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Abstract

Subgraph counting is a fundamental task for analyzing structural patterns in graph-
structured data, particularly crucial for applications in computational biology and
social network analysis, where identifying recurring motifs reveals functional prop-
erties and organizational structures. We propose a novel three-stage differentiable
learning algorithm that computes the counts of various patterns by learning to
combine the counts of its subpatterns. Our approach leverages localized versions
of Weisfeiler-Leman (WL) algorithms and introduces a novel fragmentation tech-
nique that decomposes complex subgraphs into simpler patterns. This technique
enables exact counting of all induced subgraphs of size at most 4 using just 1-WL.
This method significantly improves upon existing Graph Neural Network(GNN)
based approaches for subgraph counting, being computationally efficient, making
it well-suited for learning combinatorial algorithms.

1 Introduction

Subgraph counting represents one of the most fundamental challenges when working with graph-
structured datasets, with profound implications for understanding complex network structures across
diverse domains. In computational biology, the ability to count specific molecular substructures such
as benzene rings or protein binding motifs directly impacts drug discovery and molecular property
prediction. Similarly, in social network analysis, counts of triangular patterns, stars, and other local
structures provide insights into community formation, information propagation, and social capital
dynamics.

The importance of accurate subgraph counting extends beyond mere pattern detection—it serves
as a critical measure of a GNN'’s expressive power. Traditional message-passing neural networks
(MPNNSs) are fundamentally limited by their equivalence to the 1-dimensional Weisfeiler-Leman
(1-WL) test, which prevents them from distinguishing between graphs that differ in their subgraph
counts but are otherwise structurally similar. This limitation has significant practical consequences:
standard GNNs cannot count triangles, cycles larger than 3 nodes, or other complex substructures
that are essential for many real-world applications.
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Previous research has primarily focused on two main paradigms to overcome these expressivity
limitations. The first approach involves developing more powerful GNN architectures based on
higher-order WL tests (k-WL), which can theoretically count larger substructures but suffer from
prohibitive computational complexity scaling as O(n*), with n being the number of nodes in the
graph. The second paradigm employs nested GNN approaches, which extract local subgraphs
around each node and apply base GNNSs to these subgraphs. While nested GNNs can count certain
substructures, they require expensive preprocessing steps and suffer from high time and memory
costs when encoding large graphs.

Subgraph GNNs represent another significant direction, where the input graph is partitioned into
numerous subgraphs, and GNNs are applied to each subgraph to augment the overall graph represen-
tation. However, these methods require repetitive application of GNNs across all subgraphs, leading
to substantial computational overhead that limits their practical applicability to large-scale problems.

Our proposed technique is motivated by the development of localized variants of the WL algorithms
[1]. We use the term “local k-WL " to refer to such algorithms. These algorithms reduce the
computational overhead of the standard k-WL approaches. The local k-WL algorithms operate on
restricted neighbourhoods of a graph rather than the entire graph. Since it has been established that
the expressiveness of standard GNNss is the same as 1-WL|2, 3], we can consider subgraph GNNs to
have expressive power equivalent to local 1-WL.

Here, we introduce a novel fragmentation technique that represents a paradigm shift in how we
approach complex subgraph counting. Instead of attempting to count complex subgraphs directly, our
fragmentation method decomposes target subgraphs into simpler constituent patterns whose counts
can be computed exactly using efficient algorithms.

The fragmentation approach is particularly well-suited for differentiable combinatorial algorithm
learning frameworks because it naturally decomposes the complex counting problem into learnable
components. Our three-stage learning algorithm first learns to identify the required subpatterns for
any target subgraph, then accurately counts these subpatterns using our localized WL variants, and
finally aggregates the subpattern counts into the final global count. This decomposition not only
provides theoretical guarantees for correctness but also enables efficient gradient-based optimization
of the entire counting pipeline.

Our method represents a significant advancement over existing approaches by combining the theoreti-
cal rigor of WL-based methods with the practical efficiency needed for real-world applications, while
providing a natural fit for the emerging field of differentiable combinatorial algorithms.

2 Preliminaries

We consider a simple undirected graph G(V, E). For basic definitions of graph theory, we refer the
reader to [4]]. The neighbourhood of a node v € V is denoted as N (v). The closed neighbourhood
of v is the set of all neighbours, including the node v (denoted as Ng[v]). We use the notation d,, to
refer to the degree of a node v. The radius of a graph is the minimum over all the nodes of a graph of
the maximum distance from a node to any other node in the graph.

A graph H is called a subgraph of G if V(H) C V(G) and E(H) C E(G). The subgraph induced
on S C V(@) is a graph whose node set S contains all the edges in G whose endpoints are in .S and
is denoted by G[S]. The induced subgraph on an r-hop neighbourhood around node v is denoted by
G7,. The number of hops r depends on the pattern of interest. For example, in order to count triangles,
r = 1 is sufficient, whereas for counting C, we require » = 2. Attributed subgraphs are subgraphs
where each node is marked with an attribute or a colour (also referred to as motifs). We note here that
we count the number of patterns occurring as subgraphs in our work.

The Weisfeiler-Leman test [3]] is a type of colour refinement algorithm used for testing the existence
of an isomorphism between two graphs GG; and G». Interested readers may refer to [6] for a detailed
discussion. The local k-WL algorithm is applied to local subgraphs. Specifically, for each node
v € V, we extract G, and apply k-WL on it. While running k-WL on a graph with n vertices require
O(n*F*+1logn) time, running local k-WL on any G?, extracted from a graph of bounded degree d
requires times O (n.d"*+1) log d).



Graph Neural Networks were first introduced by [7]. The model proposed a recursive use of two
functions: MESSAGE and AGGREGATE to update the node embeddings X* (for the /th layer).

X(® = uyppATE®”) (X,E‘f—l), AGGREGATE“){MESSAGE“) (XD, XEDY | ue NG(v)}) (1)

3 Methodology

Before describing the fragmentation algorithm, we demonstrate the method using an example as
shown in Figure|l] Suppose that the pattern to be counted is a tailed triangle. Rooted at a node v (the
red coloured node), we consider a 1-hop subgraph G'.. Now consider the subgraph H, = G \ {v}.
If a tailed triangle is present, then H, must have an isolated node and an edge (Fragments 1 and 2 in
Figure[I). Hence, the counts of such (isolated node, edge) pairs give a count of the number of tailed

triangles.
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Figure 1: Fragmentation of a tailed triangle

Our proposed methodology comprises three components (A) Pattern Learning, (B) Local Count
Learning, and (C) Global Count Learning as shown in Figure 2]

3.1 Pattern Learning

In the task of counting a particular pattern, such as a triangle or a 3-star, G} from each node v is
different. Counting triangles requires edges between the neighboring nodes of the root node only.
Whereas, in the case of a 3-star, the subgraphs have edges between the root node and neighboring
nodes. Therefore, we propose a learnable model that learns the required subgraph for a given pattern.
For each node, we modify the G, by adding direction to the edges. We add a directed edge from the
root node to other nodes. This modification is done to indicate which node is the root node in the
subgraph. These modified subgraphs are then given as input to a GNN model, which updates the node
embeddings. With the updated node embeddings, we construct the edge embeddings and classify the
edges as 0 or 1, indicating which edges are required from G, as input for the next component.

3.2 Local Count Learning

From the previous section on pattern learning, we take the updated G, as input, where certain edges
are removed based on the pattern that we want to take as input. For counting triangles, the local count
(number of times a pattern appears in the local subgraph) is the number of edges in G7, \ {v}. For

counting k-star graphs, the local count is the (dk"f), where d,, is the degree of v. Likewise, we have
different local counts as ground truth for different patterns. We input the updated G, to a GNN model

and train the model based on the predictions of the local count.

3.3 Global Count Learning
While counting in different subgraphs, there is a potential for overcounting of the patterns. Therefore,

we have a normalization model that takes the summation of all the local counts and learns the
normalization factor required to counter the overcounted patterns.

3.4 Fragmentation

The fragmentation method, Algorithm [I] involves fragmenting the pattern P into smaller subpatterns
and counting these subpatterns to get the count of P in the graph. The number of occurrences of



P in G, can be computed by combining the counts of the simpler patterns (fragments). Instead of
training a GNN for counting P, we can design GNNS for learning the easier tasks (i.e., for counting
the fragments) and combine the outputs of those models. It should be noted that the fragmentation
into smaller subgraphs depends on the structure of the pattern P.

Given a graph G and a pattern P(whose number of occurrences is to be counted), we first fix a vertex
v € V(G) as the key vertex. Now, assume that the radius of the pattern is . Thus, for counting
P locally, it is sufficient to take G,. Now, we fragment pattern P into smaller subpatterns, say
P = {Py, Ps,...P}. Tt should be noted that the decomposition of P into P;s is done in such a
way that their counts can be calculated exactly (by a local 1-WL based trained GNN model). That
is, we have learnt models MP*“™ corresponding to each P;, which generates P, for each node in
H, = G} \ {v}. We also have learned models M{*"™, corresponding to each P;, that count the
number of subpatterns P; in P,,. The array c stores the count of P;’s in each H,,. Now, for each
subpattern P;, we learn a function « as weights in a linear transformation to combine the counts in ¢
to get the count of P; in H,,. Then we learn the function 3 to count P for each root node. Finally, the
function ~y finds the normalizing factor to get the actual count of the pattern in G.

5 e | ot o | [

- —» [Empn e
Y
CocrGaun
v

> (o] > o | > [

, . ==
—_—

Global Pooling | —3»

[IekAT)
I

Pattern Learning Local Count Learning Global Count Learning

Figure 2: Overview of the framework. The pipeline is divided into three components — (A) Pattern Learning:
r-hop neighborhood of each node is given as input with directed edges indicating the root node, where the
model’s task is to predict the required pattern corresponding to each node. (B) Local Count Learning: taking
the predicted patterns as input from the Pattern Learning component, we predict the local count for each root
node. (C) Global Count Learning: Upon addition of all local counts, we require to learn a normalization factor,
which is learned in this section of the pipeline.

Algorithm 1 Fragmentation Algorithm

Require: G; P: List of patterns; MP""*™: learned model for generating pattern corresponding to
P; € P; M{°": learned model for counting P; € P;

I a+ |

2: for each node v € V(G) do

3: H, =G\ {v}

4: b+« ]

5: for each pattern P; € P do

6: ¢

7: for each node v € H, do

8: ,Pu _ ML‘ attern(Hm U)

9: c.append(ME"™(P,,))
10: end for
11: b.append(a(c)) #Learnable function
12: end for
13: a.append(B(b)) #Learnable function
14: end for

15: Count = y(a) #Learnable function
16: return C'ount




4 Experiments

4.1 Implementation Details

We refer to our proposed model as InSig. In the experiments, we predict the counts of the fol-
lowing substructures occurring as subgraphs: triangles, 3-Star, 2-Star, chordal Cy, K4, Cy4, and
tailed triangles. When counting larger substructures like Ky, Cy, and Tailed Triangles, we use the

Task Total pattern Zero Count Standard Deviation Average number Average number  Number

count graphs of Count of Nodes of Edges of graphs
Triangle 25209 195 3.072
2-Star 429463 0 18.015
3-Star 309525 0 17.777
Chordal 19088 1786 4.742 18.7976 62.678 5000
K4 643 4447 0.387
Cc4 53002 16 6.938
Tailed Triangle 177968 195 25.943

Table 1: Dataset statistics. The total number of graphs in the dataset is 5000. We used 4000 graphs for training,
500 for validation, and 500 for testing.

fragmentation technique with the help of a model learned to predict triangles, 3-Star, 2-Star, and
Chordal Cjy. For counting K4, the task of Pattern Counting Component is to learn which edges to
prune. Later Local Count Learning component counts the number of substructures, which in the
case of Ky, is triangles. Once the number of triangles is predicted using models learned to count
triangles, the normalization factor is learned to output the global count. In other structures like tailed
triangles, we have two patterns to learn: the nodes in the 1-hop neighborhood and the edges between
them. During the inference phase, we use a rounding function, as the counts are integer numbers.

4.2 Hyperparameters

We use two GIN Convolutional layers for the Pattern Learning Local Count Learning component. We
consider Linear transformations as readout layers in the previously mentioned components. Since we
need to classify whether an edge should be present or not in a subgraph for counting a subpattern,
we use Binary Cross-Entropy (BCE) loss for the pattern learning component. For the local counting
and global counting components, we use Mean Absolute Error (MAE). For the models we have
considered, as there can be paths of lengths more than 1 in the subgraph, 2 GINConv layers are
sufficient to capture the information well.

We use a learning rate of 1e — 4 and a batch size of 1. We also experimented with different hidden
dimensions for the node embeddings and obtained the best results when we used 4 as a hidden
dimension size. The experiments were conducted using an NVIDIA A100 40GB GPU. The source
code of the implementation is available at this €) Github Link.

4.3 Experimental Results

Models Without Fragmentation Fragmentation

Triangle 3-Star 2-Star  Chorcal C4 Ky Cy Tailed Triangle
ID-GNN 6.00E-04 NA NA 4.52E-02 2.60E-03 2.20E-03 1.05E-01
NGNN 3.00E-04 NA NA 3.92E-02 4.50E-03 1.30E-03 1.04E-01
GNNAK+ 4.00E-04 1.50E-02 NA 1.12E-02  4.90E-03  4.10E-03 4.30E-03
PPGN 3.00E-04 NA NA 1.50E-03 1.65E-01 9.00E-04 2.60E-03
12-GNN 4.00E-04 NA NA 1.00E-03 3.00E-04 1.60E-03 1.10E-03
InSig 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00 0.00E-00

Table 2: MAE for the subgraph count of different patterns. Some results, such as 2-star, 3-star, are not
conducted by the given baselines; therefore, it is mentioned NA.

The dataset used for the experiments is a random graphs dataset prepared in [8]. In Table[I] we report
the dataset statistics, specifically the counts of the various patterns used for our experiments, the
number of graphs where these patterns do not appear, and so on. We report our experiments’ Mean
Absolute Error (MAE) in Table We compare our results with those reported in ID-GNN [9], NGNN


https://github.com/Roy-Shubhajit/InSig-GNN

[10], GNNAK+ [[11], PPGN [12] and I2-GNN [13]]. We can observe that our approach of predicting
substructures, the local counts, and then predicting the global counts, achieves zero error for all of
the tests.

For all the patterns, we observed that the model gets to zero error after only 2 to 3 epochs. From
Table[3] it can be observed that our approach requires a considerably smaller number of parameters
and beats all the baselines. Our inference time comprises model inference as well as the graph
preprocessing time, where it creates the set of subgraphs corresponding to each node in the graph.

Models Number of Inference Memory

Parameters Time (ms) Usage (GB)
ID-GNN 102K 5.73 2.35
NGNN 127K 6.03 2.34
GNNAK+ 251K 16.07 2.35
PPGN 96K 35.33 2.3
12-GNN 143K 20.62 3.59
InSig 268 20 1.2

Table 3: The table shows the comparison of the number of parameters required by the baselines and InSig
Model. The values shown here correspond to the triangle counting task with the hidden dimension set as 4.
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Figure 3: Figure showing the input and updated node embedding from the pattern learning component

In Figure[3] we show an example of a graph sent as input to the pattern learning component and the
updated node embeddings output from the model. In Figure[3a] we see that the root node is node 0
and there are directed edges from the root node to its neighboring nodes. Figure[3b]shows the updated
node embeddings of each node in the graph. We can observe that 8, 2, 4, 6 nodes can be separated
using some separator from the rest of the nodes. This indicates that the model is able to learn the
updated node embedding such that we can distinguish nodes which has edges between them.

5 Conclusion

Subgraph counting is a fundamental combinatorial problem that arises in the study of graphs and
graph-structured problems. Exactly counting the number of subgraphs in a graph is also a com-
putationally hard problem. In this paper, we present a learnable algorithm that is able to compute
exact counts of a number of commonly occurring patterns. The proposed fragmentation method
has proven to be beneficial for the task of counting subgraphs. Additionally, since fragmentation
results in smaller subgraphs, the parameter requirements of the proposed GNN-based architecture
are orders of magnitude less than those of previous methods. As future work, we plan to analyse the
fragmentation algorithm from a theoretical perspective. We also plan to investigate the effectiveness
of this technique for increasing the expressiveness of GNNs for downstream tasks. Along with that,
the current approach is limited to patterns that can be computed using 1-hop or 2-hop subgraphs;
hence, we can study our algorithm for bigger patterns.
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Provided in Section 4 and Table[3]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: No ethics violation
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Theoretical paper on a synthetic dataset.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No Risks
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Citations provided.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: No Assets released
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Work on the synthetic dataset.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: No LLM used
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

14


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries
	Methodology
	Pattern Learning
	Local Count Learning
	Global Count Learning
	Fragmentation

	Experiments
	Implementation Details
	Hyperparameters
	Experimental Results

	Conclusion

