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ABSTRACT

Proteins are the fundamental building blocks of life, carrying out essential biolog-
ical functions in biology. Learning effective representations of proteins is critical
for important applications like drug design and function prediction. Language
models (LMs) and graph neural networks (GNNs) have shown promising per-
formance for modeling proteins. However, multiple data modalities exist for pro-
teins, including sequence, structure, and functional annotations. Frameworks inte-
grating these diverse sources without large-scale pre-training remain underdevel-
oped. In this work, we propose ProteinSSA, a multimodal knowledge distillation
framework to incorporate Protein Sequence, Structure, and Gene Ontology (GO)
Annotation for unified representations. Our approach trains a teacher and student
model connected via distillation. The student GNN encodes protein sequences and
structures, while the teacher model leverages GNN and an auxiliary GO encoder to
incorporate the functional knowledge, generating hybrid multimodal embeddings
passed to the student to learn the function-enriched representations by distribution
approximation. Experiments on tasks like protein fold and enzyme commission
(EC) prediction show that ProteinSSA significantly outperforms state-of-the-art
baselines, demonstrating the benefits of our multimodal framework.

1 INTRODUCTION

Proteins are essential molecules that serve as the basic structural and functional components of cells
and organisms. A natural protein consists of a linear sequence of amino acids that are linked to-
gether by peptide bonds, which folds into a three-dimensional (3D) structure. It is a major scientific
challenge to figure out the relationship between a protein’s sequence, structure, and function while
this knowledge is crucial for elucidating disease mechanisms (Serçinoğlu & Ozbek, 2020). Recent
advances like AlphaFold2 (Jumper et al., 2021) have enabled highly accurate protein structure pre-
diction, facilitating the application of artificial intelligence techniques for proteins. As for protein
representation learning, it is an active research area that aims to learn underlying patterns from raw
protein data for different downstream tasks (Unsal et al., 2022).

Recently, protein language models have been developed to process protein sequences and have
demonstrated an ability to learn the certain ‘grammar of life’ from large numbers of protein se-
quences (Lin et al., 2022). Models like ProtTrans (Elnaggar et al., 2021) and ESM (Rives et al.,
2019; Rao et al., 2021; 2020; Lin et al., 2022) leverage transformers, and attention mechanisms
to learn intrinsic patterns in a self-supervised manner, pre-training on large-scale of data. Unlike
sequences, protein structures exhibit continuous 3D coordinate data (Fan et al., 2023), requiring dif-
ferent modeling approaches. To represent both 1D sequences and 3D structures, GNN-based models
have been designed and adapted (Baldassarre et al., 2021; Hermosilla & Ropinski, 2022). For exam-
ple, GearNet (Zhang et al., 2023) encodes the sequential and spatial features of proteins by passing
messages between nodes and edges in an alternating pattern on multiple types of protein graphs.

Though protein LMs and GNNs have achieved remarkable performance in various protein-related
applications, such as tasks of predicting protein stability and EC numbers (Hu et al., 2023). Pro-
teins have more than just sequences and structures. Incorporating functional annotations is also
important for enhancing model capabilities and uncovering the intrinsic relationships between pro-
tein sequences and functions (Zhou et al., 2023; Hu et al., 2023). Recent works explore token-level
protein knowledge from dealing with the functional biomedical texts via protein pre-training (Zhou
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et al., 2023; Xu et al., 2023). However, protein sequences vastly outnumber available structures
and annotations (Ashburner et al., 2000). For example, there are about 190 thousand structures in
the Protein Data Bank (PDB) (Berman et al., 2000b) versus over 500 million sequences in Uni-
Parc (Consortium, 2013) and only approximately 5 million GO term triplets in ProteinKG25 (Zhang
et al., 2022), including about 600 thousand protein, 50 thousand attribute terms. This scale differ-
ence makes it difficult to bring the same success of sequence pre-training into sequence, structure,
and function pre-training. In this paper, we utilize the annotation information without relying on pre-
training. This allows guiding the sequence-structure model training to learn unified representations
for downstream tasks, bypassing the need for immense pre-training.

Considering the data categories and sizes of protein sequences, structures, and GO terms, we pro-
pose ProteinSSA, a multimodal framework for protein representation learning. ProteinSSA utilizes
a teacher model to learn from sequence-structure-annotation triplets, distilling this knowledge to
aid in training the student network. At present, not even 1% of sequenced proteins have functional
annotations Torres et al. (2021); Ibtehaz et al. (2023). While the teacher network requires extra
functions as input, such information is not always available. The teacher provides functional knowl-
edge, training the sequence-structure student model is more critical as we apply it to downstream
tasks for evaluating the framework. To transfer teacher knowledge, we employ domain adaptation
techniques to align the embedding distributions between teacher and student. Specifically, we cal-
culate the Kullback-Leibler (KL) divergence to minimize the distance between the distributions of
representations from different protein data modalities across the teacher and student domains. The
key contributions of this work are threefold:

• We propose ProteinSSA to incorporate multiple types of protein data, including sequence,
structure, and functional annotations. This allows learning unified representations without
large-scale pre-training, for applicability to various downstream tasks.

• We are the first to adapt the knowledge distillation method to connect the protein teacher-
student network, injecting the functional information into the student representations via
distribution approximation and domain adaptation.

• We validate ProteinSSA by surpassing current protein representation methods on tasks,
including predicting protein fold, enzyme reactions, GO terms, and EC numbers.

2 RELATED WORKS

2.1 REPRESENTATION LEARNING FOR PROTEIN

Self-supervised pre-training methods have been proposed to learn representations directly from
amino acid sequences (Rao et al., 2019)), with significant efforts to increase model or dataset
sizes (Rao et al., 2020; Elnaggar et al., 2021; Nijkamp et al., 2022; Ferruz et al., 2022; Rao et al.,
2019). To leverage tertiary structures, most works represent sequential and geometric features as
the graph node and edge features, using the message passing mechanism to encode them (Zhang
et al., 2023; Hermosilla et al., 2021; Jing et al., 2020b). Considering SE(3)-equivariant properties in
protein structures, equivariant and invariant features are designed as model inputs (Jing et al., 2020b;
Guo et al., 2022a). CDConv (Fan et al., 2023) proposes a continuous-discrete convolution to model
the geometry and sequence structures. ProNet (Wang et al., 2023) provides complete geometric rep-
resentations at multiple tertiary structure levels of granularity. Other works incorporate multi-level
structure information (Chen et al., 2023) and multi-task learning (Bepler & Berger, 2019).

Factual biological knowledge has been shown to improve pre-trained language models on protein
sequences (Zhang et al., 2022). ProteinBERT (Brandes et al., 2022) are pre-trained on over 100 mil-
lion proteins and frequent GO annotations from UniRef90 (Boutet et al., 2016). KeAP (Zhou et al.,
2023) and ProtST (Xu et al., 2023) train biomedical LMs using masked language modeling (Devlin
et al., 2018). Notably, MASSA (Hu et al., 2023) first obtains sequence-structure embeddings from
existing pre-trained models (Rao et al., 2020; Jing et al., 2020b), then globally aligns them with GO
embeddings using five pre-training objectives. Comparisons are shown in Table 1.
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Table 1: Comparisons of existing protein learning methods. A: Annotation, &: and. Note that the
input of the student model is without annotations.

Method Input Type Model Type Pre-training or not

GearNet (Zhang et al., 2023) Sequence & Structure GNN "

KeAP (Zhou et al., 2023) Sequence & A LM "

MASSA (Hu et al., 2023) Sequence & Structure & A LM & GNN "

ProteinSSA (Student) Sequence & Structure GNN %

2.2 KNOWLEDGE DISTILLATION

Knowledge distillation refers to transferring knowledge from a large teacher model to a smaller
student model (Hinton et al., 2015). There has been considerable progress in graph-based knowl-
edge distillation, with many proposed methods (Liu et al., 2023; Tian et al., 2022). For instance,
RDD (Zhang et al., 2020) forces the student model to directly imitate the full node embeddings of
the teacher, transferring more informative knowledge. GraphAKD (He et al., 2022) utilizes adver-
sarial learning to distill node representations from teacher to student, distilling knowledge from both
local and global perspectives. It is effective compared to prior graph distillation methods.

2.3 DOMAIN ADAPTATION

Domain adaptation generally seeks to learn a model from source-labeled data that can be generalized
to a target domain by minimizing differences between domain distributions (Farahani et al., 2021;
Wilson & Cook, 2020; Wang & Deng, 2018). Distribution alignment methods minimize marginal
and conditional representation distributions between source and target (Nguyen et al., 2022; Long
et al., 2015). Adversarial learning approaches have shown impressive performance in reducing
divergence between source and target domains (Ganin & Lempitsky, 2015; Long et al., 2018; Pei
et al., 2018). Semi-supervised domain adaptation reduces source-target discrepancy given limited
labeled target data (Saito et al., 2019; Kim & Kim, 2020; Jiang et al., 2020; Qin et al., 2021). Here,
we leverage domain adaptation to align the distributions of representations from teacher and student
networks trained on different protein tasks.

3 METHODOLOGIES

3.1 PRELIMINARIES

In this subsection, we provide the problem definitions and relevant notations. The background
knowledge of the local coordinate system is also introduced, which is closely associated with the
protein graph edge features.

Problem Statement We represent a protein graph as G = (V, E , X,E), where V = {vi}i=1,...,n

and E = {εij}i,j=1,...,n denote the vertex and edge sets with n residues, respectively. We use
the coordinate of Cα to represent the position of a residue, and the position matrix is denoted as
P = {Pi}i=1,...,n, where Pi ∈ R3×1. The node and edge feature matrices are X = [xi]i=1,...,n and
E = [eij ]i,j=1,...,n, the feature vectors of node and edge are xi ∈ Rd1 and eij ∈ Rd2 , d1 and d2 are
the initial feature dimensions. The GO annotations are denoted as A = {Ai}i=1,...,k with k terms
in total for proteins, where Ai ∈ {0, 1} is the indicator for annotation i. The goal of protein graph
representation learning is to form a set of low-dimensional embeddings z for each protein.

There is a source domain S for the teacher model with the data distribution pS(zS |GS , A) in the
latent space, and there is also a target domain T for the student model with the data distribution
pT (zT |GT ) in the latent space. zS , zT are latent embeddings from the teacher and student networks
for protein graphs GS and GT .

Local Coordinate System In order to avoid the usage of complicated SE(3)-equivariant models,
the invariant and locally informative features are developed from the local coordinate system (Ingra-
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ham et al., 2019), shown in Fig 3, which is defined as:

Oi = [bi ni bi × ni] (1)

where ui =
Pi−Pi−1

∥Pi−Pi−1∥ , bi =
ui−ui+1

∥ui−ui+1∥ ,ni =
ui×ui+1

∥ui×ui+1∥ .

eij = Concat(∥Pi − Pj∥ ,OT
i ·

Pi − Pj

∥Pi − Pj∥
,OT

i ·Oj) (2)

The edge feature vector eij is the concatenation of the geometric features for protein 3D structures,
including distance, direction, and orientation, where ∥·∥ denotes the l2-norm.

3.2 A PRELIMINARY EXPLORATION

For large-scale pre-training, it is unclear whether one or a few self-supervision tasks are sufficient
for learning effective representations and which task would be beneficial (Hu et al., 2023). Thus, the
performance of pre-trained models is limited by model size, dataset scale, and choice of pre-training
tasks. We conducted a preliminary experiment to illustrate this. CDConv (Fan et al., 2023) designs
an effective fundamental operation to encapsulate the protein structure without any pre-training or
self-supervised learning, achieving comparable accuracy to pre-training methods. It is currently the
most effective publicly available method for modeling protein sequence and structure.

In the field of protein pre-training, we select the current state-of-the-art knowledge-enhanced model,
KeAP (Zhou et al., 2023), to generate universal sequence-function embeddings, which are used to
enhance the CDConv model. ESM-1b (Rives et al., 2019) is the most prevalent sequence pre-training
model and is chosen to output sequence embeddings as a comparison with KeAP. By incorporating
the embeddings from KeAP and ESM-1b to enhance the embeddings obtained from CDConv, we
can compare the quality and performance of the embeddings from these two pre-trained models. The
averaged results are shown in Table 2. More details about this experimental settings are provided in
Appendix B.1.

Table 2: Accuracy (%) on EC number prediction and GO term prediction. The base model, CD-
Conv (Fan et al., 2023), is enhanced by sequence and sequence-function embeddings from ESM-
1b (Rives et al., 2019) and KeAP (Zhou et al., 2023).

Algorithm GO-BP GO-MF GO-CC EC

CDConv 0.453 0.654 0.479 0.820
Enhanced by the sequence embeddings 0.471 0.665 0.538 0.862
Enhanced by the sequence-function embeddings 0.467 0.671 0.529 0.842

As shown in Table 2, the sequence embeddings from ESM-1b provide better enhancement com-
pared to the sequence-function embeddings from KeAP when used with CDConv. This observation
demonstrates the limitations of the current sequence-function pre-trained model. To overcome these
limitations while better utilizing functional information, we propose the multimodal knowledge dis-
tillation framework, ProteinSSA.

3.3 OVERALL FRAMEWORK

The overall framework of ProteinSSA is illustrated in Figure 1. It consists of two branches that train
a teacher model and a student model via iterative knowledge distillation. Compared to the student,
the teacher has an additional annotation encoder module comprised of several fully connected lay-
ers. This transforms GO annotations into functional embeddings, combined with sequence-structure
embeddings from the GNNs to form the final knowledge-enhanced embeddings zS . Previous works
have successfully utilized label-augmented techniques to enhance model training (Bengio et al.,
2010; Sun et al., 2017). This technique involves encoding labels and combining them with node
attributes through concatenation or summation. By doing so, it improves feature representation and
enables the model to effectively utilize valuable information from labels.

Instead of directly minimizing distances between sample-dependent embeddings zS and zT , we
develop a sample-independent method. This aligns the student’s latent space with the teacher’s
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Figure 1: The overall framework of ProteinSSA.

latent space by approximating the distributions of the embeddings obtained from the student and
teacher networks. This distribution alignment approach avoids reliance on the input of individual
samples. Note that our primary focus is to obtain comprehensive embeddings for the student model,
rather than prioritizing the training mode of the teacher model. It can be trained on a larger dataset
or multiple datasets, without the need for the student to have access to the same information.

Protein Graph Message Passing A protein sequence consists of n residues, which are deemed as
graph nodes. We concatenate the one-hot encoding of residue types with the physicochemical prop-
erties of each residue, namely, a steric parameter, hydrophobicity, volume, polarizability, isoelectric
point, helix probability, and sheet probability (Xu et al., 2022; Hanson et al., 2019), which are used
as the graph node features xi. These node features capture meaningful biochemical characteristics,
enabling the model to learn which residues tend to be buried, exposed, tightly packed, etc. We define
the sequential distance, lij = ∥i− j∥, and spatial distance dij = ∥Pi − Pj∥, where Pi is the 3D
coordinate of the Cα atom of the i-th residue. There exists an edge between node vi and vj if:

lij < ls and dij < rs (3)

where ls, rs are predefined radius thresholds, eij consists of geometric features of the protein struc-
ture, defined in Eq. 2. Inspired by CDConv Fan et al. (2023), which convolves node and edge features
from sequence and structure simultaneously. We formulate the message passing mechanism as:

h
(0)
i = BN(FC (xi)) ,

u
(l)
i = σ(BN(

∑
vj∈N (vi)

Weijh
(l−1)
j ),

h
(l)
i = h

(l)
i +Dropout(FC(u

(l)
i ))

(4)

This mechanism (as shown in Eq. 4) can fuse and update the node and edge features, which include
aggregation and update functions, where FC(·), BN(·), Dropout(·) represent fully connected, batch
normalization, and dropout layers, σ(·) is the activation function LeakyReLU and W is the learnable
convolutional kernel. N (vi) refers to the neighbors of node vi, and h

(l)
i is the representation of

node vi in the l-th message passing layer. The node and edge features are processed together in
Eq. 4. After message passing operations, a sequence pooling layer is applied to reduce the sequence
length, providing a simple but effective way to aggregate key patterns. After average pooling, the
residue number is halved; we expand the radius rs to 2rs to update the edge conditions and perform
the message passing and pooling operations again. These operations can make the GNNs cover
more distant nodes gradually. The teacher and student models share the same GNNs architecture
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to process protein sequences and structures. Finally, a global pooling layer is applied to obtain the
graph-level protein embeddings, denoted as hS and zT for the teacher and student. Detailed model
descriptions are presented in Appendix B.2.

Protein Domain Adaption As shown in Figure 1, the teacher model consists of GNNs, and
an auxiliary annotation encoder, which is a multi-layer perceptron (MLP) that provides function-
friendly protein representations. The annotations associated with GS serve as the input for the
annotation encoder, resulting in the extraction of feature vector hA. Therefore, we can combine hA

and the graph-level protein embeddings hS learned from GS together:
hA = MLP(A)

zS = hA + αhS
(5)

where α is a hyper-parameter, controlling the balance between the contribution of the annotation
embeddings hA and the protein embeddings hS in the combined representations zS .

As depicted in Figure 1, the generated protein embeddings zS contain sequence, structure, and func-
tion information, guiding the training of the student model. Since knowledge-enhanced embeddings
zS are intended for various protein tasks, they are obtained from the entire protein and GO term
datasets. To better capture the inherent uncertainty in the teacher’s and student’s latent spaces, we
calculate distributions within these latent spaces. The minibatch is used to approximate the quanti-
ties pS(zS) and pT (zT ):

pS(zS) = EpS(GS ,A)[p(zS |GS , A)] ≈
1

BS

BS∑
i=1

pS(zS |G(i)
S , A(i))

pT (zT ) = EpT (GT )[pT (zT |GT )] ≈
1

BS

BS∑
i=1

pT (zT |G(i)
T )

(6)

where BS is the batch size. A Gaussian distribution Θ is assumed for protein embeddings, which
exhibit smoothness and symmetry properties that can reasonably mimic the expected continuity and
unimodality of the embeddings aggregated over many residues. We employ the reparameterization
trick (Kingma & Welling, 2013) to sample the embeddings.

pS(zS) = Θ(µS , σ
2
S); pT (zT ) = Θ(µT , σ

2
T ) (7)

where µS , σ
2
S and µT , σ

2
T are the mean and variance values of the embeddings for the teacher and

student models, providing a summary of the distribution using first- and second-order statistics.

Proposition 2 in Appendix D shows that the conditional misalignment in the representation space is
bounded by the conditional misalignment in the input space. We have:

L∗
student ≤ Lteacher +

M√
2

√
KL [pS(z) ∥ pT (z)] + EpS(G) [KL [pS(y|G) ∥ pT (y|G)]] (8)

where L∗
student is the ideal target domain loss, and Lteacher is the teacher’s supervised loss, M is a

bound, see Appendix D. EpS(G) [KL [pS(y|G) ∥ pT (y|G)]] is often small and fixed (not dependent
on the representation z, and y is the function label). To reduce the generalization bound, we can
focus on optimizing the marginal misalignment with a hyper-parameter β:

Lteacher + β(KL [pS(z) ∥ pT (z)]) (9)

Eq. 9 can be used in an unsupervised way for the student to predict functions, which is near the
ideal target domain loss. For the proposed framework ProteinSSA (Figure 1), we use the Lteacher to
first train the teacher model, we adopt a hybrid loss L to train the student model using the labeled
data in the target domain, where the Lkd = KL [pS(z)|pT (z)] is to optimize the marginal misalign-
ment between teacher and student models. Therefore, the final loss L with a hyper-parameter β is
formulated as:

L = Lstudent + βLkd (10)

The objective function of the teacher model Lteacher is the cross entropy for protein graph classifica-
tion. It is important to note that the training of the teacher model can be considered distinct from
traditional pre-training, as it does not involve unsupervised or self-supervised learning on a large
dataset. The hybrid loss of the student model has a cross entropy loss Lstudent for classification and a
regularization loss Lkd for knowledge distillation.
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Table 3: Accuracy (%) of fold classification and enzyme reaction classification. The best results are
shown in bold.

Input Method Fold Classification Enzyme

Fold SuperFamily Family Reaction

Sequence

CNN (Shanehsazzadeh et al., 2020) 11.3 13.4 53.4 51.7
ResNet (Rao et al., 2019) 10.1 7.21 23.5 24.1
LSTM (Rao et al., 2019) 6.41 4.33 18.1 11.0
Transformer (Rao et al., 2019) 9.22 8.81 40.4 26.6

Structure

GCN (Kipf & Welling, 2016) 16.8 21.3 82.8 67.3
GAT (Velickovic et al., 2017) 12.4 16.5 72.7 55.6
3DCNN MQA (Derevyanko et al., 2018) 31.6 45.4 92.5 72.2

Sequence-Structure

GraphQA (Baldassarre et al., 2020) 23.7 32.5 84.4 60.8
GVP (Jing et al., 2020a) 16.0 22.5 83.8 65.5
ProNet-Amino Acid (Wang et al., 2023) 51.5 69.9 99.0 86.0
ProNet-Backbone (Wang et al., 2023) 52.7 70.3 99.3 86.4
ProNet-All-Atom (Wang et al., 2023) 52.1 69.0 99.0 85.6
GearNet (Zhang et al., 2023) 28.4 42.6 95.3 79.4
GearNet-IEConv (Zhang et al., 2023) 42.3 64.1 99.1 83.7
GearNet-Edge (Zhang et al., 2023) 44.0 66.7 99.1 86.6
GearNet-Edge-IEConv (Zhang et al., 2023) 48.3 70.3 99.5 85.3
CDConv (Fan et al., 2023) 56.7 77.7 99.6 88.5

ProteinSSA (Student) 60.5 79.4 99.8 89.4

4 EXPERIMENTS

4.1 TRAINING DETAILS

The proposed multimodal knowledge distillation framework, ProteinSSA, is trained in two steps.
We only use about 30 thousand proteins with 2752 GO annotations from the GO dataset, without
further division into categories of biological process (BP), molecular function (MF), and cellular
component (CC) (Gligorijević et al., 2021). These classes are extracted as input to the teacher
model’s annotation encoder. we get the Fmax for the teacher model 0.489 overall. Then, we train
the student model. The models are trained with the Adam optimizer using the PyTorch library.
Performance is measured with mean values over three initializations. Detailed experimental settings
are provided in Appendix B.3.

4.2 TASKS AND BASELINES

Following the tasks in IEconv (Hermosilla et al., 2021) and CDConv (Fan et al., 2023), we eval-
uate ProteinSSA on four protein tasks: protein fold classification, enzyme reaction classification,
GO term prediction, and EC number prediction. Detailed task descriptions are presented in Ap-
pendix B.4. Dataset statistics are shown in Table 6.

Baselines The proposed method is compared with existing protein representation learning meth-
ods, which are classified into three categories based on their inputs, which could be a sequence, 3D
structure, or both sequence and structure. 1) Sequence-based encoders, including CNN (Shanehsaz-
zadeh et al., 2020), ResNet (Rao et al., 2019), LSTM (Rao et al., 2019) and Transformer (Rao et al.,
2019). 2) Structure-based methods (GCN (Kipf & Welling, 2016), GAT (Velickovic et al., 2017),
3DCNN MQA (Derevyanko et al., 2018) 3) Sequence-structure based models, e.g., GVP (Jing et al.,
2020a), ProNet (Wang et al., 2023), GearNet (Zhang et al., 2023), CDConv (Fan et al., 2023), etc.
GearNet-IEConv and GearNetEdge-IEConv (Zhang et al., 2023) add the IEConv layer on GearNet.
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Table 4: Fmax of GO term prediction and EC number prediction. The best results are shown in bold.

Category Method GO-BP GO-MF GO-CC EC

Sequence

CNN (Shanehsazzadeh et al., 2020) 0.244 0.354 0.287 0.545
ResNet (Rao et al., 2019) 0.280 0.405 0.304 0.605
LSTM (Rao et al., 2019) 0.225 0.321 0.283 0.425
Transformer (Rao et al., 2019) 0.264 0.211 0.405 0.238

Structure
GCN (Kipf & Welling, 2016) 0.252 0.195 0.329 0.320
GAT (Velickovic et al., 2017) 0.284 0.317 0.385 0.368
3DCNN MQA (Derevyanko et al., 2018) 0.240 0.147 0.305 0.077

Sequence-Structure

GraphQA (Baldassarre et al., 2020) 0.308 0.329 0.413 0.509
GVP (Jing et al., 2020a) 0.326 0.426 0.420 0.489
GearNet (Zhang et al., 2023) 0.356 0.503 0.414 0.730
GearNet-IEConv (Zhang et al., 2023) 0.381 0.563 0.422 0.800
GearNet-Edge (Zhang et al., 2023) 0.403 0.580 0.450 0.810
GearNet-Edge-IEConv (Zhang et al., 2023) 0.400 0.581 0.430 0.810
CDConv (Fan et al., 2023) 0.453 0.654 0.479 0.820

ProteinSSA (Student) 0.464 0.667 0.492 0.857

4.3 RESULTS OF FOLD AND ENZYME REACTION CLASSIFICATION.

Table 3 shows performance comparisons on protein fold and enzyme reaction prediction across
different methods, reported as average values. From the table 3, we can see that the proposed
ProteinSSA achieves the best performance among all methods on the four test sets for both fold
and reaction prediction tasks. Sequence-structure based methods generally outperform sequence-
or structure-only methods, indicating the benefits of co-modeling sequence and structure. Notably,
on the Fold test set, ProteinSSA improves accuracy by over 6.7% compared to prior state-of-the-
art techniques, demonstrating its effectiveness at learning sequence, structure and function map-
pings. Additionally, CDConv ranks second among the methods, with both it and ProteinSSA using
sequence-structure convolution architectures. This suggests the teacher-student training paradigm
in ProteinSSA helps the student learn superior protein embeddings.

4.4 RESULTS OF GO TERM AND EC NUMBER PREDICTION

Following the protocol in GearNet (Zhang et al., 2023), the test sets for GO term and EC number
prediction only contain PDB chains with less than 95% sequence identity to the training set, en-
suring rigorous evaluation. The student model conducts the experiments, and the teacher model’s
annotations are not classified into these classes, avoiding data leakage. Table 4 shows comparative
results between different protein modeling methods on these tasks, with performance measured by
Fmax, which balances precision and recall, working well even if positive and negative classes are
imbalanced. The mean values of three independent runs are reported. ProteinSSA achieves the
highest Fmax across all test sets for both GO and EC prediction, outperforming state-of-the-art ap-
proaches. This demonstrates ProteinSSA’s strong capabilities for predicting protein functions and
activities. Compared to preliminary results in Table 2, ProteinSSA even exceeds CDConv (Fan
et al., 2023) augmented with sequence-function embeddings from the large-scale pre-trained model,
KeAP (Zhou et al., 2023) on EC number prediction, while being comparable on GO term predic-
tion. Overall, the consistent improvements verify the benefits of injecting function information into
sequence-structure models, as done in ProteinSSA’s teacher-student framework. The results cement
ProteinSSA’s effectiveness using knowledge distillation techniques.

4.5 ABLATION STUDY

Table 5 presents ablation studies of the proposed ProteinSSA model on the four downstream tasks.
We examine the impact of removing the teacher model, which means removing the Lkd. We also
remove the annotation encoder in the teacher, which means that we incorporate function information
into the loss function for the teacher models. As shown in Table 5, removing the teacher model
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Table 5: Ablation experiments of our proposed method. w/o AE-T denotes without the annotation
encoder in the teacher model. w/o teacher means without the teacher model and directly using the
student model, which means without Lkd.

Method Fold Classification Enzyme GO EC
Fold Superfamily Family Reaction BP MF CC

ProteinSSA 60.5 79.4 99.8 89.4 0.464 0.667 0.492 0.857
w/o AE-T 60.4 79.1 99.7 88.9 0.454 0.664 0.490 0.854
w/o Teacher 57.8 78.7 99.6 88.6 0.458 0.660 0.484 0.851

altogether (w/o Teacher) leads to substantial performance drops across all tasks compared to the
full ProteinSSA. This shows the teacher’s knowledge distillation provides useful signals for the
student model. Besides, removing the annotation encoder in the teacher (w/o AE-T) also degrades
performance, though less severely. This indicates the annotation encoder slightly helps align teacher
outputs with the downstream tasks. These ablations highlight the importance of utilizing the teacher
model and the annotation encoder for optimal results.

Figure 2 shows the comparisons of the knowledge distillation loss Lkd, with and without being
involved in backpropagation during training. When the loss Lkd is not involved in the process of the
gradient backpropagation, it decreases due to the decreasing classification loss Lstudent, but remains
much higher than when Lkd is involved. This validates the effectiveness of the proposed knowledge
distillation loss and its role in training.

(a) Fold (b) EC

Figure 2: The KL training loss curves on the fold classification and EC number prediction. The red
curve denotes Lkd conducts its function, while the blue curve denotes we calculated the value of
Lkd, but it is not involved in the process of the gradient backpropagation (BP).

5 CONCLUSION

In this paper, we propose ProteinSSA, a multimodal protein representation learning framework
integrating the information from protein sequences, structures, and annotations. Importantly, we
estimate the latent embedding distributions for the teacher-student model and learn annotation-
enriched student representations by distribution approximation. Compared to mainstream protein
representation learning techniques, ProteinSSA achieves superior performance in predicting protein
structure, reactions, GO terms, and EC numbers. The consistent improvements across benchmarks
highlight the advantages of this approach for informative protein representation learning. However,
ProteinSSA uses predefined and fixed weight parameters, which need empirical tuning and exper-
imental validations. Additionally, the student is restricted by the teacher’s ability. Therefore, this
framework could be improved by training the teacher on larger annotation datasets.
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Noelia Ferruz, Steffen Schmidt, and Birte Höcker. Protgpt2 is a deep unsupervised language model
for protein design. Nature Communications, Jul 2022. doi: 10.1038/s41467-022-32007-7. URL
http://dx.doi.org/10.1038/s41467-022-32007-7.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
International conference on machine learning, pp. 1180–1189. PMLR, 2015.
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A LOCAL COORDINATE SYSTEM

Figure 3: The local coordi-
nate system Qi related to pro-
tein graph node vi, Pi is the
coordinate of residue i.

We have introduced the local coordinate system (Ingraham et al.,
2019) Qi in the Section 3.1, which defines the geometric properties
of the point vi. It is shown in Figure 3. From this figure, we can
easily find that bi is the negative bisector of the angle between the
rays (Pi−1 − Pi) and (Pi+1 − Pi).

B EXPERIMENT SETUP

B.1 DETAILED EXPERIMENT SETTING IN SECTION 3.2

As stated in Section 3.2, embeddings generated from the pre-
trained models, ESM-1b1 (Rives et al., 2019) and KeAP2 (Zhou
et al., 2023), are used to enhance the sequence-structure model CD-
Conv (Fan et al., 2023). As shown in Figure 4. A two-layer MLP is
used to encode the generated embeddings, which are then added to
the CDConv embeddings. The MLP has feature dimensions of 1024
and 2048, with other hyper-parameters remaining the same as the
base models. This allows the integration of knowledge from large-
scale pre-trained language and protein models into the sequence-
structure framework for improved protein characterization.

Pretrained
ESM-1b/KeAP

CDConv

MLP

Classification
HeadAdd

Figure 4: An illustration of the enhanced CDConv model.

B.2 MODEL DETAILS

The radius rs threshold increases from 4 to 16, and ls is set to 11. We set two message passing layers
with one average sequence pooling per GNN. After the pooling layer, the number of residues is
halved, and we update the edge conditions before performing another round of message passing and
pooling, as illustrated in Figure 1. The final GNNs include eight message-massing and four pooling
layers, which are sufficient for achieving satisfactory results. The number of initial feature channels
is 256, increased to 2048. The annotation encoder has 2 FC layers changing feature channels from
2752 to 2048. The classification head is a liner layer for predicted classes. For the teacher model, we
use zS to get the predicted annotations by the classification head and calculate the loss by Lteacher.
The final loss L is used for the training of the student model.

As shown in Figrue 5, residues that are spatially adjacent can still exist even when the sequence dis-
tance is large. The medians suggest the sequence-structure distance may have a linear relationship.
Thus, we perform sequence average pooling, and change edge conditions after once pooling. These
operations enable the protein graph to cover more distant nodes.

B.3 TRAINING DETAILS

Dataset statistics (Zhang et al., 2023) of the four downstream tasks are summarized in Table 6. The
proposed framework conducted experiments on NVIDIA-SMI A100 GPUs and NVIDIA Tesla V100
GPUs, implemented with PyTorch 1.13+cu117 and PyTorch Geometric 2.3.1 with CUDA 11.2.

1https://github.com/facebookresearch/esm#available-models
2https://github.com/RL4M/KeAP
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Figure 5: The relationships of distances between sequence and structure on the EC dataset, the
sequential distance lij is from 1 to n-1, and the x-axis means lij − 1, the y-axis means dij . The
dashed red line connects their median values.

Table 6: Dataset statistics. #X means the number of X.

Dataset #Train #Validation #Test

Enzyme Commission 15, 550 1, 729 1, 919
Gene Ontology 29, 898 3, 322 3, 415
Fold Classification - Fold 12, 312 736 718
Fold Classification - Superfamily 12, 312 736 1, 254
Fold Classification - Family 12, 312 736 1, 272
Reaction Classification 29, 215 2, 562 5, 651

In biology, a linear combination of original data with Gaussian noise (Guo et al., 2022b) is a simple
but effective way to augment the protein data:

(Pi,xi)← (Pi,xi) + Θ,Θ ∼ (µk, σ
2
k) (11)

where µk and σk are selected as the random noise’s mean (expectation) and standard deviation.

Hyper-parameters related to the networks are set the same across different datasets: Adam optimizer
with learning rate lr = 1e − 3, weight decay decay = 5e − 4, epochs T = 300, Gaussian noise
µk = 0, σk = 0.1, it indicates trivial perturbation is introduced to the protein native structures.

The other dataset-specific hyper-parameters are determined by an AutoML toolkit NNI (Microsoft,
2021) with the search spaces. The loss weight hyper-parameter is related to the value of the task-
specific loss β = {1, 0.1, 0.01, 0.001, 0}, and α = {10, 1, 0.1, 0.01, 0.001, 0}. As for the batch size
and training epochs, etc., which influence the convergence speed of deep learning models, details
about implementation on the NVIDIA-SMI A100 GPUs are shown in Table 7.

Table 7: More details of training setup

Hyper-parameter Fold Enzyme Reaction GO EC

Batch size 16 8 24 64
Epoch 400 400 500 500

B.4 TASK INTRODUCTION

Fold Classification In order to understand how protein structure and evolution interact, it is crucial
to be able to predict fold classes (Hou et al., 2018). This dataset contains 16,712 total proteins
across 1,195 fold classes. Three test sets are provided. Fold: proteins from the same superfamily
are excluded during training; SuperFamily: proteins from the same family are not used for training;
and Family: the training set includes proteins from the same family.
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Enzyme Reaction Classification Enzyme reaction classification can be viewed as a protein func-
tion prediction task based on the enzyme-catalyzed reactions defined by the four levels of enzyme
commission numbers (Webb et al., 1992; Omelchenko et al., 2010). We use the dataset (Hermosilla
et al., 2021; Berman et al., 2000a) containing 29,215 training proteins, 2,562 validation proteins,
and 5,651 test proteins, spanning 384 four-level EC classes.

GO Term Prediction The aim of GO term prediction is to predict whether a given protein should
be annotated with a particular GO term. As we have stated before, proteins are categorized into
three hierarchical ontologies: MF, BP and CC. Specifically, MF denotes molecular activities of
a protein, BP refers to larger biological processes it is involved in, and CC describes subcellular
locations and extracellular components (Bateman, 2019). Accurately assigning GO terms is crucial
for understanding protein function and assessing computational methods.

EC Number Prediction This task aims to predict the 538 EC numbers at the third and fourth level
hierarchies for different proteins (Gligorijević et al., 2021), which provide precise information about
a protein’s enzymatic function, based on the protein’s features. The large number of classes at the
third and fourth EC levels makes this a challenging multi-class prediction problem in bioinformatics.

C EVALUATION METRIC

Fmax provides an overall metric that combines both accuracy and coverage of the predictions. It is
calculated by first determining the precision and recall for each protein, then averaging these results
over all proteins (Zhang et al., 2023; Gligorijević et al., 2021). pji is the prediction probability for
the j-th class of the i-th protein, given the decision threshold t ∈ [0, 1], the precision and call are
given as:

precisioni(t) =

∑
j I[(

(
pji ≥ t

)
∩ bji )]∑

j I[
(
pji ≥ t

)
]

, recalli(t) =

∑
j I[

((
pji ≥ t

)
∩ bji

)
]∑

j b
j
i

where bji ∈ {0, 1} is the corresponding binary class label, and I ∈ {0, 1} is an indicator function.
If there are N proteins in total, these protein-level precision and recall values are averaged over
all proteins to obtain the overall precision and recall for the dataset, then the average precision and
recall are defined as:

precision(t) =

∑N
i precisioni(t)∑N

i

((∑
j

(
pji ≥ t

))
≥ 1

) , recall(t) =

∑N
i recalli(t)

N

Finally, Fmax is defined as the maximum value of F-score over all thresholds.

Fmax = max
t

{
2 · precision(t) · recall(t)
precision(t) + recall(t)

}
(12)

D KL GUIDED DOMAIN ADAPTATION

Assuming source and target domains have the same support set and share the representation mapping
p(z|G), this means these two domains have the same datasets of protein graphs and functions. Given
the representation z, we learn a classifier to predict the label y through the predictive distribution
p̂(y|z) that is an approximation of the ground truth. During training, the representation network
p(z|G) and the classifier p̂(y|z) are trained jointly on the source domain and we hope that they can
generalize to the target domain, meaning that both p(z|G) and p̂(y|z) are kept unchanged between
training and testing.

We define the predictive distribution of y given G as
p̂(y|G) = Ep(z|G)[p̂(y|z)] (13)

We have a single z from the source model p(z|G) for each protein. The training objective of the
source domain is

Lteacher = EG,y∼pS(G,y),z∼p(z|G)[− log p̂(y|z)] = EpS(z,y)[− log p̂(y|z)] (14)
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We consider the two assumptions of the representation z on the source domain:

Assumption 1. IS(z, y) = IS(G, y), where IS(·, ·) is the mutual information term, calculated on
the source domain. In particular:

IS(z, y) = EpS(z,y)

[
log

pS(z, y)

pS(z)pS(y)

]
; IS(G, y) = EpS(G,y)

[
log

pS(G, y)

pS(G)pS(y)

]
(15)

The mutual information quantifies the amount of information shared between the variables z and y
(or G and y) in the source domain. It measures the dependence or correlation between these variables
in the context of the source domain data. This is often referred to as the ‘sufficiency assumption’
since it indicates that the representation z has the same information about the label y as the original
input protein graph G, and is sufficient for this prediction task in the source domain. Note that the
data processing inequality indicates that IS(z, y) ≤ IS(G, y), so here we assume that z contains
maximum information about y.

Assumption 2. pS(y|G) = Ep(z|G) [pS(y|z)]

When this assumption holds, the predictive distribution p̂(y|G) will approximate pS(y|G), as long
as p̂(y|z) approximates pS(y|z).
The above two assumptions ensure that the teacher network has good performance in the source
domain. Now, we continue to consider the test loss and how we can reduce it. The loss of the target
domain is:

L∗
student = EpT (G,y)[− log p̂(y|G)] = EpT (G,y)

[
− logEp(z|G)[p̂(y|z)]

]
≤ EpT (G,y)

[
Ep(z|G)[− log p̂(y|z)]

]
= EpT (z,y)[− log p̂(y|z)]

(16)

Since we do not know the target domain and the target data distribution, there is no way to guarantee
the invariance (both marginally and conditionally) of the representation z. Therefore, We introduce
the following proposition that ensures a generalization bound of the target domain loss based on the
source domain loss and the KL divergence:

Proposition 1. If the loss − log p̂(y|z) is bounded by M , we have:

L∗
student ≤ Lteacher +

M√
2

√
KL [pS(y, z) ∥ pT (y, z)]

= Lteacher +
M√
2

√
KL [pS(z) ∥ pT (z)] + EpS(z) [KL [pS(y|z) ∥ pT (y|z)]]

(17)

Proposition 2. If Assumption 1 and 2 hold, and if pS(G,y)
pT (G,y) <∞ (i.e., there exists N , which can be

arbitrarily large, such that pS(G,y)
pT (G,y) < N ), we have

EpS(G) [KL [pS(y|z) ∥ pT (y|z)]] ≤ EpS(G) [KL [pS(y|G) ∥ pT (y|G)]] (18)

This shows that the conditional misalignment in the representation space is bounded by the condi-
tional misalignment in the input space. It then follows that:

L∗
student ≤ Lteacher +

M√
2

√
KL [pS(z) ∥ pT (z)] + EpS(G) [KL [pS(y|G) ∥ pT (y|G)]] (19)

We know y can represent the underlying functional label for the student model. Although the student
model may not have these functional labels, but we can assume that they exist for theoretical reasons.
The derived misalignment Eq. 19 and the derived loss Eq. 8 are based on the assumption that the
source and target domains have the same support set. Thus, the loss of Eq. 8 can be used in an
unsupervised way for the student to predict functions. However, the student model is applied to
different downstream tasks, like classification, which has classification classes. Thus, we add the
supervised student loss Lstudent and the knowledge distillation loss the Lkd as the final hybrid loss
for the student to improve its performance on classification tasks.
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E TEACHER MODEL RESULTS

As we have mentioned in Section 4.1, we train the teacher model using approximately 30K
proteins from the GO dataset without separating the annotations into BP, MF, and CC. Over-
all, we achieved a Fmax score of 0.489 for the teacher model. As shown in Figure 1,
the inputs of the teacher model consist of sequence, structure, and function. However, we
currently lack functional data for tasks such as fold classification, enzyme reaction classi-
fication, and EC number prediction. Therefore, we evaluate the teacher model using the
GO dataset and calculate scores for BP, MF, and CC. The results are shown in Figure 6.

Figure 6: Comparisons of the teacher and student of Pro-
teinSSA on GO term prediction.

The goal of the GO term prediction
task is to identify protein functions.
MF has 1,943 classes. BP is catego-
rized into 489 classes. CC is classi-
fied into 320 classes. The difference
between the teacher and the student
is that there is an additional anno-
tation encoder in the teacher model.
From the provided Figure 6, it is evi-
dent that incorporating functional in-
formation as the input of the anno-
tation encoder significantly enhances
performance, particularly for MF and
CC. These two classes have fewer
categories and are more accessible,
resulting in higher scores. These
results demonstrate the effectiveness
of the teacher model and the label-
augmented technique, which can encode the functions into embeddings to improve protein feature
representations.

Table 8: Accuracy (%) of fold classification and enzyme reaction classification. The best results
are shown in bold. Param., means the number of trainable parameters (B: billion; M: million; K:
thousand).

Method Param. Pre-training Fold Classification Enzyme

Dataset (Size) Fold SuperFamily Family Reaction

DeepFRI 6.2M Pfam (10M) 15.3 20.6 73.2 63.3
ESM-1b 650M UniRef50 (24M) 26.8 60.1 97.8 83.1
ProtBERT-BFD 420M BFD (2.1B) 26.6 55.8 97.6 72.2
IEConv (amino level) 36.6M PDB (476K) 50.3 80.6 99.7 88.1
GearNet (Multiview Contras) 42M AlphaFoldDB (805K) 54.1 80.5 99.9 87.5
GearNet (Residue Type) 42M AlphaFoldDB (805K) 48.8 71.0 99.4 86.6
GearNet (Distance) 42M AlphaFoldDB (805K) 50.9 73.5 99.4 87.5
GearNet (Angle) 42M AlphaFoldDB (805K) 56.5 76.3 99.6 86.8
GearNet (Dihedral) 42M AlphaFoldDB (805K) 51.8 77.8 99.6 87.0
ProteinSSA 100M - 60.5 79.4 99.8 89.4

F COMPARISON WITH PRETRAINING METHODS

In the teacher-student framework, the teacher model is usually a well-learned model that serves as
a source of knowledge for the student model. The student model aims to mimic the behavior or
predictions of the teacher model. ProteinSSA uses annotations for the teacher model, its objective is
to learn embeddings in the latent space that contain functional information and provide intermediate
supervision during knowledge distillation for the student model. Therefore, the complete training
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Table 9: Fmax of GO term prediction and EC number prediction. The best results are shown in bold.
Param., means the number of trainable parameters (B: billion; M: million; K: thousand).

Method Param. Pre-training GO EC
Dataset (Size) BP MF CC

DeepFRI 6.2M Pfam (10M) 0.399 0.465 0.460 0.631
ESM-1b 650M UniRef50 (24M) 0.470 0.657 0.488 0.864
ProtBERT-BFD 420M BFD (2.1B) 0.279 0.456 0.408 0.838
LM-GVP 420M UniRef100 (216M) 0.417 0.545 0.527 0.664
IEConv (amino level) 36.6M PDB (476K) 0.468 0.661 0.516 -
GearNet (Multiview Contras) 42M AlphaFoldDB (805K) 0.490 0.654 0.488 0.874
GearNet (Residue Type) 42M AlphaFoldDB (805K) 0.430 0.604 0.465 0.843
GearNet (Distance) 42M AlphaFoldDB (805K) 0.448 0.616 0.464 0.839
GearNet (Angle) 42M AlphaFoldDB (805K) 0.458 0.625 0.473 0.853
GearNet (Dihedral) 42M AlphaFoldDB (805K) 0.458 0.626 0.465 0.859
KeAP 420M ProteinKG25 (5M) 0.466 0.659 0.470 0.845
ESM-2 650M UniRef50 (24M) 0.472 0.662 0.472 0.874
ProtST-ESM-1b 759M ProtDescribe (553K) 0.480 0.661 0.488 0.878
ProtST-ESM-2 759M ProtDescribe (553K) 0.482 0.668 0.487 0.878
ProteinSSA 100M - 0.464 0.667 0.492 0.857

of the teacher model is not our primary concern. Our main focus is to obtain comprehensive em-
beddings for the student model, which is trained using distillation loss and task loss without the
annotations input. As we have mentioned earlier, the training of the teacher model can still be seen
as training instead of pre-training because it does not involve unsupervised or self-supervised learn-
ing on a large dataset. As discussed in Section 3.2, we highlight the limitations of pre-training and
the absence of a well-learned protein functional encoder to encode functional information. Only a
few sequenced proteins have functional annotation. While the teacher network requires extra func-
tions as input, such information is not always available. To address these challenges and make better
use of functional information without extensive pre-training, we propose ProteinSSA.

To show its effectiveness, we compare the proposed ProteinSSA (student) to pre-training or self-
supervised learning methods: DeepFRI Gligorijević et al. (2021), ESM-1b Rives et al. (2019),
ProtBERT-BFD Elnaggar et al. (2021), LM-GVP Wang et al. (2021), amino-acid level IEConv Her-
mosilla & Ropinski (2022), GearNet (GearNet-Edge-IEConv) Zhang et al. (2023), ESM-2 Lin et al.
(2022), KeAP Zhou et al. (2023), and ProtST Xu et al. (2023) on these four tasks, including protein
fold classification, enzyme reaction classification, GO term prediction, and EC number prediction.

The results are shown in Table 8 and Table 9. Without any pre-training or self-supervised learning,
our proposed framework, ProteinSSA, achieves comparable accuracy with those methods with less
trainable parameters and even outperforms them on the fold and enzyme reaction classification.
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