

000 001 002 003 004 005 006 007 008 009 010 011 012 ON-THE-FLY DATA AUGMENTATION VIA GRADIENT- GUIDED AND SAMPLE-AWARE INFLUENCE ESTIMA- TION

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Data augmentation has been widely employed to improve the generalization of deep neural networks. Most existing methods apply fixed or random transformations. However, we find that sample difficulty evolves along with the model’s generalization capabilities in dynamic training environments. As a result, applying uniform or stochastic augmentations, without accounting for such dynamics, can lead to a mismatch between augmented data and the model’s evolving training needs, ultimately degrading training effectiveness. To address this, we introduce SADA, a Sample-Aware Dynamic Augmentation that performs on-the-fly adjustment of augmentation strengths based on each sample’s evolving influence on model optimization. Specifically, we estimate each sample’s influence by projecting its gradient onto the accumulated model update direction and computing the temporal variance within a local training window. Samples with low variance, indicating stable and consistent influence, are augmented more strongly to emphasize diversity, while unstable samples receive milder transformations to preserve semantic fidelity and stabilize learning. Our method is lightweight, which does not require auxiliary models or policy tuning. It can be seamlessly integrated into existing training pipelines as a plug-and-play module. Experiments across various benchmark datasets and model architectures show consistent improvements of SADA, including +7.3% on fine-grained tasks and +4.3% on long-tailed datasets, highlighting the method’s effectiveness and practicality. Code will be made publicly available upon publication.

1 INTRODUCTION

036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Data augmentation has been widely adopted for improving the generalization performance of deep neural networks (Yang et al., 2022; Shorten & Khoshgoftaar, 2019; Iglesias et al., 2023). Despite its effectiveness, most existing DA approaches remain static, non-adaptive, and sample-agnostic: they apply either fixed or randomly sampled transformations to all data uniformly, regardless of the evolving difficulty of individual samples or the dynamic learning state of the model in a dynamic training environment (Müller & Hutter, 2021; Cubuk et al., 2019; 2020; Li et al., 2020). For instance, methods such as Cutout (DeVries & Taylor, 2017), AdvMask (Yang et al., 2023), and Mixup (Zhang et al., 2018) generate diverse training data by randomly sampling augmentation parameters. Automatic methods, such as AutoAugment (Cubuk et al., 2019), RandAugment (Cubuk et al., 2020), and DeepAA (Zheng et al., 2022), search for dataset-specific augmentation policy space before training begins and then apply these fixed policies during training. However, this design overlooks a crucial aspect of deep model training: the optimization landscape and the difficulty of individual samples evolving in dynamic training environments. Some samples become easy to fit early on and require increased diversity to avoid redundancy, while others remain hard or unstable and should be preserved in their semantic form to support model refinement. Applying uniform augmentations across these heterogeneous cases introduces a mismatch between augmentation strength and training needs, potentially resulting in noisy updates, degraded sample utility, and suboptimal convergence. Furthermore, many methods often require manual policy tuning or dataset-specific search, which limits scalability across different datasets and architectures (Cubuk et al., 2019; 2020; Yang et al., 2024b). Adaptive augmentation approaches have emerged, but they typically involve bi-level

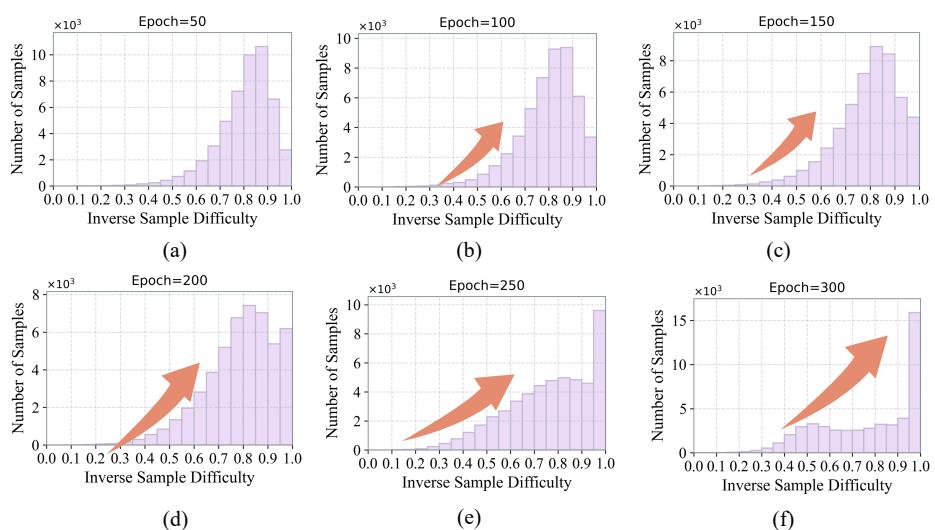


Figure 1: **Evolution of Sample Difficulty Across Training Epochs.** The distribution of sample difficulty evolves dynamically throughout training. A growing proportion of samples becomes easier (higher inverse sample difficulty values), particularly in later epochs. This dynamic trend highlights the necessity of dynamic and sample-aware augmentation strategies during training. Inverse sample difficulty: the reciprocal of sample difficulty.

optimization (Hou et al., 2023), auxiliary models (Suzuki, 2022; Yang et al., 2025), or large search spaces (Bekor et al., 2024), significantly increasing training complexity and resource demand. Thus, a pressing question emerges: *Can we develop an on-the-fly augmentation mechanism that dynamically adapts training data to a model’s evolving learning dynamics without sacrificing scalability or efficiency.*

In this paper, we propose SADA, a Sample-Aware Dynamic Augmentation method that performs on-the-fly adjustment of augmentation strength based on each sample’s evolving influence during training. Unlike many existing methods that optimize augmentation operations (Bekor et al., 2024; Cubuk et al., 2019), our method uses a unified dataset- and model-agnostic augmentation space (refer to Table 8) and directly modulates augmentation strength. This design offers three benefits: 1). reducing the complexity of the decision space and ensuring efficient online training, 2). providing a more interpretable and fine-grained control over the trade-off between semantic consistency and diversity (Yang et al., 2024a), and 3). eliminating the need for manually crafted or optimization-required dataset-specific augmentation policies and enhancing scalability. To quantify each sample’s influence, we project its instantaneous gradient onto the direction of the accumulated model update, thereby capturing how much the sample contributes to the prevailing optimization trajectory. The gradients can be naturally obtained during the standard forward and backward passes, ensuring high efficiency. Furthermore, we compute the temporal variance of this projected influence within a local training window (e.g., 5 epochs), which serves as a proxy for the stability of a sample’s learning dynamics. When a sample exhibits consistently low variance, indicating a stable contribution to learning, more substantial augmentation is assigned to promote diversity and avoid overfitting to redundant patterns. Conversely, samples with high variance, suggesting unstable or ambiguous influence, are augmented more conservatively to preserve semantic fidelity and support robust learning. In this way, our method dynamically tailors augmentation magnitudes for each sample based on its training-stage-aware influence. As illustrated in Figure 1, our gradient-guided influence estimation reveals that sample difficulty continuously evolves throughout training: while more samples gradually become easier to fit as the model learns, a small subset remains persistently challenging. By selectively increasing diversity for easier samples and preserving the core semantics of difficult ones, our framework improves generalization while mitigating the risk of introducing ambiguous or disruptive augmentations, highlighting the benefits of our sample-aware, dynamic augmentation.

Experiment results across a variety of benchmark datasets and deep architectures demonstrate consistent and robust performance improvements. On benchmark datasets such as CIFAR-10/100 (Krizhevsky et al., 2009), Tiny-ImageNet (Chrzaszcz et al., 2017), and ImageNet-

108 1k (Krizhevsky et al., 2017), our approach consistently outperforms existing data augmentation
 109 methods. Additionally, we demonstrate strong generalization across different model architectures,
 110 including ResNet-based (He et al., 2016) and Vision Transformer (ViT) (Dosovitskiy et al., 2020)-
 111 based backbones, etc. Thus, our method can be seamlessly integrated as a plug-and-play compo-
 112 nent without any modifications to model structures or training schedules. On more challenging
 113 long-tailed datasets such as ImageNet-LT and Places-LT (Liu et al., 2019), models trained with
 114 our method achieve substantial gains, improving top-1 accuracy by over 4.3% under the closed-set
 115 evaluation of ImageNet-LT, highlighting its robustness in imbalanced data scenarios.

116 Our main contributions can be summarized as follows: **(1)** We propose a lightweight, on-the-fly
 117 data augmentation framework that adjusts the augmented data based on the sample-aware evolving
 118 influence, without relying on auxiliary models or costly optimization procedures. **(2)** Our method
 119 explicitly captures the interplay between data and model by quantifying each sample’s contribution
 120 to model optimization updates via gradient-guided influence estimation, aligning augmented data
 121 with the model’s instantaneous learning dynamics. **(3)** Extensive experiments across diverse datasets
 122 and architectures demonstrate that our approach serves as a play-and-plug module, consistently
 123 improving generalization while maintaining training efficiency.

124

125 2 RELATED WORK

126

127 Data augmentation has long been a fundamental technique for mitigating overfitting and improv-
 128 ing the generalization capability of deep neural networks. DA methods have evolved from simple,
 129 hand-crafted transformations to more adaptive and automated strategies. It has evolved through
 130 multiple methodological paradigms. Early approaches primarily involved applying fundamental
 131 transformations, such as rotation, flipping, or cropping (Krizhevsky et al., 2012; Yang et al., 2022),
 132 to increase dataset diversity and model robustness. Subsequent advancements focus on developing
 133 more sophisticated transformation strategies tailored to specific data characteristics. DA methods
 134 can be broadly categorized into image deletion-based, image fusion-based, and automatic policy-
 135 based strategies (Müller & Hutter, 2021; Yang et al., 2024b).

136

137 Image Deletion-based Methods. Cutout (DeVries & Taylor, 2017) introduces regularization by
 138 randomly removing square regions from images. GridMask (Chen et al., 2020) generates resolution-
 139 matched masks for element-wise multiplication with images. Hide-and-Seek (HaS) (Singh & Lee,
 140 2017) generalizes this idea by partitioning images into grids and stochastically masking subregions.
 141 Random Erasing (Zhong et al., 2020) further occludes rectangular areas without resizing. More-
 142 over, AdvMask (Yang et al., 2023) generates learned or structure-aware masking to explicitly target
 143 semantic regions, encouraging the model to discover alternative discriminative cues.

144

145 Image Fusion-based Methods. Fusion-based augmentation synthesizes training samples by blend-
 146 ing information across multiple instances. Mixup (Zhang et al., 2018) synthesizes samples via linear
 147 interpolation of pixel values and labels across image pairs. However, its indiscriminate blending may
 148 produce visually incoherent samples. CutMix (Yun et al., 2019) improves this by replacing rectangu-
 149 lar regions between images, preserving spatial structure while introducing inter-sample variability.
 150 However, it may still obscure critical semantic content with irrelevant patches. Some improved
 151 variants, such as Attentive CutMix (Walawalkar et al., 2020) and PuzzleMix (Kim et al., 2020), in-
 152 incorporate saliency awareness. Despite their effectiveness, these methods typically rely on manually
 153 tuned parameters, with limited awareness of the model’s evolving training dynamics, potentially
 154 limiting the adaptability and optimization efficiency.

155

156 Automated Augmentation Methods. Automated DA approaches define an augmentation operation
 157 space and search for optimal operations and magnitudes. During training, the augmentation oper-
 158 ation and corresponding magnitudes are randomly sampled from the pre-defined space. AutoAug-
 159 ment (AA) (Goodfellow et al., 2015) uses reinforcement learning with an RNN controller to predict
 160 transformation sequences. Population-Based Augmentation (PBA) (Ho et al., 2019) integrates ge-
 161 netic algorithms with parallel network training, while Fast AutoAugment (Lim et al., 2019) employs
 162 Bayesian optimization to discover effective augmentation sequences across partitioned datasets.
 163 While powerful, these methods often incur high computational cost and are static once learned.
 164 RandAugment (Cubuk et al., 2020) and TrivialAugment (Müller & Hutter, 2021) simplify the pa-
 165 rameter spaces through randomized policy selection. EntAugment (Yang et al., 2024b) uses entropy
 166 information derived from model snapshots to adjust the augmentation transformations. While effec-
 167

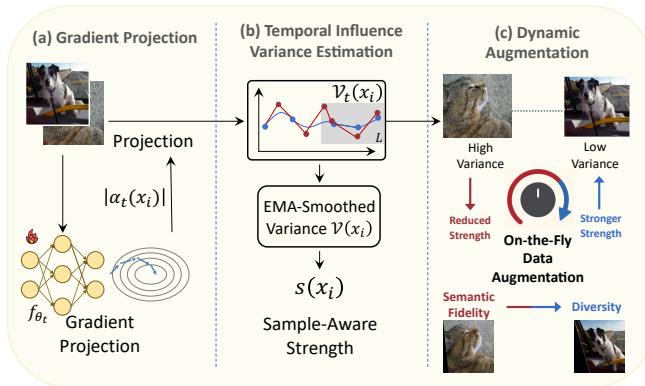
162
163
164
165
166
167
168
169
170
171
172
173
174
175

Figure 2: **Overview of Gradient-Guided On-the-Fly Data Augmentation.** At epoch t , we quantify the sample’s influence on model optimization updates and estimate its stability. The augmentation strength is then adaptively adjusted based on this interplay between model training progress and sample difficulty.

its decisions rely on entropy values extracted from instantaneous model snapshots, which can fluctuate due to the inherent instability of model training. Moreover, ParticleAugment (Tsaregorodtsev & Belagiannis, 2023) proposes a particle filtering scheme for the augmentation policy search. Gradient-based DAS approaches formulate differentiable search spaces, enabling optimization of augmentation strategies. MADAo (Hataya et al., 2020) optimizes models and data augmentation policies simultaneously with Neumann series approximation of the gradients. DADA (Li et al., 2020) formulates data augmentation policy search as a sampling problem and relaxes it into a differentiable framework via Gumbel-Softmax reparameterization. Adversarial variants such as Adversarial AutoAugment (Zhang et al., 2019) and TeachAugment (Suzuki, 2022) generate challenging transformations by maximizing training loss. DDAS (Liu et al., 2021) exploits meta-learning with one-step gradient update and continuous relaxation to the expected training loss for efficient search, without relying on approximations like Gumbel Softmax. In addition, DeepAA (Zheng et al., 2022) progressively constructs multi-layer augmentation pipelines. FreeAugment (Bekor et al., 2024) defines four free degrees of data augmentation and jointly optimizes them. MADAug (Hou et al., 2023), SelectAugment (Lin et al., 2023), SLACK (Marrie et al., 2023), and MetaAugment (Hataya et al., 2022) optimize or learn sample-wise augmentation policies using various techniques, e.g., training an auxiliary policy network. Despite these advances, most existing automated methods overlook the intrinsic heterogeneity of training data difficulty and fail to adapt augmentation intensities dynamically during online training. In contrast, our methodology introduces a lightweight, gradient-based mechanism that samples influence during training and adaptively adjusts augmentation magnitudes in real time, enabling fine-grained, instance-aware data augmentation.

3 OUR PROPOSED METHOD

Overview. As illustrated in Fig. 2, we propose an on-the-fly data augmentation method that adjusts sample-aware augmentation strength based on each sample’s evolving influence on the model’s optimization trajectory. Specifically, we project the sample-wise gradient onto the accumulated gradient direction to quantify its contribution to parameter updates. To assess the consistency of this contribution, we compute the variance of the projected values within a local training window and apply EMA smoothing. In this way, the augmentation strengths are dynamically determined in proportion to the stability of the sample’s training influence. Samples with low variance, indicating stable influence, are assigned stronger augmentations to improve generalization, while high-variance samples receive milder augmentations to maintain semantic fidelity and stabilize training. In essence, our approach adjusts augmentation strength based on the interaction between the training data and the model’s evolving optimization dynamics, thereby achieving dynamic augmentation. During training, we randomly select one augmentation operation from the augmentation space for each sample per epoch and dynamically modulate its strength, which is uniformly applied to various datasets.

Let's denote the whole dataset as $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$, where $x_i \in \mathbb{R}^D$, $y_i \in \mathbb{R}^{1 \times K}$, and K is the number of classes. The model f_θ is trained via gradient descent, updating parameters θ at step t as:

$$\theta_{t+1} = \theta_t - \eta \sum_{n=1, x_i \in \mathcal{D}}^N g_t(x_i), \quad (1)$$

where $g_t(x_i)$ is the gradient of the loss with respect to sample (x_i, y_i) , and η is the learning rate.

During training, each sample contributes to the update of the model parameters via its gradient. For samples that are easier to learn, the loss converges rapidly, and their gradient magnitudes tend to stabilize. In contrast, more difficult and ambiguous samples often induce slower loss decay and exhibit persistently fluctuating gradients (Toneva et al., 2019; Zhang et al., 2017; Swayamdipta et al., 2020). To quantify a sample's alignment with the model's current optimization trajectory, we compute the projection of its gradient onto the accumulated update direction. Specifically, we focus on the projection value of the gradient in the direction of parameter updates. The norm of the projected vector is calculated as follows:

$$|\alpha_t(x_i)| = |\langle g_t(x_i), \theta_{t-1} - \theta_t \rangle|. \quad (2)$$

The projected value reflects how much a sample's gradient contributes to the direction of the model's parameter update.

To maintain high efficiency, we approximate the sample-wise gradient projection using first-order Taylor expansion, transforming the gradient-based formulation into a loss-based difference (Zhang et al., 2024). Specifically, the projected influence $\alpha_t(x_i)$ can be approximated as:

$$\begin{aligned} |\alpha_t(x_i)| &= \frac{1}{\eta} |(\theta_{t-1} - \theta_t) \nabla_{\theta_{t-1}} \ell(f_{\theta_{t-1}}(x_i), y_i)| \\ &\approx \frac{1}{\eta} |\ell(f_{\theta_t}(x_i), y_i) - \ell(f_{\theta_{t-1}}(x_i), y_i)|, \end{aligned} \quad (3)$$

where $\ell(\cdot)$ denotes the loss function (e.g., cross-entropy). This approximation reduces the need to compute inner products between gradients and parameter updates. In the case of classification tasks with cross-entropy loss, the per-sample loss difference across consecutive steps is given by:

$$\begin{aligned} \Delta \ell_{t-1}^n &= \ell(f_{\theta_t}(x_i), y_i) - \ell(f_{\theta_{t-1}}(x_i), y_i) \\ &= y_i^\top \cdot \log \frac{f_{\theta_t}(x_i)}{f_{\theta_{t-1}}(x_i)}. \end{aligned} \quad (4)$$

To generalize this formulation and enable a fully differentiable approximation, we replace the one-hot label with the soft target $f_{\theta_t}(x_i)^\top$, yielding a KL divergence between the model outputs at two consecutive steps:

$$\Delta \ell_{t-1}^n = f_{\theta_t}(x_i)^\top \cdot \log \frac{f_{\theta_t}(x_i)}{f_{\theta_{t-1}}(x_i)}. \quad (5)$$

This formulation efficiently captures the alignment between a sample's prediction dynamics and model update direction without computing explicit gradients.

To maintain high efficiency during training, we avoid complete historical gradient information and instead approximate sample influence using local training dynamics. Specifically, we compute the variance of sample-wise loss differences over a fixed-size window of the past L epochs, which is:

$$\mathcal{V}_t(x_i) = \sum_{t-L+1}^t \left\| |\Delta \ell_t^n| - \overline{|\Delta \ell_t^n|} \right\|^2, \quad (6)$$

where $\overline{|\Delta \ell_t^n|}$ denotes the average of the absolute loss differences within the window. This formulation provides a local, memory-efficient measure of influence variability and mitigates instability from single-step snapshot assessments. To smooth short-term fluctuations and emphasize recent training dynamics, we update the influence estimate using an exponential moving average:

$$\mathcal{V}(x_i) = \beta \mathcal{V}_t(x_i) + (1 - \beta) \mathcal{V}(x_i), \quad (7)$$

where β is the decay coefficient, and both β and L are set as constants. In this way, the resulting influence score $\mathcal{V}(x_i)$ shows a proportional relationship with the sample difficulty. To scale the values

270
271
272
Table 1: Image classification accuracy (%) on CIFAR-10/100. * means results reported in the origi-
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
290
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
290
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
of $\mathcal{V}(x_i)$ into the range $[0, 1]$, consistent with the allowable augmentation strength range m_{max} , we
apply a min-max normalization on it and derive the applied augmentation strengths as $s(x_i) \cdot m_{max}$.
When $s(x_i) \rightarrow 1$, the augmented samples present a greater variability, and conversely, minor trans-
formations occur as $s(x_i) \rightarrow 0$. Importantly, $s(x_i)$ evolves dynamically throughout training, reflect-
ing the model’s changing perception of each sample’s role in the optimization process. Due to the
limited space, we provide the details of the augmentation space and algorithm in Appendix A.
Theoretical Analysis. We provide a theoretical analysis to better understand why SADA works. In
particular, we show that SADA reduces the empirical Rademacher complexity, thereby tightening
the generalization error bound. Formally, the generalization gap is upper-bounded by a term of
the form $\mathcal{O}(\frac{1}{n} \sqrt{\sum_i \alpha_i s_i^2})$, where α_i measures sample sensitivity to augmentation and s_i denotes
the applied augmentation strength. Optimizing this bound yields a simple allocation rule: augment
stable samples more, and unstable samples less. This aligns precisely with the SADA strategy.
Therefore, SADA improves generalization from data-centric learning. The complete theoretical
derivation is provided in Appendix B.
Complexity Analysis. We provide a theoretical analysis showing that SADA introduces negligible
computational overhead compared to vanilla training. Specifically, the computational complexity of
SADA is $\mathcal{O}(K \times N \times L)$, where K is the total number of classes, N is the number of samples, and
 L denotes the window length.

4 EXPERIMENT

Datasets and network architectures. Following prior works (Müller & Hutter, 2021; Yang et al., 2024b; Cubuk et al., 2019), we evaluate our work on a diverse set of benchmark datasets, including CIFAR-10/100 (Krizhevsky et al., 2009), Tiny-ImageNet (Chrzaszcz et al., 2017), and ImageNet-1k (Krizhevsky et al., 2017). To assess its effectiveness in fine-grained recognition tasks, we additionally conduct experiments on Oxford Flowers (Nilsback & Zisserman, 2008), Oxford-IIIT Pets (Parkhi et al., 2012), FGVC-Aircraft (Maji et al., 2013), and Stanford Cars (Krause et al., 2013). Moreover, for evaluating performance under class imbalance, we also conduct experiments using long-tailed datasets, such as ImageNet-LT and Places-LT (Liu et al., 2019). Due to the limited space, more experimental settings are provided in Appendix C.

Comparison with State-of-the-arts. We compare our method with a wide range of representative and commonly used methods, including: 1). Cutout (DeVries & Taylor, 2017), 2). HaS (Singh & Lee, 2017), 3). CutMix (Yun et al., 2019), 4) GridMask (Chen et al., 2020), 5). AdvMask (Yang et al., 2023), 6). RandomErasing (Zhong et al., 2020), 7). AutoAugment (AA) (Cubuk et al., 2019), 8). Fast-AutoAugment (FAA) (Lim et al., 2019), 9). RandAugment (RA) (Cubuk et al., 2020), 10). DADA (Li et al., 2020), 11). TeachAugment (TeachA) (Suzuki, 2022), 12). MADAUG (Hou et al., 2023), 13). SoftAug (Liu et al., 2023), and 14). TrivialAugment (TA) (Müller & Hutter, 2021).

Method	ResNet-44	ResNet-50	WRN-28-10	SS-26-32	ResNet-44	ResNet-50	WRN-28-10	SS-26-32
	CIFAR-10				CIFAR-100			
baseline	94.10 \pm .40	95.66 \pm .08	95.52 \pm .11	94.90 \pm .07*	74.80 \pm .38*	77.41 \pm .27*	78.96 \pm .25*	76.65 \pm .14*
RE	94.87 \pm .16*	95.82 \pm .17	96.92 \pm .09	96.46 \pm .13*	75.71 \pm .25*	77.79 \pm .32	80.57 \pm .15	77.30 \pm .18
RA	94.38 \pm .22	96.25 \pm .06	96.94 \pm .13*	97.05 \pm .15	76.30 \pm .16	80.95 \pm .22	82.90 \pm .29*	80.00 \pm .29
EA	95.76 \pm .09	97.09 \pm .09	97.47 \pm .10	97.46 \pm .11	76.40 \pm .18	81.56 \pm .21	83.09 \pm .22	81.60 \pm .13
TA	95.00 \pm .10	97.13 \pm .08	97.18 \pm .11	97.30 \pm .10	76.57 \pm .14	81.34 \pm .18	82.75 \pm .26	82.14 \pm .16
AA	95.01 \pm .11	96.59 \pm .04*	96.99 \pm .06	97.30 \pm .11	76.36 \pm .22	81.34 \pm .29	82.21 \pm .17	81.19 \pm .19
FAA	93.80 \pm .12	96.69 \pm .16	97.30 \pm .24	96.42 \pm .12	76.04 \pm .28	79.08 \pm .12	79.95 \pm .12	81.39 \pm .16
HaS	94.97 \pm .27	95.60 \pm .15	96.94 \pm .08	96.89 \pm .10*	75.82 \pm .32	78.76 \pm .24	80.22 \pm .16	76.89 \pm .33
DADA	93.96 \pm .38	95.61 \pm .14	97.30 \pm .13*	97.30 \pm .14*	74.37 \pm .47	80.25 \pm .28	82.50 \pm .26*	80.98 \pm .15
Cutout	94.78 \pm .35	95.81 \pm .17	96.92 \pm .09	96.96 \pm .09*	74.84 \pm .56	78.62 \pm .25	79.84 \pm .14	77.37 \pm .28
CutMix	95.28 \pm .16	96.81 \pm .10*	96.93 \pm .10*	96.47 \pm .07	76.09 \pm .15	81.24 \pm .14	82.67 \pm .22	79.57 \pm .10
GridMask	95.02 \pm .26	96.15 \pm .19	96.92 \pm .09	96.91 \pm .12	76.07 \pm .18	78.38 \pm .22	80.40 \pm .20	77.28 \pm .38
AdvMask	95.49 \pm .17*	96.69 \pm .10*	97.02 \pm .05*	97.03 \pm .12*	76.44 \pm .18*	78.99 \pm .31*	80.70 \pm .25*	79.96 \pm .27*
TeachA	95.05 \pm .21	96.40 \pm .14	97.50 \pm .16	97.29 \pm .11	76.18 \pm .31	80.54 \pm .25	82.81 \pm .26	81.30 \pm .18
MADAUG	95.25 \pm .18	97.12 \pm .17	97.48 \pm .15	97.37 \pm .11	76.49 \pm .21	81.40 \pm .18	83.01 \pm .23	81.67 \pm .19
SoftAug	94.51 \pm .20	96.99 \pm .14	97.15 \pm .16	97.22 \pm .19	76.41 \pm .33	80.94 \pm .33	82.61 \pm .24	80.33 \pm .20
Ours	95.87\pm.21	97.21\pm.10	97.66\pm.06	97.51\pm.07	80.81\pm.41	81.75\pm.28	83.17\pm.19	82.73\pm.15

6

324 Table 2: Image classification accuracy (%) on Tiny-ImageNet across various deep models.
325

Method	ResNet-18	ResNet-50	WRN-50-2	ResNext-50
baseline	61.38 \pm 0.99	73.61 \pm 0.43	81.55 \pm 1.24	79.76 \pm 1.89
HaS	63.51 \pm 0.58	75.32 \pm 0.59	81.77 \pm 1.16	80.52 \pm 1.88
FAA	68.15 \pm 0.70	75.11 \pm 2.70	82.90 \pm 0.92	81.04 \pm 1.92
DADA	70.03 \pm 0.10	78.61 \pm 0.34	83.03 \pm 0.18	81.15 \pm 0.34
Cutout	68.67 \pm 1.06	77.45 \pm 0.42	82.27 \pm 1.55	81.16 \pm 0.78
CutMix	64.09 \pm 0.30	76.41 \pm 0.27	82.32 \pm 0.46	81.31 \pm 1.00
AdvMask	65.29 \pm 0.20	78.84 \pm 0.28	82.87 \pm 0.55	81.38 \pm 1.54
GridMask	62.72 \pm 0.91	77.88 \pm 2.50	82.25 \pm 1.47	81.05 \pm 1.33
AutoAugment	67.28 \pm 1.40	75.29 \pm 2.40	79.99 \pm 2.20	81.28 \pm 0.33
RandAugment	65.67 \pm 1.10	75.87 \pm 1.76	82.25 \pm 1.02	80.36 \pm 0.62
EntAugment	70.16 \pm 1.01	79.06 \pm 1.20	83.92 \pm 0.97	81.90 \pm 1.51
TeachAugment	70.05 \pm 0.57	70.56 \pm 0.44	82.95 \pm 0.13	81.39 \pm 0.97
TrivialAugment	69.97 \pm 0.96	78.41 \pm 0.39	82.16 \pm 0.32	80.91 \pm 2.26
RandomErasing	64.00 \pm 0.37	75.33 \pm 1.58	81.89 \pm 1.40	81.52 \pm 1.68
Ours	71.15 \pm 0.60	79.66 \pm 0.52	84.15 \pm 0.35	82.16 \pm 0.20

340
341 Table 3: Top-1 accuracy (%) on ImageNet-1k dataset with ResNet-50.
342

HaS	GM	Cutout	CutMix	Mixup	AA	EA	FAA	RA	MA	SA	DADA	TA	TeachA	Ours
77.2 \pm 0.2	77.9 \pm 0.2	77.1 \pm 0.3	77.2 \pm 0.2	77.0 \pm 0.2	77.6 \pm 0.2	78.2 \pm 0.2	77.6 \pm 0.2	77.6 \pm 0.2	78.5 \pm 0.1	78.0 \pm 0.1	77.5 \pm 0.1	77.9 \pm 0.3	77.8 \pm 0.2	78.4 \pm 0.1

343
344 4.1 PERFORMANCE COMPARISON

345
346
347 Table 1 compares our method and several widely adopted state-of-the-art baselines on the CIFAR-10 and CIFAR-100 datasets across various deep architectures. While the accuracy margins on these
348 small-scale benchmarks are generally narrow, our method consistently achieves the highest performance
349 across architectures. For example, using WideResNet-28-10 on CIFAR-10, our approach im-
350 proves accuracy by 2.14% over the best-performing baseline. Similarly, with ResNet-44 on CIFAR-
351 100, we observe a notable performance gain of 7.01%.

352
353 To assess scalability, we further evaluate our method on the large-scale Tiny-ImageNet dataset in
354 Table 2. Across different architectures, our method consistently outperforms existing baselines. For
355 instance, on ResNeXt-50, it surpasses the next-best method by over 0.64%, without introducing
356 noticeable training overhead compared to standard training routines. These gains can be attributed
357 to our method’s adaptive augmentation mechanism, which dynamically adjusts the augmentation
358 strength based on each sample’s influence stability. This design enables a better balance between
359 evolving models and training data, thereby enhancing generalization across models and datasets.

360
361 4.2 GENERALIZATION ON LARGE-SCALE IMAGENET-1K

362
363 We further evaluate the generalization performance of our method on the large-scale ImageNet-
364 1k dataset. Specifically, following experiment settings (Müller & Hutter, 2021), we train ResNet-
365 50 models using different DA methods. As shown in Table 3, our method achieves a competi-
366 tive performance compared to other baselines. While the accuracy gap between our method and
367 MADAUG is marginal, our approach is significantly more efficient, achieving over 2x faster training
368 than MADAUG and over 4x faster than TeachAugment, without relying on auxiliary models or bi-
369 level optimization. These results demonstrate that our method offers a compelling trade-off between
370 accuracy and efficiency for large-scale model training.

371
372 4.3 DATA AUGMENTATION IMPROVES TRANSFER LEARNING

373
374 Beyond evaluations on benchmark datasets, we assess model generalization through transfer learn-
375 ing, which tests a model’s ability to extract transferable and robust features across domains (Yosinski
376 et al., 2014; Kornblith et al., 2019; Raghu et al., 2019). In this setup, we pretrain ResNet-50 models
377 on CIFAR-100 and Tiny-ImageNet using various data augmentation methods, and then fine-tune
them on CIFAR-10.

378 Table 4: Transferred test accuracy (%) on CIFAR-10 of various DA methods. The pretrained
 379 ResNet-50 model is trained on CIFAR-100 (upper row) and Tiny-ImageNet (bottom row).
 380

baseline	HaS	FAA	DADA	Cutout	CutMix	MADAug	GridMask	AA	EA	RA	TeachAug	TA	RE	Ours
91.53 \pm 0.03	92.51 \pm 0.24	92.28 \pm 0.13	92.58 \pm 0.09	92.42 \pm 0.20	92.81 \pm 0.47	92.84 \pm 0.10	91.49 \pm 0.10	92.82 \pm 0.04	92.89 \pm 0.19	92.78 \pm 0.23	92.83 \pm 0.18	92.80 \pm 0.16	92.55 \pm 0.05	93.11\pm0.25
64.02 \pm 0.05	66.84 \pm 0.06	70.32 \pm 0.63	69.04 \pm 0.43	65.54 \pm 0.75	69.29 \pm 0.09	72.82 \pm 0.32	64.88 \pm 0.43	69.53 \pm 0.53	72.68 \pm 0.73	64.68 \pm 0.23	69.98 \pm 0.17	71.53 \pm 0.35	64.56 \pm 0.27	77.26\pm0.12

383 Table 5: Top-1 classification accuracy (%) on ImageNet-LT and Places-LT. * means results reported
 384 in the original paper.
 385

Dataset	Methods	closed-set setting				open-set setting			
		Many-shot	Medium-shot	Few-shot	Overall	Many-shot	Medium-shot	Few-shot	F-measure
ImageNet-LT	OLTR	43.2 \pm 0.1*	35.1 \pm 0.2*	18.5 \pm 0.1*	35.6 \pm 0.1*	41.9 \pm 0.1*	33.9 \pm 0.1*	17.4 \pm 0.2*	44.6 \pm 0.2*
	OLTR+Ours	46.9\pm0.1	37.0\pm0.2	21.6\pm0.2	36.9\pm0.1	45.2\pm0.1	35.6\pm0.2	20.6\pm0.1	45.5\pm0.1
Places-LT	OLTR	44.7\pm0.1*	37.0 \pm 0.2*	25.3 \pm 0.1*	35.9 \pm 0.1*	44.6\pm0.1*	36.8 \pm 0.1*	25.2 \pm 0.2*	46.4 \pm 0.1*
	OLTR+Ours	44.3 \pm 0.1	40.8\pm0.2	28.9\pm0.2	38.5\pm0.1	44.1 \pm 0.1	40.6\pm0.2	28.6\pm0.1	50.4\pm0.2

393 This evaluation is motivated by the fact that stronger data augmentation strategies can lead to more
 394 generalizable feature representations. As shown in Table 4, it can be observed that our method
 395 achieves consistently higher accuracy after transfer compared to baseline augmentation approaches,
 396 regardless of the pertaining dataset. These results indicate that models trained with our dynamic
 397 augmentation strategy learn more transferable and semantically meaningful features, further validating
 398 the generalization benefits of our approach.

4.4 RESULTS ON FINE-GRAINED DATASETS

401 To further assess the versatility of our method, we evaluate its performance on several fine-grained
 402 classification benchmarks, including Oxford Flowers (Nilsback & Zisserman, 2008), Oxford-IIIT
 403 Pets (Parkhi et al., 2012), FGVC-Aircraft (Maji et al., 2013), and Stanford Cars (Krause et al.,
 404 2013). These datasets are characterized by subtle inter-class differences, making them particularly
 405 challenging for standard data augmentation strategies.

406 As shown in Table 6, incorporating our method into the standard training process can significantly
 407 enhance model performance. Notably, on the Oxford Flower dataset, it achieves over 8% absolute
 408 improvement compared to baseline learning. These results highlight the effectiveness of our sample-
 409 aware augmentation approach in fine-grained scenarios.

4.5 RESULTS ON LONG-TAILED DATASETS

413 While most existing DA methods are not evaluated on long-tailed datasets, we further evaluate
 414 the robustness of our method on more challenging long-tailed benchmarks, i.e., ImageNet-LT and
 415 Places-LT (Liu et al., 2019), which exhibit significant class imbalance. We closely follow the experi-
 416 mental setting in OLTR (Liu et al., 2019), using the same network backbone and evaluation metrics,
 417 except utilizing our augmentation method. As shown in Table 5, our method achieves consistent
 418 performance improvements across both closed-set and open-set evaluation settings. On ImageNet-
 419 LT, we improve the overall top-1 accuracy by 1.3% in the closed-set scenario. On Places-LT, our
 420 method increases the F-measure by 4% in the open-set setting. These results highlight the ability of
 421 our adaptive augmentation strategy to improve generalization under severe data imbalance, without
 422 requiring explicit rebalancing techniques or auxiliary supervision.

4.6 CROSS-ARCHITECTURE GENERALIZATION

425 In Table 1 and Table 2, we demonstrate the effectiveness of our method across various CNN-
 426 based architectures. To further evaluate its generalizability, we extend our experiments to Vision
 427 Transformer-based models using the ImageNet-1k dataset. As shown in Table 7, our method
 428 yields consistent performance gains for both ViT variants, improving the performance of ViT-
 429 Base/Large/Huge on ImageNet-1k. Importantly, these gains are achieved without introducing large
 430 additional training overheads, highlighting the efficiency of our method. Consequently, these re-
 431 sults confirm that our method is architecture-agnostic and can be seamlessly integrated into training
 432 pipelines as a plug-and-play module to improve performance.

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 6: Test accuracy (%) on fine-grained datasets with ResNet-50.

Dataset	baseline	Ours
Oxford Flowers	89.47 \pm 0.08	98.04\pm0.09
Oxford-IIIT Pets	89.73 \pm 0.18	92.53\pm0.12
FGVC-Aircraft	77.25 \pm 0.09	80.76\pm0.12
Stanford Cars	82.13 \pm 0.03	91.89\pm0.07

Table 7: Test accuracy (%) on ImageNet-1k with ViT-Base/Large/Huge.

Model	baseline	Ours
ViT-B	82.30	83.38\uparrow1.08
ViT-L	84.47	85.01\uparrow0.54
ViT-H	85.91	86.88\uparrow0.97

4.7 EFFICIENCY COMPARISON

We compare the training costs of our method with other baselines. As illustrated in Figure 4, in the efficiency-effectiveness plane, our method achieves a favorable trade-off between training cost and performance. Consistent with the complexity analyses in Section 3, our approach introduces negligible additional overhead compared to standard training. This is primarily because the required gradient information can be directly obtained during standard forward and backward passes, without relying on auxiliary networks or a complex optimization process. While our method incurs slightly higher training costs than baselines such as Cutout, HaS, and TrivialAugment, the difference is minimal. Importantly, our method consistently delivers better performance, achieving a better balance between efficiency and accuracy.

4.8 ABLATION STUDY

We conduct an ablation study to investigate the effect of two hyperparameters in our method: the window size L in Eq. equation 6 and decay factor in Eq. equation 7. As shown in Figure 3(a), increasing the window size L leads to a consistent drop in classification accuracy. This is because larger windows oversmooth the instantaneous dynamics of sample influence, thereby delaying the dynamic augmentation’s responsiveness to model training dynamics. As a result, maintaining a small window size not only better captures the local importance of each sample but also reduces the memory costs. Figure 3(b) shows the effect of varying the decay factor β . The model performance remains generally stable across different β values, indicating that our method is robust to it.

5 CONCLUSION

This paper proposes a novel on-the-fly data augmentation method that performs sample-aware augmentation by modeling the evolving interplay between data and the model during training. Unlike existing approaches, our proposed method leverages a dynamic augmentation mechanism, mitigating overfitting for stable samples by increasing their diversity while promoting generalization for uncertain ones by preserving semantic fidelity. We hope our work inspires further research on train-dynamic-aware data augmentation from an on-the-fly perspective and believe our method will serve as a promising plug-and-play tool for the community, enabling enhanced deep model training.



Figure 3: The stability of our method on the two parameters, i.e., the window size and the decay factor, with CIFAR-100 using ResNet-18.

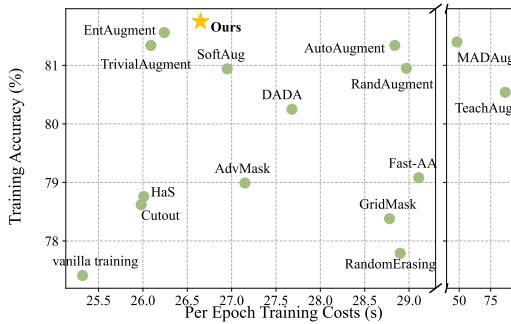


Figure 4: Comparison in the effectiveness-efficiency tradeoff. We report the average per-epoch training costs using a 2-NVIDIA-RTX2080TI-GPUs server.

486 REFERENCES
487

488 Tom Bekor, Niv Nayman, and Lihi Zelnik-Manor. Freeaugment: Data augmentation search across
489 all degrees of freedom. In *European Conference on Computer Vision*, pp. 36–53. Springer, 2024.

490 Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Gridmask data augmentation. *arXiv*
491 *preprint arXiv:2001.04086*, Jan. 2020.

492 Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an
493 alternative to the cifar datasets. *arXiv preprint arXiv:1707.08819*, Aug 2017.

494 Ekin D. Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le. Autoaugment:
495 Learning augmentation strategies from data. In *Proc. IEEE Conf. Comput. Vis. Pattern Recognit.*
496 (*CVPR*), pp. 113–123, 2019.

497 Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le. Randaugment: Practical automated
498 data augmentation with a reduced search space. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
499 Balcan, and H. Lin (eds.), *Proc. Adv. Neural Inf. Process. Syst.*, volume 33, pp. 18613–18624,
500 2020.

501 Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
502 with cutout. *arXiv preprint arXiv:1708.04552*, Nov 2017.

503 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
504 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
505 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
506 *arXiv:2010.11929*, 2020.

507 Xavier Gastaldi. Shake-shake regularization. *arXiv preprint arXiv:1705.07485*, May 2017.

508 Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
509 examples. In Yoshua Bengio and Yann LeCun (eds.), *3rd International Conference on Learning
510 Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings*,
511 2015. URL <http://arxiv.org/abs/1412.6572>.

512 Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki Nakayama. Meta approach to data
513 augmentation optimization, 2020. URL <https://arxiv.org/abs/2006.07965>.

514 Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki Nakayama. Meta approach to data
515 augmentation optimization. In *Proceedings of the IEEE/CVF winter conference on applications*
516 of computer vision, pp. 2574–2583, 2022.

517 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-
518 tion. In *Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)*, pp. 770–778, 2016.

519 Daniel Ho, Eric Liang, Xi Chen, Ion Stoica, and Pieter Abbeel. Population based augmentation:
520 Efficient learning of augmentation policy schedules. In *International conference on machine*
521 *learning*, pp. 2731–2741. PMLR, 2019.

522 Chengkai Hou, Jieyu Zhang, and Tianyi Zhou. When to learn what: Model-adaptive data augmenta-
523 tion curriculum. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
524 pp. 1717–1728, 2023.

525 Guillermo Iglesias, Edgar Talavera, Ángel González-Prieto, Alberto Mozo, and Sandra Gómez-
526 Canaval. Data augmentation techniques in time series domain: a survey and taxonomy. *Neural*
527 *Computing and Applications*, 35(14):10123–10145, 2023.

528 Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song. Puzzle mix: Exploiting saliency and local
529 statistics for optimal mixup. In *International conference on machine learning*, pp. 5275–5285.
530 PMLR, 2020.

531 Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better? In
532 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2661–
533 2671, 2019.

540 Jonathan Krause, Jia Deng, Michael Stark, and Li Fei-Fei. Collecting a large-scale dataset of fine-
 541 grained cars. 2013.

542

543 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 544 2009.

545 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
 546 lutional neural networks. *Advances in neural information processing systems*, 25, 2012.

547

548 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
 549 lutional neural networks. *Communications of the ACM*, 60(6):84–90, 2017.

550

551 Yonggang Li, Guosheng Hu, Yongtao Wang, Timothy M. Hospedales, Neil Martin Robertson, and
 552 Yongxin Yang. DADA: differentiable automatic data augmentation. In *European Conference on
 553 Computer Vision*, pp. 580–595. Springer, 2020.

554

555 Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim. Fast autoaug-
 556 ment. In *Advances in Neural Information Processing Systems*, volume 32. Curran Asso-
 557 ciates, Inc., 2019. URL <https://proceedings.neurips.cc/paper/2019/file/6add07cf50424b14fdf649da87843d01-Paper.pdf>.

558

559 Shiqi Lin, Zhizheng Zhang, Xin Li, and Zhibo Chen. Selectaugment: hierarchical deterministic
 560 sample selection for data augmentation. In *Proceedings of the AAAI Conference on Artificial
 561 Intelligence*, volume 37, pp. 1604–1612, 2023.

562

563 Aoming Liu, Zehao Huang, Zhiwu Huang, and Naiyan Wang. Direct differentiable augmentation
 564 search, 2021. URL <https://arxiv.org/abs/2104.04282>.

565

566 Yang Liu, Shen Yan, Laura Leal-Taixé, James Hays, and Deva Ramanan. Soft augmentation for im-
 567 age classification. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 568 Recognition*, pp. 16241–16250, 2023.

569

570 Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-
 571 scale long-tailed recognition in an open world. In *Proceedings of the IEEE/CVF conference on
 572 computer vision and pattern recognition*, pp. 2537–2546, 2019.

573

574 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 575 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.

576

577 Juliette Marrie, Michael Arbel, Diane Larlus, and Julien Mairal. Slack: Stable learning of aug-
 578 mentations with cold-start and kl regularization. In *Proceedings of the IEEE/CVF Conference on
 579 Computer Vision and Pattern Recognition*, pp. 24306–24314, 2023.

580

581 Samuel G Müller and Frank Hutter. Trivialaugment: Tuning-free yet state-of-the-art data augmenta-
 582 tion. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 774–782,
 583 2021.

584

585 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 586 of classes. In *2008 Sixth Indian conference on computer vision, graphics & image processing*, pp.
 587 722–729. IEEE, 2008.

588

589 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *2012
 590 IEEE conference on computer vision and pattern recognition*, pp. 3498–3505. IEEE, 2012.

591

592 Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, and Samy Bengio. Transfusion: Under-
 593 standing transfer learning for medical imaging, 2019. URL <https://arxiv.org/abs/1902.07208>.

594

595 Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
 596 *Journal of big data*, 6(1):1–48, 2019.

597

598 Krishna Kumar Singh and Yong Jae Lee. Hide-and-seek: Forcing a network to be meticulous for
 599 weakly-supervised object and action localization. In *Proc. IEEE Int. Conf. Comput. Vis. (ICCV)*,
 600 pp. 3544–3553. IEEE, Oct 2017.

594 Teppei Suzuki. Teachaugment: Data augmentation optimization using teacher knowledge. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10904–
 595 10914, 2022.

596

597 Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi,
 598 Noah A. Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with
 599 training dynamics, 2020. URL <https://arxiv.org/abs/2009.10795>.

600

601 Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
 602 and Geoffrey J. Gordon. An empirical study of example forgetting during deep neural network
 603 learning, 2019. URL <https://arxiv.org/abs/1812.05159>.

604

605 Alexander Tsaregorodtsev and Vasileios Belagiannis. Particleaugment: Sampling-based data aug-
 606 mentation. *Computer Vision and Image Understanding*, 228:103633, 2023.

607

608 Devesh Walawalkar, Zhiqiang Shen, Zechun Liu, and Marios Savvides. Attentive cutmix: An en-
 609 hanced data augmentation approach for deep learning based image classification. *arXiv preprint*
arXiv:2003.13048, 2020.

610

611 Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
 612 transformations for deep neural networks, 2017. URL <https://arxiv.org/abs/1611.05431>.

613

614 Suorong Yang, Weikang Xiao, Mengcheng Zhang, Suhan Guo, Jian Zhao, and Furao Shen. Image
 615 data augmentation for deep learning: A survey. *arXiv preprint arXiv:2204.08610*, 2022.

616

617 Suorong Yang, Jinqiao Li, Tianyue Zhang, Jian Zhao, and Furao Shen. Advmask: A sparse adver-
 618 sarial attack-based data augmentation method for image classification. *Pattern Recognition*, 144:
 619 109847, 2023.

620

621 Suorong Yang, Suhan Guo, Jian Zhao, and Furao Shen. Investigating the effectiveness of data aug-
 622 mentation from similarity and diversity: An empirical study. *Pattern Recognition*, 148:110204,
 623 2024a. ISSN 0031-3203. doi: <https://doi.org/10.1016/j.patcog.2023.110204>.

624

625 Suorong Yang, Furao Shen, and Jian Zhao. Entaument: Entropy-driven adaptive data augmentation
 626 framework for image classification. In *European Conference on Computer Vision*, pp. 197–214.
 627 Springer, 2024b.

628

629 Suorong Yang, Peijia Li, Xin Xiong, Furao Shen, and Jian Zhao. Adaaugment: A tuning-free and
 630 adaptive approach to enhance data augmentation. *IEEE Transactions on Image Processing*, 2025.

631

632 Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
 633 neural networks? *Advances in neural information processing systems*, 27, 2014.

634

635 Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
 636 Cutmix: Regularization strategy to train strong classifiers with localizable features. In *Proceed-
 637 ings of the IEEE/CVF international conference on computer vision*, pp. 6023–6032, 2019.

638

639 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
 640 deep learning requires rethinking generalization, 2017. URL <https://arxiv.org/abs/1611.03530>.

641

642 Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond em-
 643 pirical risk minimization. In *International Conference on Learning Representations*, 2018. URL
 644 <https://openreview.net/forum?id=r1Ddp1-Rb>.

645

646 Xin Zhang, Jiawei Du, Yunsong Li, Weiyi Xie, and Joey Tianyi Zhou. Spanning training
 647 progress: Temporal dual-depth scoring (tdds) for enhanced dataset pruning. In *Proceedings of the*
648 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 26223–26232, 2024.

649

650 Xinyu Zhang, Qiang Wang, Jian Zhang, and Zhao Zhong. Adversarial autoaugment. *arXiv preprint*
arXiv:1912.11188, 2019.

651

652 Yu Zheng, Zhi Zhang, Shen Yan, and Mi Zhang. Deep autoaugmentation. In *ICLR*, 2022.

653

654 Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmen-
 655 tation. In *Proc. AAAI*, volume 34, pp. 13001–13008, 2020.

A MORE DETAILS OF THE METHOD

Table 8: Our employed augmentation operations with corresponding magnitude ranges across different datasets (Müller & Hutter, 2021; Yang et al., 2024b), only including lightweight image transformations.

Transformation	Max allowable magnitude
identity	-
auto contrast	-
equalize	-
color	+1.9
contrast	+1.9
brightness	+1.9
sharpness	+1.9
rotation	$\pm 30^\circ$
translate _x	± 10
translate _y	± 10
shear _x	± 0.3
shear _y	± 0.3
solarize	+256
posterize	+4

B THEORETICAL JUSTIFICATION

We provide a sketch of theoretical justification showing why our sample-adaptive augmentation (SADA) strategy—assigning stronger augmentation to stable (low-variance) samples and weaker augmentation to unstable (high-variance) samples—can improve generalization.

Setup. Let $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ be the training set, with feature map $\phi : \mathcal{X} \rightarrow \mathbb{R}^d$ satisfying $\|\phi(x)\| \leq R$. The hypothesis class is $f_\theta(x) = \langle \theta, \phi(x) \rangle$ with $\|\theta\| \leq B$. For each sample, an augmentation operator \mathcal{A}_{s_i} with magnitude $s_i \in [0, s_{\max}]$ generates

$$\phi(\tilde{x}_i) = \mu_i(s_i) + \Delta_i(s_i), \quad \mathbb{E}[\Delta_i(s_i) \mid x_i] = 0.$$

We assume (i) the loss ℓ is L_ℓ -Lipschitz in its prediction, and (ii) the fluctuation satisfies $\mathbb{E}\|\Delta_i(s_i)\|^2 < \alpha_i s_i^2$, where α_i encodes the sample's sensitivity to augmentation.

Rademacher complexity with augmentation. The empirical Rademacher complexity of the augmented class is

$$\mathfrak{R}_n(\mathcal{F}_s) = \frac{1}{n} \mathbb{E}_{\varepsilon, \tilde{x}} \left[\sup_{\|\theta\| \leq B} \sum_{i=1}^n \varepsilon_i \langle \theta, \phi(\tilde{x}_i) \rangle \right].$$

Decomposing into mean and fluctuation terms and applying Khintchine–Kahane inequality yields

$$\mathfrak{R}_n(\mathcal{F}_s) \leq \frac{B}{n} \left(\sqrt{\sum_{i=1}^n \|\mu_i(s_i)\|^2} + \sqrt{\sum_{i=1}^n \alpha_i s_i^2} \right).$$

By the contraction lemma, the loss class satisfies

$$\Re_n(\ell \circ \mathcal{F}_s) \leq \frac{L_\ell B}{n} \left(\sqrt{\sum_{i=1}^n \|\mu_i(s_i)\|^2} + \sqrt{\sum_{i=1}^n \alpha_i s_i^2} \right).$$

Thus, the generalization gap is controlled by a complexity term $\frac{L_\ell B}{n} \sqrt{\sum_i \alpha_i s_i^2}$.

13

702 **Optimal allocation.** Suppose we require $\sum_i s_i \geq S$. Minimizing $\sum_i \alpha_i s_i^2$ under this constraint
 703 gives the strictly convex problem
 704

$$705 \quad \min_{0 \leq s_i \leq s_{\max}} \sum_{i=1}^n \alpha_i s_i^2 \quad \text{s.t.} \quad \sum_{i=1}^n s_i \geq S.$$

707 The KKT conditions yield a water-filling solution:

$$709 \quad s_i^* = \min \left\{ s_{\max}, \frac{\lambda}{2\alpha_i} \right\}, \quad \sum_i s_i^* = S.$$

711 Therefore, the optimal strategy assigns *larger augmentation strength to samples with smaller α_i* (i.e., lower sensitivity), and smaller strength to those with larger α_i (higher sensitivity).

714 **Connection to variance measure.** In our method, α_i is bounded by a constant multiple of the
 715 variance measure $\mathcal{V}(x_i)$ computed from the gradient dynamics, i.e., $\alpha_i \leq c\mathcal{V}(x_i)$. Hence, the
 716 optimal allocation s_i^* is monotone decreasing in $\mathcal{V}(x_i)$, which aligns exactly with our SADA rule:
 717 *low-variance samples receive stronger augmentation, while high-variance samples receive weaker
 718 augmentation.*

719 C IMPLEMENTATION DETAILS

722 Our experiments are conducted across a wide range of network architectures, including ResNet-
 723 based models, e.g., ResNet-18/50 and Wide ResNet, ViT-based models, e.g., ViT-Base/Large/Huge,
 724 and architectures with advanced regularization such as Shake-Shake (Gastaldi, 2017) and
 725 ResNeXt (Xie et al., 2017). This setup allows us to comprehensively evaluate the generalization
 726 and scalability of our method across different data domains and architectural families. Some results
 727 for baseline methods are taken from the original publications Yang et al. (2024b); Müller & Hutter
 728 (2021); Cubuk et al. (2019).

729 Our experimental setup follows standard practices established in prior works (DeVries & Taylor,
 730 2017; Yang et al., 2023; 2024b; Chen et al., 2020; Müller & Hutter, 2021). Specifically, during
 731 online training, only augmented data is used for model optimization, without incorporating original
 732 data. Unless otherwise specified, we train all models for 300 epochs using a batch size of 256, an
 733 initial learning rate of 0.1, SGD with momentum 0.9, weight decay of $5e-4$, and a cosine annealing
 734 learning rate decay strategy. Input images undergo standard preprocessing with random cropping
 735 and horizontal flipping, consistent with the augmentation setup used for the baseline methods. For
 736 experiments involving the Shake-Shake model, we follow the established protocol (Gastaldi, 2017)
 737 and train for 1800 epochs using SGD with Nesterov Momentum, weight decay of $1e-3$, and cosine
 738 learning rate decay. The augmentation operation space used is consistent with prior works (Müller &
 739 Hutter, 2021; Yang et al., 2024b). Unless otherwise stated, we use ResNet-50 as the default architec-
 740 ture. We consistently set the window size as 10 and the decay factor as 0.9 across all the tasks and
 741 datasets without any dataset- or architecture-specific tuning. The consistent improvements across
 742 settings demonstrate that SADA is robust and not sensitive to these hyperparameters in practice. For
 743 all experiments, we report the average and standard deviation of test accuracy over three indepen-
 744 dent runs. Note that because of the huge calculation consumption on ImageNet-1k, the experiment
 745 in each case is performed once.

746 D PERFORMANCE UNDER CONTROLLED RANDOMNESS OF THE 747 AUGMENTATION OPERATIONS

749 Table 9: Performance under different numbers of augmentation operations in our augmentation
 750 space on CIFAR-100 using ResNet-50.

# of operations	4	6	8	10	12	14
Acc. (%)	81.6	81.5	81.6	81.8	81.9	81.8

754 In this section, we evaluate the performance of our method under different controlled randomness.
 755 As shown in Table 9, it can be observed that reduced randomness in augmentation operations brings

756 minimal influence on our method. SADA remains highly stable across different levels of operation
 757 randomness. Therefore, we validate that the superior effectiveness of SADA stems from the adaptive
 758 adjustment of augmentation strengths, rather than from the random selection of operations.
 759

760 E TRAINING COSTS ANALYSIS

763 Table 10: Wall-clock time (h) of baseline vs. SADA on ImageNet-1k using a 4-A100-GPU server.

	ResNet-50	ViT-B	ViT-L
Baseline	22.1	149.1	363.2
SADA	22.5	150.8	366.4
Increased costs	+1.8%	+1.1%	0.8%

771 In this section, we further analyze SADA’s actual training costs. As shown in Table 10, it can be ob-
 772 served that SADA incurs no noticeable additional training cost compared to standard training. This
 773 is because we adopt a first-order Taylor expansion to convert the gradient-projection term into a loss-
 774 difference formulation (Eq. 6), which can be obtained directly from the forward pass. This avoids
 775 any additional gradient calculation beyond standard training, and thus the resulting computational
 776 overhead introduced by SADA is minimal.

778 F COMPARISON WITH ENTAUGMENT

780 Recently, adaptive data augmentation methods have shown strong effectiveness, and both SADA and
 781 EntAugment fall within this broader family of approaches that adjust augmentation strength based on
 782 per-sample behavior during training. While we empirically compare SADA and EntAugment across
 783 various evaluation settings, here we outline their methodological differences to provide a clearer un-
 784 derstanding. 1). Different signals. EntAugment uses classification entropy from model snapshots,
 785 while SADA instead uses gradient-based influence projection to measure how each sample directly
 786 contributes to the optimization trajectory. 2). Different stability mechanisms. EntAugment can
 787 fluctuate across training, while SADA incorporates the temporal variance of sample influence over
 788 a local window, providing a more stable and reliable indicator of the learning effect. 3). Different
 789 training-stage awareness: EntAugment’s entropy does not explicitly capture how a sample’s effect
 790 evolves over time. SADA naturally reflects evolving sample dynamics via gradient influence and
 791 its temporal consistency. 4). Different optimization basis. EntAugment relies on a heuristic uncer-
 792 tainty signal. SADA is grounded in optimization theory, using gradients and accumulated updates
 793 to modulate augmentation in a way that is directly aligned with the learning process.

794 In summary, while the two methods share similarities, SADA adopts a fundamentally different
 795 mechanism that is more stable, more training-aware, and more closely aligned with underlying op-
 796 timization dynamics. Thus, while EntAugment provides promising performance, SADA achieves
 797 stronger effectiveness.

799 G MORE COMPARISON WITH THE PUBLISHED RESULTS OF 800 TRIVIALAUGMENT

803 Table 11: Comparison with the published results of TrivialAugment (TA) using the experimental
 804 setting from Müller & Hutter (2021) on CIFAR-10/100.

Dataset	Method	Baseline	TA	Ours
CIFAR-10	WRN-28-10	97.0	97.5	97.9
	SS-26-96	97.5	98.2	98.4
CIFAR-100	WRN-28-10	82.2	84.3	84.6
	SS-26-96	83.3	86.2	86.7

810
 811 In addition to the comparisons with TrivialAugment (TA) in Section 4, in this section, we com-
 812 pare with TA’s published results using its training configurations. As shown in Table 11, under the
 813 identical settings, SADA consistently surpasses TA across deep models and datasets.

814 H SOCIETAL IMPACT STATEMENT

815
 816 This work focuses on improving the generalization and training efficiency of deep learning mod-
 817 els through a sample-aware data augmentation framework, SADA. The potential positive societal
 818 impacts include reducing the reliance on large-scale, manually curated datasets by enabling more
 819 effective use of limited or imbalanced data, which can lower data collection costs and broaden access
 820 to machine learning in resource-constrained settings. In particular, the method’s plug-and-play na-
 821 ture and computational efficiency may benefit applications in healthcare, environmental monitoring,
 822 or education, where robust generalization under limited data is critical.

823 I DISCUSSION AND FUTURE WORK

824 In this section, we discuss some potential limitations and future work for our method.

825 Since our method computes the variance of gradient-based influence signals to determine sample-
 826 wise augmentation strengths, it requires maintaining a local history of these values within a sliding
 827 window and introduces two parameters: window size L and decay factor β . In all our experiments
 828 across datasets and architectures, we adopt the same default hyperparameter configuration ($L = 10$
 829 and $\beta = 0.9$) without any dataset-specific or model-specific tuning. To ensure the responsiveness of
 830 augmentation strength to recent training dynamics, our framework favors small window sizes, thus
 831 capturing meaningful local variations. Meanwhile, our ablation studies confirm that the decay factor
 832 is highly stable. These findings suggest that our framework is robust to hyperparameter choices. To
 833 provide clearer parameter setting suggestions in practice, based on our ablation study results, we
 834 summarize these insights: using $L = 5, 10$ with $\beta = 0.9$, without large-scale tuning.

835 Currently, our method is designed and evaluated primarily for supervised image classification tasks.
 836 While the sample-aware augmentation principle is general, its application to other domains, such
 837 as object detection, semantic segmentation, or image generation, remains underexplored. These
 838 tasks involve fundamentally different training objectives and model behaviors, and investigating how
 839 gradient-guided influence estimation interacts with task-specific objectives and model architectures
 840 will be an important direction for future work.

841 J AI ASSISTANT USAGE STATEMENT

842 During the preparation of this paper, we made only moderate use of large language models for text
 843 polishing.

844 K REPRODUCIBILITY

845 Implementation will be made publicly available.