Under review as submission to TMLR

PrismBench: Dynamic and Flexible Benchmarking of LLMs
Code Generation with Monte Carlo Tree Search

Anonymous authors
Paper under double-blind review

Abstract

The rapid advancement of LLMs’ code generation capabilities is outpacing traditional
evaluation methods. Static benchmarks fail to capture the depth and breadth of LLM
capabilities and eventually become obsolete, while most dynamic approaches either rely too
heavily on LLM-based evaluation or remain constrained by predefined test sets. To address
these limitations, we introduce PrismBench, a dynamic benchmarking framework grounded
in Reinforcement Learning that comprehensively evaluates LLMs by framing code generation
evaluation as an RL task. We formulate the evaluation process as a Markov Decision
Process over a structured tree of coding challenges, leveraging a customized Monte Carlo
Tree Search algorithm to traverse this tree and discover high-failure scenarios. Our multi-
agent setup orchestrates task generation, model response, and analysis, enabling scalable
assessment across diverse coding challenges. Additionally, we propose metrics that combine
structural traversal patterns with performance across different tasks and difficulty levels to
enable diagnostic and systematic comparison of LLMs’ performance. We conduct large-scale
experiments on eight state-of-the-art LLMs and analyze how model architecture and scale
influence code generation performance across varying coding tasks. All code, evaluation
trees, and a public leaderboard are available at https://prismbench.github.io/Demo/

1 Introduction

The rapid advancement of Large Language Models (LLMs) for code generation has outpaced existing
evaluation methodologies. Both static and dynamic benchmarking approaches exhibit fundamental limitations
that hinder their ability to comprehensively assess evolving models’ capabilities. Static benchmarks, while
widely used, suffer from three key weaknesses. First, they provide a limited and often superficial assessment
of an LLM’s capabilities, reducing evaluation to pass/fail metrics that fail to capture the complexity of
the model’s reasoning [McIntosh et al. (2024); [Banerjee et al.| (2024); [Tambon et al. (2024a). Second, as
benchmarks gain popularity and become evaluation targets, they are increasingly prone to being incorporated
into LLMs’ training data, leading to data leakage and artificially inflated performance metrics [Xu et al.
(2024a); [Zhou et al.| (2023). Third, static benchmarks lack flexibility, preventing a targeted evaluation of
specific problem-solving strategies or particular aspects of model behavior Mclntosh et al.| (2024)). To address
these limitations, dynamic benchmarking approaches have been introduced |Zhu et al.| (2023b); [Li et al.
(2023); [Wang et al.| (2023)); |Zhang et al.| (2024c); Li et al.| (2024c). Most dynamic approaches typically
adopt one of two strategies. The first relies on LLM-as-Judge frameworks, where another LLM is used to
evaluate the responses [Zhu et al.| (2023b)); [Li et al.| (2024a). While this approach offers adaptability, it is
inherently unreliable, as evaluation outcomes are constrained by the limitations and biases of the judge
model. The second strategy involves dynamically selecting test cases from predefined datasets based on model
performance [Zhang et al.| (2024c); [Kiela et al.| (2021). Although more structured, these methods remain
fundamentally tied to static test sets, limiting their capacity to evolve alongside increasingly capable models.
These issues indicate a clear need for evaluation frameworks/methodologies that can adapt to the increasing
capabilities of LLMs, provide systematic and reproducible evaluation pipelines, and reveal comprehensive
insights about the model’s performance and weaknesses.

https://prismbench.github.io/Demo/

Under review as submission to TMLR

We introduce PrismBench, a dynamic, multi-agent benchmarking framework for evaluating LLMs’ code
generation capabilities. We formalize the space of all possible evaluation scenarios as a Markov Decision
Process (MDP) [Sutton & Barto| (2018)), where each state represents a unique combination of programming
concepts (e.g., recursion, data structures) and difficulty levels (e.g., easy, medium, hard). Within this
formulation, the evaluation process becomes a search problem where the objective is to search this space
to discover evaluation scenarios (i.e., states) where models consistently fail. To systematically conduct this
search, we instantiate the MDP as a search tree and use a modified Monte Carlo Tree Search (MCTS) Russell
& Norvig| (2016) algorithm to traverse it, balancing exploration of new evaluation scenarios with exploitation
of discovered high-failure regions of the evaluation space. Instead of sampling from a static dataset, we
generate each evaluation scenario dynamically based on the current state’s concepts, difficulty, and prior
model performance to mitigate benchmark memorization and data leakage. In this manner, as the search
progresses deeper into the tree, the generated evaluation scenarios become progressively more challenging
and allow for a structured and adaptive assessment of model capabilities.

Unlike prior dynamic evaluation approaches that rely on LLMs to judge each other’s outputs, PrismBench
assesses model performance by executing the generated solutions within a multi-agent sandbox. This
provides objective, reproducible signals based on functional correctness, rather than textual similarity or the
errors/preferences of the judge model Thakur et al. (2024)). Instead, LLM agents in PrismBench are assigned
analytical roles, for example, analyzing execution traces to identify failure patterns or examining solutions
to understand how models approach specific challenges. This separation ensures that evaluation remains
grounded in actual model performance, while LLM agents assist in interpreting the results and identifying
patterns in model behavior. Additionally, in contrast to pass/fail metrics (e.g., accuracy, precision, etc.),
which mask how models approach problems and offer little insight into their performance, we introduce
metrics that track model performance across tasks, difficulty levels, and structural exploration paths, allowing
for more fine-grained diagnostics and comprehensive assessments.

Overall, the contributions of our work are as follows: (1) We introduce a dynamic benchmarking framework
that adapts to model capabilities and systematically explores the space of programming challenges. (2)
We propose an extensible, multi-agent evaluation architecture that assesses multiple aspects of LLMs’ code
generation capabilities. (3) Using PrismBench, we evaluate eight leading LLMs to identify their failure
patterns and capability boundaries. (4) We release the code for PrismBench alongside a leaderboard and an
interactive showcase for each of the studied models at https://prismbench.github.io/Demo.

To structure our work, we define the following RQs:

RQ1: How can we design evaluation tasks that adapt to model capabilities and surface hidden failures?

To answer this question, we introduce PrismBench, a dynamic, multi-agent benchmarking framework
that models the evaluation process as a search problem over the space of all possible evaluation
scenarios. Furthermore, instead of selecting evaluation scenarios blindly or from a static pool of
pre-defined challenges, PrismBench dynamically generates tasks in response to the model under the
benchmark’s performance, which allows for probing edge cases, subtle weaknesses, and regressions
that are otherwise missed in static benchmarks.

RQs: How can we evaluate different models in a dynamically generated benchmark?

To answer this question, we ground PrismBench in Reinforcement Learning (RL) by decoupling
the benchmarking environment from the benchmarking process. We formalize a single, shared
environment for all models and evaluate them by their traversal trajectories in this environment. To
further reduce the risk of bias arising from LLM stochasticity, we design a multi-agent interaction
sandbox that tests the models’ capability in test generation, solution generation, and program repair,
separately. Furthermore, we propose a set of performance metrics that can be used to compare
models based on their performance throughout the search process. We analyze how models perform
under identical dynamic conditions, compare their behavior across multiple failure modes, and show
how PrismBench enables more fine-grained model capability comparison than static benchmarks.

RQs: How can dynamic benchmarks provide insights into model performance, behavior, and failures?

https://prismbench.github.io/Demo

Under review as submission to TMLR

To answer this question, we examine the outputs collected during the evaluation process for each
model and propose a set of diagnostic metrics that offer a richer view of model performance and help
identify patterns in how and why models fail.

2 Motivating Example

In this section, we discuss how current static and dynamic benchmarking approaches evaluate LLMs alongside
their shortcomings. Regardless of the underlying evaluation methodology (static or dynamic), all benchmarking
approaches face a bias/variance trade-off. Here, bias is a property of the evaluation dataset which contains
tasks that consistently over/under-estimate a model’s true capability (e.g., task overlap with pretraining data,
coarse aggregate pass/fail metrics, uneven task distributions, etc.) Xu et al| (2024b)); [Roberts et al.| (2023));
Jiang et al. (2024). On the other hand, variance is a property of the sampling process and is a result of
instability in evaluation estimates between different runs arising from small sampling pools from the underlying
dataset or too few per-task trials (e.g., one extra attempt flips a failure to a pass) Dong et al|(2024); |Chiang
et al.| (2024)); [Lin et al|(2024]). Given the high cost of querying LLMs and finite evaluation budgets (either in
time, compute, or both), to comprehensively evaluate a model, each benchmarking methodology must focus
on a specific aspect of this trade-off: either increase coverage on task variety and decrease sampling per task
which results in increasing variance between evaluation runs or increase resampling or per-task trials and
instead focus on a narrow subset of tasks which results in high bias of evaluation results between different
evaluation subsets.

Consider two LLMs, M4 and Mp, and a bank of four coding tasks, 71, ..., Ty from an evaluation dataset (e.g.,
HumanEval [Chen et al.| (2021]), MBPP |Austin et al|(2021), ARC-AGI |Chollet| (2019), etc.). In a standard
static benchmark, both M4 and Mp are evaluated on each task, independently (i.e., performance on T} has
no effect on T»), and their overall performance is summarized with aggregate metrics (e.g., pass@k, binary
pass/fail over each task, etc.). Suppose M4 solves T1, To, T5 but fails Ty, while Mg solves T1, T5, Ty but fails
T5. Under this setting, both models received a 3/4 score even though their failures were on different tasks.
Such aggregate pass/fail metrics hide where and how each model fails, and compress different behaviors into
the same score. While exhaustive per-task trials and normalization of scores over the number of attempts
average out stochasticity and allow for fairer comparison between models, two problems remain:

e If M4 consistently fails T, and Mp consistently fails T, both models will still receive the same
score; however, each model has failed on a different task. Here, the same score is an artifact of
coarse-grained metrics, not evidence of equal capability.

e Given the scale of pretraining corpora and the unavailability of training data, some tasks may have
been included in the models’ training dataset. Therefore, the subsequent successes might be a result
of memorization, not generalization Balloccu et al.| (2024).

Moreover, as the set of underlying tasks grows, multiple samples per each task in the dataset become infeasible
(e.g., for a dataset of 1k tasks and 10 trials per task, 10k queries to the model are required), forcing the
bias/variance trade-off mentioned above: either the number of distinct tasks must be reduced (lower variance
but higher bias from reduced coverage and selection effects) or fewer trials per each task need to be carried
out (lower bias but higher variance between runs).

Dynamic benchmarking approaches aim to address these limitations by: (1) using multi-step task bundles by
decomposing a task into sequential subtasks that the model must pass end-to-end (e.g., SWE-bench |Jimenez
et al.| (2024)), Benchmark Self-Evolving [Wang et al.| (2024)), (2) adaptively selecting challenges from a fixed
bank by picking the next task conditioned on prior evaluation results (e.g., DARG |Zhang et al.| (2024c),
DyVal2 |Zhu et al.| (2024b)), or (3) generating tasks at test time to mitigate memorization (e.g. DyVal |Zhu
et al| (2024a), TreeEval Li et al.| (2024c)). However, each approach comes with its own bias/variance trade-off.
Specifically:

e Testing each model on multi-step task bundles lowers the chances of memorization and superficial
success, but introduces a fairness problem in how models are evaluated against each other. M4 and

Under review as submission to TMLR

Mp will be tested on a different distribution of sub-tasks and aggregate scoring (only end-to-end
success being counted) introduces variance in evaluation results. As such, results depend heavily on
the specific bundle graph and scoring rule, not just underlying capability.

e Conditioning the next task on past outcomes allows for more informative exploration of the evaluation
space, but comparability issues between models’ evaluation results still remain. M4 and Mp are
now evaluated on different task distributions, as incidental failures can result in different evaluation
trajectories. Stabilizing estimates still requires multiple samples per task, and given fixed evaluation
budgets, variance stays high unless task coverage is narrowed, which reintroduces bias via selection
effects.

e Testing each model on a problem generated at test time from a fixed distribution addresses the
memorization problem and aligns the underlying task distribution across models. However, comparable
estimates of models’ performance still require many samples per task to control for variance, which is
costly under finite budgets.

As such, both static and dynamic benchmarking approaches suffer from two main shortcomings: (1) high
bias of evaluation results due to different evaluation task distributions and (2) high variance of evaluation
results due to LLMs’ stochasticity and limited sampling budgets Blackwell et al.| (2024]). In the next section,
we will first describe PrismBench’s RL framing, which allows for defining a fixed task distribution for all
models-under-test. Afterward, we establish our search methodology, which allows for adaptive sampling
budget allocation through MCTS-guided exploration and enables efficient use of limited benchmarking
resources by focusing on informative regions of the evaluation space.

3 Methodology

In this section, we first provide an end-to-end overview of PrismBench’s evaluation pipeline in Section
Next, we detail how we formalize the search space as an MDP and model it as a tree in Section [3.2] Afterward,
we explain the details of our agents, our multi-agent orchestration approach, and the evaluation workflow at
each node in Section [3.3] In Section [3.4] we explain the rationale behind a multi-phase evaluation pipeline,
the details of each phase’s objective, and how they integrate with the overall evaluation process. Section [3.5
outlines how we ensure the validity of dynamically generating challenges at test-time, and finally, we detail
our proposed metrics for evaluating models’ performance in Section [3.6]

3.1 PrismBench Overview

As mentioned in Section [2] evaluating models against a large bank of tasks under a finite evaluation budget
forces a bias/variance trade-off. Conditioning the choice of the next evaluation task on prior observations
mitigates this by directing trials towards informative regions of the evaluation space (i.e., evaluation tasks
that maximize information gain regarding models’ capability). To formalize this process, we model the
space of all possible evaluation scenarios as an MDP, where each state corresponds to a unique scenario
defined by a (c,d) pair, with ¢ being a list of programming concepts (e.g., recursion, data structures) and d
being the task’s difficulty level (e.g., easy, medium, hard). We instantiate the MDP as a search tree, where
nodes represent states and edges represent transitions between scenarios, corresponding to actions that
either combine additional concepts or increase difficulty. A node’s depth is defined as the number of nodes
along the path to the root, and child nodes may extend or share the same concepts as their parents.

In this manner, the search tree forms a fixed evaluation environment shared between all models (identical
state space and transition dynamics), where transitions between nodes reflect a model’s ability to generalize
and solve increasingly complex tasks. Furthermore, this formalization forms a hierarchical dependency
between evaluation tasks and reduces variance by concentrating sampling where outcomes are uncertain or
high impact, and reduces bias by standardizing the task distribution between all models. As such, all models

are evaluated in the same environment, based on how they explore and perform within it [Sutton & Barto
(2018).

Under review as submission to TMLR

To address the brittleness of end-to-end task bundles, where an early misstep can cascade into a full failure
and result in different trajectories, each node in the tree is evaluated using a multi-stage, isolated pipeline.
Each task is decomposed into role-based steps (e.g., test generation, solution generation, program repair,
etc.) where each step is handled by a dedicated LLM agent. Agents interact with each other via a shared
node state, which allows for modularity (addition or removal of agents) and avoids information leakage. This
decoupling allows for evaluating multiple capabilities within a single node (e.g., correctly understanding
the requirements, solution/test generation, debugging, etc.) without allowing failures/errors in one step
dominating the final outcome. Importantly, we do not rely on LLM judgments: a node’s reward is a
composite weighted score derived from execution-grounded signals (i.e., unit-test pass rates, error traces, and
bounded retry/repair attempts). As such, the reward signal reflects the specific steps responsible for success
or failure instead of collapsing everything into a binary pass/fail signal for the entire task.

/Search Space Tree Structure \ / MCTS \ / Phase-specific Evaluation \

Selection Phase 1: Capability Mapping
. With probability €: Best child (UCB1) . Map basic capabilities
. With probability 1-£: Random child - Build initial tree structure
Loops . ldentify areas of proficiency D,
Easy L
Expansion
-ops Sorting . Merge concepts from parents ~ - ~
= =i ” Phase 2: Challenge Discovery
— | - Scale difficulty on success —p| . .
. Find challenging concepts
. - L - . Focus on weak areas
Simulation _ - Discover failure patterns)
. Generate Challenge
Node Properties . Generate Tests
. Generate Solution
o C ts: . .
oneepts o1, G, . Cnd _ . Execute Program P, (Phase 3: Comprehensive Analysis |
« Difficulty: very easy | ... | very hard L
. Generate problem variations
¢ Value: V(s) Anal uti t
« Visit Count: n [Backpropagation } - Analyse solution patterns

Results History k / &-Identlfy systematic issues j

Figure 1: Overview of PrismBench’s search tree, agent workflow, and phased evaluation strategy.

Given the hierarchical evaluation space and execution-grounded rewards, the remaining challenge is to allocate
the evaluation budget to where it most increases our knowledge about a model’s capabilities. As mentioned
in Section [2] multiple samples per evaluation task quickly become infeasible as the underlying dataset
grows, and simply conditioning the next task on prior observations can result in different task distributions.
Therefore, we need a traversal policy that balances exploration of uncertain regions with exploitation of the
promising ones, while allowing for comparison between different models. As such, PrismBench uses MCTS
with e-greedy state selection policies to balance exploration and exploitation over the search tree (i.e.,
environment) and control for LLMs’ performance variability. After each node’s evaluation, the observed
reward is backpropagated along the sampled path, updating ancestors’ estimates so that observations at
each node (i.e., state) can inform beliefs about selection of the next node.

Finally, PrismBench’s search process follows a 3-phase strategy. The 1st phase broadly explores the tree
to establish the model’s baseline performance across different coding concepts and difficulty levels. The
2nd phase focuses on failure-prone nodes to discover systematic weaknesses and boundary cases. The 3rd
phase focuses on low-performing regions by generating multiple variations of high-failure nodes to determine
the root causes of model failures. Figure [I] shows an overview of our state representation and evaluation
pipeline. Rather than exhaustively evaluating the model on all possible scenarios, PrismBench’s targeted
search approach adapts evaluation to the model’s demonstrated capabilities in the environment, allowing for
detailed analyses of model performance and failure modes.

Under review as submission to TMLR

3.2 Search and Tree Structure

In this section, we detail how we model the LLM evaluation task as an environment in order to dynamically
benchmark LLMs’ code generation capabilities and address RQj.

3.2.1 MDP Formalization

The search space, which contains all possible evaluation scenarios, is modeled as an MDP defined by the
tuple (S, A, P, R), representing the state space, action space, transition probabilities, and reward function,
respectively. We formalize the MDP as follows:

S denotes the state space where each state s € S is a unique combination of a set of programming concepts
C and a single difficulty level D:
S={(¢,d) | cCC,de D} (1)

For example, the state ([functions, dynamic programming], very easy) represents an evaluation sce-
nario designed to test the model on a programming challenge that requires knowledge of both “functions”
and “dynamic programming” to solve and is intended to be “very easy” in terms of difficulty.

A denotes the action space, which indicates the set of actions that can be taken at each state. We define
two actions: (1) Asereet Which selects a previously explored state for reevaluation and (2) Aegpana Which
generates a new state based on the current one and operates by either adding a new concept or increasing the
difficulty level for generating the new state. These two actions allow for both the exploration of existing states
and the creation of new ones. For example, expanding the state ([functions, dynamic programming],
very easy) could yield a new state such as ([functions, dynamic programming, conditionals], very
easy), which adds a new concept, or ([functions, dynamic programming], medium), which increases the
difficulty.

P:SxS —[0,1] denotes the transition probabilities between states. Transition probabilities are determined
by an e-greedy policy, which balances exploration and exploitation by selecting the next state from the set of
candidate states. These probabilities determine which state is selected next, whether by transitioning to an
existing state or a newly created state from expanding the current one.

R:SxAxS — R denotes the phase-specific reward functions. The reward function quantifies the model’s
performance at each state using a composite score calculated based on multiple factors, including success
rates, error penalties, challenge difficulty, and attempt counts. Each phase uses a different reward function
according to the phase’s goal, which we will explain in detail in Section [3.4

3.2.2 Tree Representation and Traversal Mechanism

We instantiate the MDP as a tree as described in Section [3:1] To do so, we consider each state s € S as a
node n in the tree, and each action a € A determines whether to expand a node or continue exploring the
tree as shown in Figure[I] Given the tree structure, it is essential to assign a value to each node in order to
guide tree traversal. To achieve this, we use the phase-specific reward function R to determine each node’s
value based on the model’s performance at that node which is calculated based on how well the model solves
the programming challenge associated with a given node which we will detail in Section Considering
the high cost of sampling and to better account for LLM’s performance variability, we use TD(0) |Sutton &
Barto| (2018) to incrementally estimate each node’s value by incorporating past performance:

v(n) = Uprew(n) +a(r - Uprev (n)) (2)

where v(n) is the node’s value, r is the immediate reward, and « is the hyperparameter that controls sensitivity
to new observations based on benchmarking requirements. We then backpropagate r to n’s ancestors using a
discounted update:

v(ng) = Uprev (na) + ’Yd(n) A (3)

Under review as submission to TMLR

where n, is an ancestor of n, d(,) is its distance from n, and v € [0,1] is the discount factor. This allows
us to incorporate results from the evaluated nodes to the ancestors and prioritize promising regions of the
search space over time.

In order to traverse the tree, we use MCTS to determine the transition probabilities between nodes in the tree
given the node values. Transition probabilities P are calculated using MCTS based on node visit frequency
and value. We use an e-greedy policy to balance exploration and exploitation:

(4)

(chln) uniform(children(n)) with probability e
m(chin) =

arg maX hechitdren(n) UCB1(ch) with probabilityl — e
Transitions between nodes (from node n to its child ch) represent changes in difficulty or the introduction of
new concepts. UCB1 |Russell & Norvig (2016|) is used to dynamically adjust P based on the model’s historical
performance using the node’s value v(n).

Once a node’s evaluation is finished, the decision to expand it or to select another node determines how the
tree grows and how the search space is explored. Node expansion F(n) is governed by two criteria:

(5)

B(n) = {1 if v(n) .2 0, and d(n) < dpas
0 otherwise

where v(n) is the node’s value, 6, is the normalized value threshold of each phase, d(n) is the node’s depth,

and dp,qq is the maximum allowed depth for each phase. 6, controls the collective difficulty of each phase,

with higher thresholds indicating harder acceptance criteria for solution acceptance at each node. diaz

defines a hard limit on how deep the tree can get at each phase, with higher values allowing for more in-depth

analysis at each phase. When expansion is triggered, the node can be expanded in two ways:

combine_ concepts(n,n’) with probability p.

Aewpand(n) = { (6)

increase_ difficulty(n) with probability 1 — p,

where n’ is another selected node for concept combination and p, is the probability of which expansion action
is selected and tuned based on the benchmark’s desired level of exploration.

The search process begins by generating foundational nodes that span the entire set of concepts at the lowest
difficulty level. As the search progresses, node creation and expansion are guided by the model’s performance,
allowing the tree to dynamically adapt to the model’s demonstrated capabilities and limitations, which allows
PrismBench to adaptively prioritize promising areas during exploration. To enable effective exploration of the
search space, we extend the tree structure to support multiple parents for each node, allowing us to represent
and evaluate combinations of programming concepts, which we explain below.

3.2.3 Multi-Parent Tree Structure

Programming challenges rarely involve solutions based on a single concept. Instead, they typically require
the application of multiple programming concepts to produce a correct solution. To model this accurately,
in PrismBench, each node in the search tree can have multiple parents, with each parent representing a
different concept-difficulty combination. For example, a node with the concept set [dynamic programming,
recursion] corresponds to a challenge that requires applying both concepts. This node is therefore the child
of both the [dynamic programming] and [recursion] nodes, as shown in Figure [} This setup reflects how
complex challenges are often built upon simpler, foundational ones.

Furthermore, a multi-parent structure allows us to backpropagate performance signals along all relevant
paths. If the model succeeds or fails on a node such as [dynamic programming, recursion], the outcome
is not just indicative of its proficiency in “dynamic programming” and “recursion”. Instead, it also shows
how the model is capable of handling each concept as well. This helps determine broader patterns in the
search space where the model performs well or struggles, and not just isolated successes and failures. These
signals then guide PrismBench’s exploration toward weak areas to better determine where and why the model
succeeds or fails.

Under review as submission to TMLR

As such, to capture concept combinations effectively, we extend MCTS’s UCB1 [Russell & Norvig| (2016) to
support multi-parent nodes:

UCB1(n) =

U(n) hl(ZiEpa’rents(n) N(p))
N(n) C\/ N(n) (7

with v(n) being the node n’s value, N (n) being the number of times n has been visited, C' being the exploration
constant, and parents(n) being the set of n’s parents. In this manner, a failure to solve the challenges at one
node is indicative of the model showing a behavior of interest for each concept and difficulty level in that
node.

3.3 Node Evaluation Workflow

As described in Section [3.2] each node in the tree represents a distinct evaluation scenario, defined by a
set of concepts and difficulty level. The evaluation of a node consists of generating a challenge, producing
corresponding tests and solutions, and iteratively refining these outputs based on the model’s performance.
To structure this process, we employ a set of agents where each agent has a specific role. Even though the
term “agent" is well-established in RL literature, LLM providers maintain different interpretations of what
constitutes an agent [Shavit et al| (2023); [Anthropic| (2024). In order to have a uniform definition throughout
our work, we adopt the definition from Roucher et al. (2025), which characterizes LLM-based agents as
“programs where LLM outputs control the workflow.” In this manner, PrismBench evaluates each node in a
multi-agent sandbox where each agent handles a distinct step in the process as shown in Figure

Challenge Designer e - > Problem Fixer \
Given a set of concepts and difficulty, design a challenge Given a challenge description, generate code to solve it
Challenge Description . | e m - - -

Test Validatot
Program to Run descl

Test Generator
Given a challenge description, generate appropriate tests.

Solution Pattern Analyzer
- e

iven a challenge descriptior e o
analyze how the code solves the challenge

> Tests

Problem Solver
Given a challenge description, generate code to solve it

N Run Results Analysis Results J

Test Error Analyzer
Given a failed run results and a solution,
analyze why the solution failed

Figure 2: The evaluation begins with the Challenge Designer and continues until the challenge is finished.
Green arrows: inputs, red arrows: outputs, dashed lines: conditional triggers.

As shown in Figure [2] for each node, evaluation starts with a coding challenge and proceeds through solution
and test suite generation, multiple attempts, repairs, and analysis. To avoid data contamination, agents
are isolated, and context is only shared through the node state. Importantly, the same model is used for
both test and solution generation. During solution generation, the model cannot access the tests, and
during test generation, it cannot access the solution. This constraint ensures that task understanding is
genuine and mirrors real programming challenges |Dibia et al.| (2022). In order to succeed, the model must
interpret the challenge correctly |Chen et al| (2024), design valid tests and solutions without access to hidden
information |Zhang et al.| (2024b); |Li & Yuan| (2024)), and correct mistakes using execution feedback
. Isolating these steps within the pipeline allows us to evaluate each capability independently,
resulting in consistent and comparable node-level evaluations across models and compare LLMs’ code
generation capabilities in a dynamic environment to address RQs.

Under review as submission to TMLR

3.3.1 Agent Roles

PrismBench is comprised of seven agents. All of our agents utilize prompting best practices Marvin et al.
(2023)); OpenAll (2025); |Anthropic| (2025): clearly defined roles, structured output schemas, and few-shot
examples. Our agent roles are as follows:

e Challenge Designer: Generates programming challenges of specified difficulty levels targeting particu-
lar computer science concepts, following an LC-style format with clear input/output specifications
and constraints.

o Test Generator: Generates comprehensive test suites that validate functional correctness, corner
cases, and performance constraints of submitted solutions while ensuring full coverage of the challenge
requirements.

e Problem Solver: Generates code to implement a solution for the programming challenge with an
emphasis on efficiency and adherence to best practices, while handling all specified corner cases and
constraints.

o Problem Fizer: Analyzes the outputs of program execution and implementation details (solution +
tests) to fix failures for the solutions and tests.

e Test Validator: Evaluates generated test suites for comprehensiveness, identifying potential gaps in
code coverage, missing corner cases, and opportunities for improvement.

o Test Error Analyzer: Performs detailed analysis of test execution failures, categorizing error patterns
and providing insights into the root causes of solution failures.

o Solution Pattern Analyzer: Examines implemented solutions to identify algorithmic approaches, data
structure usage, and implementation patterns, providing metrics for solution quality and efficiency.

Listing [1| shows the system prompt for the Challenge Designer agent. The complete prompt templates and
configuration parameters for these agents are available in our replication package [Anonymous| (2025)).

3.3.2 Multi-Agent Orchestration

Our aim in PrismBench is to design a general framework to evaluate LLMs on code-related tasks. Therefore,
given that many LLMs lack function-calling/tool-use capabilities or may not consistently adhere to preset
output formats, we designed a controlled sandbox environment that enables structured agent interactions
while maintaining evaluation integrity. The evaluation for each node in the search tree is presented in
Algorithm [I] and proceeds through the following steps:

Challenge and Test Generation Building a comprehensive dataset of diverse, high-quality challenges for
every possible node is infeasible. To address this, the interaction cycle at each node begins with the Challenge
Designer agent, which generates LeetCode-style programming challenges based on specified concepts and
difficulty levels as shown in Listing [3] This ensures diverse evaluations per concept-difficulty pair, capturing
true generalization rather than memorization or performance variation. The Test Generator agent is then
tasked with generating a comprehensive test suite based on the generated challenge description. We further
discuss the risks of dynamic challenge generation in the evaluation process’s validity and how we mitigate
those risks in Section

Initial Solution Attempt The Problem Solver generates a solution based on the challenge description,
which is then executed against the test suite generated by the Test Generator. Both agents operate
independently, with access limited to the challenge description to prevent cross-contamination of their outputs.
The sandbox environment then executes the generated solution against the generated test suite, capturing
detailed metrics including passed tests count, failure types/counts, error types/counts, and execution traces
as shown in Listing [2} Upon successful completion of all tests, the node is marked as resolved, and control
returns to the search algorithm. However, if test failures occur, PrismBench initiates an iterative feedback
process.

Under review as submission to TMLR

You are an expert computer science educator specializing in creating coding challenges. Your expertise spans
various computer science concepts, and you have a knack for designing problems that are both challenging and
educational. Your role is to create coding questions that test a student’s understanding of specific CS concepts
while also encouraging them to think critically and apply their knowledge in practical scenarios.

When given a CS concept and a difficulty level, design a problem similar to LeetCode challenges. The difficulty
levels are:

o Very Easy
o Easy
o Medium
e« Hard
e Very Hard
Your response should include:
1. A clear and concise problem statement
. Input format specification
. Output format specification
. Constraints on input values

. At least two examples with input and expected output

U e W N

. A brief explanation of the concept’s relevance to the problem
7. The specified difficulty level

Ensure that the challenge matches the given difficulty level. Do not provide any code or solution. Focus on
creating a problem that tests understanding of the given concept at the appropriate difficulty.
IMPORTANT: You must enclose the entire problem description within <problem_description> and
</problem_description> delimiters. This is crucial for extracting the problem from your output.

Here’s an example of the format you should follow, based on a LeetCode-style problem:

<problem_description>
Two Sum
Difficulty: Easy
Given an array of integers nums and an integer target, return indices of the two numbers such that
they add up to target. You may assume that each input would have exactly one solution, and you may not
use the same element twice.
You can return the answer in any order.
Input:

- nums: An array of integers (2 <= nums.length <= 1074)

- target: An integer (-1079 <= target <= $1079%)
Output:

- An array of two integers representing the indices of the two numbers that add up to the target
Constraints:

- 2 <= nums.length <= 1074

- $-1079% <= nums[i] <= 1079

- $-10"9% <= target <= 1079

- Only one valid answer exists
Examples:

1. Input: nums = [2,7,11,15], target = 9

Output: [0,1]

Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].

2. Input: nums = [3,2,4], target = 6

Output: [1,2]

Explanation: Because nums[1] + nums[2] == 6, we return [1, 2].
Relevance to Array Manipulation and Hash Tables:
This problem tests understanding of array traversal and efficient lookup. While it can be solved with
nested loops, an optimal solution uses a hash table to achieve 0(n) time complexity, demonstrating the
power of hash tables for quick lookups in coding interviews.
</problem_description>

Design your problem in a similar format, focusing on the CS concept and difficulty level provided.

Listing 1: System prompt for the Challenge Designer agent.

10

© 0w N O A W N -

I O O T =
g O Gk W N = O

18
19
20

21
22

Under review as submission to TMLR

Algorithm 1: Agent Interaction at Each Node
Input: C: List of concepts, D: Difficulty level
Output: S: Node score, M: Collected metrics
challenge__description < CHALLENGEDESIGNER(C, D);
g_t < TESTDESIGNER(challenge__description) // Generated tests
g_s < PROBLEMSOLVER(challenge_ description) // Generated solution
p_r+g s®g t// Combine solution and tests
(Success, Run_ results) <+ RUN(p_r);
if Success then
Tyalidation < TESTVALIDATOR(g_t) // Analyze the tests
Psotution < SOLUTIONPATTERNANALYZER(g_s) // Analyze the solution
else
for i = 1 to num__attempts do
e_ f < errors during run // Collected errors
f_s < PROBLEMSOLVER(g_s,e_f) // Generate fixed solution
Eonaiysis < TESTERRORANALYZER(g s,g t,e_f) // Analyze the errors
p r+f sdg t
(Success, Run__results) < RUN(p_r);
if Success then
L break;

if not Success then
fized_p_r < PROBLEMFIXER(p_r) // Use Problem Fizer agent
(Success, Run__results) < RUN(fized_p_r);

M (Tvalidation7Psolutio’rL;EanalyS'i37Runiresuus) // Store all run results
return S, M;

problem_statement: "## Even or 0dd..."
success: True
tests_passed: 10
tests_failed: 2
tests_errored: 0O
fixed_by_problem_fixer: False
data_trail:
attempt_1:
test_cases: "import unittest\n\n..."
solution_code: "def solution(...)"
output: "'Tests failed. Output:\n\n....F..... \n=.."
attempt_2:
test_cases: "import unittest\n\n..."
solution_code: "def solution(...)"
output: "All Tests passed"

Listing 2: An example of the run results for a node

Retry via Feedback If the execution fails, a feedback phase is initialized. In the feedback phase, the
Problem Solver agent receives execution results and error details, attempting to correct the solution. This
approach serves two purposes: it accounts for the stochasticity in LLM performance which we will further
describe in Section (if the model fails, it is provided with context to revise its response) while also
evaluating the model’s capability to learn from feedback.

11

Under review as submission to TMLR

Fallback to Repair If multiple solution attempts fail to resolve the issues within a predetermined limit, a
final attempt to fix the failing solution using the Problem Fizer agent is made. The Problem Fizer, which can
be set as either the model under benchmark itself or a separate model depending on evaluation requirements,
receives comprehensive context including the challenge description, implementation history, test suite, and
failure results. Allowing the model to have access to all of the previously collected information enables
assessment of the program repair capabilities of the model by providing it with full contextual information.
The cycle of testing and refinement continues until the resulting program to run (p_r in Algorithm executes
with no errors or failures within a predetermined limit and success is achieved. Otherwise, the node is marked
as failed.

Post-Evaluation Analysis After the loop is finished, regardless of success or failure, the Test Validator
reviews whether the test suite is logically aligned with the challenge. At the same time, the Solution Pattern
Analyzer examines the final solution to extract structural and algorithmic patterns.

Metric Aggregation All run results, retries, error traces, and analysis outputs are logged in the node’s
state, which are then transformed into scalar reward signals using the phase-specific reward function and
backpropagated to parent nodes.

In this manner, our multi-agent system integrates with the search tree and MCTS through an orchestrated
feedback mechanism: nodes are selected for evaluation using MCTS based on their values. Once a node is
selected for evaluation, the model’s performance on a generated challenge determines the node’s value; the
updated value, in turn, influences the next round of node selection and expansion. Furthermore, the model
under benchmark can be configured to any of the specified agent roles, enabling fine-grained and targeted
capability assessment. This flexibility makes PrismBench adaptable to diverse evaluation requirements (e.g.,
focusing solely on program repair or test suite generation capabilities).

3.4 Evaluation Phases

Our 3-phase approach guides MCTS to explore the search space using phase-specific reward functions based
on each phase’s evaluation strategy, as shown in Figure[J] To further account for LLM performance variability
and sampling stochasticity, we define a node value threshold, A(v), per phase, and only proceed to the
next phase when changes in sampled nodes’ values remain within this threshold across 5 consecutive value
convergence checks. We define our phases as follows:

/ Phase 1: Capability Mapping \ /Phase 2: Challenge Discovery\ @ase 3: Comprehensive Evaluatih

Tree Exploration Tree Exploration Problem Variation
MCTS-based exploration Challenge-focused exploration Generate dlverse variants
v v
Challenge Generation Challenge Generation Solution Generatlon
Create problems from concepts — Create targeted challenges — With comprchcnswc testing
L2 v
Solution Generation Solution Generation MuIt|-AnaIy5|s
Generate solutions and tests Generate solutions and tests Pattern, Test & EnorAnaIys\s
+ @
Evaluation Validation Final Report
K Performance scoring / \ Error analysis / K Comprehensive insights M
4 Agents
Challenge Designer Problem Solver _ Test Analyzer
T ot o - & el o e EeDh Given a challenge description and generated tests,
pts and difficulty, design a challenge iven a challenge description, generate code to solve i °
Analyze if the tests are correct and comprehensive
Test Generator Error Analyzer Solution Analyzer
Given a challenge description, generate appropriate ests Given a failed run results and a solution, Given a challenge description and generated code,
_ 9 Rionid PProp! analyze why the solution failed analyze how the code solves the challenge

Figure 3: Overview of PrismBench’s evaluation pipeline and multi-phase assessment. Arrows indicate
information flow and agent roles across each phase.

Phase 1: Capability Mapping This phase establishes a baseline assessment of the model’s strengths
and weaknesses across the concepts-difficulty space. Here, the node scoring mechanism is based on challenge

12

Under review as submission to TMLR

title: "Even or 0dd"
concepts:
- "conditionals"
- "functions"
difficulty: "very easy"
description: "## Even or 0dd
Write a function that takes an integer as input and determines whether the number is even or
«— odd. The function should return the string \"Even\" if the number is even, and \"0dd\" if
«— the number is odd.

Input:
- n: An integer (-1079 <= n <= 1079)

Output:
- A string \"Even\" or \"0dd\" based on the parity of the input integer.

Constraints:
- -1079 <= n <= 1079

Examples:
1. Input: n = 4
Output: \"Even\"
Explanation: The number 4 is divisible by 2, hence it is even.

2. Input: n =7
Output: \"0dd\"
Explanation: The number 7 is not divisible by 2, hence it is odd.

Relevance to Conditionals and Functions:

This problem tests the understanding of basic conditionals, as the solution requires checking
< the remainder when the number is divided by 2. It also reinforces the use of functions for
— encapsulating logic, demonstrating how to structure a simple program."

Listing 3: Challenge Designer output for a set of concepts and difficulty level

success:

Ri(s) = b-w(d) +p(s) (8)
with b being the base score for success, w(d) being the difficulty weight, and harder difficulties assigned higher
weights, and p(s) being the penalty for failures. In this manner, higher successes result in higher rewards,
which increase the node’s value, which in turn encourages MCTS to further explore the search space to find
challenging areas and map the model’s baseline capabilities.

Phase 2: Challenge Discovery By focusing on Phase 1’s low-value nodes, the search objective changes
to finding challenging combinations of concepts and difficulties where the model consistently fails. Node
scoring in this phase is based on failure rate and repeated attempts:

Ry (5) =)\(1 - Tsuccess) + 1 Nattempts + B Tfiger (9)

with 7gyccess being the ratio of successfully passed tests, ngttempts being the number of attempts to fix a
failed/errored solution, and Iy;z., indicating whether Problem Fizer was used. The hyperparameters (A, 7,
B) weight each term according to benchmarking needs. Using the complement of success ratio assigns higher
rewards to nodes with lower success rates, resulting in higher values. This produces a set of nodes where the
model consistently fails and indicates the challenging areas of the search space for the model.

Phase 3: Comprehensive Evaluation The objective of this phase is to reveal not just where but why the
model struggles and provide insights into failures’ root causes. Therefore, the underperforming nodes from

13

Under review as submission to TMLR

Phase 2 are revisited. However, for each node in this phase, we create multiple variations (same concept and
difficulty but different challenge descriptions) to distinguish between incidental failures (scenario-specific) and
systematic limitations (consistent failures across variations). By analyzing the results across these variants, we
collect failure traces to identify core capability gaps, whether from incorrect syntax, incorrect logic patterns,
or incorrect concept implementation.

As explained above, each phase has a distinct objective, which allows us to break down the benchmarking
process into smaller, focused tasks. By first mapping the model’s general capabilities and then systematically
narrowing in on regions of consistent failure, we can iteratively refine the search space and ultimately pinpoint
the root causes of these failures. As mentioned in Section [3.2] each phase’s objective is defined through
phase-specific state selection policies and reward functions that guide the tree traversal and expansion process,
which we explain in detail below.

3.4.1 State Selection Policies

Studies have shown that controlling LLMs’ stochasticity through low-temperature settings (e.g., T =~ 0)
systematically reduces the diversity of their outputs Renze & Guven| (2024); [Peeperkorn et al.| (2024).
Although this performance degradation may be minor in some contexts, it becomes crucial when the objective
is to comprehensively benchmark a model’s capabilities. As shown by Xu et al.| (2022)); |Ouyang et al.
(2023)), for code generation, at higher temperatures, LLMs explore novel solutions more effectively, while at
near-zero temperatures, outputs become repetitive and risk underestimating true performance boundaries. In
PrismBench, while we provide temperature as a tunable parameter, we preserve recommended temperature
ranges rather than enforcing low-temperature values. This ensures thorough exploration of the search space
but also introduces the problem of stochasticity in LLMs’ responses and subsequent performance variations
as a result. These performance variations are especially problematic in dynamic benchmarks that rely on
LLMs as judges, where even small changes in output can lead to different assessment results. As such, we
need to consider that the score for a node might not be representative of the LLM’s true capability due to
performance variations. To address this problem without the risk of underestimating LLMs’ performance by
setting low-temperature values, we define e-greedy state selection policies to traverse the tree as described in
Equation |4l These policies mitigate the drawbacks of purely deterministic approaches (e.g., solely using UCB1
for traversal or setting the temperature to zero) by balancing exploration and exploitation and ensuring
comprehensive capability assessment while mitigating performance variations. We detail the policies for each
phase below.

Phase 1: Capability Mapping At the very beginning of the evaluation, the root generates multiple
nodes as starting points for the search process. However, since the search requires the nodes to be evaluated
first, the policy for evaluating the root’s children (initial nodes) is defined as:

v(n) . ’ ’
——“—— ifVn' €N, v(n)>0
,i.oot(n) — Zl:n’eN v(n’) (10)

otherwise

m
[N]

This policy encourages early exploration of less-visited nodes and allows for the exploration of the initial
nodes to establish a starting point for the search.

Once initial evaluations are complete, we use an e-greedy policy for traversing the tree:

uniform(children(n)) with probability €;

7r1i7'ave7'se(ch|n) — { (11)

arg maX hechildren(n) UCB1(ch) with probability 1 — €

This policy accounts for the stochasticity of LLMs’ responses by using a uniform exploration component with
a probability of €1, which can be tuned based on benchmarking requirements (0.2 in our study), to mitigate
the impact of occasional LLM performance variations. This ensures a thorough exploration of the LLM’s
capability while still focusing on promising directions using MCTS.

Phase 2: Challenge Discovery Similar to Phase 1, Phase 2 uses an e-greedy policy that focuses on
challenging scenarios while maintaining exploration to mitigate LLMs’ performance variations. Therefore,

14

Under review as submission to TMLR

even though our search is guided by UCBI1, we consider a small probability of selecting another state in our
policy:

uniform(children(n)) with probability e;

ma(ch|n) = { (12)

arg MaX.pechidren(n) UCB1(ch) with probability 1 — e

Similar to Phase 1, €3 can be tuned based on the benchmarking requirements (0.1 in our study), with
higher values resulting in more stochastic state selections and enabling more exploration of the search space
regardless of how the model under benchmark performs.

Phase 3: Comprehensive Evaluation In Phase 3, state selection becomes deterministic based on node
value thresholds (i.e., which nodes to select from Phase 2), which can be tuned depending on the benchmark’s
desired difficulty level:

1 ifo(n)>46

. (13)
0 otherwise

m3(ch|n) = {
with 6 € [0,1] being the normalized node value threshold. Tuning 6 allows for determining the benchmark’s
overall analysis granularity. Lower thresholds result in the selection of more nodes from Phase 2 for analysis
in this phase.

3.4.2 Phase-Specific Reward Functions

As mentioned in Section in each phase we employ different mechanisms to calculate the immediate
received reward. We describe the details of each phase’s reward calculation in the following.

Phase 1: Capability Mapping In Phase 1, the goal is to thoroughly map the capabilities of the model
under study. Therefore, the reward function is focused on task success: the better the model is at successfully
passing a challenge at a node, the higher the reward that it will receive. For this phase, the reward function
for each state s is defined in Equation

Ri(s) = b-w(d) + p(s)

with b representing the base reward given to the model if it can pass the challenge regardless of the challenge’s
complexity or the number of attempts it took the model to solve it. d is the state’s difficulty level, and
w(d) is the weight assigned to each difficulty level, with higher difficulty levels having a higher weight. This
way, the more challenging the problem the model has solved, the higher the reward it receives. Finally, the
performance penalty, p(s), is defined as:

p(S) = (rfailed : Pfailure) + (Terrors . Perror) + ((nattempts - 1) : Pattempt) + Pfi:rer . Ifize’r (14)

with 74414 being the ratio of tests the model’s solution failed, rerrors being the ratio of errors in the model’s
solution, Nastempts being the number of attempts it took for the model to solve the challenge, and Iyizer
being 1 if the Problem Fizer agent was required to fix the model’s solution and 0 otherwise. Pfaitures Perror,
Pottempt, and Ppize, are the weights assigned to each penalty type and are set as hyperparameters. These
hyperparameters allow for tuning the penalty’s impact on the reward and therefore, provide fine-grained
control of which aspects of the model’s capabilities should be explored in-depth during the benchmarking
process. Given that the tree generated in Phase 1 is used for all subsequent phases, high weights for errors
and failures will decrease the overall reward at each node and therefore increase the overall difficulty level of
the entire benchmarking process.

In this way, Equation [§ allows for mapping model capabilities: the more successful the model is at solving
challenges, the higher the values for the tree’s nodes, and the more MCTS is encouraged to continue exploring
the search tree to find challenging areas.

Phase 2: Challenge Discovery Phase 2 shifts focus from broad capability mapping in Phase 1 to
systematically identifying the model’s capability boundaries. Here, the reward function, as described in

15

Under review as submission to TMLR

Equation [9] prioritizes the challenges where the model struggles. In this phase, for each state s, the reward is
calculated as:
R2 (3) =)‘(1 - Tsuccess) +n- Nattempts + ﬁ : Ifixer

With 7success being the ratio of successfully passed tests (no errors or failures). Using the complement of the
success ratio assigns higher rewards to nodes where the success rate is low. Therefore, nodes that consistently
expose the model’s inability to generate correct solutions receive higher rewards. The hyperparameter A
allows for controlling how aggressively the benchmark focuses on nodes with low success rates. ngttempts
is the number of attempts it took for the model to fix a solution that had failed/errored tests. Therefore,
nodes requiring multiple attempts receive higher rewards and 7 adjusts the weight given to repeated failures.
Finally, Ifizer is calculated in the same way as in Phase 1, with 3 controlling the weight of the penalty for
dependency on the Problem Fizer agent.

Equation |§| allows MCTS to explore regions of the search space where the model consistently fails (i.e., the
more the model fails at each node, the higher the node’s value will be). As such, Phase 2 generates a refined
set of nodes where the model has constantly underperformed. These nodes will be used for analysis of the
underlying root causes of poor performance in Phase 3.

Phase 3: Comprehensive Evaluation Phase 3 focuses on analyzing the root causes of model failures
while using the same reward formula as in Phase 2.

3.5 Ensuring Evaluation Validity

Dynamic challenge generation using the Challenge Designer (see Section [3.3) lowers the risk of benchmark
memorization; however, it introduces two risks in return. Specifically, given a state’s (¢, d) pair:

o Invalid challenge: A challenge is invalid when it is off-concept or incorrectly defined relative to
the selected state’s concepts c¢. For example, challenges that do not test for the intended concept ¢
(e.g., a sorting task labeled as dynamic programming), or infeasible or contradictory constraints (e.g.,
ambiguous input/output specifications, or evaluation criteria that cannot be met).

e Miscalibrated difficulty: A challenge is miscalibrated when its actual difficulty does not match
the selected state’s desired difficulty d. For example, a challenge is generated for an easy difficulty
level that is actually hard or vice versa.

Below, we describe how PrismBench’s execution-based evaluation pipeline, search and aggregation mechanism
with TD(0) and MCTS, alongside its multi-phase evaluation, mitigate these risks.

3.5.1 Execution Based Value Estimation

As detailed in Section [3.2] state selection is based on past observed performance. Once a state is selected,
the Challenge Designer agent produces a challenge based on the state’s (¢, d), independent of other states.
Afterwards, all rewards are derived from objective execution signals. Once the immediate reward for a state
is calculated, the state’s value is determined using TD(0) (see Equation , and backpropagated through its
ancestor states (see Equation . Therefore, an invalid or miscalibrated challenge will result in an immediate
reward and subsequent state values that deviate from past observed performance. This deviation in state
values informs state selection in the next iteration.

3.5.2 Search-time Self-correction

MCTS operates over a fixed MDP on (¢, d) states, where transitions either add concepts or increase difficulty,
and at each iteration, MCTS selects a state based on its current value estimate. As detailed above, when the
observed reward is inconsistent with prior observations for that state or its ancestors (e.g., unexpectedly high
success at a “hard” state or repeated failure at an “easy” state), the TD(0) update produces a noticeable
deviation in the state’s value. This, in turn, steers MCTS to revisit the invalid/miscalibrated state and its
ancestors, which results in re-evaluation using fresh generations (given that challenges are generated at test

16

Under review as submission to TMLR

time) and subsequent reward and value estimation calculations. Therefore, repeated revisits based on value
estimations isolate noisy generations:

o If the original outlier was due to a one-off bad generation, subsequent evaluations will stabilize the
value, and the branch is prioritized, resulting in MCTS exploring other branches.

o If the signal persists (meaning that previous observations were incorrect), then the value stabilizes at
the new level and MCTS either expands adjacent states or prevents expansion when performance is
systematically poor.

Therefore, states that produce inconsistent rewards are automatically detected for further exploration, and
stable states’ values converge. This feedback loop corrects for invalid/miscalibrated challenges at search
time by continuous and iterative re-sampling and averaging over execution outcomes, and prevents unstable
branches from affecting evaluation results.

3.5.3 Deterministic Challenge Selection

While the approaches described above lower the risks of evaluating models using invalid/miscalibrated
challenges, as described in Section [2] there still exists the risk of the Challenge Designer itself being
miscalibrated. Meaning that the agent used as the Challenge Designer has a different understanding of the
difficulty levels in comparison to human preferences (i.e., the model’s definition of a “hard” task corresponds
to a “medium” task according to human preferences). In this case, the overall evaluation results become
miscalibrated as the results of a model’s performance on “hard” tasks correspond to real-world performance
on “medium” tasks.

While this does not affect the benchmarking methodology itself (given execution based estimation coupled
with search time self-correction), it affects how the results are interpreted. As such, we mitigate this risk by
fixing the Challenge Designer agent throughout the entire evaluation pipeline, regardless of the model being
evaluated. In this manner, all models are evaluated on the same distribution of task difficulty. Furthermore,
PrismBench’s modular design allows integration of task evaluation frameworks, such as TaskEval [Tambon
et al.| (2024b) or DyVal |Zhu et al.| (2023a), to verify each challenge’s validity. Finally, dynamic challenge
generation can be entirely bypassed. Specifically, given a challenge bank with defined (¢, d) properties for
each challenge, such as CodeForceﬂ the challenges for each node can be selected from said bank instead of
being dynamically generated by an LLM.

3.6 Evaluation Metrics

We define four metric categories to capture distinct aspects of LLMs’ code generation capabilities. These
metrics provide a structured and thorough evaluation of a model’s strengths, weaknesses, and solution
strategies:

3.6.1 Structural Metrics

These metrics focus on the tree and how models perform in the search space. Node counts and depth
distributions show where models struggle (persistent exploration) or succeed (rapid convergence), and tree
growth patterns demonstrate how challenge complexity impacts performance. In this manner, we can provide
fine-grained and detailed insights into model performance, behavior, and failures in order to address RQs.

We denote the total number of nodes in the tree with |N| and the depth of each node n € N with D,,. We
track the distribution and connectivity of explored concepts through:

N(C): Z 1[c€concepts(n)} (15)
nenodes

N(d) = Z Ligedifficulties(n)] (16)
nEnodes

Thttps://codeforces.com

17

https://codeforces.com

Under review as submission to TMLR

with N(c) and N(d) being the number of times each concept and each difficulty was encountered throughout
the entire tree. The node distribution across concepts and difficulties provides a broad view of where the
model succeeds and struggles: the greater the number of nodes associated with each concept and difficulty
level, the less successful the model has been in addressing related challenges. Consequently, additional nodes
were generated to better identify and isolate the problematic areas.

This is complemented by the branching factor at each node:

children(n)
B(n) = ——— (17)
IV
where children(n) is the number of children of node n and |N| represents the total number of nodes. Nodes
with higher branching factors have more children compared to the other nodes and, therefore, have been
more challenging for the model.

The convergence rate C(n) measures the stability of a model’s performance at each node n by measuring the
difference between consecutive TD values:

C(n) = |vpgr —ve| < efork=1,..., K (18)

where v; represents the node’s TD value at attempt ¢. The convergence rate reflects how drastically the
model’s output changes between attempts. A phase is terminated when all nodes exhibit convergence rates
below a predefined threshold e for K consecutive attempts. A lower convergence rate indicates greater
stability, meaning the model’s performance has plateaued at node n. When this condition holds across all
nodes in a phase, the phase is deemed to have been sufficiently explored, and the next phase begins.

3.6.2 Mastery Metrics

These metrics focus on the model’s progress in understanding and applying concepts over the course of the
benchmarking process. These metrics quantify performance stability as challenge complexity increases and
success rates on challenges with combinations of concepts across benchmarking phases.

The primary measure of concept mastery is the success rate:

1
N(c)

SR(c) = Z success(n) (19)

where success(n) is 1 if the model has successfully passed the challenge at node n and 0 otherwise, as shown
in Listing

Similarly, we measure the model’s success rate at each difficulty level:

SR(d) = ﬁ zl:vsuccess(n) (20)

To understand the effort required for solving a challenge related to a concept ¢, we measure the average
number of attempts regardless of success or failure:

1
N(e)

Ae) = Z attempts(n) (21)

neN (c)
with attempts(n) representing the number of attempts made at node n as shown in Listing

These three metrics alongside each other, indicate how well the model performs in solving challenges for
each specific concept/difficulty with the average number of attempts indicating how many times the model
encountered errors while solving the challenge. High success rates and low number of attempts indicate a
high capability (the challenge was solved with a low number of errors and attempts) while lower success rates
and higher number of attempts indicate struggles in solving challenges with that specific concept/difficulty.

18

Under review as submission to TMLR

3.6.3 Performance Metrics

Performance metrics build upon the mastery metrics and assess the model’s performance across different
concepts and difficulty levels by providing a granular understanding of the model’s capabilities using challenge
success rates, the number of interventions required to fix the model’s code, and problem-solving efficiency
across concepts and difficulty levels.

The fixer intervention rate indicates when the model requires external help and is unable to solve the challenge:

F(e)= ﬁ Y Upiero) (22)

neN(c)
with Ifizer being 1 if the Problem Fizer agent was used at each node n and 0 otherwise.

As shown in Algorithm [1| the Problem Fizer agent is only used when the model fails in all of its attempts
to solve the challenge. This is caused by either incorrect solutions or incorrect tests. Therefore, we can
measure the model’s program repair capabilities for each concept by tracking whether the use of Problem
Fizer resulted in success:

> _nen(e) Lisuccess(n)]
2o nenN(e) Uliner ()]
where success(n) is 1 if the model has successfully passed the challenge at node n and 0 otherwise after the
Problem Fizer intervention at node n.

R(c) = (23)

3.6.4 Diagnostic Metrics

These metrics reveal behavioral patterns through solution analysis (preferred coding patterns), error catego-
rization (common failure modes), and test set evaluation (correct tests, testing for corner cases, etc). They
capture how the model succeeds or fails in specific scenarios and allow for identifying and characterizing the
model’s behavior (how it solves the challenges and how it fails).

The distribution of solution patterns across concepts shows how many times the model has used a specific

solution for each concept c:

count(p, ¢)
N(P)

with N(P) being the number of identified patterns throughout the entire tree and patterns indicating

algorithmic approaches, data structure usage, and implementation patterns.

SP(p,c) = (24)

Pattern effectiveness quantifies which solutions the model executes successfully, helping identify its preferred
problem-solving strategies:

ZneN(p)]-[success(n)]
N(P)
Conversely, using failure rate (1 — success(n)) instead of success rate quantifies the patterns the model

struggles with the most.

PE(p) = (25)

Test validation scores test suite quality:

count(v, ¢)
N(V)

where N (V) is the number of identified validation issues throughout the entire tree with v being an identified

validation issue with validation issues including analyses on missing, incorrect, coverage, and corner case
issues for each generated test suite for each concept c.

TV (v,¢) = (26)

Error pattern distribution by concept shows where exactly the model has failed in solving the challenges

related to that concept c:

count(e, ¢)
N(E)

where N(E) is the number of identified errors throughout the entire tree with e being an error that was

raised during the execution of the program.

EP(e,c) = (27)

19

Under review as submission to TMLR

4 Experimental Design

To show PrismBench’s effectiveness, we evaluate 8 LLMs on their code generation, test suite creation, and
program repair capabilities: GPT4o (40), GPT40-mini (40-M) Hurst et al|(2024), GPT-OSS-20b (GPT-
0SS) |Agarwal et al| (2025), Llama3.1-8b (L-8b), Llama3.1-70b (L-70b), Llama3.1-405b (L-405b) Dubey
et al. (2024), Llamad4-Scout (L4S) Meta, (2025)), and DeepSeekV3 (DS3) [Liu et al| (2024). For our
experiments, we use LeetCode (LC) |LeetCode| (2024)) style programming challenges and 40-M as the Challenge
Designer to create problems based on each node’s concepts and difficulty levels for all models under evaluation.
The test generation, code generation, and repair tasks are performed by the models under evaluation, while
4o is used for analyzer agents in Phase 3. All reported results are averaged over 3 independent benchmarking
runs for all models under study.

For all LLMs under study, the concepts are chosen similarly to the fundamental concepts of computer science

in LC, with difficulty levels of “very easy”, “easy”, “medium”, “hard”, and “very hard”, the same as the

difficulties of LC challenges, which we describe in detail below.

4.1 Concepts

Here, we provide a concise explanation of each concept and what we expect the models to achieve in tasks
involving these concepts.

e Loops: A loop is a control structure that repeatedly executes a block of code as long as a specified
condition is true. Examples include for, while, and do-while loops. As such the models should:

— Correctly implement loops to traverse data structures or repeat operations.
— Optimize loop usage for efficiency and avoid common pitfalls such as infinite loops.

e Conditionals: Conditionals are control structures that execute specific code blocks based on boolean
conditions. Examples include if, else, and else if statements. We expect the model to:

— Accurately implement conditionals to manage decision-making logic.
— Handle edge cases and ensure logical correctness when combining multiple conditions.

o Functions: Functions are reusable blocks of code that perform a specific task, defined by a name,
parameters, and a return value. The models should:

— Design modular and reusable functions.
— Handle parameter passing and scope effectively.

e Data Structures: Data structures organize and store data to facilitate efficient access and modifica-
tion. Examples include arrays, linked lists, stacks, queues, and trees. The models should:

— Choose appropriate data structures for given problems.
— Implement and manipulate data structures accurately and handle edge cases.

o Algorithms (logic): Step-by-step procedures for solving problems or performing computations. As
such, the models should:

— Devise efficient algorithms to address specified problems.

— Optimize time and space complexity, demonstrating an understanding of computational trade-
offs.

e Error Handling: Error handling involves detecting, managing, and responding to runtime errors.
As such, the models should:

— Implement robust error-handling mechanisms, including exception handling and validation.

e Recursion: Recursion is a technique where a function calls itself to solve a problem by breaking it
into smaller sub-problems. As such, the models should:

20

Under review as submission to TMLR

— Correctly implement recursive functions, ensuring termination through base cases.
— Optimize recursion to avoid excessive memory usage and stack overflow issues.

e Sorting: Sorting involves arranging data in a specific order, such as ascending or descending, such
as quicksort, mergesort, and bubble sort. As such, the models should:

— Implement sorting algorithms correctly and select appropriate algorithms for the given data size
and constraints.

e Searching: Searching involves finding specific elements in a dataset, such as linear search, binary
search, and hash-based lookups. As such, the models should:

— Apply efficient search techniques suited to the dataset’s structure.
— Ensure correctness and handle cases where the element is not present.

¢ Dynamic Programming: Dynamic programming is a technique for solving complex problems by
breaking them into overlapping sub-problems and solving each sub-problem only once. We expect
the models to:

— Develop dynamic programming solutions to problems requiring optimization.
— Demonstrate the ability to use memoization or tabulation correctly.

These concepts are foundational to CS and cover the essential problem-solving skills required to implement
solutions and tests for a problem. By benchmarking models on these concepts, we aim to assess their ability
to generalize to unseen tasks based on single concepts and concept combinations critical for coding and
reasoning. The concepts for benchmarking are modifiable, meaning that they can be changed to any desired
topic, allowing PrismBench to be used in more specific scenarios and subjects (e.g., instead of foundational
concepts, implementation patterns and challenges closer to LC challenges such as “Two Sum”, “Valid Sudoku”,
etc. can be chosen).

4.2 Combination of Concepts

As we detailed in Section [3.2] in real-world programming scenarios, the implementation of solutions rarely
requires implementing isolated, single concepts. Instead, they require the integration of multiple concepts
to address complex problems effectively. For example, developing a functional application often involves
combining loops for iteration, conditionals for decision making, and data structures to organize information.
In addition, advanced challenges frequently require recursion, algorithms for processing logic, and error
handling to ensure that the program does not fail when it encounters unexpected inputs or conditions.

Therefore, to simulate real-world programming scenarios, PrismBench generates challenges that combine
these core concepts into unified problems. This allows us to evaluate a model’s capabilities to synthesize
knowledge across programming concepts. For example, a single problem might require using dynamic
programming alongside data structures for optimal solutions or using sorting and searching techniques to
manage/query datasets. This approach ensures that the model can demonstrate competency in scenarios
requiring cross-concept integration. As such, failure to solve problems involving multiple concepts is an
indicator of deficiencies in one or more of the constituent concepts. Such failures signal areas where the model
struggles to integrate distinct methodologies or lacks a deep understanding of specific concepts. For instance,
if a model fails a task combining functions and error handling, it might reflect difficulties in managing
exceptions within modularized code. In this manner, PrismBench can investigate these failures further by
identifying the exact concepts or combinations responsible for failures.

Alongside combining concepts, we also use a range of difficulty levels: very easy, easy, medium, hard, and
very hard in order to perform fine-grained analysis of the model’s capabilities. This enables us to assess
performance not only on single concepts and their combinations but also on different complexities of these
problems. For example, a model might perform well on easier problems related to a concept or group of
concepts but fail on medium or hard ones, revealing limitations in its ability to scale solutions to more
challenging scenarios.

21

Under review as submission to TMLR

By probing models across a variety of concept combinations and difficulty levels, we gain a comprehensive
understanding of their strengths and weaknesses and gain valuable insights into their overall code generation
capabilities by pinpointing root causes and systematically evaluating a model’s limitations.

4.3 Experiment Settings and Reproducibility

In this section, we report the configuration values for all global and phase-specific parameters used throughout
PrismBench’s multi-phase evaluation pipeline for the experiments reported in our study. These values were
kept fixed across experiments on all models to ensure comparability and reproducibility of the results.

Benchmarking parameters Table|l|lists all the parameters used in our study. We organize PrismBench’s
tunable parameters into a set of global settings that control the overall search and value-estimation behavior,
alongside phase-specific parameters that control the reward functions and exploration policies at each stage
of the evaluation. All values listed below were held constant across the experiments reported in our work.

Table 1: Tunable parameters

Description Parameter Value
General

Discount factor (Eq. ~ 0.9
Learning rate (Eq. o 0.9
Exploration constant (Eq. C 1.414
Number of convergence checks - 5
Phase 1

Node value threshold (Eq. D Op 0.4
Value delta threshold (Sec. [3.4) A(v) 0.3
Random exploration probability (Eq. €1 0.2
Penalty per failure (Eq. [14) Praiture 2
Penalty per error (Eq.) Perror 3
Penalty per attempt (Eq. Pattempt 1
Penalty for using Problem Fixer (Eq. Prixer 5
Max depth (Eq. dimax 5
Phase 2

Node value threshold (Eq. D 0p 0.6
Value delta threshold (Sec. [3.4) A(v) 0.1
Random exploration probability (Eq. €9 0.1
Max depth (Eq. Amax 10
Phase 3

Number of variations for each node - 5
Node value threshold (Eq. 0, 0.5

Agent configurations Table[2]shows the agent configurations used during each model’s evaluation. As
outlined in Section [we use 40-M as the Challenge Designer across all experiments. For each model being
benchmarked, we use that model as the Test Generator, Problem Solver, and Problem Fizer agents. To avoid
bias in error analysis, we use 40 as the Test Validator, Test Error Analyzer, and Solution Pattern Analyzer
for all models except when benchmarking 4o itself. In that case, we use L-405b as the analyzer agent to
prevent bias.

22

Under review as submission to TMLR

Table 2: Experiments configurations

Agent 40 40-M L-8b L-70b L-405b L4S DS3 GPT-0OSS
Challenge Designer 40-M 40-M 40-M 40-M 40-M 40-M 40-M 40-M
Test Generator 4o 40-M L-8b L-70b L[-405b L4S DS3 GPT-OSS
Problem Solver 4o 40-M L-8b L-70b L-405b L4S DS3 GPT-OSS
Problem Fixer 4o 40-M L-8b L-70b L-405b L4S DS3 GPT-OSS
Test Validator L-405b 4o 4o 4o 4o 4o 4o 4o
Test Error Analyzer L-405b 40 4o 40 40 4o 40 4o
Solution Pattern Analyzer 1.-405b 4o 4o 40 40 4o 4o 4o

4.4 Benchmarking cost

Evaluating each node in the search tree requires independent calls to each agent, with the process being
dependent on the model’s performance. For every node, we use one query for the Challenge Designer to
generate the challenge, one for the Test Generator, and one for the Problem Solver. If the model succeeds
on the first attempt, the evaluation ends with these three queries. However, if the solution fails, up to
three additional queries are used for the Problem Solver for iterative repair attempts. If still unsolved, one
additional query is used for Problem Fizer to repair the solution. As detailed in Section [3:4] nodes may also
be revisited up to five times if their children consistently receive low rewards (convergence checks up to 5
times). Finally, for each node generated in Phase 3, three more queries are used for the Test Validator, Test
Error Analyzer, and Solution Pattern Analyzer agents. Therefore, the per-node benchmarking cost in our
framework ranges from a minimum of 3 queries (one-shot success, no retries) to a maximum of 38 queries
(persistent failures, repeated convergence checks, and full diagnostic analysis). On average, throughout all
the trees in our experiments, a single node has triggered 6 queries.

The total query count for a full benchmarking run is dependent on the model’s capabilities and provider
costs(if using APIs). For the experiments conducted in this study, the number of queries and cost per model,
averaged over 3 independent runs, are as follows:

o For 40, a full run triggered 1,153 queries with each run costing approximately US$20.

o For 40-M, a full run triggered 961 queries, with each run costing approximately US$10.

e For GPT-0SS, a full run triggered 1363 queries, with each run costing approximately US$16.
e For L-405b, a full run triggered 1,094 queries, with each run costing approximately US$24.

e For L-70b, a full run triggered 454 queries, with each run costing approximately US$14.

e For L-8b, a full run triggered 183 queries, with each run costing approximately US$8.

e For L4S, a full run triggered 480 queries, with each run costing approximately US$10.

o For DS3, a full run triggered 884 queries, with each run costing approximately US$13.

4.4.1 Reducing Benchmarking Costs

As mentioned above, evaluating each node in the search tree requires 35 calls in the worst-case scenario. While
PrismBench significantly lowers the sampling requirements for comprehensive evaluation of LLM capabilities,
the workflow of using all 7 agents for each node can become computationally and financially expensive. As
such, PrismBench allows for a lightweight version of the benchmarking process by using challenges generated
from previous runs and skipping diagnostic metric calculation. Specifically:

e By using a bank of generated challenges from previous runs, the Challenge Designer agent can be
bypassed.

23

Under review as submission to TMLR

o The 3 analyzer agents (Test Validator, Test Error Analyzer, and Solution Pattern Analyzer) are only
used for analysis of the benchmarking results in order to compute the diagnostic metrics described in
Section [3.6] and other metrics are not dependent on LLM analysis. Therefore, they can be turned off
in case diagnostic metrics are not required.

The combination of these two solutions reduces the number of LLM calls per node in the worst-case scenario
from 38 to 15, and reduces computational and financial costs of the benchmarking process by up to 50%.

5 Results and Analysis

In this section, we present the experimental results and analysis of our dynamic benchmarking approach, as
described in Section [3] We begin with a comparative analysis of the eight LLMs introduced in Section
by evaluating their code generation performance using the metrics defined in Section [3.6] Afterwards, we
provide a fine-grained breakdown of how each model performed across different dimensions in Section [5.2
Finally, in Section we analyze the effects of model scale (i.e., number of parameters) and how it impacts
code generation capabilities.

5.1 Comparative Analysis

In this section, we provide a comparative analysis of evaluation results across the four metric categories
discussed in Section for the models under study.

5.1.1 Structural Metrics

Phase 1: Number of Nodes per Depth

150 1
-
£

s 40 2100+
== 40-M a

== GPT-0SS 2 60
== L-8B 8

== L-70B S 40
L405-B 5
. L4S H

== DS3 E 20/
2

o/

Tree Depth

Figure 4: Tree growth across models throughout Phase 1 The bars represent node counts by tree
depth, and the shaded bars represent the cumulative number of nodes per depth across the tree in Phase 1.

Figure [4] compares the tree growth per depth in Phase 1. At the very beginning of the search, the tree is
populated with initial nodes in order to provide the same starting point for all models and allow comparison
between their performance as the evaluation process continues (see Section [3.4.1). Phase 1’s reward function
prioritizes task success and difficulty-weighted exploration (see Section T herefore, the shaded bars
for each model quantify how effectively they sustain problem-solving capability as challenges become more
complex (i.e., we go deeper in the tree): higher number of nodes indicates broader exploration and lower
failures. For instance, 40 and GPT-OSS achieve more than 150 nodes in Phase 1, demonstrating robust
handling of complex challenges (e.g., multi-concept and high-difficulty tasks), while L-8b stalls at 60 nodes,
failing beyond basic concepts and easy difficulties (depth<4).

Phase 2 uses low-scoring Phase 1 nodes to generate targeted challenges, prioritizing task failure and repeated
attempts. Therefore, the ratio of generated nodes per depth, as shown in Figure [5] reveals where models
struggle: higher ratios at shallower depths imply difficulty with simpler challenges, while increasing ratios at
greater depths demonstrate stronger problem-solving capability at complex challenges. We can observe that

24

Under review as submission to TMLR

Phase 2: Node Ratio per Depth

4omm 0.04 0.10 m 0.14 0.17 0.10 0.08
40- Mm 0.09 0.10 0.14 0.17 0.12 0.08 m
GPT-0SS mmm 0.08 0.12 0.16 0.17 0.11

L-70B- 0.11 0.15 0.19 m mmm

Las- 0.09 0.12 0.14 0.15 m 0.14 0.12 mmm

nssmmm 0.09 0.14 0.13 0.16 0.10 0.08
1 2 3 a 5 6 8 9 10

Tree Depth

Figure 5: Node ratio by depth across models throughout Phase 2. Each cell shows the ratio of nodes
in the tree at each depth, indicating relative search focus across the tree in Phase 2.

even though 40-M has a similar number of nodes than L-405b at the end of Phase 1 (142 vs 151 nodes), it
struggles with complex challenges in Phase 2, while L-405b demonstrates a more consistent exploration of the
tree and has a higher ratio of nodes compared to 40-M at the end of Phase 2. Furthermore, we can observe
that GPT-OSS has a similar problem-solving capability to 40 and L-405b despite being much smaller in scale,
which we discuss in detail in Section

5.1.2 Performance Metrics

Table [3] summarizes model capability analysis at the end of the benchmark, with values showing failure rates
across concepts and difficulty levels. PrismBench dynamically explores the search space to find challenging
areas for the model, then focuses on these areas to uncover root causes of failure. The primary operational
capability for each concept is determined by the ratio of nodes (concept-difficulty pairs) explored in the
search tree and their average failure rates over 3 independent runs.

Table 3: Model capability analysis by concept and difficulty. Values represent failure rates (higher =
more challenging). Colors indicate performance: green (good) to red (poor). t indicates primary operational
difficulty level (most number of nodes), v'indicates mastered concepts (failure rate < 0.01), and X indicates
concepts beyond current capability (failure rate > 0.99). 95% CI broken down by concept and difficulty
reported in Tables [and

| Very Easy/Easy Medium Hard/Very Hard

Concept | 40 | 40-M | GPT-OSS | L405 | L70 | L8 | L4S | DS3 | | 4o |40-M | GPT-OSS | L405 | L70 | L8 | L4S | DS3 | | 4o | 4o-M | GPT-OSS | L405 | L70 | L8 | L4S | DS3 |
Algorithms | v v v v v 053 0.39 0.661 040 [0:73F

Conditionals | v v v v 075 v 033 0.67¢ 044 | 0.64f

Data Struct. | v 0.60 v v 0.75f 053 0.29 0.67¢ 040 | 0.68f

Dyn. Prog. | v 0.60 0.29 v v 053 0.32 0.67¢ 058 | 0.71%

Error Hand. | v v 0.26 v 0.75¢ | 0.53 v 0.67¢ 038 | 0.71f

Functions v 0.60 v v 0.75f 0.53 0.667 0.44 0.701 0.57

Loops v v v v v 053 v 0.67¢ 029 | 0.71F 0.38
Recursion v v v v v 0.53 v 0.661 0.35 0.681 0.57 | 0.72f
Searching v v v v 0.75¢ | 0.53 v 0.67¢ 028 | 0.70f 0.67F 054
Sorting v 060 v v v 053 v 0.661 030 | 0.71f 0.47 | 0.70f

40 shows no failures on easy tasks, demonstrating strong basic programming skills. However, performance
drops at higher difficulty levels, especially for “dynamic programming” and “data structures”, indicating
limitations in handling programming challenges that require in-depth reasoning. 1L-405b fails on some easy
challenges, but generally has lower failure rates on easy and medium tasks. Similar to 4o, it struggles with
hard/very hard challenges that require integration of multiple concepts, such as “dynamic programming”,
“algorithms”, and “functions”. 4o0-M has higher failure rates overall among the top-performing models,
especially for challenges requiring compositional reasoning, such as “loops”, “functions”, “conditionals”, and
“recursion”. These failures are more common when concepts are combined (e.g., loops with conditionals), as
shown in Figure 20] and discussed in detail in Section [5.2}

25

Under review as submission to TMLR

Both GPT-OSS and DS3 display higher levels of capability than 40 and 1-405b, achieving lower failure rates
on medium and hard/very hard tasks. While this is indicative of better coding capability across concepts and
difficulty levels, the majority of GPT-OSS’s and DS3’s successes, are a result of relying on Python’s built-in
functions and standard libraries (e.g., using sort on arrays instead of implementing the sorting function, using
itertools to iterate through multiple arrays at once instead of implementing the functionality, etc.) despite
task instructions that prohibit such solutions. Therefore, while GPT-OSS and DS3 are more capable in
solving challenges in contrast to 40 and L-405b, they are less capable in instruction following and adhering to
specified requirements, which are revealed through the diagnostic metrics (error patterns and test validations)
which we discuss in detail in Section

L4S’s higher success rates are a result of it reaching much fewer nodes at higher depths compared to both
40 and L-405b as shown in Figure [5] which indicates 1.4S’s relative search focus, and Figure [7] which
displays the success rates weighted by the number of node visits. On the other hand, L-70b and L-8b show
different patterns: L-70b struggles even with easy challenges and fails more as difficulty increases, indicating
a limited capacity for complex challenges. L-8b has high failure rates across all concepts and difficulties,
indicating limitations in basic code generation capability. We provide a more detailed analysis of each model’s
performance and the effects of model scale in Sections [5.2] and [5.3]

5.1.3 Mastery Metrics

Figures[6]and [7] present success rates by concept and difficulty for the top models across Phases 1 and 2 weighted
by the number of node visits for each concept at each difficulty level (higher number indicates more success
at fewer attempts). While Performance metrics capture overall challenge outcomes (i.e., success/failure),
mastery metrics highlight which concepts each model handles well and where they struggle. By mapping
success rates to each concept-difficulty pair and weighing them by the number of visits to associated nodes,
we can pinpoint common failure modes and determine each model’s limits.

—— Easy/Very Easy Medium —— Hard/Very Hard

GPT-40 GPT-0SS-20B Llama3.1-405B

Recursion Loops Recursion Loops Recursion Loops

Error Hand. Functions Error Hand. Functions Error Hand. Functions

Conditionals Dyn. Prog. Conditionals Dyn. Prog. Conditionals Dyn. Prog.

Algorithms Searching Algorithms

Searching

Data Struct. Sorting Data Struct. Sorting Data Struct. Sorting

Figure 6: Concept success rate analysis per difficulty for 40, GPT-OSS, and L-405b. Green: very
easy/easy, Yellow: medium, Red: hard/very hard. The radial axis represents the success rate (between 0 and
1). Each axis corresponds to a programming concept. Higher values indicate better performance.

As shown in Figure |§|, GPT-0SS outperforms all models on medium and hard/very hard difficulty challenges,
particularly in “loops”, “searching”, “sorting”, “data structures”, and “algorithms” with a marginally lower
capability in function-heavy composition and “dynamic programming”. 4o struggles with compositional
reasoning: challenges that require combining “algorithms”, “data structures”, or “dynamic programming”,
especially when multiple function calls, nested conditionals, or multiple levels of recursion are required.
L-405b shows strong performance on very easy/easy challenges and similar performance to 40 on medium
difficulty control flow and data structure tasks. However, similar to 4o, it struggles with complex challenges
such as “dynamic programming” or “recursion” on hard/very hard difficulty levels.

40-M shows high capability on easy/very easy challenges, but its success rates degrade as difficulty levels
increase, specifically across challenges that require “recursion”, nested conditionals, and “dynamic pro-
gramming”. On the other hand, while DS3 shows high success rates on easy and medium level difficulties,

MW

its performance sharply degrades on challenges involving “dynamic programming”, “error handling”, and

26

Under review as submission to TMLR

—— Easy/Very Easy Medium —— Hard/Very Hard

GPT-40- Mlm DeepSeek V3 Llama-4-Scout
Recursion Recursion Recursion Loops

Error Hand. Functions Error Hand. Functions Error Hand. Functions
Conditionals Dyn. Prog. Conditionals Dyn. Prog. Conditionals Dyn. Prog.
Algorithms Searching Algorithms i Searching

Data Struct. Sorting Data Struct. Sorting Data Struct. Sorting

Figure 7: Concept success rate analysis per difficulty for 40-M, DS3, and L4S. Green: very easy/easy,
Yellow: medium, Red: hard/very hard. The radial axis represents the success rate (between 0 and 1). Each
axis corresponds to a programming concept. Higher values indicate better performance.

loop-intensive compositions. As mentioned in Section and shown in Figure[7 even though L4S achieves
high success rates on hard/very hard difficulty challenges, it is incapable of solving them consistently because
it visits far fewer nodes with such levels of difficulty. As such, when weighted by the number of node visits,
L4S’s success rates are much lower compared to other top models. We include a more detailed analysis of
concept combinations and their effects on model performance in Section [5.2]

5.1.4 Diagnostic Metrics

Figures [§ and [9] show the success ratios of the top-performing models for the four highest failure rate concepts
from Table [3] grouped by the top three programming patterns found in the solutions of each model.

GPT-40 GPT-0SS-20B Llama3.1-405B

Loops Dyn. Prog. Recursion Algorithms Loops Dyn. Prog. Recursion Functions Loops Dyn. Prog. Cond. Error Hand.

“ya et 11 il

Q‘?

=
o
S

o
N
«x

Success Ratio
o o
N w
w o

&

< \\ ° 9 .9 3 & 3 A X e N4 & < Rogiiog
oe,o? e OQ";‘ R Qie,&’ CR A 2 & e‘:vo° <°‘}<’\:e+ & e}zé,“' S ~;° R L8 LGS £ e
g QA SN SRS NP NI RS N
O & OO &Y. S O 2
& & SV VE 2 AL &
& N e 0 Dy
S

Figure 8: Success ratios for the most challenging programming patterns for 40, GPT-0OSS, and
L-405b, grouped by the 3 most challenging concepts for each model. Stacked bars show performance by
difficulty. Green: medium, orange: hard, red: very hard. Taller bars indicate better performance.

As shown in figure [8] 4o struggles significantly with “dynamic programming”, even when the concept is
not explicitly in the challenge. In contrast to the other models under study, the majority of GPT-OSS’s
solutions involve multiple nested function definitions (i.e., defining functions inside other functions), which,
when combined with GPT-OSS’s over-reliance on Python’s standard libraries to either create hash tables or
search through the inputs in intermediate steps, result in failures. L-405b shows the lowest success ratios
for simple “data structures” and “tree/graph traversal”. In contrast to the other top models, our analysis
shows that [.-405b’s failures are not due to a lack of understanding of the problem itself but from failures in
instruction-following and programming syntax. L-405b’s failed solutions are often implemented using built-in
data types (set, list, dict, etc.) and while the logic and pseudocode are often correct, L-405b frequently
makes errors such as hallucinating keys in built-in types (using incorrect attributes), misplacing code snippets
(calling a variable before defining it), or failing to follow the system prompt’s format, which lead to immediate
rejection of solutions by the framework.

27

Under review as submission to TMLR

40-Mini DeepSeek-V3 Llama-4-Scout
Loops Dyn. Prog. Cond. Data Struct. Loops Dyn. Prog. Recursion Error Hand. Loops Dyn. Prog. Cond. Error Hand.

e »~
94 o
a S

Success Ratio
o
w
o

0.25
0.00 N
0\‘}@*0‘» Sl ("’*«‘yq S 0“5‘ St o‘:"@?\&é gé‘&é(;\ Retio® 60"‘0\‘}& 04‘045" & @b‘\'&(@‘? 0-!‘-‘"9"’,906'
et oQofo‘{@o ¥ LY Q‘o'o‘ &‘2‘ & J;Qo-\o S < Q\"'ofo‘ S v&" & & oo‘@q"\o 0(0(, S5 &
& <o A2 A > &% @ <& 2 N 2 DY
ot @ S & oV Ve &N & & R & 8“& VY \:\é" <
&8

Figure 9: Success ratios for the most challenging programming patterns for 40-M, DS3, and L4S,
grouped by the 3 most challenging concepts for each model. Stacked bars show performance by difficulty.
Green: medium, orange: hard, red: very hard. Taller bars indicate better performance.

On the other hand, 40-M consistently fails in challenges involving composite problems (combinations of
multiple concepts), “complex data structures”, or “dynamic programming”, regardless of how it attempts to
solve the challenge. Similar to GPT-OSS, DS3 relies on Python’s standard libraries and built-in functions in
order to solve the challenges; however, the majority of DS3’s failures are a result of incorrect input type and
shape estimation (e.g., assuming the input will be a 1D array and failing when the input is higher-dimensional).
Compared to 40 and L-405b, DS3 extrapolates requirements the most without considering other possibilities,
which is the main root cause behind its consistent failures for solving challenges involving “error handling”.
Finally, L4S struggles the most with challenges requiring iterative processing of inputs or intermediate results.
We provide a comprehensive breakdown of these observations through per-model analysis and cross-model
comparison in Section [5.2

5.2 Detailed Analysis of Results

Tables [4] and [f] show the average success rate and average intervention rate for each of the models under
study, across concepts and difficulties, respectively. The metrics presented here are averaged from the values
throughout the entire tree at the end of the benchmarking process, for 3 independent benchmarking runs for
each model, and are not phase-specific.

Table 4: Model performance by difficulty. Colors indicate performance: green (good) to red (poor).
Higher values for intervention rates indicate more usage of the Fizer agent. Each cell shows the mean value
over 3 runs & margin of error, calculated at a 95% confidence interval.

Difficulty 40 DS3 GPT-0OSS L.405b
Avg Avg Avg Avg Avg Avg Avg Avg
Succ. Rate Inter. Succ. Rate Inter. Succ. Rate Inter. Succ. Rate Inter.
Very easy 0.83 + 0.11 | 4.67 + 0.02 0.83 + 0.01 | 3.33 + 0.12 0.89 + 0.05 | 1.33 &+ 0.04 0.83 + 0.04 | 3.67 + 0.03
Easy 0.73 +0.12 | 2.00 £ 0.02 0.64 = 0.11 1.00 + 0.12 0.85 + 0.09 | 3.33 £ 0.02 0.72 £ 0.10 | 2.33 £ 0.07
Medium 0.42 + 0.01 | 1.00 &+ 0.01 0.51 £ 0.02 0.33 + 0.04 0.75 £ 0.04 | 4.33 £+ 0.09 0.39 £ 0.10 | 1.33 £ 0.01
Hard 0.33 + 0.09 | 2.00 &+ 0.04 0.64 £ 0.12 0.33 + 0.11 0.60 £ 0.12 | 2.67 £+ 0.09 0.46 £+ 0.07 | 1.00 &+ 0.04
Very hard [JOI29EEI008) 2.00 £ 0.10 [JORSEE005N 0.00 + 0.01 0.49 £ 0.03 | 9.67 £ 0.12 [JOR9EE007N 2.50 + 0.06
40-M L4S L70b L8b
Avg Avg Avg Avg Avg Avg Avg Avg
Succ. Rate Inter. Succ. Rate Inter. Succ. Rate Inter. Succ. Rate Inter.
Very easy 0.83 £ 0.10 | 1.00 &+ 0.03 0.84 £ 0.02 | 1.12 £ 0.04 0.42 £+ 0.08 | 3.00 £ 0.05 1.67 £ 0.06
Easy 0.63 £+ 0.03 | 1.00 £ 0.09 0.66 + 0.03 | 1.00 + 0.03 0.00 + 0.05 1.00 £ 0.03
Medium 0.35 + 0.02 | 1.00 + 0.01 0.51 +0.08 | 1.33 + 0.08 0.00 + 0.01 0.00 + 0.10
Hard 1.50 £+ 0.03 0.33 £ 0.12 | 2.33 £ 0.04 1.00 £+ 0.02 0.00 £ 0.09
Very hard 1.00 £+ 0.10 0.00 + 0.10 1.00 £+ 0.05 1.00 £+ 0.06

28

Under review as submission to TMLR

Table 5: Model performance by concept. Colors indicate performance: green (good) to red (poor).
Higher values for intervention rates indicate more usage of the Fizer agent. Each cell shows the mean value
over 3 runs 4 margin of error, calculated at a 95% confidence interval.

Concept 4o DS3 GPT-0OSS L405b
Avg Avg Avg Avg Avg Avg Avg Avg
Succ. Rate Inter. Succ. Rate Inter. Succ. Rate Inter. Succ. Rate Inter.
Loops 0.51 + 0.10 | 2.50 + 0.03 0.47 + 0.02 | 0.33 + 0.04 0.73 + 0.08 0.48 + 0.11

Conditionals 0.42 £ 0.03 0.69 & 0.03 | 0.00 & 0.03 0.65 £ 0.01
Data Struct. 0.43 £ 0.02 0.52 & 0.08 | 0.00 & 0.08 0.68 £+ 0.09
Algorithms ~ 0.49 + 0.11 0.55 = 0.12 | 1.00 % 0.04 0.66 £ 0.12

Dyn. Prog. _ 2.50 £ 0.10 0.32 £ 0.01 | 0.00 & 0.10 0.56 £+ 0.07

0.43 &£ 0.11 | 2.33 & 0.03
0.43 £+ 0.06
0.50 £ 0.06
0.42 £+ 0.06

Error Hand. 0.49 + 0.08 | 1.67 + 0.01 0.74 £ 0.05 | 0.33 & 0.05 0.70 £ 0.10 0.55 + 0.04 | 2.33 & 0.12
Functions 0.57 + 0.10 | 2.67 £ 0.05 0.65 £ 0.04 | 0.33 & 0.03 0.75 £ 0.10 0.50 £ 0.01 | 2.00 % 0.10
Recursion 0.49 + 0.10 | 2.00 £ 0.10 0.53 £ 0.04 | 1.00 & 0.01 0.70 + 0.03 0.55 =+ 0.03
Searching 0.51 + 0.11 | 1.50 £ 0.06 0.62 £ 0.08 | 0.00 & 0.08 0.74 + 0.05 0.49 =+ 0.06
Sorting 0.45 £ 0.03 | 1.00 £ 0.06 0.60 £ 0.03 | 0.33 & 0.07 0.70 £ 0.09 0.48 £ 0.07 | 2.33 & 0.06
40-M L4S L70b L8b
Avg Avg Avg Avg Avg Avg Avg Avg
Succ. Rate Inter. Succ. Rate Inter. Succ. Rate Inter. Succ. Rate Inter.
Loops 0.48 £ 0.11 [2.00 £ 0.02 0.31 & 0.01 | 2:81 £ 0.12 _ 1.00 + 0.04 1.00 + 0.03
Conditionals 0.45 £ 0.12 | 2.00 + 0.02 0.51 + 0.11 | 2.25 £ 0.12 0.32 & 0.09 2.00 £ 0.07
Data Struct. 0.44 & 0.01 | 1.00 + 0.01 0.46 + 0.02 _ 1.00 £ 0.09 0.00 & 0.01
Algorithms ~ 0.48 4 0.09 | 1.00 =+ 0.04 0.55 + 0.12 0.33 £0.12 1.00 £ 0.09 1.00 #+ 0.04
Dyn. Prog. 0.34 + 0.08 | 0.00 + 0.10 1.00 &+ 0.12 1.00 + 0.06
Error Hand. 0.49 4+ 0.05 | 1.00 + 0.03 0.42 + 0.04 | 2.03 £ 0.06 1.50 & 0.02 1.00 # 0.02
Functions 0.42 + 0.06 | 1.50 & 0.06 0.59 £ 0.10 | 2.42 & 0.05 2.00 £ 0.12 2.00 & 0.09
Recursion 0.43 + 0.02 | 1.00 & 0.07 1.00 &+ 0.11 1.00 + 0.06
Searching 0.47 + 0.10 | 1.50 £ 0.04 0.67 + 0.12 | 2.32 £ 0.02 0.30 &£ 0.01 1.00 £+ 0.11 1.00 + 0.05
Sorting 0.39 4 0.02 | 0.00 £ 0.04 0.60 + 0.02 | 2.28 £ 0.07 0.31 + 0.05 1.00 + 0.08 1.00 £ 0.06

Looking at the performance data across all models, we observe a clear hierarchy in both success rates and
the number of interventions. Starting with the model performance by difficulty level, there’s a consistent
degradation in success rates as difficulty increases across all models. As expected, the “very easy” difficulty
level shows the highest success rates for all models. The success rates steadily decline to much lower values
at “very hard” difficulties. The success rates of L-70b and L-8b even on the “very easy” difficulty level
compared to the other models, already indicate the limited capability of these models given the number of
their parameters, which we discuss in depth in

In terms of concept mastery, we see varying performance across models. 40 performs best on “functions”
and “searching” challenges, while struggling with “dynamic programming”. 40-M shows more consistent
performance across concepts but with lower overall success rates. 1-405b demonstrates solid capabilities on
“error handling” and “searching” challenges while also struggling with “conditionals”, and similar to 40 and
40-M, on “dynamic programming”. The smaller Llama models (L-70b and L-8b) show significantly lower
success rates across all concepts, with L-8b particularly struggling with success rates mostly below 0.20.

Both 40 and L-405b show notably high intervention rates, especially at the “very easy” difficulty level (4.67
and 3.67, respectively). This is particularly interesting given that these models also maintain high success
rates. Investigating node distributions helps explain these patterns with Figures and displaying the
distribution of nodes in each depth per concept and difficulty for 40 and L-405b, respectively. Both models
quickly progress beyond “very easy” difficulty challenges, as evidenced by their node distributions (15 and 14
nodes at “very easy” for 4o and L-405b, respectively). As such, the high number of interventions at lower
difficulties are due to smaller sample sizes at these levels combined with specific challenging cases requiring
multiple interventions. On the other hand, we can observe that both 40 and L-405b have high intervention
rates for challenges related to “conditionals”, “data structures”, “algorithms”, and “dynamic programming”.
Looking at the distributions of nodes per concept as shown in Figure and [I0B] reveals that these concepts

29

Under review as submission to TMLR

Difficulty Distribution Across Tree Depth Concept Distribution Across Tree Depth

w4 1 1 0 - 7 6 B 7 6 B 6 6 7

o 4 3 1 2 o 7 6 6 7 6 5 7 6 7

- 2 6 5 3 - 7 7 7 6 5 7 6 7
av- 1 2 5 2 9 s 5 5 6 7 7 6 5 6 5 6
e 1 1 2 6 7 Eel7 5 7 6 7 5 4 6 6 7
g - 1 1 2 3 7 § - 4 4 5 6 5 6 4 5 4 4

©- 1 1 5 5 15 Fed 6 11 9 9 9 6

@ - 1 1] 7 5 17 @ 4 11 6 9 10 9

e- [} 1 1 4 14 2 3 6 7 6

o- (1] (V] 0 0 13 = 5 7 7 7 5 7

Very Easy Easy Medium Hard Very Hard Loops Conditionals Functions Data Struct. Algorithms Error Hand. Recursion Sorting Searching Dyn. Prog.
(a) Node distribution for 40
Difficulty Distribution Across Tree Depth Concept Distribution Across Tree Depth

~ 5 1 1 0 o 4

o 4 4 2 1 < 6

- 4 6 2 11 2 LE 5 6 6 6 3
PR | 3 6 3 6 PR 6 6 5
B o 1 3 5 5 Fe 5 6 5 2
g - (1] 1 4 4 6 g 8 5 5 4

©- 0 1 3 9 14 Fe 10 5 10 11 14 5

== 0 1 1 10 16 - 5 10 9 12 5

S- 0 1 5 1 15 24 4 9 9 10 4

- 0 0 0 5 5 = 5 5 5 5 5 5 o

Very Easy Easy Medium Hard Very Hard Loops Conditionals Functions Data Struct. Algorithms Error Hand. Recursion Sorting Searching Dyn. Prog.

(b) Node distribution for L-405b

Figure 10: Node distributions for 40 and L-405b averaged over 3 independent runs. The numbers in each cell
indicate the number of nodes.

also have a high number of nodes in the deeper parts of the tree, meaning that PrismBench has identified
that these concepts at high complexities have shown to be challenging for the models and has focused on
these areas in order to thoroughly analyze models’ capabilities.

Since interventions in PrismBench are performed by the model itself through the Problem Fixer, the
combination of success rate and number of interventions effectively measures the model’s program repair
capabilities. 40 and L.-405b demonstrate strong program repair abilities with both high intervention and
success rates. For example, at “very easy” difficulty, 40 shows 4.67 interventions with 0.83 success rate, L-405b
shows 3.67 interventions with 0.85 success rate. As such, we can observe that when these models encounter
failures, they can effectively analyze their own code, understand test failures, and implement successful fixes.
This program repair capability persists even at higher difficulty levels, though with decreasing effectiveness.
On the other hand, L-70b and L-8b have a lower number of interventions but significantly lower success
rates as well. Furthermore, their success rates remain low despite interventions. For example, L-8b shows
minimal interventions across “very easy” and “easy” but maintains very low success rates (0.19 for “very
easy”, dropping to 0.00 after “easy”). This indicates that even when given full context, including the original
solution, test cases, and error outputs, these models struggle to identify and fix problems in their generated
code.

GPT-0SS and L4S stand out with the highest intervention rates compared to the other models, with
GPT-0SS’s solutions requiring the highest intervention rates compared to all the other models, regardless
of the concept or difficulty level of the underlying challenge. This indicates that GPT-OSS’s first attempt
at a solution often fails at first run. However, this also indicates that GPT-OSS has the highest program
repair capability: given feedback about the failure, the original solution, and test cases, it reliably identifies
root causes and produces a correct solution. Furthermore, when coupled with the node distribution across
difficulties and concepts as shown in Figure we can observe that GPT-OSS quickly progresses beyond
“very easy” to “medium” level challenges and PrismBench focuses on challenges with higher levels of difficulty
for determining its capability. In contrast, L4S displays inconsistent performance across the search tree.
When aggregated by difficulty level, it displays high success rates and moderate to low number of intervention
calls, however, as shown in Figure it visits far fewer nodes at “hard” and “very hard” difficulty levels
compared to the other top models. We can observe that as PrismBench progresses deeper through the tree,
once it reaches “hard” difficulty levels, it repeatedly falls back to “medium” and “easy” level challenges as

30

Under review as submission to TMLR

Difficulty Distribution Across Tree Depth Concept Distribution Across Tree Depth

- 4 11

n- 1 4

.- (1] 5 1
P 0 0 13
i o 3 [}
o~ 1] V] 5
£ ©- o 0 o

o- o o o

S- 0 o o

=0 0 0 [_° |

Very Easy Easy Medium Hard Very Hard Sorting Functions Error Hand. Conditionals Data Struct. Recursion Dyn. Prog. Searching Loops Algorithms
(a) Node distribution for GPT-OSS
leflculty Dlstrlbutlon Across Tree Depth Concept Distribution Across Tree Depth

~ 10 0 6 3 8 6

n- 5 7 12 0 6 a4

-~ 10 2 4 0 2 1 6
§-- 5 2 10 0 H 3 3 3 B o 6
oo o N < g o : EEAN_o .+ o T
Fae 0 7 2 [F 2 2 a [s a 5

o 0 0 “ 1 o o : I - a [2

= 0 2 0 0 0 o 0 0 3 o IHEC

- 0 8 1] 1 4 o o o o o 8

Very Easy Easy Medium Hard Very Hard Sorting Recursion Loops Algorithms Conditionals Functions Error Hand. Searching Data Struct. Dyn. Prog.

(b) Node distribution for L4S

Figure 11: Node distributions for GPT-OSS and L4S averaged over 3 independent runs. The numbers in
each cell indicate the number of nodes.

indicated by the node difficulty distributions across depths in Figure However, despite its inability to
sustain problem-solving at higher difficulties, from table [5] we can observe that, similar to GPT-OSS, it has a
high program repair capability.

Figure [I2] shows the error pattern analysis per concept for 40 and L-405b. The numbers in each cell represent
the average occurrence of each error type per concept across 3 independent runs. 4o shows significantly
higher errors in algorithm implementations, particularly in challenges related to “dynamic programming”
where algorithm implementation errors peak at 35.8 occurrences and errors related to case sensitivity peak
at 28.8. Index error rates in generated code for challenges involving “conditional” and “data structure”
concepts (29.6 and 26.7 occurrences respectively) further demonstrate 40’s specific struggle with complex
pointer and array manipulations. L-405b’s errors, on the other hand, are mainly in “function” implementation
challenges (19.5 occurrences for case sensitivity errors, 15.3 for index errors). We can observe that L-405b
maintains consistent performance across most tested concepts, with notably lower error rates in recursive
implementation challenges (consistently below 4.0 occurrences) compared to 4o0. However, similar to 4o,
L-405b also struggles with “dynamic programming”, “sorting”, and “data structure” challenges.

The most encountered error types (algorithm implementation, case sensitivity, and index errors) are consistently
related to implementation details rather than fundamental algorithmic understanding. This observation is
reinforced by the notably lower frequency of type, setup, and corner case errors across both models and all
tested programming concepts. These patterns suggest that while both models demonstrate sound algorithmic
understanding, their primary struggle lies in generating the correct code for solutions and tests. Analyzing
test validation issues allows us to pinpoint whether the errors stem from incorrectly generated solutions or
incorrectly generated tests by the models. Figure [I3] presents the distribution of test validation issues for
both 40 and L-405b across concept combinations. Each cell indicates how often a specific validation problem
for a test, such as incorrect condition coverage or incorrect boundary checks, was identified. By comparing
these data with the error pattern distributions in Figure [I2a] and we can discover correlations between
the root cause of encountered errors and the concept areas where those errors were raised most frequently.

As mentioned in Section both GPT-0SS and DS3, frequently rely on Python’s built-in functionalities (e.g.,
using Python’s in-place sort function on arrays) alongside standard and third-party libraries in their solutions
(e.g., using itertools or numpy for array processing), particularly in challenges with high difficulty levels
or multiple concept combinations. As our aim in PrismBench is to evaluate the models’ coding capability

31

Under review as submission to TMLR

Error Pattern Distribution Error Pattern Distribution
LACLIGOER16.1 11.3 16.8 3.7 14.1 6.3 7.8 15.5 6.2 5.5 8.0 5.0 12.2 PACLIGOIEE 5.2 7.7 10.4 3.8 11.6 7.7 3.3

[<-LTLRELEIER20.7 15.4 20.9 5.0 mllA 4.8 15.9 8.3 9.6 9.2 8.2 16.3 [<LCNBLEIER 2.2 2.5 3.5 2.0 4.4 6.0 4.0
DEICRS LN 18.7 14.421.4 5.5 11.5 5.3 17.8 7.9 8.7 8.0 8.0 16.8 PEICES LI 6.7 8.0 12.1 4.8 10.210.6 2.8

R UPRETN 23 0P TR 4.6 124116.0 7.0 251613.411.2 2.0 4.0 22.2 NI 5.4 10.813.0 3.4 12.4 9.5 2.0
g BN 8.6 7.3 11.0 3.7 14.0 6.0 5.2 9.3 3.7 5.7 12.0 8.5 9.2 g O 4.0 4.4 7.5 2.0 9.3 10.0 6.0
14,8 9.6 11.9 2.8 11.5 4.6 6.8 15.4 5.9 4.1 2.7 2.2 12.0 £ Functions LA 19.5 [EXN15.3 L NEK]
© [PY12.0 9.5 8.0 5.0 20.011.010.013.5 4.0 8.5 22.018.017.0 © [P 6.0 5.9 9.3 2.2 12:6 6.5 7.2
(M= 10.0 6.8 3.5 2.4 14.8 6.3 5.0 7.7 4.2 5.0 2.0 1.5 7.4 e 40 4.0 7.2 3.4 4.5 2.3 2.8
CSYNIPR12.6 7.3 4.3 2.5 15.7 7.4 3.2 10.0 3.7 5.6 1.5 3.3 9.8 SIS 5.5 6.7 12.2 5.5 8.6 7.1
ENrE23.217.520.2) 4.0 21.110.6 6.3 17.210.1 8.8 2.0 3.5 16.1 ESUCE 6.5 6.9 1319 4.4 1317 8.1
L $ $ L $ S $
&«5‘0 (&@d@é ,,o«'é) & & & S & R & Q@(« J"(&«9 ¢«° ¢<° (&‘@ &) &) &) & 0‘«5« &«}‘ &«5‘ OQ«}« 0¢(°&¢< 00@(@
o‘\& 60(“6 é,\‘:‘\ o(‘.? & S O‘b & @of "c) PO & o‘\& 605"6 ‘}‘,\"\ & & P °£b Q‘& &oo & < b\oQ &
& ¢ S & & &8 & ¢ & & & &8
(;»60 P N (;»60 P)
¢ F
Error Type Error Type
(a) Error pattern distribution for 4o (b) Error pattern distribution for L-405b

Figure 12: Error pattern distributions for 40 and L-405b averaged over 3 runs. The numbers in each cell
indicate the number of times each error was raised.

Test Validation Issues Distribution Test Validation Issues Distribution
Coverage Edge Cases Missing Cases Coverage Edge Cases Missing Cases
Algorithms - Conditionals - Data Struct. - Error Hand.-20 18 20 mzo 10m 2 Algorithms - Data Struct. - Error Hand. - Searching-10 5 5 5 5 5 7 12 8 5
. Conditi . 5 55 5105 6145 1 Algorithms - Data Struct. - Loops - Sorting - 20 20 20 20 20 16[}] 3 19
Algorithms - Dyn. Prog. - Error Hand. - Loops- 15 15 15 20 15 17114 14
Algorithms - Data Struct. - Error Hand. - Functions- 5 5 5 5 10 5 5 10 6 0
Algorithms - Dyn. Prog. - Recursion-Searching- 0 0 0 O 0 0 0 1 0 O
Algorithms - Dyn. Prog. - Functions - Sorting- 15 15 15 m 15 15 12 E 9 12
Algorithms - Error Hand. - Searching - Sorting-16 15 5 11 15 10 11 12 7
Algorithms - Error Hand. - Functions -Recursion- 5 5 5 6 5 5 7 7 3 3 Algorithms - Recursion- 0 0 O 0007130
Algorithms - Error Hand. - Functions -Sorting- 5 10 0 10 5 5 6 15 5 3 Algorithms - Searching - Sorting- 5 5 5 5 55 6 1 4
Conditionals - Data Struct. - Dyn. Prog. - Sorting 120 20 20 EE 20 piN:0) 6 15 Conditionals - Data Struct. - Dyn. Prog.-Sorting- 5 5 5 5 5 5 5 5 3 5
Conditionals - Data Struct. - Error Hand. - Loops-15 15 15 20 15 13kf§13 10 Conditionals - Data Struct. - Error Hand. - Searching- 5 5 5 5 5 10 10 5 5
Conditionals - Data Struct. - Error Hand. - Searching-10 10 5 10 10 10 9 1| 5 Conditionals - Data Struct. - Searching SSNESEES] ERIESEES] [SAEENISH ©
Conditionals - Data Struct. - Searching - Sorting- 10 10 9 1510 9 21 3 2

Conditionals - Data Struct. - Recursion-Sorting- 5 5 5 5 5 5 5 11 1

11
Data Struct. - Dyn. Prog. - Functions - Searching-15 15 15 m 20 15 13 m 5 13
Data Struct. - Error Hand. - Recursion-Sorting- 5 5 5 5 5 5 10 5 10 5
Data Struct. - Functions - Searching - Sorting - 20 20 20 EE 20 19 E 6 16
Error Hand. - Functions - Loops - Sorting -15 15 10 20 15 15 15E 15 6

5

5

Conditionals - Dyn. Prog. - Searching-Sorting- 5 5 5 5 5 5 5 9 1 0
Data Struct.-Functions-5 5 5 5 5 5 5 7 3 0

6

Dyn. Prog. - Error Hand. - Searching - Sorting- 10 10 10 20 10 10 9 20 18

Functions - Recursion - Searching - Sorting 1| 17 18 am 20 1om 6 15 fons - Loops Recursion - Searching - 15 12 11 19 16 15 12 [1]] 4 14
Loops - Recursion - Searching- 5 5 5 11 5 5 8 10 5 3 Loops - Recursion -Searching- 5 2 4 7 5 5 5 10 3 3
&S @q"ooe"w,," Qy" 0\‘,@"0‘, a\“&'@" &S \¢°°g<,"’&§y & & éy‘)&e?{’

TS o P P AN g

°° & ‘\o° s é\a & éy < & JCPCINCINY: o@o o“° N @Q o(é &

IS LT & &S ST &
o &o <% & Qoo <

(a) Test validation issues distribution for 40 (b) Test validation issues distribution for L-405b

Figure 13: Test validation issues distribution for 40 and L-405b averaged over 3 runs. The numbers in each
cell indicate the number of times each issue was identified.

rather than library knowledge, the interactive sandbor provides only a base Python environment without
additional packages. Consequently, any dependence on third-party libraries leads to failure regardless of
solution logic. Figure [I4] summarizes the error pattern distributions for GPT-OSS and DS3. Similar to 4o
and L-405b failures on the most challenging concepts for the model are mostly caused by algorithm and logic
errors; however, both GPT-OSS and DS3 show a high concentration of errors clustered around “setup errors’
and “unexpected input errors”. These error types are raised when executions fail due to missing imports,
incompatible program structure, or library usage outside what is available inside the environment. Moreover,
by comparing Figures [12| and we can observe that GPT-OSS has an overall higher level of error counts

)

32

Under review as submission to TMLR

Error Pattern Distribution

Error Pattern Distribution
Algorithms [5 8181 4., 2 c J ik 8 o . o b . o .8 4.2 5. Algorithms 8 . . 4 d o 4 o .1 1.3 3.7 2.0 1.2
[LLHELEIEE 4.8 7.6 9.5 5.0 5. - - o .1 4.7 10.5 3.9 7.5 6. Conditionals J#8 o - - o - - d .3 1.1 3.7 19 1.4

PRI ua® 7.0 8.9 10.8 4.7 6.3 4. 167 55K 69 7.7 7. LLEENN® 3.5 2.2 5.8 1.0 1.8 1.6 1.9 3.1 1.4 1.7 [EEl 1.1 0.6
- DRI 3.5 3.9 7.8 3.4 6. d E o .2 4.0 7.0 4.7 3.5 5. - Dyn. Prog. JcH o d 5 n o 5 d .7 0.7 |9:3 0.5 1.0
g AU E 4.3 4.3 10.15.9 7.8 7.4 3.8 4.2 2.2 4.8 7.0 5.5 6.6 g e 5.2 4.6 5.0 2.8 2.8 3.5 1.0 2.0 2.7 1.2 5.7 1.8 1.2
§ Functions L:RPA L] 4.8 6.3 3.4 8.9 3.8 5.9 6.4 5.0 9.5 4.3 [LR 5.0 3.6 4.9 1.9 3.4 3.4 1.5 4.0 3.1 1.8 4.7 1.0 4.5
v R 4.3 1.3 11.4 4.6 6.0 6.8 6.7 4.3 5.1 3.6 [T 4.6 5.8 5. v [P 25 4.6 5.3 1.7 2.1 2.8 4.0 3.7 2.7 2.3 5.7 oom37
LGSR 5.6 7.5 9.1 4.6 6.2 4.1 9.0 6.1 7.5 4. Recursion -8 . o . . i . . .1 1.5 3.7 0.0 1.8 1.7
Searching - 2 ¥} 5.9 4. o b d .5 3.7 9.0 3.0 6.8 3. Searching i # d o a o a H o .7 1.1 5.7 2.0 1.1 0.6
Sorting (XN .6 6.5 6.3 3.9 6.9 4.8 4.1[E}12.9 7.4 5. GO 3.6 2.1 4.8 1.0 1.9 6.0 2.7 2.4 1.2 0.7 [9:3] 0.0 0.8 2.5
O’ O ‘ O’ ©' 0(O‘ O ©O' ©'
S EEEEEE G E EEEE S S EEEEEE G E EEEE S
O 2 3 N @' 2 & O NS O 9 3 N @' 2 & O NS
& & & ocv ¥ & o(b o‘& &o“ & R L@ & o‘\& & \\4\ » & S °<° 0‘6‘ &"0 & PRSI &
o & & & & & &
LA Y3 & & <& L S R & <&
& & & o & o &
2 o ¢ # & > 2 2
[° [°
Error Type Error Type
(a) Error pattern distribution for GPT-OSS (b) Error pattern distribution for DS3

Figure 14: Error pattern distributions for GPT-OSS and DS3 averaged over 3 runs. The numbers in each cell
indicate the number of times each error was raised.

compared to 4o, [-405b, and DS3, which is consistent with its higher Problem Fizer intervention ratios as
shown in Tables [and

Concept Combination Success Rates Concept Combination Visit Counts
Algorithmsm 0.59 0.69 0.33 0.75 m 0.54 0.64 0.67 0.65 Algorithms- 0.00 38.33 mu.oo 39.50 44.50 29.00 43.50

Conditionals- 0.59 m- 0.70 RN 0.29 UR:EE Conditionals - 0.00 11.00 32.00 36.00 30.00 m 14.00 mﬁ
Data Struct.- 0.69 -m m 0.50 Data Struct.- 38.33 11.00 0.00 26.50 14.00 15.50 9.50 30.00
Dyn. Prog.- 0.33 ' 0.70 0.80 | v/ Dyn. Prog.m 32.00 0.00 m 34.00 m 29.00 41.00 34.00
Error Hand.- 0.75 0.58 m m 1.00 Error Hand. - 44.00 36.00 26.50 m 0.00 m 31.00 o0.00 9.00
Fun:tionsm s 0.67 0.67 Functions- 39.50 30.00 14.00 34.00 m 0.00 45.00 22.50 40.00 m
Loops- 0.54 0.29 0.50 | :1:lJ 0.67 Loops - 44.50 15.50 m 31.00 45.00 0.00 32.67 21.33
Recursion- 0.64 m 0.80 m 0.52 Recursion 14.00 9.50 29.00 0.00 22.50 0.00 12.00
il

° °

g @

= =)
2
]
=)

°
g
=
=
o
)

Concepts

. =3
searening EEE 3 EE
I

Searching- 0.67 m Searching - 29.00 30.00 41.00 | 'l 40.00 32.67 12.00 0.00 34.00
sorting 0.65 0D mm- 067 067 0.52 m sorting 143.50 Wm 34.00 9.00 m 21.33 WY 34.00 0.00
E 3 § 3 ¢ : § 8 g t § ¢ 5 ¢ B O 8 £ 2
K] € 3 4 H o 9] £ < c 3 2 & 2 H a £ £
g S & o T g S - S = a T t4 8 o
£ 2 & - 5 S £ 2 8 - © H 4 S
H] & © € I+ a 5 S & w 5 o 5 a
> 3 g > g 2 & > 3 g H 2 2 & &
< S N a & E s 3 a =
o a o aQ
Concepts GPT-40 Concepts

Figure 15: Details on the concept combination effects on 40’s performance. The right matrix displays the
average success rates for all nodes related to each specific combination. The left matrix displays the average
number of times each concept combination was visited in the search tree, regardless of success/failure.

For 40, the combinations of concepts that have the highest number of test validation failures are [algorithms,
conditionals, data structures, error handling] and [functions, recursion, searching, sorting]. These concepts
also have the highest number of errors, as shown in Figure [[2a] particularly with index and case sensitivity
errors. Furthermore, as shown in Figure [I0a, PrismBench has specifically focused on these concepts by
generating a high number of nodes for thorough validation and isolation of issues. This indicates that many of
40’s generated tests have the same underlying root cause of its generated solutions (for instance, mishandling
pointer or array indices). Moreover, the high frequency of numeric and string value assertions that fail in
these tests suggests that 4o often struggles to produce fully consistent test inputs or expected outputs, leading
to assertion failures even when the generated solution is correct. We can observe a correlation between test
validation issues and error types, demonstrating that these failures are not only in the generated solutions
but also in the generated tests. The highest validation issues appear in concepts requiring numeric and
string value assertions. This suggests that 4o struggles with processing such concepts during test generation.
Therefore, even when 40 produces correct solutions, its limitations in numerical and string processing lead to

33

Under review as submission to TMLR

incorrect test assertions, resulting in failures and error cascades. These issues are also reflected in the success
rates and visit counts of concepts as shown in Figure where we observe lower success rates and higher
visit counts for the combinations of concepts with high error rates and test validation issues.

Concept Combination Success Rates Concept Combination Visit Counts

m 0.56 | 0.74 mmmmm Algorithms- 0.00 8.50 20.33 6.00 16.00 10.00 1.00 16.00 0.00
0.67 m 0.59 Conditionals- 8.50 0.00 3.00 wm 26.50 13.50 ErEYj

0.76 m Data Struct.- 20.33 0.00 18.50 18.33 w 26.33 12.00
m 0.29 Dyn. Prog.- 6.00 3.00 18.50 0.00 15.00 13.50 8.67 8.00 0.00 ELN[}
0.50 m Error Hand.m 18.33 15.00 0.00 17.67 14.67
m .69 Functions - 16.00 m 13.50 17.67 0.00 22.00 12.00 E:-I:N:yj
-mm Loops- 10.00 | 26.50 26.33 8.67 14.67 22.00 0.00 23.67 |[27.67 2.00

Algorithms

o
N
a

o

Conditionals- 0.75

- -

Dyn. Prog.- 0.56

22.00

=)
£
©
°
£
N

Error Hand.- 0.74 0.67 0.42 0.44 0.89 EENY

2
wu
)
B2
°
°

Functions 0.54 0.43

I

»

kS
OR O]
>
W A

o

~N

©

Concepts

Loops @Ml 0.33 = 0.69

1S

N

@

° B
@
©

Re:ursionm 0.48 0.67 0.50 0.67 m 0.67 | 0.77 Recursion- 1.00 13.50 12.00 8.00 12.00 | 23.67 m 25.00
Searchingmm 0.76 0.50 m m 0.74 | searching- 16.00 [LTRL m m PP 27.67 m 0.00 [
Sortingm 0.59 m 0.29 m 0.69 077 074 m Sorting - 0.00 m 22.00 IR WW .00 25.00 LR o.00
E ¢ ¢ 8 % & s £ 2 E 3 ¢ g ¥ § & & £ £
£ c H] 4 H 2 B = £ < € S 4 H 2 9 w = t
= S 5 [E] L S B S 5 o T s S = ©
T = 8 - ¢ H g o T 2 & - 1% H 4 S
H = e = o ©)] = £ = < o o]
> 2 £ z £ & I 2 2 £ > £ & 2 &
< S 5 & < S & a 5
o o
Concepts Llama3.1-405B Concepts

Figure 16: Details on the concept combination effects on L-405b’s performance. The right matrix displays the
average success rates for all nodes related to each specific combination. The left matrix displays the average
number of times each concept combination was visited in the search tree, regardless of success/failure.

L-405b on the other hand, consistently struggles with “function” and “sorting” concepts, especially when
“data structures” or “searching” are also included as shown in Figure The test validation issues in
Figure demonstrate that combinations like [data structure, function, searching, sorting] exhibit high
incorrect coverage issues and a large number of missing or incomplete test cases. Similarly, the error pattern
distribution for L-405b in Figure [I2h] shows peaks in case sensitivity and index errors whenever function
implementations are tested. We can observe that L-405b exhibits different root causes for failures compared
to 4o, particularly in concepts combination of “data structures” and “error handling”.

Solution Pattern Distribution (Top 15 Patterns)

o

Algorithms -§-34
Conditionals

Data Struct.

Dyn. Prog. f:H4
Error Hand.- 11

Functions

Concept

Loops

Recursion

& © O B B O O O
W O O W W wW o o o o
W W o O W o o w o o

X <o < &
& & & & &S
& & & D A
& L &E .
RS <N &
) S >
& 2 ®
& . b° ™
& &2
& & o
» &
o
&
(v\
&

Pattern Type

Figure 17: Patterns identified in solutions distribution for L-405b averaged over 3 runs. The numbers in each
cell indicate the number of times each pattern was identified.

34

Under review as submission to TMLR

By correlating test validation issues and the solution patterns shown in Figure we can see that L-405b’s
failures primarily stem from syntax errors and hallucinations rather than logical errors as evidenced by the
high number of failures in using built-in data types (arrays, list, dictionary, etc.). The lowest-performing
nodes and their corresponding patterns show that L-405b frequently generates non-existent syntax (e.g.,
non-existent built-in function calls, incorrect syntax for using built-in data types, etc.), creating a situation
where both the generated code and its corresponding tests are incorrect. This leads to the high intervention
rates observed in Table |5 as the Problem Fixer repeatedly intervenes to correct both solution and test issues.

Concept Combination Success Rates Concept Combination Visit Counts

Algorithmsm 0.56 0.64 0.78 0.59 0.67 m-m Algorithms- 0.00 '55.33 21.67 25.33 31.67 32.67 34.67 49.00 20.33 38.67
Conditionals - 0.56 m --- 67 Conditionals- 55.33 0.00 26.67 50.00 12.33 38.00 14.00 24.67
Data Struct.- 0.64 m- - 0.78 0.67 m Data Struct.- 21.67 0.00 20.67 9.50 31.33 8.00 [58.00 7.00 44.50

Dyn. Prog.- 0.78 0.43 -m mm 0.74 0.60 m Dyn. Prog.- 25.33 26.67 20.67 0.00 9.50 30.00 43.67 35.33

Error Hand.- 0.59 mmm-m- Error Hand.- 31.67 50.00 9.50 0.00 3.50 11.33 45.00 38.00 20.67

Functions- 0.67 m-mmm -m Functions- 32.67 12.33 31.33 9.50 3.50 0.00 24.00 24.00 pGENYS

Loops m- 0.78 mm .6 m 0.78 mm Loops- 34.67 38.00 8.00 30.00 11.33 0.00 18.33 16.00
Recursion - 67 0.74 -- 0.78 mmm Recursion - 49.00 58.00 43.67 45.00 24.00 18.33 0.00 4.67
Searching 0.71 - mmmmm- Searching- 20.33 14.00 7.00 38.00 24.00 16.00 4.67 0.00 24.00

Concepts

Sorting«m 0.67 mm- 0.74 mm 0.89 m Sorting- 38.67 24.67 44.50 35.33 20.67 pLZEYAVHLAWACEN 24.00 0.00
£ 2 ¢ 9 s £ & 5 2 2 E ¢ ¢ % ¢ & & § £ 2
< c 3 2 H K] H a = £ < € H 4 H 2 H 0 = B
B) & o E ° a 5 o H = o & o T b = 5 v S
T = & . Q 4] T 5 & . ¢ £ K]
H B g = o & s = g s o &
2 T sz 5 B 2 g & 2§ g 5 & & LA
< o © =] = < ° © o =

o a w o a u
Concepts GPT-0SS-20B Concepts

Figure 18: Details on the concept combination effects on GPT-OSS’s performance. The right matrix displays
the average success rates for all nodes related to each specific combination. The left matrix displays the
average number of times each concept combination was visited in the search tree, regardless of success/failure.

As shown in Figure [I8 GPT-OSS’s performance remains consistently high across most concept combinations,
maintaining high success rates even as challenges become more complex. However, it demonstrates persistent
weaknesses in challenges involving “dynamic programming” and “error handling” relative to other concepts.
Interestingly, we can observe that nodes which combine “sorting” with “functions”, “loops”, or “recursion” are
frequently revisited across the search tree. This pattern is also present in GPT-OSS’s error distributions as
displayed in Figure [[4a] where nodes with these concepts have a high rate of “setup” and “unexpected input”
errors. This is a direct result of GPT-OSS’s over-reliance on third-party libraries, which are not available
in the environment, and its tendency to define nested functions. However, from Figure [18], we can observe
that these nodes have a high overall success rate. Investigating the solutions for these nodes reveals that
GPT-0SS’s first attempts at solving challenges requiring array manipulation rely on third-party libraries
instead of built-in standard libraries and functionalities. It is only during the subsequent attempts, where the
feedback contains information about these libraries not being available, that it generates a correct solution.
As such, GPT-OSS exhibits a different coding profile compared to the much larger 40 and L-405b, which use
Python’s standard libraries.

It is important to note that these insights come from PrismBench’s automated analysis. The search trees
generated by the framework enable deeper investigation of behavioral patterns and contain detailed analysis
for each node. We only highlight the most significant behavioral patterns observed.

5.3 Effects of Scale

Given the evaluation results on the GPT-40 and Llama3.1 families, in this section, we investigate the effects
of model scale on code generation and problem-solving capabilities. Importantly, we do not include GPT-OSS
and L4S in our analysis in this section, as both models have different architectures compared to the others.

35

Under review as submission to TMLR

5.3.1 GPT-4o

GPT-40 and GPT-40 Mini, developed by OpenAl, are part of the same model family but differ in scale,
performance, and application focus [Hurst et al.| (2024). GPT-4o is the high-performance, multimodal flagship
model optimized for complex tasks requiring deep reasoning and nuanced language understanding, while
GPT-40 Mini is a lightweight, cost-efficient variant designed for speed and accessibility, prioritizing rapid
token generation and affordability. While both models share core architectural features like Transformer-based
design and multimodal capabilities, GPT-40 Mini is reported to be significantly smaller than GPT-4o.

Difficulty Distribution Across Tree Depth Concept Distribution Across Tree Depth

~ 4 2 1 0 “ 7

o4 4 1 0 - 7 6 6

-1 5 4 P o o 6 4 7
g - 1 2 6 4 5 E EE 3} 4 6 4
2e- 0 2 2 5 5 e 3 3 6 4
E~- o 2 1 3 5 g~ 3 4 3 4 3 4 2

@- 0 1] 1 2 4 @ 2 2 4 4 4 4 3 3 2

o= (1] 1] 1 2 3 - 1 1 2 4 3 3 2 2 3 1

S- (1] (1] 0 (1] 3 S- 1 1 2 3 1 2 1 1 2 2

Very Easy Easy Medium Hard Very Hard Loops Conditionals Functions Data Struct. Algorithms Error Hand. Recursion Sorting Searching Dyn. Prog.

Figure 19: Node distribution for 40-M averaged over 3 runs. The numbers in each cell indicate the number of
nodes.

Figure [19| displays the node distribution and visit counts of 40-M throughout the search tree. In the previous
sections, we presented performance results for 4o, with its corresponding node distributions presented in
Figure [I0a] Comparing the distributions of 4o with 40-M shows us how scale impacts performance. While
the majority of 40’s nodes are distributed in challenges with “hard/very hard” difficulty and deeper parts
of the tree (as shown in Figure , we can observe that for 40-M, the majority of nodes are distributed
between challenges with “medium” and “hard” difficulty and in shallower depths. This is also evident in the
search tree for 40-M as shown in Figure

Concept Combination Success Rates Concept Combination Visit Counts
Algorithmsmmm 0.29 0.38 0.53 0.50 0.62 m 0.42 Algorithms- 0.00 16.00 20.67 26.00 33.33 'LE{N 22.00 26.50 0.00 m

Condltlonalsmm 0.72 0.58 0.53 mmm Conditionals- 16.00 0.00 6.00 m 24.00 16.00 20.00 0.00
Data Struct. m mm m 0.42 0.38 Data Struct.- 20.67 0.00 18.00 15.50 10.00 0.00 | 32.67 11.00
Dyn. Prog.- 0.29 mmm mm m Dyn. Prog.- 26.00 6.00 18.00 0.00 17.00 15.00 24.50 12.00 10.00 12.00
Error Hand.- 0.38 0.72 mm m 0.67 Error Hand. - 33.33 m 15.50 17.00 0.00 28.33 mmw
Functions- 0.53 0.58 0.50 0.50 0.71 m 0.40 0.54 - Functions 24.00 10.00 15.00 28.33 0.00 14.50 m 34.00 12.33
Loops- 0.50 0.53 m 0.50 mmm 0.58 Loops - 22.00 0.00 24.50 m 14.50 0.00 9.00 7.00
Recursion- 0.62 0.56 0.40 0.72 0.28 Recursion- 26.50 16.00 32.67 12.00 mm 9.00 0.00 m
Searchmgm Searching- 0.00 20.00 10.00 34.00

Concepts

0.00 22.00

9
=
N
a

Sorting - 0.42 m 0.38 - 0.67 -- 0.28 mm Sortingm 0.00 11.00 12.00 W 12.33 7.00 |10 22.00 0.00

w 5 - . u w - w l)i 5 . . I‘II 1‘II : :
g 2 5 s 3 £ & 5 2 2 g % ¢ ¢ ¢ § & § 2 ¢
£ c 3 2 H o H ® = £ < c 3 4 H K] H n = £
B o -] o I ° a 5 o H] o & o T b a 5 v S
= B n : € & n H] b] S] F n
H B g = o & H = & s o &
> k-]] S o H 9 o > -] I3 3 o 3 @ '
= £ - Aa E [5) = € - a E [5 w
< o 8 o < S a3 w

o ..

Concepts GPT-40-mini Concepts

Figure 20: Details on the concept combination effects on 40-M’s performance. The right matrix displays the
average success rates for all nodes related to each specific combination. The left matrix displays the average
number of times each concept combination was visited in the search tree, regardless of success/failure.

Figure [20] shows the success rates and visit ratios for nodes corresponding to different concept combinations.
As discussed in Section we can see that the majority of 40-M’s failures occur when it encounters
combinations of concepts that require compositional reasoning. For instance, we can observe that 40-M has
relatively low success rates for “dynamic programming”, which fall even lower when the challenge combines
another concept with “dynamic programming”.

36

Under review as submission to TMLR

5.3.2 Llama 3

The Llama 3 herd of models, developed by Meta, is a family of LLMs designed to support multimodality,
coding, reasoning, and tool use. The term “herd of models” refers to the diverse range of models within the
Llama 3 family, each tailored for specific applications Dubey et al. (2024)). The flagship model, L-405b, is a
dense Transformer architecture with 405 billion parameters and a context window of up to 128,000 tokens,
enabling it to handle extensive datasets and complex tasks. While these models share foundational training
data and post-training processes, they differ in architectural scale—such as the number of layers, model
dimensions, attention heads, and FFN dimensions—to optimize performance across varying use cases. This
allows us to leverage PrismBench to systematically evaluate how architectural and parametric scale impact
code-generation capabilities. While we have already presented performance results for L-405b (the most
capable variant) in prior sections, this section focuses on analyzing performance differences across scaled-down
versions of the Llama 3 family.

Difficulty Distribution Across Tree Depth Concept Distribution Across Tree Depth

~ 5 0 0 0 ~ 3 5 5 6 6 3

i 1 4 6 o (1] i m 3 4 3 5 4 4 3 2

- 1 2 3 4 0 < 3 3 3 3 3 4 3 4 2 2
’.g. 0= (1] 1 1 2] 8 ’E 0 - 3 2 2 3 3 3 2 4 2 2
de- 0 0 1 2 6 2o 2 2 2 3 2 3 2 3 1 2
g~ o 0 0 1 4 g 2 2 2 3 2 2 2 3 1 2

@ 1] o 0 0 3 - 2 1 3 1 1 1 1 1 1 1

@ (1] 1] 0 (1] 2 o - 2 1 3 1 1 1 1 1 1 1

1 (1] (1] 0 (1] 2 24 1 1 3 1 1 1 1 1 1 1

Very Easy Easy Medium Hard Very Hard Loops Conditionals Functions Data Struct. Algorithms Error Hand. Recursion Sorting Searching Dyn. Prog.
(a) Node distribution for L-70b
Difficulty Distribution Across Tree Depth Concept Distribution Across Tree Depth

~ 3 12 0 0 0 &

« 1 3 4 0 0 LE

-« 1 1 2 2 0 - 1 1 1
’.g. 0= o 1 1 2] 2 i 0 - 1 1 1 1 1 1 1 1 1
de- 0 0 1 1 1 2o 1 1 1 1 1 1 1 1 0
g~ 0 0 0 0 2 Ee 1 1 1 1 1 1

@ 1] 1] 0 0 1 @ 1 1 1 1 1 1 1 1

@ (1] 0 0 0 1 o - 1 1 1 1 1 V] 1 1 1 0

S (1] 1] 0 (1] 1 ER 1 1 1 1 1 V] 1 1 1 o

Very Easy Fasy Medium Hard Very Hard Loops Conditionals Functions Data Struct. Algorithms Error Hand. Recursion Sorting Searching Dyn. Prog.

(b) Node distribution for L-8b

Figure 21: Node distributions for L-70b and L-8b averaged over 3 runs. The numbers in each cell indicate
the number of nodes.

As shown in Figure 2Ta] and 2IB] the depth of explored nodes drops sharply for smaller models, indicating
limitations in handling more difficult problems. In particular, the node distribution for L-8b shows that
only the shallow parts of the tree (depths 2 and 3) and “easy” challenges have been explored in depth. The
inability to explore deeper nodes suggests that the model fails to generate correct solutions when challenges
are more difficult or contain multiple programming concepts. Conversely, L-70b reaches deeper parts of the
tree more often and is capable of reaching nodes with “very hard” difficulty to an extent (even though it
fails at all of them) as shown in Table El The node distributions of the search trees generated for L-405b,
L-70b, and L-8b) clearly demonstrate how models’ scale plays an important role in their problem-solving and
code-generation capabilities. The search trees themselves for these two models (L-70b and L-8b), as presented
in Figure further show how these models struggle to complete challenges as they become more difficult.
Figure shows how the majority of nodes for L-8b are generated in Phase 3 (highlighted in blue). As
explained in Section [3.4] Phase 3 is responsible for comprehensively inspecting areas of failure, and as such,
we can see that L-8b consistently fails with high failure rates, with the majority of nodes being generated in
Phase 3. On the other hand, L-70b shows a slightly better performance as pictured in Figure In the
same manner as L-8b, the majority of L-70b’s nodes are generated during Phase 3, However, we can see that,
unlike L-8b, many nodes were also generated in Phase 2, indicating that the model was capable of solving
some of these challenges albeit with low success rates.

37

Under review as submission to TMLR

Concept Combination Success Rates Concept Combination Visit Counts

Algorlthmsmmm 0.50 m 0.75 0.67 0.50 0.67 0.33 Algorithms- 0.00 6.00 m 7.00 1.00 8.67 3.33 1.50 6.00 3.33
Conditionals mm 0.50 0.56 m Conditionals- 6.00 0.00 5.50 1.33 3.67 3.00 6.00 7.50 13.00 9.50
Data Struct. m mmm Data Struct. m 5.50 0.00 1.00 13.00 2.50 3.33 m 6.33 4.50

Dyn. Prog.- 0.50 0.67 m mmmm Dyn. Prog.- 7.00 1.33 1.00 0.00 2.00 2.00 3.00 3.00 6.50 4.00
Error Hand. m m mm 0.50 m Error Hand.- 1.0 3.67 13.00 2.00 0.00 7.00 6.00 2.50 4.00 4.00

Functions- 0.75 -mmmm Functions- 8.67 3.00 2.50 2.00 7.00 0.00 6.00 1.50 1.33 2.67
mm - 42 Loops- 3.33 6.00 3.33 3.00 6.00 6.00 0.00 8.00 8.00
B
=)

Concepts

=
o
=)
4
w
=)

Loops- 0.67

=
°
°©
N
W
w

Recursion- 0.50 0.50

=
o
o
=]
=]
o
=]

0.33 Recursion- 1.50 7.50 m 3.00 2.50 1.50 8.00 0.00

-

Searching- 0.67 0.56 0.33 m 0.50 0.67 Searching- 6.00 13.00 6.33 6.50 4.00 1.33 8.00 4.00 0.00
Sorting- 0.33 m m Ml 0.33 0.42 0.33 0.67 m Sorting- 3.33 9.50 4.50 4.00 4.00 2.67 m 2.33 m 0.00
¢ 2 ¢ 3 3 & & 5 g ¢® £ 2 ¢ s 3 & & §5 g g
< c 3 2 H 2] @ = £ £ c 3 £ & 2 H I £ £
£ o -] o I ° a 5 o H k= o 5 o T ® a 5 v S

e = & . v H 4 = B 0 . 3 4
H = e = o ©] H = £ = < o ©]

)]] S] H [} o > T] S] 3 [} '

H H E Aa = [[] < H E a E [[[

o o
Concepts Llama3.1-70B Concepts

Figure 22: Details on the concept combination effects on L-70b’s performance. The right matrix displays the
average success rates for all nodes related to each specific combination. The left matrix displays the average
number of times each concept combination was visited in the search tree, regardless of success/failure.

Concept Combination Success Rates Concept Combination Visit Counts

Algorithmsm 0.50 mm 0.50 0.67 mm 0.33 Algorithms- 0.00 3.00 3.00 1.00 2.67 3.00 3.67 5.50 1.00 | 6.33
Conditionals- 0.50 mmm m Conditionals- 3.00 0.00 1.67 0.00 1.50 2.00 m LA 1.67
mmmmmmmm Data Struct.- 3.00 1.67 0.00 5.67 4.00 1.50 2.00 3.00 2.00 1.00
mm mm mm Dyn. Prog.- 1.00 5.67 0.00 3.50 6.00 3.50 5.50 1.67 1.00
m m m m Error Hand.- 2.67 0.00 4.00 3.50 0.00 1.00 1.33 4.50
Functions- 0.50 R[] mm mmm m Functions- 3.00 1.50 1.50 6.00 1.00 0.00 | 5.33 0.00 2.00 0.00
-

o oo EONEAICTICIICAED -

Data Struct. -

o [5

Error Hand.

Concepts

Loops- 3.67 2.00 2.00 3.50 1.33 |5.33 0.00 1.67 3.00 5.67

Re:ursmnm m mmm m Recursion | 5.50 m 3.00 550 | 450 000 1.67 000 2.33 2.67
Searchmgm m m Searching- 1.00 [:f00E 2.00 1.67 2.00 3.00 2.33 0.00 pbEY)
Sorting - 0.33 mmmmmmm m Sorting 633 167 1.00 1.00 [FERDY .00 [567 2.67 [FEXEN o.00
£t %2 ¢ g : & & 5 P % E & ¢ § ¢ g & 5 2 £
£ S H £ s = o 14 < £ o 5 2 & I} F-] o [4 £ £
T = & 3 T v - 3 4 8 = F &) T ¢ - H 4 K]
S T] 3 H H]] 3 T] 3] 3] 3
9 c - = ™ 3] - c - = w o© n
< 5 " a = < H 3 a =
a w o w
e Llama3.1-8B °
Concepts . Concepts

Figure 23: Details on the concept combination effects on L-8b’s performance. The right matrix displays the
average success rates for all nodes related to each specific combination. The left matrix displays the average
number of times each concept combination was visited in the search tree, regardless of success/failure.

Figure 22 and 23] further demonstrate performance degradation as the models get smaller. The success rates of
concept combinations decrease significantly for L-8b, particularly for tasks requiring more advanced strategies
(e.g., “dynamic programming” or multiple nested constructs). In comparison, L-70b shows moderate success
with simpler “loops” and “conditionals” but similarly struggles to sustain the performance under combined,
higher-level concepts.

6 Related Works

Recent studies have demonstrated how current benchmarking approaches fall short in evaluating current
models. Specifically, Xu et al| (2024b)), [Roberts et al(2023)), and |Jiang et al.| (2024) show how even extensive
attempts to control the training dataset does not prevent data contamination, either because filtering out
undesired data is difficult given the training dataset’s size Balloccu et al. (2024)) or because of models’
increasing generalization capabilities and lack of diversity in benchmarks’ challenges [Dong et al.| (2024)).
Crowd-sourced benchmarks such as [Chiang et al.| (2024)); [Fourrier et al.| (2024) have proven to be much more
effective in evaluating LLMs but suffer from 1) a limited coverage of real-world challenges (2024),

38

Under review as submission to TMLR

and 2) user biases in preference ranking of the responses |Chiang et al.| (2024). As such, benchmarks such
as ARC-AGI |Chollet| (2019), SWE-bench [Jimenez et al.| (2024), HELM |Liang et al. (2023), and HLE [Phan
et al.| (2025) have been proposed, which include either very difficult problems or data that the models could
not have been trained on given the time of their release White et al.| (2024); [Franzmeyer et al.| (2024). The
majority of leading LLM providers are currently using these benchmarks. However, with the rapid increase in
LLM capabilities, these benchmarks are quickly becoming obsolete, as models achieve increasingly higher
scores, rendering the evaluation metrics ineffective in distinguishing their performance [Anthropic, (2024);
Jaech et al|(2024); [Liu et al.| (2024).

Dynamic benchmarking approaches have been proposed to address the limitations mentioned above. LLM-as-
Judge frameworks Zhu et al.| (2023bl); [Li et al.| (2023)); Wang et al.| (2023) use one or multiple LLMs (based
on benchmark performance or fine-tuned for specific evaluation criteria) to assess and rank the responses of
the model under evaluation. However, given the judge models’ capabilities and biases, offloading performance
assessment to an LLM introduces challenges in the reproducibility and reliability of the evaluation [Thakur
et al.| (2024). On the other hand, approaches have been proposed for leveraging LLMs to generate novel
and out-of-distribution evaluation scenarios based on existing static benchmarks |Li et al.| (2024b)); |Zhang
et al.| (2024al); Zhuge et al|(2024). Building on these approaches, frameworks such as|Li et al.| (2024c)); |Zhu
et al.| (2024a); Fan et al| (2023)); Wang et al.| (2024); [Zhang et al. (2024c)); |[Zhu et al. (2024b]) extend dynamic
evaluation to provide a more systematic assessment of a model’s capabilities. Notably, DyVal [Zhu et al.
(20244a)) models each evaluation scenario as a DAG-based composition of reasoning tasks, guided by a graph
generation algorithm, defined constraints, and translation into natural language. DyVal2 |Zhu et al.| (2024b)
replaces the DAG with LLM-based agents to transform existing benchmarks into new challenges to evaluate
LLMs’ performance and generalization on multiple domains. DARG |Zhang et al.| (2024¢) and TreeEval |Li
et al.| (2024c|) represent the evaluation processes as graphs or trees, analyzing how the model navigates these
structures. However, the stochasticity of LLMs and the variability in their performance introduce challenges
in ensuring consistency and reliability in these evaluation methodologies Blackwell et al.| (2024)).

7 Threats To Validity

Threats to internal validity concern factors internal to our work that could have influenced our study.
The inherent stochasticity of LLMs which results in variability of results across runs is the most important
threat to our work’s internal validity. We aimed to address this threat at each step of the process through
using TD(0) scoring for nodes, e-greedy policies for node selection, and node value convergence checks at
each evaluation phase as detailed in Sections [3.2 and [3.4] Additionally, while our multi-phase search strategy
is designed to focus on promising areas of the search space, the stochasticity in LLM’s performance may
introduce state selection bias by underexploring edge cases. We mitigate this threat by conducting multiple
trials for each model and reporting averaged results across trials to account for variability and reduce the
impact of outlier behaviors. Finally, dynamic challenge generation using an LLM can result in miscalibrated
evaluation results in comparison to human preferences. As detailed in Section [3.5] we mitigate this threat by
using the same agent as the Challenge Designer (40-M) for all models under study (except for evaluating
40-M itself to minimize bias) and allowing for using verified, labeled challenge banks in order to evaluate
models.

Threats to construct validity concern the relationship between theory and observation. In the context of
our work, the main construct threat is whether our proposed evaluation metrics (as we detail in Section
holistically capture the multiple aspects of LLMs’ code generation capabilities. We mitigate this threat by
executing generated code within an isolated sandbox environment, ensuring that our evaluation is grounded
in the actual result of the models’ outputs. Furthermore, as detailed in Section we isolate the different
stages of code generation, namely solution generation, test generation, and program repair, by using separate
agents for each step. The other threat to our work’s construct validity is that Phase 3’s pattern analyses rely
on a judge model (4o in this study) and while the judge model can be changed to any available model, there
still exists the risk of the judge’s capability ceiling and potential bias resulting in incorrect analysis results.
We address this threat by restricting the judge model’s role to post hoc analysis so that it does not influence
the overall search and benchmarking process.

39

Under review as submission to TMLR

Threats to external validity concern the generalizability of our findings beyond the specific setup used in
this study. Our evaluations were carried out on eight LLMs and a finite set of concepts and difficulty levels,
which, although diverse, may not capture the full range of coding tasks encountered in practice. Additionally,
as the benchmarking process is computationally and financially expensive, each node’s evaluation requires
multiple LLM calls via API or local models (as detailed in Sections and , we limited the number of
tasks and the depth of tree expansion at each phase (Section . These constraints may impact the extent
to which our results generalize to larger-scale or different task distributions.

8 Conclusion

In this paper, we introduced PrismBench, a dynamic benchmarking framework that models the evaluation
space as a search tree and uses MCTS to systematically explore evaluation scenarios. Unlike prior approaches,
PrismBench dynamically analyzes how LLMs approach problems, adapt to feedback, and handle increasing
complexity using a structured multi-phase pipeline and specialized agents to uncover systematic model
weaknesses. Our key contributions are as follows:

e We formalized the space of code generation tasks as a search tree over programming concepts and
difficulty levels, allowing for adaptive and targeted evaluation of LLM capabilities.

o We introduce a multi-phase evaluation strategy: (1) Capability Mapping to assess baseline strengths,
(2) Challenge Discovery to identify systematic weaknesses, and (3) Comprehensive Analysis to
investigate failure patterns and root causes.

e We proposed a set of metrics in order to provide fine-grained insights into model behavior beyond
standard pass/fail metrics.

e We conduct experiments across eight state-of-the-art LLMs and show that while larger models
demonstrate stronger general capabilities, they still struggle with compositional reasoning, high-
difficulty tasks, and consistent test generation.

Additionally, we provide PrismBench as an open-source, extensible framework |[Anonymous (2025)) for
conducting such evaluations to allow practitioners to conduct trustworthy, targeted benchmarking strategies
as LLM capabilities continue to evolve.

References

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K Arora,
Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-o0ss-20b model card. arXiv preprint
arXiv:2508.10925, 2025.

Anonymous. Replication package for prismbench. https://github.com/PrismBench/PrismBench/tree/
replication-packagel 2025. Accessed: 2025-05-15.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. https://docs.anthropic.com/en/docs/
resources/model-card, 2024. Accessed: 2025-01-12.

Anthropic. Building effective agents, December 19 2024. URL https://www.anthropic.com/research/
building-effective-agents. Accessed: 2025-01-13.

Anthropic. Prompt engineering overview. https://docs.anthropic.com/en/docs/build-with-claude/
prompt-engineering/overview, 2025. Accessed: 2025-01-12.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

40

https://github.com/PrismBench/PrismBench/tree/replication-package
https://github.com/PrismBench/PrismBench/tree/replication-package
https://docs.anthropic.com/en/docs/resources/model-card
https://docs.anthropic.com/en/docs/resources/model-card
https://www.anthropic.com/research/building-effective-agents
https://www.anthropic.com/research/building-effective-agents
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/overview
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/overview

Under review as submission to TMLR

Simone Balloccu, Patricia Schmidtovd, Mateusz Lango, and Ondrej Dusek. Leak, cheat, repeat: Data
contamination and evaluation malpractices in closed-source llms. arXiv preprint arXiv:2402.03927, 2024.

Sourav Banerjee, Ayushi Agarwal, and Eishkaran Singh. The vulnerability of language model benchmarks:
Do they accurately reflect true llm performance? arXiv preprint arXiv:2412.03597, 2024.

Robert E Blackwell, Jon Barry, and Anthony G Cohn. Towards reproducible llm evaluation: Quantifying
uncertainty in llm benchmark scores. arXiv preprint arXiv:2410.03492, 2024.

Liguo Chen, Qi Guo, Hongrui Jia, Zhengran Zeng, Xin Wang, Yijiang Xu, Jian Wu, Yidong Wang, Qing
Gao, Jindong Wang, et al. A survey on evaluating large language models in code generation tasks. arXiv
preprint arXiv:2408.16498, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet,
Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati,
Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. 2021.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng Li, Hao
Zhang, Banghua Zhu, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena: An open platform for
evaluating llms by human preference. arXiv preprint arXiv:2403.04132, 2024.

Frangois Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

Victor Dibia, Adam Fourney, Gagan Bansal, Forough Poursabzi-Sangdeh, Han Liu, and Saleema Amershi.
Aligning offline metrics and human judgments of value for code generation models. arXiv preprint
arXiv:2210.16494, 2022.

Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin Gu, Mengfei Yang, and Ge Li. Generalization or
memorization: Data contamination and trustworthy evaluation for large language models. arXiv preprint
arXiw:2402.15938, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.217883, 2024.

Lizhou Fan, Wenyue Hua, Lingyao Li, Haoyang Ling, and Yongfeng Zhang. Nphardeval: Dynamic benchmark
on reasoning ability of large language models via complexity classes. arXiv preprint arXiv:2312.14890,
2023.

Clémentine Fourrier, Nathan Habib, Alina Lozovskaya, Konrad Szafer, and Thomas Wolf. Open llm leader-
board v2. https://huggingface.co/spaces/open-11lm-leaderboard/open_l1lm_leaderboard, 2024.

Tim Franzmeyer, Aleksandar Shtedritski, Samuel Albanie, Philip Torr, Jodo F Henriques, and Jakob N
Foerster. Hellofresh: Llm evaluations on streams of real-world human editorial actions across x community
notes and wikipedia edits. arXiv preprint arXiv:2406.03428, 2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint arXiv:2410.21276,
2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint arXiv:2412.16720,
2024.

41

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard

Under review as submission to TMLR

Minhao Jiang, Ken Ziyu Liu, Ming Zhong, Rylan Schaeffer, Siru Ouyang, Jiawei Han, and Sanmi Koyejo.
Investigating data contamination for pre-training language models. arXiv preprint arXiv:2401.06059, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
VTF8yNQM66.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vidgen,
Grusha Prasad, Amanpreet Singh, Pratik Ringshia, et al. Dynabench: Rethinking benchmarking in nlp.
arXi preprint arXiw:2104.14337, 2021.

Charles Koutcheme, Nicola Dainese, and Arto Hellas. Using program repair as a proxy for language models’
feedback ability in programming education. In Workshop on Innovative Use of NLP for Building Educational
Applications, pp. 165—181. Association for Computational Linguistics, 2024.

LeetCode. Programming challenges, December 19 2024. URL https://www.leetcode.com. Accessed:
2025-01-13.

Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yujia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun Liu. Llms-
as-judges: A comprehensive survey on llm-based evaluation methods. arXiv preprint arXiv:2412.05579,
2024a.

Kefan Li and Yuan Yuan. Large language models as test case generators: Performance evaluation and
enhancement. arXiv preprint arXiv:2404.13340, 2024.

Lijun Li, Bowen Dong, Ruohui Wang, Xuhao Hu, Wangmeng Zuo, Dahua Lin, Yu Qiao, and Jing Shao.
Salad-bench: A hierarchical and comprehensive safety benchmark for large language models. arXiv preprint
arXiv:2402.05044, 2024b.

Xiang Li, Yunshi Lan, and Chao Yang. Treeeval: Benchmark-free evaluation of large language models through
tree planning. arXiv preprint arXiv:2402.13125, 2024c.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following models. https!
//github.com/tatsu-lab/alpaca_eval, 5 2023.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang,
Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan, Bobby Yan, Ce Zhang,
Christian Alexander Cosgrove, Christopher D Manning, Christopher Re, Diana Acosta-Navas, Drew Arad
Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue
WANG, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun, Nathan Kim,
Neel Guha, Niladri S. Chatterji, Omar Khattab, Peter Henderson, Qian Huang, Ryan Andrew Chi,
Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang,
Vishrav Chaudhary, William Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Koreeda. Holistic
evaluation of language models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=i04LZibEqW. Featured Certification, Expert Certification.

Bill Yuchen Lin, Yuntian Deng, Khyathi Chandu, Faeze Brahman, Abhilasha Ravichander, Valentina Pyatkin,
Nouha Dziri, Ronan Le Bras, and Yejin Choi. Wildbench: Benchmarking llms with challenging tasks from
real users in the wild. arXiv preprint arXiv:2406.04770, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng,
Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024.

Ggaliwango Marvin, Nakayiza Hellen, Daudi Jjingo, and Joyce Nakatumba-Nabende. Prompt engineering
in large language models. In International conference on data intelligence and cognitive informatics, pp.
387-402. Springer, 2023.

42

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://www.leetcode.com
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval
https://openreview.net/forum?id=iO4LZibEqW

Under review as submission to TMLR

Timothy R McIntosh, Teo Susnjak, Nalin Arachchilage, Tong Liu, Paul Watters, and Malka N Halgamuge.
Inadequacies of large language model benchmarks in the era of generative artificial intelligence. arXiv
preprint arXiv:2402.09880, 2024.

AT Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation. https://ai.
meta. com/blog/llama-4-multimodal-intelligence/, checked on, 4(7):2025, 2025.

OpenAl. Prompt engineering guide. https://platform.openai.com/docs/guides/prompt-engineering,
2025. Accessed: 2025-01-22.

Shuyin Ouyang, Jie M Zhang, Mark Harman, and Meng Wang. Llm is like a box of chocolates: the
non-determinism of chatgpt in code generation. arXiv preprint arXiv:2308.02828, 2023.

Max Peeperkorn, Tom Kouwenhoven, Dan Brown, and Anna Jordanous. Is temperature the creativity
parameter of large language models? arXiv preprint arXiv:2405.00492, 2024.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Sean Shi, Michael Choi, Anish
Agrawal, Arnav Chopra, et al. Humanity’s last exam. arXiv, 2025.

Matthew Renze and Erhan Guven. The effect of sampling temperature on problem solving in large language
models. arXiv preprint arXiv:2402.05201, 2024.

Manley Roberts, Himanshu Thakur, Christine Herlihy, Colin White, and Samuel Dooley. Data contamination
through the lens of time. arXiv preprint arXiv:2310.10628, 2023.

Aymeric Roucher, Thomas Wolf, Leandro von Werra, and Erik Kaunisméki. ‘smolagents‘: The easiest way to
build efficient agentic systems. https://github.com/huggingface/smolagents, 2025.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2016.

Yonadav Shavit, Sandhini Agarwal, Miles Brundage, Steven Adler, Cullen O’Keefe, Rosie Campbell, Teddy
Lee, Pamela Mishkin, Tyna Eloundou, Alan Hickey, et al. Practices for governing agentic ai systems.
Research Paper, OpenAlI, December, 2023.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Florian Tambon, Amin Nikanjam, Foutse Khomh, and Giuliano Antoniol. Assessing programming task
difficulty for efficient evaluation of large language models. arXiv preprint arXiv:2407.21227, 2024a.

Florian Tambon, Amin Nikanjam, Cyrine Zid, Foutse Khomh, and Giuliano Antoniol. Taskeval: Assessing
difficulty of code generation tasks for large language models. arXiv preprint arXiv:2407.21227, 2024b.

Aman Singh Thakur, Kartik Choudhary, Venkat Srinik Ramayapally, Sankaran Vaidyanathan, and Dieuwke
Hupkes. Judging the judges: Evaluating alignment and vulnerabilities in llms-as-judges. arXiv preprint
arXiv:2406.12624, 2024.

Siyuan Wang, Zhuohan Long, Zhihao Fan, Zhongyu Wei, and Xuanjing Huang. Benchmark self-evolving: A
multi-agent framework for dynamic llm evaluation. arXiv preprint arXiv:2402.11443, 2024.

Tianlu Wang, Ping Yu, Xiaoqing Ellen Tan, Sean O’Brien, Ramakanth Pasunuru, Jane Dwivedi-Yu, Olga
Golovneva, Luke Zettlemoyer, Maryam Fazel-Zarandi, and Asli Celikyilmaz. Shepherd: A critic for language
model generation. arXiv preprint arXiv:2308.04592, 2023.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-Ziv,
Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-free llm
benchmark. arXiv preprint arXiv:2406.19314, 2024.

Cheng Xu, Shuhao Guan, Derek Greene, M Kechadi, et al. Benchmark data contamination of large language
models: A survey. arXiv preprint arXiv:2406.04244, 2024a.

43

https://platform.openai.com/docs/guides/prompt-engineering
https://github.com/huggingface/smolagents

Under review as submission to TMLR

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. A systematic evaluation of large
language models of code. In Proceedings of the 6th ACM SIGPLAN International Symposium on Machine
Programming, pp. 1-10, 2022.

Ruijie Xu, Zengzhi Wang, Run-Ze Fan, and Pengfei Liu. Benchmarking benchmark leakage in large language
models. arXiv preprint arXiv:2404.18824, 2024b.

Beichen Zhang, Kun Zhou, Xilin Wei, Xin Zhao, Jing Sha, Shijin Wang, and Ji-Rong Wen. Evaluating
and improving tool-augmented computation-intensive math reasoning. Advances in Neural Information
Processing Systems, 36, 2024a.

Yuanliang Zhang, Yifan Xie, Shanshan Li, Ke Liu, Chong Wang, Zhouyang Jia, Xiangbing Huang, Jie Song,
Chaopeng Luo, Zhizheng Zheng, et al. Unseen horizons: Unveiling the real capability of llm code generation
beyond the familiar. arXiv preprint arXiv:2412.08109, 2024b.

Zhehao Zhang, Jiaao Chen, and Diyi Yang. Darg: Dynamic evaluation of large language models via adaptive
reasoning graph. arXiv preprint arXiv:2406.17271, 2024c.

Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen, Wayne Xin Zhao, Xu Chen, Yankai Lin, Ji-Rong Wen,
and Jiawei Han. Don’t make your llm an evaluation benchmark cheater. arXiv preprint arXiv:2311.01964,
2023.

Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqgiang Gong, Diyi Yang, and Xing Xie. Dyval: Dynamic
evaluation of large language models for reasoning tasks. arXiv preprint arXiv:2309.17167, 2023a.

Kaijie Zhu, Jindong Wang, Qinlin Zhao, Ruochen Xu, and Xing Xie. Dynamic evaluation of large language
models by meta probing agents. In Forty-first International Conference on Machine Learning, 2024a.

Kaijie Zhu, Jindong Wang, Qinlin Zhao, Ruochen Xu, and Xing Xie. Dyval 2: Dynamic evaluation of large
language models by meta probing agents. arXiv preprint arXiv:2402.14865, 2024b.

Lianghui Zhu, Xinggang Wang, and Xinlong Wang. Judgelm: Fine-tuned large language models are scalable
judges. arXiv preprint arXiv:2310.17631, 2023b.

Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbullin, Yunyang Xiong, Zechun
Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, et al. Agent-as-a-judge: Evaluate agents
with agents. arXiv preprint arXiv:2410.10934, 2024.

A Appendix

A.1 Sample Trees

This section presents the minimized versions of the search trees generated for all models examined in this
study. To ensure brevity, the trees presented here focus solely on the concepts, difficulty levels, and scores of
each node, along with the phase during which they were generated. The original trees, however, are much
more detailed, but they would not fit in the content of this paper. The original trees contain the complete
challenge description, the generated solutions, tests, attempts, and the corresponding analysis done at each
node. This information allows for a comprehensive and fine-grained evaluation of model behavior at each
node in the search tree. We have included the full original trees in our replication package |Anonymous| (2025)).
The nodes for each phase are color-coded for distinction, with yellow nodes representing those generated in
Phase 1, green nodes representing those generated in Phase 2, and blue nodes representing those generated in
Phase 3. The edges indicate parent-child relationships, with red edges indicating a significant decrease in the
child node’s TD value compared to its parent, and green edges indicating otherwise. Each node is associated
with specific attributes: the concepts related to the node are under “Concepts,” the difficulty level under
“Difficulty,” and the number of times the node has been visited, under “Visits.”

44

Under review as submission to TMLR

i§| I! [

iilé“{;s

‘sﬁm

m
il

T

lsl i! By
T

T
m

[

i

N
it

H‘ e H’ i NH’ i !-N-}'

i

Hi [Hi il '—'ll Mhes Hi [

i e s

it he s e, m|

i T T .
e
N
]
_i““”. Tim
T T [
i el {ilee| [T i
T - ol
i | b
DT e e s o e
1 [T
it Uil
i .- U -]
n
.
g Ll
iii|" : lméll:g.
P B 1 2T T IO L
i T
iy o
nm [
i
I st g, R R) R
Jp i
ii‘m!ﬂ- ii“npg. iidilpp ﬂ!![ih,;_ "mihli-
iiigyﬂ‘ iiﬁgllsi- iigénszii!Eg,HH‘ﬁg;g,,‘,
it | [k
it
e R o AT .
o e L1
it g
I\
il htne] il |
il "‘;"9’"" [y o
‘W““F%ﬁﬁybp i %@ﬁpp
m

il

Ty
’iﬂ!léuex-| 'Sl‘ﬂihu-‘ T
iil‘il'iﬁ.

![x i

m

ok

Pags

Wiee s JE

m //

"] - -

iif e ’ikél!ﬂ-

o I

g il g o — By |] e
bl e

. chid

LT, TTPHY oo

ii‘“?‘:% il

e ;

- % il bes e, -
i e it o -M
m

I R T e T

s

B - T, T

T

Figure 24: Search tree generated for 4o

45

Under review as submission to TMLR

[bee]

—
[T T LS

érh

i
il
T

17, T

[irn T

éii-n T
IR

Hhee
% [T
Ip
[T i
e
[
[T
firbs
Whes

[T

LW T
el iliee i,
firfip e
bec kT ool
Tee bee] e, beelTidhte,

[T o TS

b e
e

'ﬂmbrb

]

Figure 25: Search tree generated for GPT-OSS

46

Under review as submission to TMLR

s g R T
- - - il e
Qe g] g o i g s i g I b

ifi s

T

i

T

m e
b e g All fithip e

g T e T S T
Wl LT
1 if g M ii"!' bps

i

[if e e]

B .

1 m - {j
if!(g’lxs. LTS
i

T
T
T
‘i!um
ifhihn;.-

il P

I g

e |‘iis!fizp;KH‘iiu!q.‘,‘.Hiiga!m,,;.

;in&a,.,g.l"i“'[‘i“"‘ T

T e T P AT

e Hid
e W e i |

il !

TR Ty, T o T S T

T [l

1m T
T iiilillss:
T T
TP T ST T i

N T ST
[t

ii!?m- ‘ikim ‘iki.m iihiu-s-

m

T T e e T TP R T T R T

(b e i,

”!”}M iiii§||s;‘|—~iﬂ||§hai.

0] || il)

il
IEH s

iEEH.pf i;ﬁm,;.

*iix!« ips

e

]

3 T T J‘ih:¥§'-;|

m m
1i}l!“'m. i

]

il
ii!;ihs;. iilliliha;.

it
T
e [e R
[T T T T

it

= = =

Figure 26: Search tree generated for 40-M

47

b ek

Under review as submission to TMLR

ifi
_iisiflxu-

iflhes
e
T ;5! o | iﬁEI fer
i 55!! buel g §§! bee| | i§§ fps
e s

e e R e
e Wi,

T T T I e T A R T R TR T

e) [] TR VR

it i) P8P be s Hl T
it [0 | e i -G

kg §E| fer H‘ §§x s H’ E§I fies _

Es"ma;.
isﬁi“; i M
L HT |
iihillu,
ey (T
I i;;!m ifhirm,
iihs{i{ggi, T

m

i 5;!{, i; kb ! i‘"a E; bi

i s
! sgl | B
i E“ Hos [V m by

T

e | e
ib!ihai' ‘iiﬂh;piaHiiﬁ!Mq, {iiﬂhil‘.i.}_uiiﬁ!iqu.
e Wlboel By] il
ishi!sxi. if!lilgu. iihi”'i .
T - : il o
LI i LT T

(il fiies] NP T

i 2§ o N "
T ,;E:g::!: 'f‘irses-H'iiiﬂss-H'E}fﬁxm-‘

i e R i g s i e Hi B
iﬂ!ihzi.
Thee i,
(o B gl

e e

R IE T

il it i, Fliaen)
i ﬂ! fps / i E»if for Hi ;,L bpe

E i'E Fes it

:;::::: i i e
\ am
e -

m
il g
§ Emf ii [

T o T o TP b e -l Ee _--
W e W]

Figure 27: Search tree generated for L-405b

48

Under review as submission to TMLR

it e e bl il Hilige)
iiﬂih!i- M

T T TP

L]

e 1L

o B T
i

fflps

Figure 28: Search tree generated for DS3

49

Under review as submission to TMLR

e

i { ’§!§{¥§! 1
!Eﬂigpy m
s
Bilipe| I
i f{ Ii!; fies ’E!E fes
i e M M
ity :-" I K’{}
i } -'Ii} iﬁisihfpi. i"i'!’i-
Wi [il e e '“gi
. | Jis
LI [y ST
i!, i %, i“i'l#i.
il I e
[e ’5«5!;!“ 'Eiﬂhh,i_ /
‘{h e /,/:
i [! .
A i i)
'ié fee i“li' pe| [Bee
TIrs l
s ji?“"" g e P e e
LRI i I
b | Mﬂ'hi‘ pe H’ o
SR r i I
T T \f Ei!l e ﬂf iil ee 'i!uE e
[i[hi!gz;. —iikiqs;, L ifﬂ’ 2
T m
ii!igw e w
il e
T = iil” ‘
T Fitfle s il i g e

T Hiltfes

T
i
g

i [& e [T I!i Heg

g i

‘i Wl HJ W e i e e R e

T
iiﬁihg;. imi'l*i- im;f[:;.
l ﬁl] e [

T e T S s TP R T

Figure 29: Search tree generated for L4S

50

Under review as submission to TMLR

<X~
mr |

e

(a) Search tree generated for L-70b (b) Search tree generated for L-8b

Figure 30: Search trees generated for L-70b (a) and L-8b (b)

ol

	Introduction
	Motivating Example
	Methodology
	PrismBench Overview
	Search and Tree Structure
	MDP Formalization
	Tree Representation and Traversal Mechanism
	Multi-Parent Tree Structure

	Node Evaluation Workflow
	Agent Roles
	Multi-Agent Orchestration

	Evaluation Phases
	State Selection Policies
	Phase-Specific Reward Functions

	Ensuring Evaluation Validity
	Execution Based Value Estimation
	Search-time Self-correction
	Deterministic Challenge Selection

	Evaluation Metrics
	Structural Metrics
	Mastery Metrics
	Performance Metrics
	Diagnostic Metrics

	Experimental Design
	Concepts
	Combination of Concepts
	Experiment Settings and Reproducibility
	Benchmarking cost
	Reducing Benchmarking Costs

	Results and Analysis
	Comparative Analysis
	Structural Metrics
	Performance Metrics
	Mastery Metrics
	Diagnostic Metrics

	Detailed Analysis of Results
	Effects of Scale
	GPT-4o
	Llama 3

	Related Works
	Threats To Validity
	Conclusion
	Appendix
	Sample Trees

