, using the original composite parameter axes of [BHMM19].

29

1 101 102

ptest
ŝ (log scale)

0.07

0.10

0.13

S
q
u

ar
ed

te
st

er
ro

r

Trees

P ens = 1

P ens = 2

P ens = 5

P ens = 10

P ens = 20

P ens = 50

P ens = 100

101 102 103

ptest
ŝ (log scale)

Boosting

P ens = 1

P ens = 2

P ens = 5

P ens = 10

P ens = 20

102 103 104

ptest
ŝ (log scale)

0.1

0.4

0.7

1

Linear Regression

P ex = 0

P ex = 2500

P ex = 5000

P ex = 10000

P ex = 20000

P ex = 50000

Figure 25: Back to U (on the SVHN dataset). Plotting test error against the effective number of parameters
as measured by ptest

ŝ .

E.6.2 CIFAR-10

200× 1
max× 1

max× 50

P leaf×P ens

0.9

1.1

1.3

1.5

S
q
u

ar
ed

te
st

er
ro

r

Double Descent in Trees

0 100 200 300 400 500

P leaf

Error by P leaf ,P ens fixed

P ens = 1

P ens = 5

P ens = 10

P ens = 50

0 20 40 60 80 100

P ens

Error by P ens,P leaf fixed

P leaf = 500

P leaf = 100

P leaf = 50

P leaf = 20

Figure 26: Decomposing double descent for trees on the CIFAR-10 dataset. Reproducing the tree
experiment of[BHMM19] (left). Test error by P leaf for fixed P ens (center). Test error by P ens for fixed P leaf

(right).

10× 1 100× 1
max× 1

max× 10

P boost×P ens

0.8

0.9

1.1

1.2

S
q
u

ar
ed

te
st

er
ro

r

Double Descent in Boosting

0 50 100 150 200

P boost

Error by P boost,P ens fixed

P ens = 1

P ens = 2

P ens = 5

P ens = 20

5 10 15 20

P ens

Error by P ens,P boost fixed

P boost = 200

P boost = 50

P boost = 25

P boost = 10

Figure 27: Decomposing double descent for gradient boosting on the CIFAR-10 dataset. Repro-
ducing the boosting experiments of [BHMM19] (left). Test error by P boost for fixed P ens (center). Test error
by P ens for fixed P boost (right).

0 + 0
10,000 + 0

10,000 + 25,000
10,000 + 50,000

P PC+P ex

0.1

3.3

81.5

1998.2

S
q
u

ar
ed

te
st

er
ro

r

Double Descent in Regression

0 2000 4000 6000 8000 10000

P PC

Error by P PC ,P ex fixed

P ex = 0

P ex = 2500

P ex = 10000

P ex = 50000

0 10000 20000 30000 40000 50000

P ex

Error by P ex,P PC fixed

P PC = 10000

P PC = 7500

P PC = 5000

P PC = 2500

Figure 28: Decomposing double descent for RFF Regression on the CIFAR-10 dataset. Reproduc-
ing the RFF regression experiments of [BHMM19] (left). Test error by PPC for fixed P ex (center). Test error
by P ex for fixed PPC (right).

30

200× 1
max× 1

max× 50

P leaf × P ens

1

10

102

p0 ŝ
(l

og
sc

al
e)

Trees

10× 1 100× 1
max× 1

max× 10

P boost × P ens

101

102

103

Boosting

0 + 0
10,000 + 0

10,000 + 25,000
10,000 + 50,000

P PC + P ex

102

104

106

Linear Regression

Itrain
Itest

Figure 29: The effective number of parameters does not increase past the transition threshold
on the CIFAR-10 dataset. Plotting ptrain

ŝ (orange) and ptest
ŝ (green) for the tree (left), boosting (center) and

RFF-linear regression (right) experiments, using the original composite parameter axes of [BHMM19].

1 101 102

ptest
ŝ (log scale)

0.07

0.10

0.13

0.16

S
q
u

ar
ed

te
st

er
ro

r

Trees

P ens = 1

P ens = 2

P ens = 5

P ens = 10

P ens = 20

P ens = 50

P ens = 100

101 102 103

ptest
ŝ (log scale)

Boosting

P ens = 1

P ens = 2

P ens = 5

P ens = 10

P ens = 20

102 103 104

ptest
ŝ (log scale)

0.07

0.16

0.3

0.45

Linear Regression

P ex = 0

P ex = 2500

P ex = 5000

P ex = 10000

P ex = 20000

P ex = 50000

Figure 30: Back to U (on the CIFAR-10 dataset). Plotting test error against the effective number of
parameters as measured by ptest

ŝ .

31

	Introduction
	Warm-up: Observations of double descent in trees and boosting
	Understanding double descent in trees
	Understanding double descent in gradient boosting

	Deep dive: Understanding double descent in linear regression
	Understanding the connections between min-norm solutions and dimensionality reduction
	Empirical resolutions to double descent in RFF regression

	Part 2: Rethinking parameter counting through a classical statistics lens
	Connections to smoothers
	A generalized measure of the effective number of parameters used by a smoother
	Back to U: Measuring effective parameters folds apparent double descent curves

	Consolidation with Related Work
	Conclusion and Discussion
	Additional literature review
	More on linear regression
	Background on SVD, PCA and PCR
	Proof of Proposition 1
	Understanding the impact of Pex: Examining its impact on singular values of the PCR feature matrix

	More on smoothers: Bias-variance, on the impossibility of in-sample double descent and derivation of smoothing matrices
	Background: Bias and variance in smoothers
	On the impossibility of a second prediction error descent in the interpolation regime in fixed design settings
	Preliminaries.
	Main result: General impossibility of a second descent in test error for the interpolation regime in fixed design settings
	Additional observations specific to smoothers

	Derivation of smoothing weights of linear regression, trees and boosting
	Smoothing weights for RFF linear regression
	Smoothing weights for trees and forests
	Smoothing weights for boosting

	More on effective parameters
	Additional results
	Experimental setup
	``Peak-moving'' experiments
	Plots of binary test error
	Plots of training loss
	Investigating applications of ptest to model selection
	Results using other datasets
	SVHN
	CIFAR-10

