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Abstract

Diffusion models have recently gained signifi-
cant attention due to their effectiveness in vari-
ous scientific domains, including biochemistry.
When trained on equilibrium molecular distribu-
tions, diffusion models provide both: a generative
procedure to sample equilibrium conformations
and associated forces derived from the model’s
scores. However, using the forces for coarse-
grained molecular dynamics simulations uncovers
inconsistencies in the samples generated via clas-
sical diffusion inference and simulation, despite
both originating from the same model. Particu-
larly at the small diffusion timesteps required for
simulations, diffusion models fail to satisfy the
Fokker-Planck equation, which governs how the
score should evolve over time. We interpret this
deviation as an indication of the observed incon-
sistencies and propose an energy-based diffusion
model with a Fokker-Planck-derived regulariza-
tion term enforcing consistency. We demonstrate
the effectiveness of our approach on toy systems,
alanine dipeptide, and introduce a state-of-the-
art transferable Boltzmann emulator for dipep-
tides that supports simulation and demonstrates
enhanced consistency and efficient sampling.

1. Introduction

Methodological advancements and increasing computa-
tional resources have allowed molecular dynamics (MD)
simulations to reach biologically relevant timescales
(Lindorff-Larsen et al., 2011; Wolf et al., 2020). However,
scaling MD to larger or slower-changing systems remains
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computationally challenging. Coarse-graining (CG) meth-
ods address this by reducing the system dimensionality, but
this comes at the cost of physical resolution, making it im-
possible to model interactions using traditional force fields
accurately. Learning-based approaches (Clementi, 2008;
Noid, 2013; Husic et al., 2020; Charron et al., 2023), offer
an alternative by approximating these interactions.

Diffusion models (Ho et al., 2020; Song et al., 2021) have re-
cently demonstrated considerable success in various molec-
ular tasks, including on proteins and larger systems, usually
relying on some form of coarse-graining (Abramson et al.,
2024; Watson et al., 2023; Corso et al., 2023; Plainer et al.,
2023b; Lewis et al., 2024). The idea behind diffusion mod-
els is to learn a reverse stochastic process that removes noise.
Starting from pure noise, the model iteratively denoises the
samples until it resembles the data distribution, and the
neural network models the so-called score V ,, log p.

When the training data accurately reflects samples from
the equilibrium distribution of molecules, the learned score
can be used not only for classical independent diffusion
sampling, but also for MD simulations (Arts et al., 2023),
providing access to thermodynamic and kinetic properties
beyond static distributions. However, extracting the score
from diffusion models (or the energy log p® for that matter)
does not work well in practice, even for low-dimensional toy
systems (Koehler et al., 2023; Li et al., 2023). While small
local inaccuracies have little effect on independent sampling
in diffusion models, using the extracted model for energy
estimation reveals inconsistencies that can accumulate.

Analogously, while diffusion models should satisfy the
Fokker-Planck equation (Sarkkd & Solin, 2019), previous
work shows that existing diffusion models violate this con-
dition (Lai et al., 2023), especially when evaluated close
to the data distribution. We hypothesize, and subsequently
show empirically, that enforcing the Fokker-Planck equation
significantly improves the consistency of the learned energy
log p® and with it the alignment between independent sam-
ples and long-running simulations. We can see this behavior
demonstrated on a toy example in Figure 1.

To implement this, we parameterize the score as the gra-
dient of an energy function to ensure the learned score is
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Figure 1: Training diffusion models on a simple mixture of two Gaussians reveals inconsistencies. While classical iid diffusion sampling
recovers both modes, when estimating the unnormalized density at ¢ = 0, we observe that the model learns a third mode and an incorrect
mass distribution. Using this model for simulation produces invalid results. Introducing our Fokker-Planck regularization makes the

model more self-consistent.

conservative, and we have access to the energy log p?. With
this, we can introduce a Fokker-Planck-based regulariza-
tion that minimizes deviations from theoretical consistency.
However, directly evaluating the Fokker-Planck equation
requires costly divergence computations, so we derive a
computationally efficient “weak” residual formulation that
requires only first-order derivatives. By further partitioning
the diffusion timeline into distinct intervals handled by sepa-
rate models, we can selectively apply the regularization only
to the high error regions. This allows the model to learn to
focus on the details and reduces training and inference costs.
In Section 5, we validate our approach on a toy system,
alanine dipeptide, and demonstrate its scalability by training
a transferable Boltzmann emulator across dipeptides.

Our main contributions in this work are as follows:

1. We show how to regularize the energy of diffusion
models using the Fokker-Planck equation, enabling
consistent molecular dynamics simulations alongside
traditional sampling.

2. We demonstrate that training on a small sub-interval of
the diffusion process suffices for stable simulation. By
combining this with smaller models trained on com-
plementary intervals, we achieve efficient training and
inference without sacrificing sampling performance.

3. We develop a state-of-the-art transferrable Boltzmann
emulator for dipeptides capable of high-quality inde-
pendent sampling and consistent simulation.

2. Background
2.1. Generative Score-based Modeling

Diffusion models (Song & Ermon, 2019; Ho et al., 2020;
Song et al., 2021) are self-supervised generative models
that gradually corrupt the training data with noise and learn
to reverse this stochastic process. The forward process is
typically defined by a stochastic differential equation (SDE)

dz = f(z,t)dt + g(t) dw, (1)

where w denotes the standard Wiener process, and f and g
define the drift and diffusion coefficient respectively. To gen-
erate samples, diffusion models simulate the corresponding
reverse-time SDE

dz = [f(z,t) — ¢*(t) Ve logpe(z)] dt + g(t) dw, (2)

starting from Gaussian noise at time ¢t = 1, they iteratively
denoise until a sample is produced at t = 0. Here, p;(x)
denotes the density of x at time ¢, which the model aims to
approximate. w denotes the time-reversed Wiener process.

As for f and g, the choice depends on the specific diffusion
formulation. In this work, we adopt the variance preserving
(VP) SDE formulation introduced by (Song et al., 2021).

Denoising score matching. Diffusion models are typi-
cally trained using denoising score matching (Vincent, 2011;
Song et al., 2021), which minimizes the squared error be-
tween a time-dependent learned score function s (x(t),t)
and the true score of the transition kernel po;(x(t) | 2(0))
conditioned on the training data «(0)

B [A0) [|8° (1), 1) ~ Vg logpor(a(t) | 2(0)) 3]
3)
where A(t) is a time-dependent weighting function. For
brevity, we will denote the denoising diffusion loss
Lpsm[s°](z, 1) as

A(t) Hse(a:(t), t) — V) log pos (z(1) | m(O))Hz . @

Parameterization and instabilities. With an affine drift f,
we can write the closed-form solution of pg; as a Gaussian
(Sarkkd & Solin, 2019), and can efficiently evaluate the loss

with
2
2] 7
)
where 14(z(0), 1), o(t) depend on the concrete choices for

f and g. By construction, o(0) = 0, ensuring interpola-
tion between data and noise. Minimizing the denoising

Ecnvo,n) [A(t) 8% (1(x(0),t) + o(t)e,t) +

)
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loss yields an approximation of the unconditional score
s%(x,t) ~ V, log p;(x). Details on the concrete choices
for this formulation can be found in Appendix A.1.

As t — 0, this parameterization introduces numerical in-
stability, where o (t) vanishes and the loss explodes. This
instability makes training difficult at small timescales (Kim
et al., 2022) and is typically mitigated by truncating the train-
ing interval to (e, 1) for some ¢ > 0. While effective for
training stability, this inherent instability in training limits
the model’s accuracy at small ¢, which is critical for appli-
cations requiring reliable scores close to the data manifold,
as targeted in this work.

2.2. Boltzmann Distribution

Langevin simulation. Samples from the Boltzmann dis-
tribution of molecular systems are typically generated us-
ing MD simulations. A common approach is to simulate
Langevin dynamics (Leimkuhler & Matthews, 2015), which
corresponds to integrating the following set of SDEs

dx =wvdt, (6)
Mdv =-V,U(x)dt — yMuvdt + \/2vkpT dw;.

M denotes the particle masses, v the velocities, v is a
friction constant, kg7 a constant, and w; is the standard
Brownian motion. Note that ¢ here refers to the physical
time instead of the diffusion time used earlier. Integration of
this system requires access to the forces —V,U. However,
in settings where direct force evaluation is not feasible, such
as in CG models, a surrogate force function is required. In
this work, we propose using the score s°(x, ¢ = 0) for this
purpose, as we describe next.

Extracting forces. After performing a long-running MD
simulation, the samples are distributed according to the
Boltzmann distribution (Boltzmann, 1868) such that p(z) =

exp(— %) /Z, with an underlying potential U and a nor-
malization constant Z. Training a diffusion model on this
data establishes the following relation at t = 0

s%(xz,t = 0) =~ V, log pi—o(z) O
= V. logexp (— U($>> —VglogZ

kpT
Ux)
“kgT

=-V 0.

This reveals that the score is proportional to —V U (z), the
forces acting on the system. Intuitively, this means that as
the diffusion process gets closer to the data, the sampling be-
comes more “physical”. Importantly, this equivalence shows
that any diffusion model trained on Boltzmann-distributed
data can be used not only for independent sampling but
also for simulating molecular dynamics by leveraging the
learned score as a force estimator and Equation (6).

Unlike prior works that require explicit force labels for
training (Husic et al., 2020; Durumeric et al., 2023; Charron
et al., 2023; Kriamer et al., 2023), this observation allows us
to learn a model directly from equilibrium samples. This is
particularly useful when force labels are unavailable.

3. Method

We introduce a Fokker-Planck-based regularization that im-
proves the consistency between iid samples and the learned
energy in diffusion models, to enable more accurate molecu-
lar dynamics. To this end, we leverage a conservative neural
network parameterization to evaluate the time derivative of
the model’s unnormalized density to enforce consistency
with the Fokker-Planck equation in training.

3.1. Improving Consistency with Fokker-Planck

The Fokker-Planck equation (@ksendal, 2003; Sirkkd &
Solin, 2019) is a partial differential equation that describes
the time evolution of probability densities in stochastic pro-
cesses, including diffusion models. For the diffusion SDE
introduced in Equation (1), the log-density formulation of
the Fokker-Planck equation (Lai et al., 2023; Hu et al., 2024)
can be written as

O log pi(x) = Fp(z,t) )

A

1 .
= 592(15) [dlvm(Vm log pt) + ||V log pi |3
- <.fa Vm 10gpt> - lem(f),

where div,, is the divergence operator div, F = tr (0, F).

Fokker-Planck regularization. The energy log p? of a
well-trained diffusion model should satisfy Equation (8).
However, we will show empirically in Section 5 that dif-
fusion models do not fulfill the Fokker-Planck equation,
particularly for small ¢. This aligns with previous findings
on the self-consistency of diffusion models (Koehler et al.,
2023; Lai et al., 2023; Li et al., 2023), and empirical re-
sults where MD simulations with the score do not match the
data distribution (Arts et al., 2023). Building upon this prior
work, we show that by minimizing this Fokker-Planck devia-
tion, the model’s score V,, log pg more accurately describes
the forces and aligns better with iid samples.

The natural approach to ensure that the model is consistent
with Equation (8) is to introduce a regularization term to the
diffusion loss. For this, we propose to minimize the error

2
| Rl t)]l; = [|Fpo (2. t) = D dogpf (@), ©)
and define the corresponding loss as Lgp[log p°](z,t) =

App(t)D~2 ||R(x, )|, where 2 € RP and App is a time-
dependent weighting function, which we set to be the same
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as A. This formulation is only feasible when using a conser-
vative energy-based model, as we need to evaluate ; log p?.
With this, the full training objective becomes

E [Losu[Va log %) (@(2), 1) + o - Lrellog p°) (2 (1), )] |
(10)
where « is a hyperparameter that determines the regulariza-
tion strength. As we will show in Section 5, minimizing this
regularized loss improves consistency between iid sampling
and Langevin simulation of diffusion models, allowing for
more accurate MD simulations.

Weak residual formulation. The exact computation of
the residual R involves costly higher-order derivatives, es-
pecially the divergence term div, (V4 log p?) can be chal-
lenging to compute for high-dimensional data. To reduce
this overhead, we introduce a series of approximations and
adopt a residual in the weak formulation (Guo et al., 2022)
such that

R(z,t) = E, [R(z + v,1)] (11)
with v ~ N(0,021) and a small o > 0. As o approaches
0, R(z,t) will be equal to R(x, ).

Theorem 3.1. Using the weak residual formulation, R(x,t)
can be estimated by the following unbiased estimator, which
only requires the computation of first-order derivatives

~ v Sew v _Sgw_v
R(w,tiv) = Sg2(n) (1) ol sl vl

2 o 20
1
+ 592(16) Hse(w + ut)”i

- <f($ + Uat)7 89(3: + ’U,t)>

— divy(f(z +v,1))

— 9y log pf (x + v), (12)
where s = Vlogp®. An unbiased estimator of the
squared residual needed for optimization is

~ 2 ~
HR(M)HZ ~ Rz, t;v) - Rz, t;v),  (13)
with v, v’ ~ N(0,0%1).
Proof. See Appendix A.2. O

We further reduce computational cost by estimating
Oy log p? using finite differences (Fornberg, 1988):
By log pf ~ 12108pl (@t + ha) — hjlogp? (.t — h)
’ hsha(hs + ha)

(14)
(h2 — h2)log p? (x, t)
hsha(hs + hq)

In combination with Theorem 3.1, this allows for efficient
approximation of the loss Lgp.

+

3.2. Physically Consistent Model Design

To model physical systems accurately and support Fokker-
Planck regularization, we must enforce known physical
constraints through an appropriate parameterization and
choice of architecture.

Conservative model parameterization. Diffusion mod-
els commonly parameterize the score s® = NNET(x,t)
directly, whereas an energy-based parameterization of the
score Vg logp? = V,NNET(z,t) requires differentia-
tion during the forward pass. While an energy-based for-
mulation has been explored previously (Song & Ermon,
2019), nowadays it is less common in practice (Du et al.,
2023), as most applications require only the score and there
is no practical difference in sampling quality (Salimans &
Ho, 2021). However, for MD simulations, the conservative
property provided by the energy-based parameterization is
crucial, since it stabilizes the simulation (Arts et al., 2023),
as demonstrated in Appendix C.2. This means that access
to V4 log p; needed for computing Lgp introduces no addi-
tional overhead beyond what is already needed for MD.

Architecture. Our choice for the score is conservative,
translation invariant, and learns SO(3) equivariance. Simi-
larly to (Arts et al., 2023), we use a graph transformer (Shi
et al., 2021), making the score permutation equivariant and
achieving translation invariance by using pairwise distances
instead of absolute coordinates. For the rotation equivari-
ance, recent high-profile work (Abramson et al., 2024) has
shown that the architecture itself does not necessarily need
to enforce this property. Hence, we opted to apply random
rotations during training so that the network learns rotational
equivariance via data augmentation.

The main part of the architecture can be summarized as

€ =&; — Ly, (15)
nz('O) = [aivt]v

R0 = 60 (W ).

where x are the coarse-grained positions, e are the edge
features, a are atom features, ¢ is the diffusion time, n(¥)
are the node embeddings of layer [, and ¢ is one layer of the
graph transformer. When training on a single molecule, we
use one-hot atom types; for the transferable model, we use:
atom identity, atom number, residue index, and amino acid
type following (Klein & Noé, 2024).

Finally, to achieve conservativeness, we map the last node
embeddings n") € R to scalar energies via 1) : RX —
R, and compute the score as Vg Ziw(ngL)). Overall,
this yields a translation-invariant, approximately rotation-
equivariant, conservative architecture that also avoids issues
caused by mirror symmetries (Trippe et al., 2023; Klein &
Noé, 2024).
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3.3. Mixture of Experts

Using conservative models and Fokker-Planck regulariza-
tion introduces computational overhead, especially during
training. We will show in Section 5, that, particularly at
large diffusion times ¢, this precision is unnecessary. To ad-
dress this, we adopt a time-based mixture of experts (MoE)
approach to allocate model capacity more efficiently and
further improve model consistency.

Instead of training a single model for all ¢ € (0,1), we
partition the interval into disjoint subintervals Zy,Z, ...
with J; Z; = (0,1), and assign a separate expert 8¢ to each
interval. The overall score is

s (x,t) = Zwi(t)sf(a},t), (16)

where w(t) € [0,1] is a time-dependent gating function
that selects the current active model. Similar ideas have
been explored in the image domain to fine-tune models and
improve sampling performance (Balaji et al., 2023; Ganj-
danesh et al., 2025). In our setup, only one model is active
at a given ¢, simplifying memory and compute requirements
and allowing all models to be trained in parallel. Although
training each model independently from the others induces
discontinuities at the boundaries where two models switch,
we observe no significant drawbacks in practice.

This scheme has two main advantages: First of all, our exper-
iments reveal that introducing the loss from Equation (10)
to the whole model can lead to overregularization at larger
timescales, degrading iid sampling performance. This sug-
gests that models for large ¢ do not require Fokker-Planck
regularization (and no conservative parameterization) to be
accurate. By using simpler unconstrained models for larger
timescales, we can improve performance while preventing
overregularization. Further, as each expert specializes on a
subinterval of ¢, it can focus its capacity accordingly. Ex-
perts for small ¢ handle fine-grained structure, while those
at large t model coarse features (Ganjdanesh et al., 2025).
As this makes the structures each model sees more similar,
MOoE can further stabilize and improve simulation results,
even when keeping the overall number of parameters fixed.

4. Related Work

In recent years, a variety of deep learning methods have
been proposed to enhance or replace molecular simula-
tion. The work most closely related to ours is that of Arts
et al. (2023), who employ an energy-based diffusion model
for coarse-grained systems. However, their approach fails
to maintain consistency between sampling and simulation.
Moreover, they mitigate some of the inconsistencies we de-
scribe by evaluating the diffusion model at larger timesteps
t > 0, which introduces additional noise and reduces struc-
tural fidelity. We compare against this model in Section 5

and show that evaluating at a different ¢ is not a suitable
way to prevent this mismatch. Several works instead learn
coarse-grained force fields via a force-matching objective
(Husic et al., 2020; Kohler et al., 2023; Charron et al., 2023;
Durumeric et al., 2024). Rather than training a model to
represent the data distribution directly, these methods aim
to approximate the target forces. However, these models
typically require system-specific energy priors, which rely
heavily on domain knowledge.

Other approaches bypass MD sampling entirely, generating
Boltzmann distributed configurations either sequentially, by
conditioning each sample on its predecessor (Dibak et al.,
2022; Plainer et al., 2023a; Schreiner et al., 2023; Tam-
agnone et al., 2024), or completely independently (Noé
et al., 2019; Wirnsberger et al., 2020; Kohler et al., 2020;
Midgley et al., 2023; Klein et al., 2023b; Abdin & Kim,
2023; Kim et al., 2024; Wu & Noé, 2024; Schebek et al.,
2024; Diez et al., 2024; Tan et al., 2025). These methods
frequently leverage diffusion- or flow-based architectures.
In the latter case, for all-atom systems with known energy
functions, they can guarantee asymptotically unbiased sam-
pling via reweighting or integration into an MCMC scheme.
Although, this is often a desirable property, extending it to
larger systems remains challenging, as CG is not possible.

The inaccurate behavior of the score function has also been
studied in low-dimensional settings by (Koehler et al., 2023;
Li et al., 2023), who demonstrated inconsistencies and
derived error bounds. (Lai et al., 2023) also proposed a
Fokker—Planck-inspired regularization; however, unlike our
approach, their method applies a higher-order regulariza-
tion to the score itself to improve iid sample quality, rather
than enforcing consistency through the potential. Relat-
edly, Hu et al. (2024) propose a score-based solver for high-
dimensional Fokker—Planck equations, focusing on general
SDE forward problems, and (Du et al., 2024) use the Fokker-
Planck equation to describe MD as a series of Gaussians.

5. Experiments

In this section, we compare models using two modes: classi-
cal diffusion sampling (iid) and Langevin simulation (sim).
We consider a model to be consistent when the outputs of
these two modes match. We demonstrate that our approach
improves the consistency of diffusion models across several
settings. We begin with a two-dimensional toy example—
the Miiller-Brown potential (Miiller & Brown, 1979)—
followed by alanine dipeptide, and conclude with a model
that generalizes across dipeptides. The code is available at
https://github.com/noegroup/ScoreMD.

Metrics. We mainly compare the 2D free energy surfaces
across different methods. For molecules, we use the dihe-
dral angles ¢, v to reduce the data to two dimensions. We
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Figure 2: Comparing free energy plots of different models on the Miiller-Brown potential for classical diffusion sampling (iid) and
Langevin simulation (sim). The energies should align with the training data (Reference).

report an approximated Jensen-Shannon (JS) divergence to
describe the similarity between the sampled and reference
densities. We also report the potential of mean force (PMF)
error, which computes the squared distance between the
negative logarithms of the samples and the reference, giving
more weight to low-density regions (Durumeric et al., 2024).
More details can be found in Appendix B.1.

Baselines. We train a conservative Diffusion model and
have re-implemented the Two For One method (Arts et al.,
2023) using a continuous-time diffusion process to ensure
comparability. Both methods use the same architecture,
with the only difference being that Twwo For One evaluates
at a non-zero diffusion time for simulation. For transfer-
ability, we re-train the Transferable Boltzmann generator
(BG) model (Klein & Noé, 2024) with coarse-graining and
compare it without reweighting.

We compare these baselines with three models introduced in
this work: Mixture refers to the MoE scheme with three mod-
els trained on the intervals (0, 0.1), [0.1,0.6), and [0.6, 1.0).
All models are combined for iid sampling, while only the
smallest-timescale model is used for simulation. The mod-
els for larger timescales are reduced in size and complexity.
Fokker-Planck refers to a model where we use the loss from
Equation (10) to train a single model. Both combines these
two approaches with the regularization only applied to the
smallest-timescale model.

5.1. Miiller-Brown Potential

We first evaluate on the Miiller-Brown potential using 100k
samples drawn from its Boltzmann distribution in Figure 2.
All methods produce iid samples that match the Reference.
However, when using the learned score for Langevin simu-
lation, the standard Diffusion model fails to reproduce the
correct distribution and undersamples the low-probability
state, highlighting the inconsistency between sampling and
simulation. Although having roughly the same number
of parameters, the Mixture model partially improves this,

but consistency is only achieved with Fokker-Planck regu-
larization. Combining Both approaches further improves
performance (also compare Appendix C.1).

5.2. Alanine Dipeptide

Dataset. We use 50k samples from an MD simulation of
alanine dipeptide in implicit solvent (Kohler et al., 2021),
coarse-grained to five atoms: [C, N, CA, C, N], as shown
in Figure 3 (a). When evaluating the models, we perform
1.2us of simulations with a 2 f s timestep, starting from 100
different training conformations and downsample to match
the training set size for consistency.

Inconsistent sampling. Figure 3 (b) compares the free
energies of the sampled dihedral angles for iid sampling and
Langevin simulation (sim). While all methods can match the
training distribution under iid sampling, simulation quality
varies, and existing models show inconsistencies. Standard
Diffusion fails to recover the low-probability mode (i.e.,
@ > 0) completely, even when starting a simulation from
these regions. Mixture generally improves the results, but
still does not find the other mode. This is reflected in the
numerical results in Table 1, where Mixture achieves lower
means and smaller variance, but simulation errors remain
noticeable. We attribute this behavior to the smaller time
range, which focuses the model’s attention, allowing it to
learn a better, more stable optimum.

Noisy simulation. Two For One improves consistency by
increasing the diffusion time ¢ > 0 where the model is
evaluated for simulation. However, this also introduces ex-
cessive noise, which degrades structural fidelity. Although
iid sampling is not affected by this, the structures produced
by Langevin simulation show significant deviations. For
example, the W1 distance for the C—N bond is 48.144-13.03
larger than for Both, as can be seen in Figure 4.

Consistent models. Fokker-Planck regularization enables
the model to recover the missing states without modifying
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Figure 3: Comparison of methods on alanine dipeptide. (a) The coarse-graining scheme. (b) Comparison of the Ramachandran plots
of different methods for iid sampling and Langevin simulation. (¢) The projection of the free energy surface and differences along the
dihedral angle ¢ for samples generated with simulation.

Method iid JS (1) sim. JS (}) iid PMF (})  sim. PMF (|)
Diffusion 0.0081 £ 0.0003  0.0695 4+ 0.0517  0.095 4 0.003  1.047 4 0.924
Two For One  0.0081 & 0.0003  0.0158 £ 0.0002  0.098 = 0.006  0.206 + 0.004
Mixture 0.0080 + 0.0004 0.0353 +0.0117  0.092 + 0.007  0.388 + 0.109
Fokker-Planck  0.0084 4= 0.0002  0.0088 £ 0.0006 0.098 £ 0.006  0.105 + 0.011
Both 0.0079 £ 0.0002  0.0086 + 0.0004  0.089 & 0.005 0.099 =+ 0.003

Table 1: Comparison of alanine dipeptide with JS divergence and
PMF error. To compute the mean and the standard deviation, we
have trained and evaluated three models with three different seeds.
Lower values are better.

= Reference

= Diffusion
Two For One

—— Mixture

—— Fokker-Planck

= Both

1.0 1.2 1.4 1.6

Figure 4: Histogram of the C-N bond length in A for MD simula-
tion (sim) for various models. We can see that only Two For One
produces structures with significantly worse accuracy.

the diffusion time, and thus preserving structural accuracy.
Table 1 shows that the regularization substantially improves
consistency between iid and simulation, although iid per-
formance slightly declines in favor of improved simulation
performance. Combining MoE with Fokker-Planck regular-
ization for Both, enhances simulation quality further while
mitigating the drop in iid performance. The resulting model
achieves close alignment between iid and simulation, and
captures the free energy landscape in simulations accurately
(see Figure 3 (c)). The superior iid performance of Both
over Fokker-Planck suggests that applying regularization at
larger diffusion times may introduce too many constraints
on the model and hence degrade generative quality.

5.3. Transferability Across Dipeptides (two amino acids)

Dataset. We use the dataset introduced by (Klein et al.,
2023a) that consists of 49k samples from implicit solvent
simulation of 1us for all 400 dipeptides (i.e., all possible
combinations of the standard 20 amino acids). We have
coarse-grained the dipeptides and kept the atoms [N, CA,
CB, C, O] for each amino acid, which is a common coarse-
grained resolution (Charron et al., 2023). With this coarse-
graining scheme, up to 10 atoms are retained per molecule,
as seen in Figure 5 (a). In total, we simulate 30ns for each
dipeptide starting from 10 random conformations and a
timestep of 0.5fs.

Overdispersion. By inspecting the free energy in Figure 5
(b), we can observe that, again, all models are capable of
learning to produce independent samples that resemble the
reference distribution. The samples produced by Transfer-
able BG contain more noise and also sample some unlikely
states. While this does not produce statistically significant
differences in Table 2, it produces a higher mean with a
similar variance than other methods. Further, note that this
model does not support simulation.

When using the score for simulation, Two For One produces
broader, overdispersed distributions, as visible in Figure 5
(b). This overdispersion also affects structural features such
as bond and inter-atom distances, consistent with the behav-
ior observed for alanine dipeptide (see Appendix C.4.1).

Advantages of mixture. For this specific dipeptide, Both
provides no clear improvement in sampling or simulation
over Fokker-Planck, which becomes apparent in Figure 5
(c). However, we have to consider two things: First, MoE
reduces computational cost by applying training regulariza-
tion only for small timescales and using simpler models
for larger timescales, reducing sampling time by over 50%
in this specific case (see Appendix C.3). And second, for
some dipeptides (e.g., NY or RV), MoE is essential for
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Figure 5: Comparison of methods on testset dipeptide AC. (a) The coarse-graining scheme. (b) Comparison of the Ramachandran plots
of different methods for iid sampling and Langevin simulation. (¢) The projection of the free energy surface and differences along the
dihedral angle ¢ for samples generated with simulation.

Method iid JS (1) sim. JS (}) iid PMF (})  sim. PMF (})
Transferable BG ~ 0.0183 & 0.0070 - 0.230 + 0.119 -

Diffusion 0.0155 4 0.0083  0.2256 4 0.1304  0.206 + 0.159  6.515 £+ 3.175
Two For One 0.0153 4 0.0080  0.0466 + 0.0114  0.203 £ 0.149  0.741 + 0.319
Mixture 0.0155 4 0.0078  0.0444 4 0.0237  0.200 + 0.127  0.658 £ 0.407
Fokker-Planck 0.0154 & 0.0060  0.0200 + 0.0106  0.192 £ 0.118  0.290 + 0.222
Both 0.0158 4 0.0077  0.0158 £ 0.0052  0.197 + 0.124  0.183 £ 0.070

Table 2: Comparison of dipeptide AC with JS divergence and
PMF error. To compute the mean and standard deviation, we have
averaged the metrics across the dipeptides from the test set. Lower
values are better.

consistency (see Appendix C.5), which also results in a sig-
nificantly lower JS divergence and PMF error in Table 2.
Also in this case, MoE improves the results over Diffusion.

Fokker-Planck error. Figure 6 shows the devia-
tion from the Fokker-Planck equation, quantified as
|| Fpe (2, t) — 0y log p? ()| ,» plotted on a log scale. For
models using MoE, this error is evaluated only up to
t = 0.1, since only the small-timescale model is conser-
vative. Across all methods, the error is highest near ¢t = 0.
Applying the Fokker-Planck regularization significantly re-
duces this error, correlating with the improved sampling-
simulation consistency observed earlier.

Interestingly, while Mixture improves consistency, its
Fokker-Planck error remains comparable to that of unreg-
ularized models. This suggests that Fokker-Planck regu-
larization and MoE improve consistency through different
mechanisms, which explains why combining them outper-
forms either approach on its own, making Both again clearly
the best model (compare Table 2).

6. Conclusion, Limitations and Future Work

In this work, we investigated the gap between independent
sampling and simulation using diffusion models. We intro-
duced a Fokker—Planck-based regularization on the model’s
energy and showed that reducing the deviation from the

— — Diffusion
Two For One

— = Mixture

— — Fokker-Planck

— = Both

Fokker-Planck Error
S
47"'—_

________

0.0 0.2 0.4 0.6 0.8 1.0
Diffusion time t

Figure 6: Comparing the Fokker-Planck error for log p® of mul-
tiple models. This figure plots the error over the diffusion time ¢.
The y-axis is in log scale, and we can see that the largest error for
all models is at ¢t = 0.

Fokker—Planck equation improves the consistency of the
model. Additionally, we demonstrated that restricting the
model’s focus to smaller diffusion timescales further im-
proves simulation quality. We validated these findings
across multiple systems, from toy examples to realistic
biomolecular systems. This improved consistency enables
the same model to be used for sampling and simulation,
giving access to both kinetic and static properties.

Despite the theoretical motivation behind our approach, the
results presented are primarily empirical. While our re-
sults indicate that reducing the Fokker—Planck deviation
improves consistency, we do not claim this to be the only
source of error. In fact, due to the fundamental differences
between diffusion sampling and Langevin simulation, per-
fect alignment may not be achievable without limiting model
expressivity. Additionally, evaluating the Fokker—Planck
residual introduces computational overhead, which we miti-
gate through a weak residual formulation, although it still
requires multiple forward passes of the model in training.

Future work could explore applying this approach to larger
molecular systems, including proteins. It may also be
promising to fine-tune pre-trained models with the proposed
regularization or to train an auxiliary model to correct the
identified inconsistencies.
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A. Proofs, Derivations, and Mathematical Details
A.1. Diffusion

We have opted to use VP diffusion (Song et al., 2021) throughout the paper, as such the drift and diffusion can be written as

fa.t) = ~5B(0, 9l = VB, a7
where
ﬁ(t) = Bmin +1- (ﬁmax - Bmin)a (18)

with the hyperparameters from (Song et al., 2021) such that (Smin, Smax) = (0.1, 20). For this noise schedule to be suitable
for molecules, it is important that we normalize the data to have unit variance.

With this specific choice for f and g, we can write the transition kernel as a Gaussian (Sérkkéd & Solin, 2019) with a moving
mean and standard deviation such that

pe(x(t) | 2(0)) = N(2(t); u(x(0),t),0(t)I) (19)
= N(z(t);e~2 Jo Bdsg(0), (1 — e~ Jo B)ds) ), (20)

A.2. Residual Loss
In this section, we prove Theorem 3.1 and show that ﬁ(m, t;v) can be used to get an unbiased estimation of E(w, t). For
simplicity of notation, let us express the log Fokker-Planck equations from Equation (8) as

%g2(t) dive s°(2, 1) + o (@, 1) = 0, 21

where s (x,t) = V log pf (x), and ~yg involves only the first-order gradient of log pf. Here we define the “weak” residual
(Guo et al., 2022) of the above equations for each (x, t)

1
R(wa t) = IE1)~./\f((],cr21) |:292(t) lem 89<w + v, t) + ’yg(x + v, t) ) (22)

where 0 > 0 is a small number. It can be seen that residuals are zero if the two parts of the equations are exactly equal. We
now aim to get the unbiased estimation of the above residual, without calculating high-order derivatives.

As such, we can show that for an arbitrary ¢,

oo (-52)
Ey [dive se(ac+v7t)] = /7]3 ~divg 8% (z + v, t)dv (23)
(2mo?)2
1 viv\
= —(22)D/ V. exp 257 )8 (x4 v,t) )dv (24)
To“) 2
1 T T
= M/exp (—%) Z—ng(w—i—v,t)dv (25)
To<) 2
ro T o0
_ E, v's (:c;—v,t)} 26)
i o
1 v s(x +v,t v s (x —v,t
= 3B, [ (02 ) _ (0_2 )] 7)
- E, _(E)T Lzt ot) 2= v’t)] , (28)
| \o 20

where z € RP, v ¢ RP and ¢t € R.
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Based on this, we can obtain

R(z,t) = E, [E(az,t; 'u)} (29)

0 O _ _
=E, |:1 Q(t) (U)T S ($+U,t) S (CE ’U,t) +’)/9($+’U,t)+’)/g($ 'I),t) (30)

29 2% 2

Hence, R(x, t; v) is an unbiased estimation of R(z, t) by drawing a single sample v ~ A/(0, o21).

In practice, we can further reduce the computational overhead by only using a single approximation for g, and defining

+vo(x + v,1). (31

~ v Sew v —Sew—'u
Rle tiv) = Loy (1) S F00 sl

We found o = 0.0001 to be an effective choice throughout our experiments.

A.3. Finite Difference Approximation

To approximate 0; log p?, we relied on a finite difference approximation (Fornberg, 1988), as stated in Equation (15).
For this estimation, we have followed the work of (Lai et al., 2023), and used the hyperparameters that they suggested
(hs, hq) = (0.001,0.0005).

B. Details for Experiments
B.1. Metrics

To compute the JS divergence and the PMF error, we first discretize the observed free energy into binned histograms. For
the JS divergence, we then compute the JS distance between the two probability vectors (we flatten the 2D histograms). To
prevent discontinuities, we assume that in each bin there is at least one observation by adding 1.

As for the PMF error, we discretize into 64 bins and compute the proportion of samples in each window. These are then
transformed by taking the log in each bin and then computing the square loss, which is averaged over all bins. Similarly,
we have ensured that each bin contains some data and have added 1076 as a baseline proportion. The approach and
implementation are analogous to (Durumeric et al., 2024).

B.2. Toy System

Dataset. We have used a version of the Miiller-Brown potential (Miiller & Brown, 1979) to demonstrate the capabilities of
our approach in two dimensions. For this, we have used the following potential

U(z,y) = —200 - exp (—(z — 1)* — 10y?)
—100 - exp (—2* — 10 - (y — 0.5)%)
—170 - exp (6.5 (0.5 + 2)> + 11 (z+0.5) - (y — 1.5) — 6.5 - (y — 1.5)?)
+ 15-exp (0.7- (14+2)* +0.6- (x+1)-(y—1)+0.7- (y — 1)%) .

(32)

To generate training samples from this potential, we have performed a Langevin simulation (compare Equation (6)). For this,
we have performed 5M steps with kT = 23, dt = 0.005, M = 0.5 - I, where we only store every 50th sample to generate
100k training samples.

Architecture and training. For the toy systems, we have used a simple multi-layer perception with the hyperparameters
presented in Table 3. As for the optimizer, we have used AdamW (Loshchilov & Hutter, 2019).

B.3. Formalization Coarse-Craining

In coarse-graining, we aim to reduce the number of dimensions of our system by combining multiple atoms into

individual beads. Given non-CG samples x, the Boltzmann distribution of CG samples z can be recovered by
p(z) x [exp (—%) 0(2(x) — z) da which defines the CG potential up to a constant. § is the Dirac delta func-
tion.
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Parameter Diffusion Mixture Fokker-Planck Both

# Parameters 17849 17263 17849 17263

BS 128 128 128 128
Model-Ranges 0, 1) (0,0.1), [0.1, 0.6), [0.6, 1.0) ©, 1) (0,0.1), [0.1, 0.6), [0.6, 1.0)
Epochs 180 120, 30, 30 180 120, 30, 30

Hidden Layers [92, 92,92] [64, 64, 64], [64, 64], [54, 54] [92, 92, 92] [64, 64, 64], [64, 64], [54, 54]
@ 0 0 0.0005 0.0005, 0,0

Table 3: This table contains the hyperparameters for the different models shown for the Miiller-Brown potential.

B.4. Alanine Dipeptide

Dataset. The alanine dipeptide datasets is available as part of the public bgmol (MIT licence) repository here: https:
//github.com/noegroup/bgmol. The dataset was generated with an MD simulation, using the classical Amber
J99SBildn force-field at 300K for implicit solvent for a duration of 1ms (Kohler et al., 2021) with the openMM library
(Eastman et al., 2017). For training, we have selected 50k random samples from this simulation.

Architecture. For alanine dipeptide we have used quite a small architecture, where the hyperparameters are listed in
Table 4. When multiple parameters are listed for the same model, this means that they are used for the corresponding MoE
model. Note that when using MoE, we have mostly used the same model architecture, except that only the Fokker-Planck
regularized model is conservative.

Parameter Diffusion Mixture Fokker-Planck Both

Epochs 10000 7000, 2000, 1000 10000 7000, 2000, 1000

BS 1024 1024 1024 1024

Attention Heads 8 8 8 8

Feature Dim 16 16 16 16
Model-Ranges 0, 1) (0, 0.1), [0.1, 0.6), [0.6, 1.0) 0, 1) (0, 0.1), [0.1, 0.6), [0.6, 1.0)
Conservative Yes Yes, No, No Yes Yes, No, No

« 0 0,0,0 0.0005 0.0001, 0,0
Hidden Dimension 96 96 96 96

Layers 2 2 2 2

Table 4: This table contains the hyperparameters for the different models shown for alanine dipeptide.

Simulation. To perform Langevin simulation, we have extracted the forces from the model via Equation (7) at t = 10~ for
all models except for Tiwo For One, where we chose ¢t = 0.02, the same hyperparameter as presented in (Arts et al., 2023).

B.5. Dipeptides (2AA)

Dataset. The original dipeptide dataset (2AA) was introduced in (Klein et al., 2023a) (MIT License) and is available here:
https://huggingface.co/datasets/microsoft/timewarp. As this includes a lot of intermediate saved
states and quantities, like energies, there is a smaller version made available by Klein & Noé (2024) (CC BY 4.0): https:
//osf.io/n8vz3/?view_only=1052300a21bd43c08£700016728aa96e. For a comprehensive overview of
the simulation details, refer to (Klein et al., 2023a). All dipeptides were simulated in implicit solvent with a classical
amber-14 force-field at T' = 310K. The simulation of the training and validation peptides were run for 50ns, while the test
peptides were simulated for 1us. All simulation were performed with the openMM library (Eastman et al., 2017).

Note that we have removed dipeptides containing Glycine from our dataset to ensure that all dipeptides have the same
number of (coarse-grained) atoms. This made it easier to handle it in the code, but it is not a technical limitation of our
architecture. It is split into 175 train, 75 validation, and 92 test dipeptides, out of which we have used 15 for the results in
the paper (also the metrics) to reduce on inference time.

Architecture. The hyperparameters are listed in Table 5. When multiple parameters are listed for the same model, this
means that they are used for the corresponding MoE model. Note that when using MoE, we have used smaller networks for
larger diffusion times, and only the Fokker-Planck regularized model is conservative.

Simulation. To perform Langevin simulation, we have extracted the forces from the model via Equation (7) att = 1075 for
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Parameter Diffusion Mixture Fokker-Planck Both

Epochs 120 100, 20, 10 120 100, 20, 10

BS 1024 1024 1024 1024

Attention Heads 8 8 8 8

Feature Dim 16 16 16 16
Model-Ranges 0, 1) (0, 0.1), [0.1, 0.6), [0.6, 1.0) 0, 1) (0, 0.1), [0.1, 0.6), [0.6, 1.0)
Conservative Yes Yes, No, No Yes Yes, No, No

« 0 0,0,0 0.0005 0.0001, 0,0
Hidden Dimension 128 128, 96, 96 128 128, 96, 96

Layers 3 3,2,2 3 3,2,2

Table 5: This table contains the hyperparameters for the different models shown for the minipeptides.

all models except for Two For One. As this system has not been tested by (Arts et al., 2023), we opted to use the same ¢ as
for Alanine dipeptide, namely ¢ = 0.02, which yielded robust results.

B.6. Compute Infrastructure

We have used a single RTX 3090 GPU for the toy systems, an A100 with 80GB memory for alanine dipeptide, and two
A100 80GB GPUs for the dipeptide dataset.

B.7. Software Licences

In our code, we have used jax (Bradbury et al., 2018) (Apache-2.0) and the accompanying machine learning library £f1ax
(Heek et al., 2024) (Apache-2.0). For the graph transformer architecture, we have extended code from (Arts et al., 2023) (MIT)
and have re-implemented the code from https://github.com/lucidrains/graph-transformer—pytorch
(MIT) in jax.

For the free-energy plots of the Miiller-Brown potential, we used (Hoffmann et al., 2021) (LGPL-3.0). For trajectories and
simulations, we have used openMM (Eastman et al., 2017) (MIT) and mdt ra j (McGibbon et al., 2015) (LGPL-2.1).

C. Ablation Studies and More Experiments

C.1. Miiller-Brown Potential

We would like to complement Figure 2 from the main paper with numerical values. We have used the same metrics as for
the other experiments and illustrate the results in Table 6.

Method iid JS (1) sim JS () iid PMF (}) sim PMF ()
Reference 0.0119 £ 0.0004 0.087 £ 0.002

Diffusion 0.0122 £+ 0.0013  0.0448 +£0.0125 0.111 £ 0.006 0.504 £+ 0.150
Mixture 0.0109 £ 0.0007 0.0254 £ 0.0109 0.097 + 0.004 0.247 + 0.113
Fokker-Planck  0.0130 £ 0.0010 0.0166 £ 0.0009  0.122 £+ 0.006 0.163 £ 0.008
Both 0.0110 £ 0.0007 0.0108 + 0.0008 0.098 + 0.003  0.099 + 0.004

Table 6: Comparison of methods based on JS Divergence and the PMF error. Lower values are better. To compute the standard deviation,
we have trained ten different models and performed sampling/simulation with them. As for the reference, we have started multiple
simulations with a different seed on the same ground-truth potential. This serves as a reference of what could optimally be achieved.

C.2. Comparing Conservative and Score-based Models

Previous work (Arts et al., 2023) suggested that conservative models improve the quality of the diffusion process. However,
this effect was not observed for image data (Salimans & Ho, 2021). In Figure 7, we compare these approaches in practice.
For iid sampling, conservative models provide a slight improvement. In contrast, for simulation, we were unable to
train stable score-based models without a conservative parameterization. Using a conservative model yields much more
stable forces, making simulation feasible. We attribute this to the smoother behavior of the conservative parameterization,
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which prevents sudden changes in the score. Since the impact on iid sampling is negligible, we consider the conservative
parameterization most relevant for small timescales, where model training is more sensitive. Consequently, in our MoE
architecture, we apply the conservative parameterization only to the small-time diffusion model, achieving comparable or
even superior iid sampling performance.
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Figure 7: We compare a conservative diffusion model with a score-based model. We can see that around the low-density regions, the
conservative parameterization generates better iid samples. As for simulation, a score-based model exhibits stability issues, and the
simulation becomes unstable after a few thousand steps.

C.3. Runtime Comparison

We compare the runtime of different approaches for training and inference in Table 7. Note that the MoE training could be
parallelized. However, our current implementation is not optimized and does not distribute any training. In some cases, it
even introduces overhead due to unoptimized implementation. Hence, we only see performance speedup for larger systems.

Dataset Task Diffusion Mixture Fokker-Planck Both
Alanine Dipeptide ~ Train 49min 50min 4h 39min 3h 59min
Alanine Dipeptide  Inference 3min 4min 3min 4min
Minipeptide Train 4h Smin ~ 3h 50min 28h 39min 27h Smin
Minipeptide Inference 8 min 4min 8min 4min

Table 7: We report the training and inference time for the different models.

C.4. Alanine Dipeptide

In this section, we report some further results and plots on alanine dipeptide. In Figure 8 the Fokker-Planck residual error
||fps (x,t) — O log pf (x) H , 1s reported. Overall, the results are similar to what was reported in Figure 6. However, we
can note that the Fokker-Planck error of Mixture is lower than Diffusion, indicating that MoE can improve the model’s
consistency.

In Figure 9 we compare the free energies along the dihedral angles ¢, ¢ for iid sampling and simulation. We can see that the
results from the main paper persist and that Both also shows the best performance for iid sampling.

Figure 4 shows all bond lengths of the coarse-grained molecule for iid sampling and Langevin simulation. Since Two For
One does not evaluate the model at ¢ = 0 it introduces noise across all bonds. We can also see this behavior by looking at
the Wasserstein distance of the bond-lengths to the reference data as seen in Table 8.
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Figure 8: Comparing the Fokker-Planck error for log p? of multiple models. This figure shows the results for alanine dipeptide.
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Figure 9: Comparing the free energy of alanine dipeptide along the dihedral angles ¢, v for iid sampling and simulation across different
models.
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Figure 10: This illustration shows the sampled bond lengths for the molecule alanine dipeptide.
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Method iid relative W1 (}) sim relative W1 (|)
Diffusion 1.51 +1.28 1.70 £ 0.38
Two For One 0.96 + 0.34 48.14 £+ 13.03
Mixture 1.36 £ 0.21 0.94 + 0.21
Fokker-Planck 2.05 +0.62 2.51 £0.59
Both 1.00 = 0.00 1.00 = 0.00

Table 8: Comparison of methods based on the Wasserstein 1 distance of the C-N bond lengths to the reference data. Lower values are
better. We have divided all entries by the Wasserstein 1 distance of Both so that the numbers are easier to compare. In other words,
numbers larger than 1 mean that the bonds are worse than Both.
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Figure 11: AC: We compare further metrics between iid sampling and Langevin simulation. We compare the C'n,—C, distance for the
dipeptides and also the free energy projections along the dihedral angles ¢, ).

C.4.1. ALANINE-CYSTEINE (AC)

In Figure 11 we present extended results for the dipeptide investigated in the main part of the paper (AC). We can see
that the results are consistent with what we presented and also the free energy surfaces on v improve with Fokker-Planck
regularization.

C.5. Transferability: Results on More Dipeptides

In this section, we depict more dipeptides from the test set and demonstrate their performance. While the results are slightly
different for each system, the general trends are consistent. We present the following dipeptides: KS Figures 12 and 13, HP
Figures 14 and 15, NY Figures 16 and 17, TD Figures 18 and 19, and RV Figures 20 and 21.

D. Societal Impact

Our work focuses on improving the efficiency of molecular sampling and simulation. We consider this research foundational,
with the potential to accelerate applications such as drug and material discovery. While we do not identify any immediate
risks, the technology could be misused, for example, in the development of biological weapons. Furthermore, our method
currently lacks formal guarantees, which poses a risk of misleading downstream researchers if the method produces incorrect
or biased results.
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Figure 12: KS: We compare the free energy plot on the dihedral angles ¢, 1 for all presented methods for iid sampling and Langevin
simulation.
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Figure 13: KS: We compare further metrics between iid sampling and Langevin simulation. We compare the C,—C,, distance for the
dipeptides and also the free energy projections along the dihedral angles ¢, ).
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Figure 14: HP: We compare the free energy plot on the dihedral angles ¢, v for all presented methods for iid sampling and Langevin
simulation.
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Figure 16: NY: We compare the free energy plot on the dihedral angles ¢, v for all presented methods for iid sampling and Langevin
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Figure 18: TD: We compare the free energy plot on the dihedral angles ¢, v for all presented methods for iid sampling and Langevin
simulation.
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Figure 19: TD: We compare further metrics between iid sampling and Langevin simulation. We compare the C,—C,, distance for the
dipeptides and also the free energy projections along the dihedral angles ¢, ).
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Figure 20: RV: We compare the free energy plot on the dihedral angles ¢, 9 for all presented methods for iid sampling and Langevin
simulation.

22



Consistent Sampling and Simulation: Molecular Dynamics with Energy-Based Diffusion Models
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Figure 21: RV: We compare further metrics between iid sampling and Langevin simulation. We compare the C,—C', distance for the

Cq — C, distance
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dipeptides and also the free energy projections along the dihedral angles ¢, 1.
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