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ABSTRACT

Radio Frequency (RF) sensing has emerged as a powerful, privacy-preserving
alternative to vision-based methods for various perception tasks. However, building
high-quality RF datasets in dynamic and diverse environments remains a major
challenge. To address this, we introduce WAVEVERSE, a prompt-based, scalable
framework that simulates realistic RF signals from generated indoor scenes with
human motions. WAVEVERSE introduces a language-guided 4D world generator
and a physics-based signal simulator that enables realistic simulation of RF signals
in diverse environments. Experiments validate the effectiveness of our method, and
we present two case studies showing WAVEVERSE not only enables data generation
for highly flexible RF imaging configurations for the first time, but also consistently
achieves performance gains in both data-limited and data-rich scenarios.

1 INTRODUCTION

Radio frequency (RF) sensing has emerged as a compelling modality for tasks such as 3D imaging,
human activity recognition, and health monitoring (Singh et al.| 2019;|Zhao et al.| 2021} |Lai et al.,
2024). In safety-critical or low-visibility scenarios, RF-based methods [Sun et al.[(2021ab); |Lai et al.
(2024) offer high-resolution imaging despite fog, smoke, or occlusion. At the same time, RF sensors
do not capture images or videos, making them inherently privacy-preserving and well-suited for
contactless and continuous health monitoring, including vital sign monitoring (Zhao et al., 2016 Ha
et al., |2020), sleep analysis (Zhao et al.| 2017; He et al.,|2025)), and mental health assessment (Ha
et al.l 2021} |Liang et al., 2023)). Despite these advantages, acquiring large-scale and high-quality
RF sensing datasets remains challenging. Building such datasets requires capturing a wide range
of room layouts, human activities, and individual differences, all of which demand significant cost
and effort. Worse still, RF sensing systems differ widely in hardware configurations (i.e., bandwidth,
antenna layout, and signal modulation), making it difficult to share or reuse data across systems. As a
result, unlike vision or audio, RF sensing lacks standardized and unified benchmark datasets, limiting
generalization across systems and slowing research progress.

Recent efforts have explored both physics-based simulation (Cai et al.| [2020; |Zhang et al.,|2022) and
learning-based synthesis (Chen & Zhang}, 2023 |Chi et al.,[2024) to address the challenges. However,
existing approaches focus on signal interactions with human bodies while neglecting the surrounding
environment. This is particularly problematic for RF sensing, where multipath propagation (i.e.,
multi-bounce reflections with surrounding structures like walls, floors, and objects) significantly
affects the received signal and is a key factor limiting generalization (Wang et al., 2020; Zhang et al.}
2023a)). Moreover, learning-based synthesis (Chen & Zhang} 2023} (Chi et al., [2024)) still requires a
large training dataset to begin with and do not generalize beyond a specific sensor configuration.

In this paper, we introduce WAVEVERSE, a hybrid generation—simulation framework for synthesizing
realistic and diverse RF signals. As illustrated in Fig.[T, WAVEVERSE combines 4D world generation
with physics-based RF simulation. Specifically, it leverages the emergent capabilities of Large
Language Models (LLMs) (Achiam et al.| 2023} [Hurst et al., | 2024) to generate diverse 3D indoor
environments and dynamic human motions within them. Given the 4D world (i.e., a 3D environment
with dynamic human motions), WAVEVERSE employs a ray tracing engine that accurately models
multipath propagation and provides phase-accurate signals across antennas and over time. This hybrid
design combines the best of both worlds: generative diversity from 4D synthesis and physical realism
from RF simulation. The use of explicit mesh representations for 3D layouts provides additional
benefits. It enables aligned supervision for RF learning tasks (e.g., depth estimation, semantic
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Figure 1: Given input text and sensor configuration, WAVEVERSE generates 4D worlds with moving
humans in 3D environments and simulates the received RF signals using physics-based modeling.

segmentation, human poses) and supports RF simulation with flexible sensor configurations for a
wide range of downstream applications, which are difficult to realize with existing methods.

WAVEVERSE introduces two key innovations to achieve these new capabilities. The first is about
spatial conditioning for human motion generation. Prior approaches Xie et al.|(2024)); Dai et al.| (2024)
condition motion generation on trajectories, which are time-indexed sequences of joint positions.
These trajectories prescribe not only where a person moves but also when and how fast, encoding
velocities, durations, and frame-level details. While effective for strict and fine-grained control, this
formulation is over-constrained, requires substantial manual effort to design, and ultimately restricts
generative models from producing diverse motions conditioned on the trajectories. In contrast,
we introduce a path-based conditioning strategy that provides spatial guidance without temporal
assignment. A path is defined as a set of waypoints specifying where the motion should occur, while
leaving velocity, style, and duration flexible. This simpler representation enables automatic path
generation and eliminates the need for manual trajectory design. It also allows the path generator to
focus on high-level semantics (i.e., aligning motion intent with the generated environments) while
leaving motion details to a separate human motion generator. As a result, path-based conditioning
achieves spatially realistic yet diverse and natural motion generation.

Our second innovation is a physics-based simulation framework with phase-coherent ray tracing,
which enables accurate and consistent modeling of signal phase. Prior methods
Chen & Zhang| [2023)) neglect spatial and temporal phase coherence. Yet such coherence is essential
for many RF sensing tasks including imaging and vital sign monitoring. In contrast, our simulator
explicitly preserves phase information across space and time, ensuring stable beamforming, Doppler
estimation, and other phase-sensitive applications. Grounded in physical modeling, our approach
generates high-fidelity signals directly, without requiring post-hoc learning-based signal refinement.

We evaluate WAVEVERSE through extensive experiments. In microbenchmarks, we evaluate human
motion generation under text and path conditioning, showing our state-aware causal transformer
outperforms baselines, including diffusion-based models. We further show, with this method, WAVE V-
ERSE generates human motions that are diverse and aligned with environments. We then compare our
phase-coherent ray tracing with conventional RF ray tracing and observe significant improvements in
phase-sensitive tasks, including circular beamforming imaging, respiration monitoring, and Doppler
estimation, yielding high-fidelity signals. Finally, we conduct two case studies on high-resolution RF
imaging and human activity recognition, showing that WAVEVERSE, using only ray tracing without
neural network refinement, enables data simulation for highly flexible RF imaging configurations for
the first time and achieves consistent performance gains in both data-limited and data-rich settings.

2 RELATED WORK

RF Simulation. Ray tracing has been widely used for radio propagation modeling, with early
efforts addressing communication-centric applications such as signal coverage in static scenes

& Tskander} 2015; [Hoydis et al.| 2023} [Yun & Iskander, [2024). For applications in RF sensing,
prior work (Erol et al., 2020; |Ahuja et al.l [2021; [Zhang et al., 2022} [Xue et al.} [2023) focused

on the signal interaction with human bodies neglecting environments and requires learning-based

signal refinement. Some methods (Ren et al} [2024; [Chen et all, 2025)) use ray tracing for signal
simulation but fall short of modeling spatial and temporal phase coherence. Inspired by the progress

in image generation (Kingma et al., 2013} [Goodfellow et al.| [2020; Ho et al., [2020), data-driven
methods (Chen & Zhang] [2023};|Chi et al.,[2024) combine ray tracing with neural networks for signal
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synthesis. However, they rely on large annotated datasets, offer limited controllability, lack physical
interpretability, and cannot ensure multipath effects or phase coherence. Full-wave solvers like
HESS (Cendes, [2016) provide accurate simulation but are computationally prohibitive for large-scale,
dynamic indoor scenes. In contrast, our work develops ray tracing with explicit spatial and temporal
phase coherence, enabling high-fidelity RF simulation without additional learning-based refinement.

Human Motion Generation. The generation of human motion has long been studied, with recent
efforts focusing on enhancing controllability. Text-based conditioning |Guo et al.|(2022a}b); |Zhang
et al.[(2023b); [Tevet et al.| (2023); |Shafir et al.|(2023); Jiang et al.| (2023); |Guo et al.| (2024} [2025)
offers an intuitive interface but ignores environment context, yielding unrealistic movements under
spatial constraints. To address this issue, several methods|Tevet et al.|(2023);|Shafir et al.| (2023); Wan
et al. (2024); | Xie et al.| (2024); Dai et al.| (2024) additionally introduce trajectories of explicit joint
positions at designated frames. While effective, such time-indexed trajectories are over-constrained,
as they require predefined durations, velocities, and careful alignment with text conditions, making
the process labor-intensive, difficult to scale, and limiting generalization. Alternative approaches|Y1
et al.| (2024); [Liu et al.|(2024); Hwang et al.| (2025)) have explored motion generation directly within
3D scenes, but they either lack text conditioning capabilities or still require time-indexed inputs such
as joint poses at specific frames and motion durations. Similar to trajectory-based methods, they
impose substantial preparation overhead and ultimately limit the scalability of practical generation
pipelines. Conversely, our path conditioning inherently addresses these issues and allows for practical
and scalable generation while providing high diversity and generalization.

3 METHOD

WAVEVERSE is an automated LLM-powered framework for simulating realistic RF signals in 3D
indoor environments with human motions. As a prompt-driven framework, WAVEVERSE can be used
either interactively by a human user or fully automated by an LLM agent. Given a text description
of an indoor environment, WAVEVERSE generates a text-aligned indoor environment with dynamic
human activities, and finally simulates RF signals of the scene. This section describes the two core
components of WAVEVERSE: (1) a 4D scene generator that synthesizes diverse indoor 4D scenes
(Sec.[3.1), and (2) a phase-coherent ray tracing engine for signal simulation (Sec. [3.2).

3.1 4D WORLD GENERATION

WAVEVERSE utilizes a prompt- - r - — ——
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simulation (Sec.[3.2), WAVEVERSE also assigns dielectric properties to scene objects with an LLM.

Figure 2: Overview of 4D World Generation.

3D Environment and Human Shape Generation. WAVEVERSE begins with a text description of
the environment (Fig. ). We build on an existing generation pipeline Yang et al.| (2024) to produce a
structured layout, including floor plans, object categories, and placements, ultimately yielding a mesh
representation of the indoor environment. This explicit 3D representation serves as a foundation for
simulating RF signals as well as other modalities such as RGB images and depth maps. For human
modeling, WAVEVERSE uses the SMPL model (Loper et al.,2023)), a parametric human mesh that can
be animated by adjusting pose and shape parameters. The shape parameters can be manually specified
or automatically generated using a finetuned LLM (Arbol & Casas, 2024), which is conditioned on
plausible body descriptions inferred from the input environment text by a general-purpose LLM.

Motion Description and Path Generation. To enable scalable motion generation for RF-based
applications, WAVEVERSE animates SMPL with sequences of generated joint positions, referred
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to as motion throughout this paper. Our focus aligns with RF tasks (Singh et al.| 2019; |Pan et al.|
2024]), which require diverse whole-body dynamics rather than object-centric interactions or simple
locomotion. The key challenge is to generate human motion that matches the semantic context of the
environment while ensuring diversity and spatial realism, such as avoiding wall penetrations. One
approach to achieve such control is to pair text descriptions with time-indexed trajectory inputs, that is,
precise 3D joint positions specified at key frames, consistent with the text and environment. However,
it requires careful alignment with text and extensive manual specification, making it labor-intensive
and difficult to scale. Additionally, by fixing joint positions, durations, and velocities in advance, it
effectively predetermines the motion and reduces flexibility, limiting generalization.

To address this challenge, we decompose motion generation into two stages. Given a text prompt of
the environment, an LLM first produces a motion description, like “wave the arm”, and specifies the
start and end 2D positions on the floor, which can also be provided by users. We replace trajectory
constraints with paths, a set of L spatial waypoints that guide where the person should move without
prescribing velocity or duration. Such paths can be readily generated with path-finding algorithms
given start and end points. For model training, we derive paths by downsampling and projecting the
pelvis trajectory from dataset motions into L = 64 evenly spaced 2D waypoints. We delegate the
motion generation task to later models, while LLMs focus on high-level reasoning.

Conditional Human Motion Generation. The second step is to generate motion sequences condi-
tioned on the input texts and paths. Since the path does not specify motion duration, we adopt an
autoregressive model that dynamically determines when to terminate the sequence, unlike existing
methods that generate human motion with a pre-defined duration (Tevet et al.; 2023} Xie et al., [2024;
Dai et al., [2024). Specifically, motion sequences are first tokenized using VQ-VAE (Van Den Oord
et all 2017), achieving motion tokens X = [my,ma,..., My, Mena], Where m; € {1,..., M}
indexes a learned codebook, and m.,q denotes the end of the sequence. The motion description is
encoded using CLIP (Radford et al.| 2021)), while the 2D waypoint sequence is processed through an
MLP-based position encoder, producing condition embeddings ¢ = (¢iext, Cpathg s - - - » Cpath, ).

While eXiSting aUtoregreSSive models (Zhang et al'y '\ [ Text Encoder [ Position Encoder  [] Motion Encoder \;

2023b)) generate motion via next-token prediction, T /N T /N /N T /N
learning the distribution P(m,, | ¢,mq,...,mp_1), @ . @ . .
we find this formulation struggles to align motion [
with the input path. Inspired by reinforcement learn-

ing (Kaelbling et al.l [1996), we view next-token BEC D COCoOCICICD CoEd
prediction as a sequential decision-making process, ‘ ‘ ‘ @ ‘ @ @ @ ‘
where each token is an action. We argue that the ab- @ @ @ ° °
sence of explicit spatial context at each decision step ~ Conditions

limits path adherence. To address this, we introduce ~ Figure 3: State-Aware Causal Transformers.
a state-aware causal transformer shown in Fig.[3] conditioning each prediction on the current spatial

state. Formally, the next-token distribution is modeled as P(m,, | ¢, mq, So, - - ., Mp—1, Sn—1), Where
s; encodes the 2D position at the final frame up to token m;, with the same position encoder.

State-Aware Causal Transformer

Despite the benefits of spatial state conditioning, we observe the model overfits by relying heavily on
path information, resulting in poor text alignment. To mitigate this and promote balanced conditioning,
we introduce a path-masking strategy during training. We first sample a masking ratio [rmin, "max) to
determine the number of waypoints to mask. Then, we iteratively select and mask random contiguous
segments of length ¢. If further masking is needed and no full segments remain, we continue by
randomly masking individual waypoints until the target ratio is reached. We find that this sequential
masking strategy improves generalization and enhances text-motion alignment (Sec. .T).

Dielectric Property Generation. To further enhance physical realism, WAVEVERSE models di-
electric properties following the ITU-R P.2040-2 recommendation (Series} 2015)), which provides
frequency-dependent parametric models for permittivity and conductivity along with validated pa-
rameter sets for 14 common materials. These parameters define physically meaningful dielectric
constants that we use directly in the simulator. To extend beyond these 14 materials, we sample
objects from our asset library and prompt the LLM to propose additional material categories and
follow the same ITU parametric model. We retain only categories whose dielectric values fall within
documented physical ranges, resulting in a library of 24 materials. During scene generation, instead
of generating dielectric constants from scratch, we prompt LLM to simply assign each object to
the most appropriate category from this curated library. This two-stage approach, physics-based
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Figure 4: Illustration of phase-coherent ray tracing. (a) shows spatial coherence by tracing consistent
paths across two radar locations. (b) depicts temporally coherent ray tracing for a moving person
across timestamps t1, t2, and t3. For clarity, the rays at ¢ and ¢3 are omitted.

parametric modeling followed by LLM-based categorization, ensures that all dielectric values remain
physically validated while still allowing semantic description to guide material selection.

3.2 RF SIGNAL SIMULATION

Given the generated 4D scenes, WAVEVERSE employs ray tracing to simulate RF signals. Existing
RF ray tracing engines, however, inherit practices from computer graphics, where the focus is on
modeling signal amplitude and rays are cast stochastically (Cook| |1986; Nimier-David et al.,|2019).
As a result, RF simulation similarly casts rays randomly over a spherical or conical distribution,
resulting in inconsistent ray-surface interactions across frames and radar positions (Chen & Zhang
2023} |Ren et al.,[2024). This inconsistency poses significant challenges for RF applications, where
signal phase plays a critical role. For example, high-resolution RF imaging distinguishes objects at
the same range but different angles by leveraging phase differences through beamforming. Similarly,
Doppler-based velocity estimation relies on phase shifts across frames caused by object motion. To
address this, we introduce phase-coherent ray tracing that operates on the scene mesh and ensures
consistent ray-surface interactions across different radar positions and over time as objects move. This
preserves signal phase coherence, enabling accurate simulation of phase-dependent RF phenomena.

RF Simulation with Ray Models. Ray tracing models wave propagation as a collection of discrete
paths connecting the transmitter (Tx) and receiver (Rx) through the environment. Let {Py } ,le denote
the set of valid propagation paths identified by ray tracing. Each path Py, is characterized by four
parameters: the propagation delay 75 ; a complex coefficient aj, whose magnitude encodes attenuation
due to path loss and interactions with scene surfaces, and whose angle represents accumulated phase
shifts; the angle of departure (AoD) 6, at Tx; and the angle of arrival (AoA) ¢y, at Rx. The channel
impulse response (CIR) A(t), which describes how an impulse propagates from Tx to Rx, is modeled
as the superposition of all paths: h(t) = >, ar - Grx(0r) - Gre(@k) - 6(t — 73), where Gy and Gy
denote the antenna gain patterns of the transmitter and receiver, capturing their directionality, and
d(t) is the Dirac delta function. Any signal received by Rx can then be computed as the convolution
between the transmitted signal and the CIR.

Phase-Coherent Ray Tracing. As mentioned above, conventional ray tracing methods fall short
in preserving phase coherence, as they cast rays stochastically, resulting in different ray-surface
interactions even for nearby radar positions (Fig. f{a), left). This issue becomes more severe in
dynamic scenes with moving humans, where changes in geometry cause rays to strike entirely
different surface points across frames, breaking temporal phase coherence shown in Fig. @{b).

To overcome these challenges, we propose phase-coherent ray tracing that ensures consistent ray-
surface interactions across space and time. To achieve spatially-coherent ray tracing, i.e., ensuring
coherent phase variation across different radar locations, we generate paths for each radar from a fixed
set traced from a representative reference radar. Specifically, assume we are synthesizing signals for
N radars with poses {(t,,r,)} forn =1,..., N, where t,, and r,, denote the position and rotation
of the transmitter and receiver. We define a reference (to, r() as the geometric center of all radar
positions, and trace rays uniformly over a sphere, to obtain paths { P} between t( and ry. For each
path Py, we represent it with a sequence of 3D points Py, = [to, Po, - - , PD,, o] Where pgy denotes
the d-th surface interaction point along the path and D}, denotes the number of encountered surfaces.

To generate paths for a radar with poses (t,,, r,,), we modify each reference path P}, by replacing the
original transmitter and receiver positions with the current ones, as shown in the right side of Fig. a).
We then compute the CIR for each modified path using updated propagation delay, attenuation, phase,
AoD, and AoA. Occlusion checks are further performed on the achieved paths, and any blocked paths
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are discarded. By preserving consistent surface interaction points, our approach ensures spatial phase
coherence across radars with various poses while avoiding redundant ray tracing.

To obtain temporally-coherent ray tracing, i.e., coherent phase changes as humans move within the
scene, we remap ray-surface interactions from individual vertices to semantically or spatially coherent
groups. While ray tracing is performed independently over time, we enable temporal coherence by
expanding ray hits over stable vertex groups that persist across frames.

Specifically, we partition all vertices V = {v,,}¥_, of a human mesh into G disjoint, semantically
coherent groups {Vg}le, where UgV, =V, with a grouping function G : v,,, — {1,...,G}. At

each timestamp ¢, ray tracing yields a set of paths {”P,Et)}. When a path Plit) intersects the human

mesh at point pfit), we associate it with a representative vertex f)g), a fixed vertex of the intersected

face, to enable consistent grouping. We then expand the path by replacing the hit point with all vertices

within the same group, i.e., those satisfying G(v,,,) = G (f)ff)). More specifically, the following set

of paths {[t, .. .,pfle,vm,pgjl, .. .,r} ‘ Gvi) =G (f)g)> form e {1,... ,M}} are created

to replace ”P,Et). We perform occlusion checks on the expanded paths and denote the number of valid
paths as Nyaiq. For each valid path, we compute propagation delay, attenuation, phase, AoD and AoA.
To preserve overall signal energy, attenuation is further divided by NVy,iq. In practice, we expand only
the first hit point from the transmitter, both to avoid exponential growth from higher-order reflections
and because single-bounce paths typically dominate received energy due to lower propagation loss.

Flexible Configuration. WAVEVERSE generalizes to a wide range of radar configurations, including
arbitrary antenna positions and orientations, gain patterns, frequency bands, and sampling rates,
making it adaptable to diverse hardware setups. This flexibility arises because our CIR modeling
inherently accounts for these factors, allowing the same formulation to be applied consistently across
different configurations. By simulating received signals through convolution with the transmitted
waveform, WAVEVERSE supports diverse RF protocols. Additionally, relying on explicit physical
modeling, WAVEVERSE scales to unseen conditions while achieving accurate and reliable signal
behavior, offering robustness and scalability that are difficult to achieve with data-driven methods.

4 EXPERIMENTS

In this section, we evaluate the 4D world generation and the signal simulation in WAVEVERSE.
We begin with benchmarks and ablation studies of the proposed state-aware causal transformer for
text and path conditioned motion generation, and analyze the generated 4D world. We then assess
the benefits of phase-coherent ray tracing over existing baselines on three phase-sensitive RF tasks.
Finally, we demonstrate the utility of WAVEVERSE in two real-world case studies.

4.1 PERFORMANCE OF HUMAN MOTION GENERATION

Dataset and Evaluation Metrics. We evaluate models over the HumanML3D (Guo et al.,|[2022a))
dataset for benchmarks. It contains 14,146 captioned human motion sequences. In all experiments,
we fix L = 64. More details can be found in Appendix Following the evaluation protocol from
OmniControl (Xie et al.,2024)), we report R-Precision to quantify the alignment between the text and
the motion, the Frechet Inception Distance (FID) to assess motion quality, and the Diversity score to
measure motion variability. To assess spatial alignment with the path condition, we define the Path
Error as the average per-point Lo-distance between the generated path and the ground-truth path, and
the Ending Error as the deviation at the last timestamp. For both errors, we use the mean and the
percentage of samples exceeding thresholds of 20 and 60 cm to characterize the distribution.

Comparison to Baselines. We adopt four open-source, state-of-the-art motion generation methods
as baselines, selected as the closest in design to ours: the diffusion-based MDM (Tevet et al.,
2023)), OmniControl (Xie et al., 2024)) and MotionLCM (Dai et al., [2024), and the autoregressive
T2M-GPT (Zhang et al.,2023b). Details of the model adaptations are provided in Appendix [A.T]

As shown in Tab. m our method consistently outperforms all baselines across R-Precision, FID, and
path-following metrics, demonstrating better motion quality and alignment with input conditions.
We defer detailed analysis to Appendix [A.T] but emphasize that the gains come from our proposed
designs rather than the autoregressive structure. Crucially, T2M-GPT, on which our method is built,
underperforms diffusion-based baselines, whereas our approach achieves better performance.
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Method Architecture R-Prec. ¥ FID| Div. — Path Error | Ending Error |
>20cm >60cm >20cm > 60cm

Ground Truth 0.797 0.002  9.503 0. 0. 0. 0.
MDM Diffusion 0.719 0.295 9.462 0.547 0.207 0.666 0.367
OmniControl  Diffusion 0.751 0.319 9.279 0.239 0.083 0.330 0.152
MotionLCM  Diffusion 0.739 0.754  9.588 0.315 0.055 0.468 0.177
T2M-GPT Autoregressive  0.691 0.377  9.736 0.406 0.127 0.545 0.255
Ours Autoregressive  0.755 0.238  9.445 0.208 0.045 0.325 0.111

Table 1: Text and path conditioned motion generation performance. Bold for the best and underline
for the second best. R-Prec.: R-Precision; Div.: Diversity.

Setting Model / Variant  R-Precision T FID | Mean Path Error | Mean Ending Error |
Ours 0.755 0.238 0.151 0.287
Components w/o Mask 0.643 0.747 0.192 0.325
P w/o State 0.757 0.422 0.250 0.460
w/o Mask & State 0.691 0.377 0.274 0.528
[0.5, 0.9] 0.755 0.238 0.151 0.287
Masking Rate  [0.1, 0.5] 0.691 0.396 0.171 0.312
[0.1, 0.9] 0.713 0.298 0.160 0.303
5 Points 0.755 0.238 0.151 0.287
Segment Length 10 Points 0.763 0.342 0.207 0.393
15 Points 0.776 0.339 0.228 0.403

Table 2: Ablation study for key components and hyperparameters in our model.

Physical Plausibility. In addition to text and path alignment, the generated motions should exhibit
realistic physical behavior. Beyond achieving a low FID score, which indicates that the generated
motions are natural and plausible in terms of velocity, we further quantify physical plausibility using
two additional metrics: Skating Ratio, which measures foot sliding, and Bone-Length Variance, which
measures the temporal stability of skeletal geometry. Our model attains a skating ratio of 0.067,
closely matching 0.057 for real data, and a bone-length variance of 1.78 cm?, indicating stable limb
lengths over time. These results confirm that our motions are not only well aligned with the input
texts and paths, but also physically plausible and closely consistent with real human dynamics.

Ablation Studies. We validate the key components of the state-aware causal transformer introduced
in Sec. @] through three ablation studies, summarized in Tab. E} First, without path masking, the
model overfits to path conditions, resulting in degraded motion quality and worse text alignment,
evidenced by higher FID and lower R-Precision. Path masking alleviates this issue and also improves
generalization in path following. We explore alternative approaches in Appendix[A.1] but they yield
suboptimal performance. We also show removing state information markedly reduces path-following
capability, underscoring its importance. Second, for the masking rate range [7'in, Tmax], OUr choice
[0.5,0.9] outperforms both [0.1,0.5] and [0.1, 0.9], showing that higher rates better balance reliance
on path and text. Finally, varying contiguous masking length ¢ reveals a trade-off. Shorter segments
(5 points) enhance path alignment and lower FID, whereas longer ones (10 or 15 points) improve text
alignment but substantially degrade path following. We therefore adopt 5 points in our model.

4.2 PERFORMANCE OF GENERATED 4D SCENES

Scene Evaluation. We evaluate both the quality and diversity of the generated 4D scenes, which
couple indoor environments with human motion. Across 120 trials, our pipeline achieves a 95.83%
success rate, producing 115 unique environments spanning a broad range of room types and objects,
with two motion sequences synthesized per scene. Failures are mainly due to floor plan errors
in environment generation or overly constrained layouts that hinder path generation. In total, the
dataset contains 920 unique objects (averaging 25 per scene), 47 room categories, and 24 dielectric
materials, with an average motion duration of 4.5 seconds. To assess spatial compatibility, we report
a collision ratio of 2.35%, the fraction of motion frames with collisions with the environment, and
a cumulative collision depth of 12.23 cm on average, indicating total interpenetration per motion.
These results show that the generated motions conform well to the environments. We further
provide qualitative results in Fig.[5] showcasing diverse room layouts, furniture configurations, and
semantically consistent human motion, highlighting the scalability of our pipeline. For computation
cost, we report a detailed breakdown of the execution time of each component in Appendix[A.2]
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Figure 5: Examples of generated 4D scenes. Texts above each scene are prompts for the environment
(top) and motion (bottom) generation. See Appendix [A.2|for more details.

4.3 PERFORMANCE OF PHASE-COHERENT RAY TRACING

To evaluate the effectiveness of our phase-coherent ray tracing, we conduct three benchmarks that
require phase coherence. The baseline ray tracing follows existing methods (Ren et al.,[2024}; [Chen
2025)), reflecting standard practice in prior work. Our method differs only by incorporating spa-
tial and temporal phase coherence, ensuring fair comparison. In addition, we compare the simulated
signals with real-world measurements and Ansys HFSS simulations, as detailed in Appendix[A.3]

. . . Spatially Coh it Vanill
Spatial Phase Coherence. To evaluate spatial phase Environment P Ray Tracing. Ray Trading

coherence, we adopt the panoramic imaging setup
of (2024), combining signals from 1,200
radar positions and orientations arranged along a cir-
cular path. Fig.[6]shows the imaging results from two " l—ﬁ
random environments generated in Sec.[A.3|using the

beamforming algorithm. The improved image clarity
highlights the role of spatial phase coherence, ensur-
ing that wavefronts remain aligned across all radar
poses. Notably, the ghost reflections in the imaging
result show our simulation captures multipath effects

that are difficult to guarantee in learning-based meth-
ods. These results demonstrate the importance of spa-
tial phase coherence for downstream RF applications.
More examples are provided in Appendix [A3]

Figure 6: Panoramic imaging results with
and without spatial phase coherence.

Temporal Phase Coherence. As discussed in Sec. [3.2] Sround Truth

stochastic ray casting fails to preserve phase in dynamic P ™ Y

settings, making it fundamentally unsuitable. For the base- )
line, we instead fix rays cast across time, though it deviates
from standard practice. We validate temporal coherence LA AL
on a respiration tracking task by animating the SMPL with
real breathing signals from[Li et al[ (2024), generating 500
seconds of data across 40 sequences. As the chest moves,
minute changes to the radar are captured by phase (Zhao|
2016). We extract this phase from simulated sig-
nals and convert it into distance change. With temporal
coherence, the reconstructed curves achieve 0.08 RMSE — >
and 8.89 DTW against ground truth, significantly outper-
forming the baseline, 0.14 and 12.68. We further simulate
a sinusoidally moving sphere and generate range—Doppler
heatmaps via range and Doppler FFT, where our approach again outperforms the baseline. We
provide qualitative results in Appendix [A.3] These experiments highlight the importance of coherent
ray-surface mapping for stable phase tracking and reliable Doppler estimation in dynamic RF scenes.

Baseline

>

Chest Movement

Figure 7: Recovered chest motion with
and without temporal phase coherence.
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Figure 8: Performance comparison over the baseline with varying amounts of additional real and
simulated data on: (a) high-resolution RF imaging and (b) human activity recognition. BL: Baseline.

4x-sim ' 4x-real .
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F1gure 9: Improved imaging quality over objects. (a) Armchair. (b) Water fountain. (c) Human.

4.4 CASE STUDIES

Having established the effectiveness of individual components, we now evaluate the full pipeline
of WAVEVERSE in real-world scenarios. To this end, we conduct two case studies on RF-based
applications with publicly available data: high-resolution imaging and human
activity recognition 2019). We evaluate each task under two conditions: a limited-data
setting that reflects practical constraints, and a data-rich setting where more real-world samples are
available, and compare with prior work to highlight the advantages of our approach.

High-Resolution Imaging. We first evaluate dense depth prediction from RF signals with the ML
model of (2024), which employs a rotating radar setup adopted earlier in Sec. .3] We
apply the same cross-building protocol, where the model is trained on RF data from 11 buildings and
evaluated on 1,000 frames from a held-out building. To improve depth prediction under limited data,
we augment training with simulated RF signals and depth supervision generated by WAVEVERSE.
We sample 1,000 real frames as a baseline dataset and progressively introduce 1x, 2%, and 4x
simulated data from 115 diverse scenes synthesized in Sec.[A3]

Fig. [8[a) shows consistent improvements in MAE, 90th percentile error, and PSNR as simulated
training data increases, outperforming the baseline trained on limited real data. With 4 x simulated
data, MAE and 90th percentile error drop by 2.02 cm and 6.88 cm, while PSNR improves by 1.51 dB.
The gains show that simulated data alone can enhance performance in data-limited settings. For
comparison, we include a 4 x-real setting trained with 4,000 additional real samples. Notably, the
simulated data captures 73.33% of the improvement in 90th percentile error, and surpasses it in PSNR.
Our analysis shows the model excels in high-quality ranges. 12.1% of predictions exceed 35 dB,
nearly double the 6.6% baseline. For the broader 30 dB threshold, the proportion rises from 41.9% to
45.4%. We visualize improvements in imaging quality over objects in Fig.[9] and we attribute these
gains to the rich object diversity in our scenes. Finally, combining simulated and real data yields the
best performance, with an additional gain of 3.55 cm in 90th percentile error and 0.45 dB in PSNR,
highlighting the value of WAVEVERSE-generated signals in both limited and rich data scenarios.

To further demonstrate the benefits of WAVEVERSE-generated signals, we compare it against a
Standard Ray Tracing (RT) baseline
with the same augmentation design. Ex-
isting learning-based methods such as  \ap () WAVEVERSE

Metric Method Real only +1x sim +2x sim +4X sim

20.10 19.29 19.12 18.08

RF Genesis Em m are Standard RT 20.10 21.45 21.89 22.28
not applicable here due to their fixed Q-90th (1) WAVEVERSE ~ 48.46 45.19 44.35 41.58
radar assumptions and lack of support Standard RT 4846 4998 50.24  53.29
for continuous rotational trajectories re- PSNR (1) VAVEVERSE 26.96 27.66  27.69  28.47

quired in our setup. Standard RT adopts Standard RT 2696  27.01 2685  26.89

the simulation paradigm as WAVEV- Table 3: Comparison with Standard RT.
ERSE but omits phase coherence modeling, resembling traditional MATLAB-style ray tracers. As
shown in tab.[3] WAVEVERSE consistently outperforms Standard RT across all metrics and augmenta-
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tion levels. The performance improves steadily as more WAVEVERSE-generated data is added, while
adding more Standard RT data yields no improvement and even degrades at higher ratios, suggesting
that phase-incoherent simulation produces unreliable signals that do not benefit learning.

While the above evaluation demonstrates the value of WAVEVERSE for providing additional simulated
training data, we also explicitly evaluate how well the simulated RF signals align with the real
measurements. Following standard practice in generative tasks, we compute both FID and the
Jensen-Shannon divergence of the TR margin (JS Div.) 2025)) between simulated and
collected RF signals to evaluate the fidelity. Concretely, we train a U-Net on the RF imaging task,
compute FID on features extracted at the bottleneck, and compute JS Div. following
(2025). WAVEVERSE achieves an FID of 2.879 and a JS Div. of 0.365, values that are on par with
those reported for strong generative models (Tian et all, 2024} [You et al}, 2025} [Gong et al, [2023)). In
contrast, removing phase coherence degrades these metrics to an FID of 5.495 and a JS Div. of 0.430,
indicating a substantially larger gap to real signals. Taken together with the task-level improvements
above, these results provide strong evidence that WAVEVERSE produces RF signals that are both
effective for downstream models and closely aligned with the real-world measurements.

Human Activity Recognition. We further evaluate WAVEVERSE on an open-source human activity
classification task (Singh et al.,[2019), which maps RF signal sequences to activities. To synthesize
motions, we use an LLM to generate diverse descriptions for the five activities in the dataset: walking,
standing, squatting, jumping, and jumping jacks. A classifier trained on 100 real samples and tested
on 500 held-out samples achieves a baseline accuracy of 31.6% (Fig.[8(b)). Augmenting with 400,
900, and 1900 simulated samples progressively improves accuracy to 49.8%, 61.4%, and 71.6%,
approaching the 75.6% from training on all 2,000 real samples. Finally, combining all simulated and
real data yields the best performance of 8§1.0%.

Additionally, we provide an explicit comparison between WAVEVERSE and RF Genesis
under the same augmentation strategy. Tab. [d]reports accuracies when augmenting 100
real samples with 4x, 9%, and 19 x simulated
samples. Across all these settings, WAVEVERSE
consistently provides larger accuracy gains at ~WAVEVERSE  31.6%  49.8%  614%  71.6%

. . . RF Genesis 31.6% 46.6% 55.8% 54.6%
every augmentation level. While RF Genesis
yields some improvement at low augmentation Table 4: Accuracy Comparison with RF Genesis.
ratios, its performance plateaus when more simulated data is added. In contrast, WAVEVERSE
continues to scale effectively, demonstrating that its physically grounded and environment-aware
simulation produces higher-fidelity signals.

Method Real only +4x sim +9x sim + 19X sim

5 LIMITATIONS AND FUTURE WORK

While WAVEVERSE demonstrates strong performance, some limitations remain. First, the current 4D
generative pipeline focuses on whole-body dynamics, which is sufficient for most RF sensing tasks
but does not yet capture fine-grained interactions such as typing or manipulating small objects. As a
result, the applicability of WAVEVERSE in interaction-centric scenarios is still limited. However, as
world-generation and motion-generation models improve, WAVEVERSE, as a unified generation-and-
simulation framework, can be naturally extended to handle fine-grained human-object interactions.
Second, our simulation is built on ray tracing with reflection modeling, which dominates indoor RF
propagation and supports most RF sensing tasks. However, more complex phenomena like diffraction
around sharp edges and refraction through objects are currently simplified, as in prior work
let al1 2020} [Ren et al}[2024). Extending the simulator with UTD-based diffraction and Fresnel-based
refraction is a promising direction to reduce this gap, and we leave this for future work. Lastly, while
our signal generation pipeline is fully simulation-based, we agree that lightweight, real-data-driven
refinement could further enhance fidelity. We consider integrating such refinement into WAVEVERSE
as an interesting direction for future work.

6 CONCLUSION

We present WAVEVERSE, a prompt-based, scalable framework that generates dynamic 4D envi-
ronments with human motion and simulates realistic RF signals via phase-coherent ray tracing.
Comprehensive evaluations and case studies demonstrate the practical utility of WAVEVERSE in en-
abling high-fidelity RF data generation and enhancing performance in both data-limited and data-rich
scenarios. We will release our code and simulator to support future research.

10
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7 ETHICS STATEMENT

We strictly adhere to the ICLR Code of Ethics. In this paper, we introduce WAVEVERSE, a scalable
and physically grounded framework for simulating RF signals in dynamic environments. The ability to
generate realistic RF data with diverse human motion and scene layouts has several potential positive
societal impacts. It can facilitate progress in privacy-preserving sensing, indoor navigation, and health
monitoring by reducing reliance on vision-based sensors. By supporting high-fidelity simulation
under varied conditions, WAVEVERSE may also help broaden access to RF research, lowering the
barrier to entry for institutions without expensive hardware or large-scale data collection pipelines.
However, WAVEVERSE may also entail potential negative societal impacts. Since WAVEVERSE
relies on LLMs to generate human motions and semantic scene layouts, it inherits the risks associated
with LLMs, such as biases in generated content and unintended reinforcement of stereotypes, which
users should pay attention to.

8 REPRODUCIBILITY STATEMENT

To ensure reproducibility, the Method section of the main paper presents a detailed description of our
approach, while the Experiment section provides the implementation details. Comprehensive infor-
mation on the dataset and the adopted splits is reported in both the main paper and the Appendix. For
the baselines, we carefully document their implementation to enable fair and transparent comparison.
Additionally, we will release our code and simulator to facilitate future research.
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A APPENDIX

In this appendix, we present additional details and results of WAVEVERSE from three perspectives,
conditional human motion generation, 4D world generation, and RF simulation, organized consistently
with the structure of the main paper, along with the LLM usage in our paper writing. We also
include videos of qualitative results in the Supplementary Material, accessible via main.html in the
accompanying ZIP file.

A.1 CONDITIONAL HUMAN MOTION GENERATION

Model Details. Our model comprises two main components: a VQ-VAE (Van Den Oord et al.|
2017) tokenizer and the proposed state-aware causal transformer. The VQ-VAE is built with 1D
convolution layers, residual blocks, and ReL.U activations in both the encoder and decoder along
the temporal dimension. It applies a temporal downsampling rate of 4 and uses a codebook of size
512 x 512. The tokenizer is trained for 300K iterations with a batch size of 256 using the AdamW
optimizer (Loshchilov & Hutter, 2017) (51 = 0.9, B2 = 0.99). Following|Van Den Oord et al.|(2017);
Zhang et al.|(2023b)), the training objective combines reconstruction, embedding, and commitment
losses. To enhance motion quality and training stability, we adopt velocity regularization, exponential
moving average updates, and codebook resetting as in Zhang et al.| (2023b)). The learning rate is
initialized at 2e-4 and decayed by a factor of 0.05 after 200K iterations with a MultiStepLR scheduler.

The state-aware causal transformer consists of 8 transformer layers (Vaswani et al., 2017), each
with 8 attention heads and a hidden dimension of 512. Temporal causality is enforced by applying
causal self-attention (Radford et al.| 2018) across the network. Text conditions are encoded with
CLIP (Radford et al., 2021), while path conditions and spatial states are encoded by a 3-layer
MLP with a hidden dimension of 256. The model is trained to maximize the likelihood of token
sequences using cross-entropy loss with a batch size of 128. Optimization is performed using the
Adam optimizer (5, = 0.5, B3 = 0.9) for 300K iterations. The learning rate is initialized at 1e-4 and
decayed by a factor of 0.05 after 150K iterations using a MultiStepL.R scheduler.

Dataset and Baseline Details. We adopt HumanML3D (Guo et al.,[2022a) as our dataset, which con-
tains 14,616 motion sequences annotated with 44,970 text descriptions. To extract path information,
we downsample the pelvis trajectory into 64 evenly spaced 2D waypoints on the floor, which serve
as the path condition. Notably, the path encodes only directional guidance and excludes duration or
velocity information. The dataset is split following the standard protocol as that in|Tevet et al.| (2023);
Xie et al.| (2024); Zhang et al.|(2023b); Dai et al.[(2024)).

We adopt four open-source, state-of-the-art motion generation methods as baselines, selected as the
closest in design to ours: the diffusion-based MDM (Tevet et al., [2023), OmniControl (Xie et al.,
2024) and MotionLCM (Dai et al.| [2024), and the autoregressive T2M-GPT (Zhang et al.,[2023b).
MDM, OmniControl, and MotionLCM support trajectory-conditioned motion generation, which
is close to our path-conditioned framework, whereas T2M-GPT serves as the base model for our
approach. For MDM, OmniControl, and MotionLCM, we follow their original setup, providing
target motion length during both training and inference. T2M-GPT dynamically determines when to
terminate the sequence by outputting an [end] token. To incorporate path conditioning, we apply
only the necessary modifications while keeping all other components unchanged, as described below.

For MDM, we incorporate path conditions by adding the encoded path features to its original
conditioning inputs. For OmniControl, we make a minimal change by replacing the per-frame joint
encodings with a shared global path feature that is applied uniformly to all joints. We adopt the MLP
design as before for a fair comparison. We experimented with both max pooling and mean pooling
for aggregating path features, and found that max pooling consistently yields better performance.
Thus, we apply max pooling when encoding paths for MDM and OmniControl. In addition, we retain
the spatial guidance of OmniControl by similarly applying an analytic function that evaluates how
closely the generated motion path aligns with the desired path. The gradient of this function is then
used to explicitly perturb the predicted mean at each denoising step, guiding the generated motions
to follow the specified path. For MotionLCM, we preserve its stacked transformer layers to encode
path signals, as originally designed for trajectory encoding, and leverage the extracted features in
the same way as in the original implementation. We also retain its original trajectory-alignment loss
but apply it with paths, explicitly penalizing deviations between the generated and desired paths
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Method Architecture R-Prec. ¥ FID | Div. — Path Error { Ending Error |
>20cm >60cm >20cm > 60cm

Ground Truth 0.797 0.002  9.503 0. 0. 0. 0.
MDM Diffusion 0.719 0.295 9.462 0.547 0.207 0.666 0.367
OmniControl  Diffusion 0.751 0.319  9.279 0.239 0.083 0.330 0.152
MotionLCM  Diffusion 0.739 0.754  9.588 0.315 0.055 0.468 0.177
T2M-GPT Autoregressive 0.691 0.377 9.736 0.406 0.127 0.545 0.255
Ours Autoregressive 0.755 0.238 9.445 0.208 0.045 0.325 0.111

Table 5: Text and path conditioned motion generation performance. Bold for the best and underline
for the second best. R-Prec.: R-Precision; Div.: Diversity.

during training. For T2M-GPT, we extend the input sequence by appending path tokens after the
text tokens, mirroring our own path condition encoding to ensure fairness in comparison. All other
settings, including hyperparameters, follow the original configurations reported in the respective
papers. All models are implemented in PyTorch and trained on an NVIDIA L40 GPU.

Comparison to Baselines. As shown in Tab.[5] our method consistently outperforms all baselines
across R-Precision, FID, and path-following metrics, demonstrating superior motion quality and
alignment with input conditions. MDM supports trajectory-conditioned motion generation by formu-
lating it as an inpainting task. However, it explicitly leverages known keyframes during denoising,
which are unavailable in our path-conditioned framework, and it lacks explicit mechanisms to guide
or evaluate motions against the desired path, ultimately limiting its ability to satisfy path conditions.
For OmniControl, its original per-frame joint control signals are replaced with global path conditions,
which removes localized frame-wise guidance. Furthermore, its analytic path function computes
a weighted sum over joint positions, where the weights can vary across denoising steps, leading
to instability and higher rates of large path-following errors, despite competitive accuracy at lower
thresholds. MotionLCM leverages a path-supervision loss between the predicted and ground-truth
paths, which reduces high-level path errors but still results in only moderate performance overall.

In contrast, our method generates motions in a stable, end-to-end autoregressive manner with spatial
state feedback, enabling precise and controllable motion generation. Importantly, it does not require
predefined duration, making it more scalable in practice. We also emphasize that the gains arise from
our proposed modules rather than from the autoregressive structure itself. Crucially, T2M-GPT, on
which our method is built, underperforms diffusion-based baselines, whereas our approach achieves
better performance. This highlights the effectiveness of our proposed designs, validated by the
ablation study in Sec.[d.T]

Training and Inference Time. We report and compare our method with baselines for both the
training and inference time. We summarize the training time required in the Table[6|below:

Ours T2M-GPT MDM OmniControl MotionLCM
27.1 19.7 20.9 47.1 23.2

Table 6: Comparison of training time (hours).

In practice, we adopt the VQ-VAE checkpoint provided by |Zhang et al.|(2023b) for a fair comparison,
and thus exclude its training time (7.1 hours) from the table. For OmniControl and MotionLCM, we
also do not include the training time required by pretrained models, as we directly use the released
checkpoints. While our method requires longer training time than T2M-GPT due to the longer tokens,
it is significantly more efficient than OmniControl, which achieves the closest performance.

Ours T2M-GPT MDM  OmniControl MotionLCM
(0.16,0.47) (0.09, 0.27) 7.43 117.26 0.05

Table 7: Comparison of inference time (s). For autoregressive models, we report the time required to
generate motion sequences of lengths 64 (first) and 196 (second).

We report the inference time required to generate a sequence of human motion in Table [/} Since
the inference time for our method and T2M-GPT depends on the motion sequence length, we
provide results for sequences of length 64 and 196. Experiments show that both autoregressive
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methods are significantly faster than diffusion-based MDM and OmniControl. MotionLCM achieves
faster inference through its one-step latent consistency model, but this comes at the cost of neutral
performance compared to our method. While our method is slightly slower than T2M-GPT due to
the need to compute spatial states on the fly, yet it delivers substantially better performance.

Ablation Study on Addressing Path Overfitting. Apart from the path masking strategy discussed in
Sec.[A3] we also investigated alternative approaches and variants. We hypothesize that the primary
source of overfitting is the imbalance between inputs: the path is represented by 64 tokens, whereas
the text condition is compressed into a single token by CLIP. To address this, we evaluated mean and
max pooling to compress all path features into a single token, following the approach of Reimers &
Gurevych|(2019), but observed a decline in performance. To preserve both model effectiveness and
simplicity, we therefore retain all path tokens and let the transformer learn attention over them. Since
we ultimately retain all path tokens, we further explored independent masking(IM), which masks
each token independently without segment-level masking, and input perturbation as regularization
during development. We report additional ablation results on pooling, masking, and perturbation,
with varied masking rates and noise levels, based on our current model.

Mean Path  Mean Ending  Path Err  Ending Err

Model R-Prec.t  FID| Err) Err) > 60cm| > 60cm]
Mean Pooling 0.749 0.477 0.201 0.391 0.081 0.176
Max Pooling 0.707 0.395 0.214 0.362 0.088 0.157
IM 10% 0.670 0.658 0.177 0.301 0.056 0.107
IM 50% 0.728 0.298 0.156 0.284 0.037 0.099
IM 90% 0.744 0.283 0.203 0.389 0.082 0.173
Perturbation 10% 0.662 0.651 0.188 0.311 0.061 0.105
Perturbation 50% 0.671 0.501 0.173 0.277 0.051 0.092
Perturbation 90% 0.695 0.448 0.165 0.273 0.042 0.094
Ours 0.755 0.238 0.151 0.287 0.045 0.111

Table 8: Ablation study on addressing path overfitting.

As shown above, our full method consistently outperforms variants with mean or max pooling in
both text alignment and path-following accuracy. Compared to independent masking and input
perturbation to mitigate overfitting, our method achieves a significant improvement in text alignment
while maintaining strong path-following performance, striking a better balance between the two
objectives. It also achieves a lower FID, indicating higher motion quality.

(a) Path length: 1m (b) Path length: 3m

(c) Path length: 5m (d) Path length: 7m

Figure 10: Visualization of generated human motions given the same text description and path
direction but different path lengths.
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Qualitative Results. Lastly, we present qualitative results of our method for text and path conditioned
human motion generation. We begin with customized conditions to highlight the capabilities of our
model, followed by qualitative results from the test set of the HumanML3D dataset.

We begin by presenting qualitative results that demonstrate the model’s ability to follow diverse path
lengths. To this end, we use the same text condition, walk, while varying paths of lengths [1, 3, 5,
7] meters, all oriented in the same direction. As shown in Fig. the input paths are visualized
with colored points transitioning from blue to red to indicate temporal order. The generated motions
closely follow the given paths while remaining consistent with the texts.

We then change the text prompt to slowly walk and fix both the text and path length while varying the
path direction by angles of £90°, £45°, and £30°. The corresponding visualizations are shown in
Fig.[I1] The generated motions exhibit slower velocities compared to those in previous examples,
reflecting the semantics of the updated text conditions. We refer the reviewer to the accompanying
video for a clearer comparison. Additionally, the visualizations show that the generated motions
accurately follow paths with varying directions, demonstrating strong path adherence.

(a) Path direction: —90° (b) Path direction: 90°

(c) Path direction: —45° (d) Path direction: 45°

(e) Path direction: —30° (f) Path direction: 30°

Figure 11: Visualization of generated human motions given the same text and path length but different
path directions.

Next, we demonstrate the model’s ability to align motion with varying textual descriptions. Using a
fixed path, we condition the model on different texts such as jump, run, walk as if there are stairs in
the front, and wave their arms. As shown in Fig.[12] the generated motions faithfully follow the same
path while accurately reflecting the semantics of each instruction.
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(a) Text: Jump. (b) Text: Run.

(c) Text: Walk as if there are stairs in the front. (d) Text: Wave their arms.

Figure 12: Visualization of generated human motions given the same path direction and length but
different text descriptions.

Moreover, we showcase generalization to random combinations of different texts, path lengths and
directions in Fig.[13]

(a) Conditions: Run; 8m; 30° (b) Conditions: Jump; 2.5m; —90°

(c) Conditions: Walk as if there are stairs in the front;
3.5m; 45° (d) Conditions: Wave their arms; 2.0m; —30°

Figure 13: Visualization of generated human motions under varying texts, path lengths, and path
directions.
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Finally, we present qualitative results of our model on the test set of the HumanML3D dataset shown
in Fig.[T4] These results highlight the alignment between the generated motions and more complex
text and path conditions, demonstrating the model’s ability to produce coherent and contextually
accurate human motion.

L

Wity

(a) Text: The person takes a step and waves his
right hand back and forth. (b) Text: A man walks backwards and then stops.

oty

b

(c) Text: A person walks in a circular motion. (d) Text: A person bends to the right.

My

(e) Text: A person begins walking forward first
with their left foot, taking wide awkward steps
as if they are stepping around or over something;
begins walking towards the right and then slowly
continues to walk to the left, then continues to walk
towards the right coming to a stop off to the right

side.
(g) Text: A figure tip toes around while walking in (h) Text: A person who is walking moves forward
a slolam like motion. taking six confident strides.

Figure 14: Qualitative results from the HumanML3D test set. Text conditions are shown in the
subcaptions, and path conditions are visualized as points within the scene.
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A.2 4D WORLD GENERATION

Execution Time. WAVEVERSE is fully automatic and does not require human interaction, and its
components can be parallelized across scenes and radar positions to improve throughput. We report
the execution time of each WAVEVERSE module (Fig. [2)), measured on a desktop equipped with an
RTX 3090 GPU and an i9-11900 CPU, averaged over 10 runs.

* Input Prompt. Generating scene and human-shape descriptions takes 1.37 s and 0.56 s, respectively,
with most of the latency coming from OpenAI API communication rather than local computation.

* Environment and Human Shape Generation. Environment generation and human-shape generation
take 105.47 s and 5.17 s, respectively. This includes API calls, mesh creation, object selection and
placement in Unity, and loading the fine-tuned LLM checkpoint for human shapes. Importantly,
this cost is incurred once per environment and can be amortized over many motion sequences and
simulated signals.

* Motion Description and Path Generation. Generating motion descriptions and planning paths
within the environment (again via API + path search) takes on average 7.03 s.

* Human Motion Generation. The Human Motion Generation module takes 20.79 s in total, though
only 0.48 s comes from motion generation with our state-aware transformer. The dominant cost is
SMPL fitting for the human mesh, which can be further optimized with faster implementations in
computer vision.

* Dielectric Property Generation. Dielectric properties are precomputed, and the time is already
included in environment generation.

We report the time for RF signal simulation. Generating a raw measurement for a single radar with 3
transmitters and 4 receivers takes 0.86 seconds for 100k cast rays. In our high-resolution imaging case
study with 1,200 radar poses, we reduce the runtime to 8.97 seconds with a custom CUDA kernel.

Prompts. We provide the adopted prompt in Fig.|15|for the generation of motion descriptions and
begin/end points. We also provide the prompts for the human shape generation in Fig.[I6and the
dielectric property generation in Fig.[T7] respectively.

Motion Description and Path Generation Prompt: You are an experienced human
motion designer, expert in drafting realistic daily human motions within a given
environment while considering the context of the environment. Please assist me in
drafting descriptions of daily human motions. You need to give a text description
of motion, including the description of the motion itself, the start and the end
positions. The environment is generated from an environment prompt which will be
provided. Please ensure that the motion description is feasible within the given
environment, like the action can be done by a person within the environment and
the start and end points are in the environment. Below is an example of an
environment prompt, the details of the generated environment, and examples of
human motion descriptions. Note: Units for the coordinates are in meters.

For example:

Environment prompt:

A living room.

Environment details:

Floor plan:

living room | [(0, @), (@, 6), (7, 6), (7, 0)]

Wall height: 2.7

Doors:

door|@|exterior|living room | exterior | living room | [(2.08, 6), (4.08, 6)]
Windows:

window|wall|living room|south|3]|@|@ | living room | [(5.27, @), (6.75, 0)]
window|wall|living room|south|3|1|1 | living room | [(2.70@, @), (4.18, 0)]
window|wall|living room|south|3]|2|2 | living room | [(0.27, @), (1.75, @)]
Floor objects:

sectional_sofa-@ (living room) | living room | [(5.89, @, 2.84), (7.05, 0.72,
5.55)]

tv_stand-0@ (living room) | living room | [(@, @, 3.34), (0.54, 0.74, 5.06)]
bookshelf-@ (living room) | living room | [(6.51, @, ©.13), (7.05, 1.92, 1.27)]
armchair-0 (living room) | living room | [(3.77, @, 3.44), (4.62, 1.00, 4.96)]
Wall objects:
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painting-0 (living room) | living room | [(6.97, 3.87), (7.00, 4.63)]
wall-mounted_shelf-@ (living room) | living room | [(4.15, 5.56), (4.95, 6.00)]
Small objects:

55 inch tv-0|tv_stand-@ (living room) | living room | [(0.24, ©0.93, 3.80)]
coaster-0|side_table-0 (living room) | living room | [(4.49, 0.73, 5.80)]

Here are some guidelines for you to understand the above environment details:

1. The space is represented in a ‘X,Y,Z‘ coordinate system, where Y represents
the height.

2. Whenever there are only two numbers for a coordinate, it represents ‘(X,Z)°¢,
omitting height Y.

3. The detailed environment consists of six parts: Floor plan, Doors, Windows,
Floor objects, Wall objects, and Small objects.

4. The floor plan is represented as: room name | four coordinates of four corners.
5. Doors are represented as: door name | room 1 | room 2 | two coordinates of the
projected doors on X-Z plane (line). The rooml and room2 indicate which rooms
the door connects.

6. Windows are represented as: window name | room | two coordinates of the
projected doors on X-Z plane (line). The room indicates which room the window is
located in.

7. Floor objects are represented as: floor object name | room | two 3D
coordinates which compose the 3D bounding box for the object. The room indicates
which room the floor object is located in.

8. Wall objects are represented as: wall object name | room | two 2D coordinates
which compose the 2D bounding box for the projected object on X-Z plane. The
room indicates which room the wall object is located in.

9. The object category is included in its name; you can infer size or height from
the name if needed.

10. Do not take the Small objects into consideration when designing the motion.

Motion description examples:

A person walks and gets things from the ‘sectional_sofa-@ (living room)‘ to the
‘tv_stand-0 (living room)‘, from position ‘(5.30,4.20)‘ to position ‘(0.27,2.80)°‘.
A person waves hands from the middle of the ‘living room‘ to the
‘window|wall|living room|south|3|2|2¢, from position ¢(2.03,3.02)‘ to position
“(1.00,0.20)°¢.

Motion Design Guidelines:

1. The generated motion description is expected to provide the begin point and
the end point; they can be around objects in the scene or spare spaces in the
environment.

2. You need to provide the 2D coordinates of these points on the X-Z plane.

3. You should derive the spatial relations among all objects in the environment.
4. You need to consider the space between objects to ensure that the motion (path)
is feasible without moving objects. In general, more open-space motions are
preferred.

5. Objects in the scene do not interact with humans.

6. There might be multiple rooms; you can design a motion from one room to
another.

7. Infer from the context to generate diverse actions (run, slip, wave, etc.).
8. Follow the example format exactly: include a complete motion description,
optionally provide the start and end position names, and always include the
coordinates in the form ‘from position (x1,z1) to position (x2,z2)°¢.

Now, you need to design actions for the below prompts:
Environment prompt:

{environment_prompt}

Environment details:

{environment_details}

Generate {motion_number} possible motions for the motion description generation,
which should be as diverse as possible. Strictly follow the format provided in
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the example. Your response should be direct and without additional text at the
beginning or end.

Figure 15: Prompt for Motion Description and Path Generation.

Human Shape Generation Prompt: Infer one plausible human body shape for the scene
{environment_prompt} and return exactly one description listing key physical
attributes, with no extra text. Example: “Average height, tall neck, long arms,
and broad shoulders.”

Figure 16: Prompt for Human Shape Generation.

Dielectric Property Generation Prompt: I have a list of object materials from a
3D asset database: {list_of_object_materials} I need your help to group these
materials into broader, high-level material categories. These categories will be
used to define radio material properties in an RF simulation engine. Please
identify and list appropriate high-level material categories (e.g., metal,
plastic, wood, glass, etc.). The goal is to organize the materials in a way that
helps assign RF properties during simulation. Use your best judgment based on
common material characteristics.

Below is a list of radio materials with their corresponding RF response models and
parameter values as defined by the ITU-R P.2040-2 recommendation. I’ve also
included the table of parameters (a, b, c, d) used by the recommendation to model
relative permittivity (e,) and conductivity (o) as functions of frequency:

er =af, and o = cfd,.
All models assume non-ionized, non-magnetic materials (u, = 1).
{table_of_itu_material_models}.

For the following high-level material categories
({list_of_generated_rf_materials}), please:

1. Assign appropriate values for the parameters (a, b, c, d), following the same
functional model as the ITU recommendation.

2. Use informed estimation or analogy with similar existing materials in the
ITU-R P.2040-2 table.

The objective is to ensure all new materials have an associated RF response model
that reflects the real physical responses to the best of your judgment.

You are tasked with selecting the most appropriate radio material from the
following list based on an object description. You are only allowed to select one
material name from the provided list of materials below.

Available materials: {list_of_all_rf_materials}.

Guidelines for selection: 1. First identify the most likely primary material of
the object based on common manufacturing practices 2. Consider the bulk material
that would dominate RF interactions, not surface coatings 3. For composite
objects, select the material that makes up the largest volume 4. If multiple
materials could apply, choose the one that would most affect RF propagation 5.
Always select the closest matching material from the list only, even if it’s not
an exact match

Output only the selected material name based on provided object description.

The object: {object_descriptions}.

Figure 17: Prompt for Dielectric Property Generation.
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Path Planning. Given the input start and end points, we first generate a cost map from the scene
layout, which is processed with morphological dilation. We then apply the A* algorithm to find a
path between the start and end points. If no valid path is found, we regenerate the motion description
along with new start and end points until a feasible path is obtained.

Qualitative Results. While WAVEVERSE can effortlessly generate shorter motions in open or
less constrained spaces, we emphasize its ability to handle more challenging scenarios, producing
long, semantically and spatially coherent motions within visually complex and spatially constrained
environments. Figure [18|showcases qualitative results in such cases, including narrow hallways,
intricate layouts, and long human motions. The generated motions align with the surrounding layout,
navigating obstacles and fitting within the scene’s geometry. Interestingly, the motions sometimes
appear to interact with the scene, even though no explicit interaction is modeled. Text prompts are
provided in the sub-captions, and we refer to the Supplementary Material for corresponding video
visualizations.
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(a) A broad gallery; Slowly tour around

(c) A zigzag hallway; Navigate

(e) A cozy cabin kitchen; Walk to retrieve items

(g) A L shape hallway; Quickly Move

(i) A U-shaped hallway; Jump

(b) A hallway; Wave the arm

(d) A keyhole-shaped hallway; Bend to pick some-
thing up

(f) A winding corridor; Walk

(h) A chic bathroom; Walk and almost slip

(j) A classic music room; Dance

Figure 18: Visualization of the generated 4D world, with the environment and motion-generation

prompts shown in the subcaptions.
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A.3 RF SIMULATION
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(a) Comparison with Collected Signals Time™ | (b) Comparison with Ansys Simulated Signals

Figure 19: Comparison of WAVEVERSE generated RF signals with collected measurements and
Ansys HFSS simulations. (a) We compare range—time heatmaps for a subject walking forward and
backward in front of a wall, showing close agreement between WAVE VERSE-simulated and radar
collected RF signals. (b) We evaluate the range—angle heatmaps simulated by WAVEVERSE against
Ansys (Stolarski et al,2018) HFSS with diffraction and refraction enabled (Ansys-w/) and with these
effects disabled (Ansys-w/0).

Comparison with collected signals and Ansys HFSS simulations. We begin by validating WAVEV-
ERSE against real RF measurements collected using a radar—camera setup, where a subject walks for-
ward and backward in front of a wall. The synchronized camera video is processed with WHAM
to reconstruct a temporally consistent human mesh sequence. We then rebuild the sur-
rounding environment, including walls, floors, and their spatial layout, and assign material properties
based on the surfaces in the scene. Using this reconstructed 4D world, we simulate RF signals with
WAVEVERSE and compare the resulting range—time spectrograms. The generated heatmaps, shown in
Fig.[I9(a), achieve a PSNR of 28.63 dB and a 93.65% similarity in energy distribution (computed as
1-Normalized RMSE), indicating strong alignment with the structural motion patterns and amplitude
dynamics of the collected signals, and supporting the correctness and realism of the simulated signals
from WAVEVERSE.

To further validate the correctness of the simulated signals, we compare WAVEVERSE with electro-
magnetic simulations with Ansys (Stolarski et al,2018) HFSS (High Frequency Structure Simulator),
a proprietary EM solver that models wave propagation solving Maxwell’s equations. We sample four
environments from previously generated indoor scenes and place four different poses within each,
resulting in a total of 16 setups. For every setup, we run HFSS simulations both with and without
diffraction and refraction effects enabled. We compare the range—angle spectrograms simulated by
WAVEVERSE against both HFSS outputs. When diffraction and refraction are excluded, WAVEVERSE
achieves a PSNR of 33.57 dB and 2.12% normalized RMSE. When these effects are included, the
results are 31.25 dB and 2.76%, respectively. These findings confirm that WAVEVERSE closely
approximates the HFSS-simulated signals with minimal degradation and show that the impact of
diffraction and refraction is limited. Moreover, while HFSS requires over one hour per simulation,
WAVEVERSE produces comparable results in under one second, offering a scalable alternative.

Gallery of Panoramic Imaging Results. We provide more comparisons of panoramic imaging
results with and without spatial phase coherence as in Sec.[4.3] showing that our ray tracing generates
high-fidelity signals that can be effectively used for downstream RF applications, whereas baseline
simulations without phase coherence fail to produce data of sufficient quality. Notably, the ghost
reflections in our results indicate that the simulation captures multipath effects, which learning-based
methods struggle to reproduce or guarantee.

Qualitative Results of Velocity Estimation from Doppler Effects. We provide qualitative results
of velocity estimation from Doppler effects in the video (Doppler_comparison.mp4) attached in the
Supplementary Material. In this experiment, we simulate a rigid sphere moving back and forth along
a straight line with sinusoidal velocity. A radar is positioned in front of the sphere, and velocity
is estimated from Doppler shifts. This task requires precise tracking of phase changes induced
by motion across different timestamps. The results are visualized as range—velocity maps at each
timestamp, where we expect to observe a sinusoidal velocity pattern over time reflecting the sphere’s
periodic motion. In addition, a narrow velocity band should appear across several range bins, since
the spatial extent of the sphere causes multiple ranges to share the same velocity. The video clearly
demonstrates that our method, which preserves temporal phase coherence, produces substantially
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Figure 20: More examples of panoramic imaging results. Sensor locations are shown as black icons

in environment images.
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Figure 21: Comparison of velocity estimation from Doppler effects between our method and the
baseline.
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cleaner range-velocity maps compared to conventional ray tracing. For clarity, Fig. [2T]also provides
comparisons at four different timestamps, showing that our method outperforms conventional ray
tracing.

License. Our proposed phase-coherent ray tracing can be integrated into conventional ray tracing-
based simulators. In our implementation, we build on[Hoydis et al| (2023)), leveraging its underlying
ray tracing engine. [Hoydis et al] (2023)) is released under the Apache 2.0 license. We adhere to
the respective licensing terms in our use and will ensure proper attribution and compliance when
open-sourcing our customized phase-coherent ray tracing simulator.

A.4 LLM IN PAPER WRITING

We only use LLMs to polish the writing. All retrieval, discovery, research ideation, and the content of
this paper are entirely our own work.
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