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Figure 1: Our proposed method can create dynamics on various generated 3D Gaussians guided by
the reference casual video.

ABSTRACT

In this work, we introduce a novel approach for creating controllable dynamics
in 3D-generated Gaussians using casually captured reference videos. Our method
transfers the motion of objects from reference videos to a variety of generated 3D
Gaussians across different categories, ensuring precise and customizable motion
transfer. We achieve this by employing blend skinning-based non-parametric shape
reconstruction to extract the shape and motion of reference objects. This process
involves segmenting the reference objects into motion-related parts based on skin-
ning weights and establishing shape correspondences with generated target shapes.
To address shape and temporal inconsistencies prevalent in existing methods, we
integrate physical simulation, driving the target shapes with matched motion. This
integration is optimized through a displacement loss to ensure reliable and genuine
dynamics. Our approach supports diverse reference inputs, including humans,
quadrupeds, and articulated objects, and can generate dynamics of arbitrary length,
providing enhanced fidelity and applicability. Unlike methods heavily reliant on
diffusion video generation models, our technique offers specific and high-quality
motion transfer, maintaining both shape integrity and temporal consistency.

1 INTRODUCTION

The introduction of large-scale diffusion-based generative models (Rombach et al., 2022; Saharia
et al., 2022) has sparked a revolution in creative and high-quality image synthesis, which has been
successfully extended to video generation (Blattmann et al., 2023; Chen et al., 2024; Xing et al.,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2023) and further evolved into 3D generation (Poole et al., 2022; Lin et al., 2023; Chen et al., 2023;
Wang et al., 2024; Shi et al., 2023; Li et al., 2024a; Liang et al., 2024; Liu et al., 2023; Raj et al.,
2023; Tang et al., 2024), laying the groundwork for dynamic 3D content or 4D generation. This
technological convergence enhances various applications, from virtual reality to simulation training,
by significantly boosting the realism and interactivity of virtual environments.

However, despite these technological strides, existing methodologies still face significant limitations.
Current implementations, utilizing Score Distillation Sampling (SDS) (Poole et al., 2022) as seen
in (Bahmani et al., 2024b; Ling et al., 2024; Singer et al., 2023; Zheng et al., 2024; Bahmani et al.,
2024a), aim to distill motion priors from video diffusion models to facilitate dynamic 3D creation.
However, this often leads to inaccurate motion representations. Alternatively, methods like those
documented in (Yin et al., 2023; Ren et al., 2023) directly use the per-frame outputs from video
diffusion models as references. While faster and more straightforward, this approach still fails to
adequately address issues of movement irrationality and shape incoherence in the generated outputs.
The effectiveness of both approaches is inherently limited by the capabilities of the pretrained video
diffusion models they adopted. Therefore, the generation quality of the dynamic and geometry quality
frequently suffers from inconsistencies and poor geometric integrity. Moreover, these methods lack
precise motion control, typically relying on vague text prompts to guide motions, which further
compromises the fidelity and applicability of the generated content.

Significant advancements have also been made in dynamics representation, particularly in integrating
physical properties into dynamic models. The introduction of PhysGaussian (Xie et al., 2024),
which utilizes a novel style of 3D Gaussians representation from Kerbl et al.(Kerbl et al., 2023), has
facilitated high-quality motion synthesis. Zhang et al.(Zhang et al., 2024) pioneered the integration
of dynamic generation model with physical simulation techniques (Hu et al., 2018a; Xie et al., 2024),
marking a crucial step forward in this domain. Incorporating physical simulation produces more
reliable and genuine dynamics on 3D Gaussian representations. However, these methods require
hand-crafted input motions, which are also limited to a narrow range of actions and relatively simple
scenarios.

In this work, we introduce a novel approach for creating controllable dynamics in generated 3D
Gaussians guided by casually captured reference videos. As shown in Figure 1, our method transfers
the motion of an object from the reference video to various generated 3D Gaussians across different
categories. To achieve this, we first apply blend skinning-based non-parametric shape reconstruction
to extract the shape and motion of the reference object from the video. This process allows the
decomposition of the reference object into motion-related parts based on skinning weights. Next, we
establish shape correspondences between the reference shape and the generated target shapes utilizing
pretrained 2D diffusion models and 3D point cloud models. Finally, we map the motion-related parts
to the corresponding target shapes, enabling the matched parts in the target shapes to inherit the
motion from the reference object parts.

To tackle the shape and temporal inconsistency issue that widely appears in existing works, instead
of the commonly used point-wise deformation, we drive the target shapes with the matched motion
using Material Point Method (MPM) physical simulation (Hu et al., 2018a; Xie et al., 2024; Zhang
et al., 2024). However, due to the shape variation in target objects, directly providing the reference
motion as input on each part to the physical simulation model may not produce the desired outputs
and may suffer from cumulative errors. Therefore, we model a delta velocity field to adjust the input
motion adopted from the reference, which is optimized by a displacement loss between two object
spaces.

In summary, our contributions are as follows:

• We introduce a novel method that transfers motion from casually captured videos to various
3D-generated Gaussians, ensuring precise and customizable dynamics across different
categories.

• Our technique employs shape reconstruction to extract shape and motion from reference
objects. We segment the reference objects into motion-related parts based on skinning
weights and map the parts to generated target shapes by establishing shape correspondences.

• We integrate physical simulation to drive target shapes with matched motion to ensure shape
integrity and temporal consistency. Our approach further ensures reliable and genuine dy-
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namics by introducing a displacement loss to optimize physical signals, avoiding cumulative
errors.

• Our method supports diverse reference inputs, including humans, quadrupeds, and articulated
objects. Unlike existing methods reliant on diffusion video generation models, our approach
generates dynamics specific to the reference input and can be of arbitrary length.

2 RELATED WORKS

2.1 4D GENERATION

Dynamic generation seeks to create robust and persistent 3D representations that excel in virtual
environments like gaming, animation, and virtual reality. Initiatives commonly begin with a text
prompt specifying the 3D object and its motions (Bahmani et al., 2024b; Singer et al., 2023; Zheng
et al., 2024). Zhao et al. (Zhao et al., 2023) adopt a different strategy, using an image prompt, which
offers greater versatility over the 3D object’s representation. Meanwhile, Yin et al. (Yin et al., 2023)
and Ren et al. (Ren et al., 2023) utilize videos generated from video diffusion models as direct
references, indicating that controlling motions through video input holds promise. However, these
approaches face challenges, including constrained motion expression, discrepancies between the
input text and the resulting motions, and poor generation results.

2.2 SHAPE AND MOTION RECONSTRUCTION FROM VIDEOS

Dynamics reconstruction from video footage is a prolonged and challenging endeavor, and recon-
structing from monocular video poses an even greater difficulty. A commonly employed approach
(Attal et al., 2023; Kratimenos et al., 2023; Pumarola et al., 2021; Li et al., 2023; Park et al., 2021a;b;
Liu et al., 2022; Wang et al., 2023) involves utilizing a deformation field (Pumarola et al., 2021) to
enhance the neural radiance field (Mildenhall et al., 2021) while concurrently implementing various
techniques to ensure high-quality reconstruction. While these works mostly rely on multi-view
datasets, Yang et al.(Yang et al., 2022; 2023c; Song et al., 2023c; Yang et al., 2023a) focus on
reconstructing shapes from casual videos, achieving remarkable progress in the area. As 3D Gaussian
Splatting proved to be an efficient and effective approach for reconstructing tasks, several works (Li
et al., 2024b; Yu et al., 2024; Lin et al., 2024; Wu et al., 2024; Yang et al., 2024; Luiten et al., 2023;
Lu et al., 2024) are adapted to dynamics reconstruction, achieving promising results.

2.3 MOTION TRANSFER

A common perspective on attaining reliable motion is to derive it from a real video and transfer
it to another object. This can be achieved by estimating poses frame-by-frame and subsequently
transferring these poses. However, these works (Doersch & Zisserman, 2019; Song et al., 2021; Chen
et al., 2022; Song et al., 2023b) fundamentally rely on correspondences between the same category of
objects. An alternative approach (Yatim et al., 2024; Park et al., 2024) to motion transfer based on the
diffusion model has garnered popularity in the video domain. These methods can transfer motions
between different types of objects. However, the quality of the results significantly falls short of the
requirements for 3D and 4D generation, considering the inconsistency and vagueness of the video.

3 METHOD

We propose a framework capable of transferring motion from casually captured videos to generated
static 3D objects, as illustrated in Figure 2. We begin by reconstructing the shape of the captured
object from a video and extracting the motion information. In the subsequent stage, the reconstructed
object will be matched with the target 3D Gaussian representation to achieve regional correspondence.
Finally, we transfer the original motion to the corresponding target regions and utilize physics
simulation to animate the 3D object. We optimize the velocity field in physics simulation by
minimizing spatial displacement differences to enhance motion correctness, thereby achieving
superior visual fidelity.

3
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Figure 2: Overview of Sync4D: Sync4D processes a reference video to derive a canonical shape and
a bone-based motion sequence through reconstruction techniques. Meanwhile, given a text prompt or
image prompt, we generate a 3D Gaussian object through diffusion models. The framework matches
motion-related parts from the reconstructed shape to the generated shape and transfers the motion.
This motion information is then initialized into the velocity physical signals. We employ a triplane
representation to produce a delta velocity field to adjust physical signals. The velocity field for each
part of the target is optimized using the differentiable Material Point Method (MPM) simulation. To
ensure fidelity to the original, a displacement loss is designed to reduce cumulative errors and ensure
plausible motions.

3.1 PRELIMINARIES

Material Point Method (MPM) is a computational technique for simulating the behavior of continua.
It uses a dual representation where material properties and state variables are stored on particles while
computations and interactions are handled on a background computational grid. Following Phys-
Gaussian (Xie et al., 2024), we employ MPM simulation directly on Gaussian particles, discretizing
the entire scene into a set of Lagrangian particles. At timestep t, each particle p maintains its state
variables, which include spatial position xt

p, velocity vt
p and its material properties, including mass

mt
p, deformation gradient F t

p , Kirchhoff stress τ t
p, affine momentum Ct

p.

MPM simulation process transfers data between particles and grid nodes at each simulation period
∆t, which can be delineated into three distinct steps. Firstly, we apply particle-to-grid to transfer
momentum as follows:

mt
i =

∑
p

N(xi − xt
p)mp, (1)

mt
iv

t
i =

∑
p

N(xi − xt
p)mp(v

t
p +Ct

p(xi − xt
p)). (2)

Here
∑

pN(xi − xt
p) is the B-spline kernel, and vt

i is the updated velocity on grid node. Then we
use grid transfer to get the next state grid velocity vt+1

i as

vt+1
i = vt

i −
∆t

mi
(
∑
p

N(xi − xt
p)

4

r2
V 0
p

∂ψ

∂F
F t
p(xi − xt

p) + gti), (3)

where r is the grid resolution, V 0
p is the initial representing volume, ψ is a strain energy density

function related to Kirchhoff stress τ t
p, gti is a possible external force. Finally, we convert the grid

velocity to particle velocity at timestep t+ 1, alongside transferring of particle positions:

vt+1
p =

∑
i

N(xi − xt
p)v

t+1
i , xt+1

p = xt
p +∆tvt+1

p . (4)
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Since our work mainly focus on optimizing velocity field v(p, t), material properties F t
p , τ t

p, and Ct
p

update are not listed here. Please refer to Appendix A.1 for more information on the MPM simulation
process.

3.2 EXTRACTING SHAPE AND MOTION FROM VIDEOS

To extract the shapes and motions of arbitrary objects from casual videos, we model the object with
bones and neural blend skinning (Jacobson et al., 2014) following several existing non-parametric
reconstruction methods (Yang et al., 2022; Song et al., 2023a; Yang et al., 2023b;c; Song et al., 2024).
For a point xt in three-dimensional space at time t, we aim to determine its equivalent point x∗
within a canonical space. The model achieves the transition between xt and x∗ by incorporating
the rigid transformations linked to the coordinates of bones in 3D. We define Gt ∈ SE(3) as the
global transformation mapping the entire structure from the fixed frame to time t. We initialize
the canonical bone center coordinates B∗ ∈ RB×3 and let Jt

b ∈ SE(3) indicate the relative rigid
transformation adapting the b-th bone from its initial position B∗b to its transformed state Bt

b at time t.
These transformations can be described by the following relations:

xt =Wt,→(x∗) = GtJt,→x∗, (5)

x∗ =Wt,←(xt) = Jt,←(Gt)−1xt, (6)

where Wt,→ and Wt,← indicate forward and backward warping, Jt,→ and Jt,← represent the
weighted averages of B rigid transformations {Jt

b}b∈{1,...,B}, mapping the bones from their default
positions to their current configurations at time t. Since the primary aim of the reconstruction is to
offer motion cues for the target objects, we configure the number of bones B, to be the minimum
count of articulated segments required to accurately model the reference shape.

The skinning weights are defined as W = {w1, ..., wB} ∈ RB . For any 3D point x, the skinning
weights are calculated using the Mahalanobis distance dM (x,Bt) between the point and the Gaussian-
shaped bones under pose Bt, as indicated in the equation:

W = softmax(dM (x,Bt) +W∆). (7)

where W∆ is produced by a coordinate MLP to enhance the details. We optimize all the parameters
following the framework of BANMo (Yang et al., 2022).

3.3 PART MAPPING WITH SHAPE CORRESPONDENCE

To transfer the motion, we map the articulated parts from the reference shape to the target shape.
We first extract the surface meshes of the shapes. We abuse the notation to define the vertices of
the reference mesh and target mesh as Xref ∈ RNref×3 and Xtar ∈ RNtar×3. Inspired by Diff3F
(Dutt et al., 2023), we utilize pretrained 2D diffusion models to obtain the 2D semantic features on
multi-view renderings and back-project to 3D vertices to get fdiff ∈ RN×1024. However, solely
using semantic features may not provide enough information, for example, it cannot distinguish the
different limbs of humans and quadrupeds. Therefore, we adopt another geometry based pretrained
3D correspondence network (Zeng et al., 2021) to extract additional features fgeo ∈ RN×128, the
resulting features on mesh surfaces are given by:

fref = frefdiff∥f
ref
geo , f tar = f tardiff∥f targeo (8)

Where ∥ denotes concatenation. We segment the reference objects into B articulated parts based on
the optimized skinning weights. The part labels are noted as Yref ∈ RNref , the label for vertex n is
obtained:

yrefn = argmax(W(Xn)) (9)
Then, we calculated the mean feature for each part of the reference object:

f̄refb =
1

Nb

∑
n:yref

n =b

frefn (10)

We derive the correspondence between each vertex in the target mesh and the reference part as:

ytarn = argmax
b∈B

(
f̄refb · f tarn

∥f̄refb ∥∥f tarn ∥
) (11)
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We further perform an outlier removal based on the distance to part centroids to get ŷtarn . From the
mapped surface points ŷtarn , we can draw bounding boxes for each part and assign all the Gaussian
points in the bounding boxes to the corresponding part. The relative motion for b-th part can be
approximated as ∆Bt

b = Bt+1
b −Bt

b.

3.4 PHYSICS-INTEGRATED MOTION TRANSFER

The process of motion transfer commences with the utilization of the reconstructed prior alongside
the identified corresponding matching. This is achieved through the initialization of v at the onset of
each simulation, guided by the motion sequence observed in reference space, broadly indicating the
velocity direction. The initialized velocity for b-th part of target should be:

vt0 = υ̂t =
δ̂t

N∆t
, δ̂t = bt+1 − bt, (12)

where b represents Bb. In this section, we drop b in every notation for simplicity.

To better control the simulated motion and avoid cumulative errors, we employ a triplane representa-
tion (Chan et al., 2022) accompanied by a three-layer MLP to adjust the velocity field. The network
shares the same spatial information as the physics field, generating particle-level ∆v for each part of
the object. The velocity field before simulation can then be set to:

vt ← vt0 +∆vt. (13)

Based on the given velocity states and other physics properties, we animate the 3D static generation
with a differentiable MLS-MPM (Hu et al., 2018a) simulator. This process should be done between
adjacent two frames, estimating one motion sequence, which can be formulated as follows:

xt+1, vt+1 = S(xt, vt, θ,∆t,N), (14)

where xt denotes particle positions of b-th part at time t, and similarly vt denotes the velocities of
corresponding particles at time t. θ denotes the collection of the physical properties of all particles:
deformation gradient F t, gradient of local velocity fields Ct, mass m, Young’s modulus E, Poisson’s
ratio ν, and volume V . ∆t is the simulation step size, and N is the number of steps.

While the modification goal is to ensure that the resulting pose closely matches the reconstructed one,
one approach to addressing this issue is to approximate the displacement in the target space to be
consistent with the displacement in the reference space, considering the respective part sizes. With
this as a reference, we optimize velocity field v for all parts by a per-frame loss function:

Lt
x =

∑
b

L1(δ
t
b −

st
so
δ̂tb), (15)

where st, so is the coverage ratio for target space and reference space, respectively. To calculate the
displacement δ, we determine the positional difference between the part mass centroid of the initial
state and the simulated end state, which is slightly divergent from the initialization of velocity.

Furthermore, we employ total variation regularization across all spatial planes to promote spatial
continuity. Denoting u as one of the 2D spatial planes and uj,k as a feature vector on the 2D plane,
the total variation regularization term is formulated as:

Lt
tv =

∑
j,k

∥uj+1,k − uj,k∥22 + ∥uj,k+1 − uj,k∥22 (16)

Rather than directly training the complete video motion, we utilize the motion between two frames as
the training phase. Subsequently, after sufficient training in this phase, we advance to the next motion
phase. This training methodology ensures that the dynamics’ posture is as accurate as possible after
each motion sequence. After training the relative motion, we apply the global transformation Gt on
the entire 3D Gaussians for each frame to get the final rendering.

4 EXPERIMENTS

In this section, we demonstrate the versatility of our framework for generalized data and substantiate
the reliability of the resulting motions.

6
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4.1 EXPERIMENTAL SETTINGS

Implementation details. For text-to-3D generation, we choose LucidDreamer (Liang et al., 2024)
as our model, while for image-to-3D generation, we choose LGM (Tang et al., 2024) as our model.
Our reconstruction model is implemented based on Lab4D (Yang et al., 2022; 2023a). We set the
number of bones B = 11 for human, B = 13 for quadrupeds and B = 2 for laptops. For humans
and quadrupeds, we provide an average initial bone center coordinates for faster training. For laptops,
the bones are all initialized from the origin. The Gaussian objects from two generative models are
viewed as our simulation area, which has 1.5 to 2 million particles for LucidDreamer generation and
20 to 50 thousand particles for LGM. Considering simulation consumption, we use a 413 resolution
grid to downsample LucidDreamer output, ensuring consistency with the LGM output by order of
magnitude. We take the average coordinate of all particles within the same grid as our control point,
where physical simulations are applied. Upon completion of the simulation, particles within the same
grid point will share the same velocity field properties, ensuring the rigid body motion of the object.

For the optimization process, we utilize a triplane (Chan et al., 2022; Peng et al., 2020) followed by a
three-layer MLP, similar to PhysDreamer (Zhang et al., 2024). Although we did not optimize the
material properties, in our experiments, they retain physical significance and are adjustable. Users
can select Young’s modulus E between 1× 103 and 1× 105, and the Poisson’s ratio ν between 0.1
and 0.5, based on the desired visual effects. A higher E results in a more resilient object, while a
higher ν leads to a stiffer object.

We train our task on a single NVIDIA RTX 6000 Ada machine. Our training process requires 7-8
NVIDIA RTX 6000 Ada GPU minutes per frame, with an approximate memory consumption of 24
GB.

DMT edited video

…

…

Reference video

Reference video

…

…

DMT failure case

Ours

DMT + DreamGaussian4D

Ours

LLM generated prompt + DreamGaussian4D

Figure 3: Comparative Analysis between Sync4D and Other Frameworks. On the left, the reference
video alongside the edited video from DMT is displayed. The upper example shows a successful
adaptation, whereas the lower example is deemed a failure due to continual alterations in shape and
appearance across frames. On the right, the Sync4D outputs are highlighted, showcasing superior
motion and shape consistency relative to other frameworks.

Metrics. Our framework focuses on the realism and similarity between input video motion and
generated motion. For evaluation, we conduct a user study listing our results and the other experi-
mental results as a pair. Three questions are set for better evaluation: the overall generation quality of
the dynamic scene, the motion similarity of the input video and the 4D generation, and the shape
consistency of results. We conduct the evaluation on three pairs and recruit 34 participants to join the

7
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evaluation, getting a high score for all of the questions. Detailed experimental results can be referred
at Appendix A.2

4.2 RESULTS

Comparison with Generation Pipeline. We compare our proposed method with one generation
framework: video motion transfer (DMT) (Yatim et al., 2024) combined with DreamGaussian4D
(Ren et al., 2023). The compared approach involves generating a motion-transferred video from the
input casual video. This process begins by applying the DMT model to the initial video, effectively
transferring the motion patterns to a new text-prompt object. Subsequently, the motion-transferred
video is utilized in the DreamGaussian4D framework to generate the corresponding dynamics.

However, we observe in some complicated cases, the edited video from the DMT model has low
quality and inconsistency. To tackle this problem, we employ ChatGPT (OpenAI, 2024) to extract the
description of the original video and convert the subject term to our target object. Then, we input the
description to DreamGaussian4D to obtain corresponding dynamics.

As Figure 3 illustrated, for both experiments, our results outperform in both motion similarity and
shape consistency.

Figure 4: Comparison between novel pose transfer
method (middle) and ours (bottom).

Comparison with Pose Transfer Pipeline.
Most 3D object animation techniques rely on
skeletal structures. State-of-the-art automatic
rigging and skeleton generation methods are
predominantly trained on existing 3D assets,
such as humanoid characters and animals. How-
ever, with the advent of 3D generation tech-
niques capable of producing out-of-domain, cre-
ative assets, these methods often struggle to
generalize effectively. For instance, as demon-
strated in our tests (see Appendix Figure 9), auto-
rigging methods like RigNet(Xu et al., 2020)
perform poorly on non-standard objects, partic-
ularly those outside their training domain, such
as creatively shaped assets generated by 3D al-
gorithms.

We also investigated commercial auto-rigging
tools, including Mixamo(Adobe, 2024) and Any-
thing World(AnythingWorld, 2024). Mixamo is
limited to humanoid models and requires man-
ual joint annotation, while Anything World only
supports a narrow range of categories, such as
humanoids, quadrupeds, and insects. Both tools
demand high-quality meshes and often fail to handle AI-generated 3D shapes, even after remeshing.

Additionally, we compared our proposed method with the skeleton-free pose transfer technique
by (Liao et al., 2022), which, like others, is trained on conventional 3D assets and struggles with
non-character objects. Notably, our approach successfully transfers human motion to non-standard
objects, such as a Christian cross, demonstrating versatility beyond humanoid figures. Detailed
comparative results are provided in Figure 4, illustrating the robustness of our method across diverse
scenarios.

Matching Results.

Moreover, our matching method can handle correspondences between objects with different poses,
fully demonstrating the robustness of our approach. Additionally, we present an example of a
matching failure case, which leads to incorrect dynamic results.

All the matching details can be found in Appendix A.3.

Overall Results. We also present the qualitative results of our generated 3D dynamics in comparison
with reference video frames In Figure 5. Our method effectively captures the reference motion while

8
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Figure 5: We present the qualitative results of our generated 3D dynamics with reference video
frames. Our method generates dynamics that align with the reference motion while retaining the shape
integrity and temporal consistency. Please check the video results in the supplementary materials for
a more intuitive illustration.

𝐵 = 25

𝐵 = 13
Timeline

Figure 6: Ablation study on the number of bones in reconstruction to segment motion-related parts.
Upper Row: number of bones B = 25. Bottom Row: number of bones B = 13, indicating the
minimum articulated parts. Color black indicates removed outliers.

preserving both the integrity of the shape and the temporal consistency of the dynamics. Please refer
to Appendix A.4 for more scenarios and the supplementary materials for video results.

4.3 ABLATION STUDIES

Number of Motion-related Parts. As illustrated in Figure 6, the upper row presents the matching
and simulation results with the number of bones B = 23, close to the conventional settings in the
SMPL (Loper et al., 2023) and SMAL (Zuffi et al., 2017). We observe that some parts might be
redundant in modeling the motions, for example, the circled part near the creaking nest, which results
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in stiffness in the target motion. In the bottom row, we set the number of bones to B = 13, indicating
the minimum articulated parts, which produces better dynamics in the target shapes.

Optimization Process. We choose not to optimize the velocity field in the simulation for the ablation
study. Since the initialized velocity vt0 is a unit vector, resulting in an unobvious observation, we
manually scale the initialized velocity to a certain numerical number α. In this case, we prepare the
velocity field with the scaled velocity by parts, as vt ← αvt0. On the other side, we set up the full
experiment with the same velocity field and get both of the generated motions illustrated in Figure 7.
It is noticed that without optimization, relative errors are accumulated for the motion, affecting the
simulation to ill-posed states.

Timeline

Figure 7: Ablation study on optimization process. Upper Row: manually set up the initial velocity
field. Bottom Row: with optimization to the initial velocity field.

5 CONCLUSION

This paper introduces Sync4D, a cutting-edge approach to 4D generation guided by casually captured
video, which ensures exceptional motion realism and shape integrity. Our framework enhances
general 3D generation by transferring motion with precise guidance from video sequences. Moreover,
we incorporate physical simulations into the generation of 4D dynamics, optimizing the velocity field
appropriately. Experimental results confirm the efficacy of Sync4D. This method not only facilitates
intuitive control over 4D generation but also produces physically plausible dynamics, making it
highly suitable for integration into various applications such as game engines and virtual reality
environments.

Limitations. Although Sync4D is capable of generating diverse dynamics across various shapes and
complex motions, it encounters difficulties when transferring continuous spinning motions. While
Sync4D approximates revolute motions by segmenting the circular arc of rotation into multiple linear
segments, spinning motions can be hard to deal with. The limitation arises due to challenges in
accurately capturing and replicating such rapid, cyclical movements.

Our framework has a constraint regarding the alignment between the initial pose of the reference video
and the generated 3D representation; significant deviations between the two can impact performance.
This limitation stems from the model’s focus on learning relative motion rather than replicating
individual poses across frames. However, since our goal is to introduce motion controls to generated
shapes, it is feasible to manage the initial pose during 3D generation or adjust the reference video’s
starting frame. Additionally, a pose alignment module could be incorporated in future work to address
this limitation.

10
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A APPENDIX

A.1 MPM MATERIAL FIELD

Despite particle position x and velocity v being tracked in MPM simulation, particle material
properties are also sufficiently needed for updating. Firstly, we go through how material property
F , C, ν, and E can influence the deformation of the object. Our Gaussian model is viewed as a
continuum mechanics model, who utilize a deformation map ϕ(X, t) to record deformed space from
base space X. For numerical calculation, F is introduced to store the deformation gradient of ϕ,
know as the Jacobian of the map:

F = ∇Xϕ(X, t) (17)

F measures the local rotation and strain of the deformation and helps formulate the stress-strain
relationship.

Another two physics parameters noted are Shear modulus µ and Lamé modulus λ, which are related
to Young’s modulus E and Poisson’s ratio ν:

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
. (18)

These two parameters help formulate Kirchhoff stress τ , which can be adapted to different elasticity
and plasticity models. We utilize the fixed corotated elasticity model, whose Kirchhoff stress τ is
defined as:

τ = 2µ(FE −R)FET

+ λ(J − 1)J, (19)

where F = FEF P is multiplicative decomposition on F , whileR = UV T is a matrix from Singular
Value Decomposition on F as F = UΣV T . J is the determinant of FE .

In the process of MPM simulation, F , C, and τ are also updated in P2G, G2P process, which can be
denoted as:

Ct+1
p =

4

r2

∑
i

N(xi − xt
p)v

t+1
i , (20)

F t+1
p = (I +∆tCt+1

p )F t
p , (21)

τ t+1
p = τ (FE,t+1

p ). (22)

This is just one case application for MPM simulator and for more details, please refer to (Hu et al.,
2018b; 2019; Jiang et al., 2017)

A.2 USER STUDY RESULTS

We conduct the user study on three sets of experiments, which are from human to cross, from laptop to
sea shell, and from human to monkey toy. Participants are asked to choose between renderings from

Table 1: Human study on Sync4D (Ours) over DMT generated video and DreamGaussian4D dynamics
generation.

Overall Visual Quality human-to-cross laptop-to-shell human-to-monkey
Ours over DMT 82.4% 100% 94.1%
Ours over DreamGaussian4D 100% 94.1% 100%

Motion similarity
Ours over DMT 97.1% 94.1% 100%
Ours over DreamGaussian4D 94.1% 97.1% 100%

Shape consistency
Ours over DMT 88.2% 100% 94.1%
Ours over DreamGaussian4D 88.2% 94.1% 97.1%
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Sync4D and competitor’s generation forcibly. The three evaluation metrics are Overall visual quality,
Motion similarity, and shape consistency. We render our dynamics in a fixed view, comparing it to
video motion transfer output and renderings of DreamGaussian4D. Table A.1 shows the remarkable
advantage of Sync4D over other methods.

Figure 8: We showcase the articulated part matching between the reference and target shapes.
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Figure 9: Auto rigging method RigNet fails on our generation.

A.3 MATCHING DETAILS

Matching Results. In Figure 8, we present the results of articulated part matching between the
reference and target shapes. Black color indicates the outliers that have been removed from the
correspondence matching. As shown in row 2, for the human-cross pair, our method allows for
reasonable matching even between pairs that are topologically different.

Figure 10: Correspondence between two different
posed objects.

Matching Sensitivity on Poses. Our method ro-
bustly addresses pose mismatches through a so-
phisticated correspondence matching system, as
illustrated in Figure 10. Our approach leverages
both semantic and spatial features to establish
correspondences. Semantic features are derived
from advanced generative models such as DINO
and Stable Diffusion, which capture rich seman-
tic details. Additionally, we incorporate spatial
features from CorrNet3D, a model specifically
trained in a self-supervised manner to establish
dense correspondences across shapes in vary-
ing poses. This dual-feature strategy ensures
our correspondences are not only stable but also
accurate, even across diverse and challenging
poses.

Failure Case. Please refer to Figure 11 for fail-
ure case. In this human-tree case, not only does
correspondence matching fail, but also motion
is not guaranteed.
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Figure 11: Failure case on human-tree matching and motion transfer.

A.4 MORE QUALITATIVE RESULTS

We present additional motion transfer results involving shapes with different topologies and motions
across various scenarios. Please refer to Figure 12

Figure 12: More qualitative results.
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