
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FROM DECOUPLING TO ADAPTIVE TRANSFORMATION:
A WIDER OPTIMIZATION SPACE FOR PTQ

Anonymous authors
Paper under double-blind review

ABSTRACT

Post-training low-bit quantization (PTQ) is useful to accelerate DNNs due to its
high efficiency. Currently, finetuning through self-distillation feature reconstruction
is one of the most effective PTQ techniques. However, when bitwidth goes to
be extremely low, we find that current parameter update settings in PTQ feature
reconstruction are sub-optimal. Considering all possible parameters and the ignored
fact that integer weight can be obtained early before actual inference, we thoroughly
explore 1) the setting of weight’s quantization step into six cases by decoupling; 2)
ignored learnable params in PTQ like BN and bias. Based on these explorations, we
find there exist a wider optimization space and a better optimum. Considering these,
we propose an Adaptive Quantization Transformation(AdaQTransform) for PTQ
reconstruction, which provides adaptive per-channel transformation on the quant
output feature, making them better fit FP32 counterpart and achieve lower PTQ
feature reconstruction error. During inference, the AdaQTransform parameters can
be merged without incurring additional inference costs. Based on AdaQTransform,
for the first time, we build a general quantization setting paradigm subsuming
current PTQs, QATs and other potential approaches. Experiments demonstrate that
AdaQTransform expands the optimization space for PTQ and helps current PTQs
find a better optimum over CNNs, ViTs, LLMs and low-level vision networks
(image super-resolution). Specifically, AdaQTransform improves the current best
PTQ by 5.7% on W2A2-MobileNet-v2. The code will be released.

1 INTRODUCTION

Low-bit model quantization (quant) generally consists of Quantization-Aware Training (QAT) and
Post-Training Quantization (PTQ). PTQ requires a tiny amount of unlabeled data for calibration
and does not demand the full training pipeline. Thus PTQ is always the first choice for fast model
quantization. Traditional PTQ (Krishnamoorthi, 2018) searches quant parameters through Mean
Squared Error(MSE). In 4 or 2 bits, these methods suffer from severe accuracy degradation. To
improve low-bit PTQ, recent works propose quant-feature reconstruction through self-distillation,
such as AdaRound (Nagel et al., 2020) / BRECQ (Li et al., 2021b) / NWQ (Wang et al., 2022).

Current PTQs evolve closer and closer towards QAT, except tiny unlabled calibration set and no
need for training pipeline. The typical sign is that they optimize quant params with gradient descent
by self-distillation. As shown in (a) and (b) of Figure.1, classic AdaRound-based PTQ process is
as follows: (i) since PTQ owns no labeled dataset, the ground truth is the FP32 weight and FP32
activation; Conv’s weight and bias are freezed; (ii) iteratively searches an optimal weight’s quant-step
sw through the quant-error between FP32 weight and quantized weight, then freezes sw and (iii)
PTQ reconstruction: optimize weight’s AdaRound parameter α and activation’s quant-step sx per
layer/block/network through quant-error between FP32 and quant output activation.

Current PTQ SOTAs mostly adopt AdaRound for weight quantization. In order to make a stable up or
down rounding learning, AdaRound adopts a frozen FP32 weight and a frozen weight’s quant-step to
ensure a fixed integer base. However, differing from that integer activation has to be computed online
during inference, integer weight can be obtained early before inference, as described in Formula 4.
With this ignored fact, still under a fixed integer weight, there exists a wider optimization space
for the de-quantized FP32 weight, making it not limited to an ±1 quant-step optimization distance,
thus a lower reconstruction error might be met. That is, as shown in Formula 5, after computing

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(d) Case 2.2: Ours on PTQ

Quantized Model

W X W XMSE

(c) Case 1.2: LSQ on PTQ

W MSE

W X W XMSE

W MSE

Quantized Model

FP32 Model

W X W XMSE

W MSE

W X W XMSE

W MSE

W X W XMSEW X W XMSEW X W XMSEW X W XMSE

D

� � � �

W
�

: Forward

: BackwardQuantized Model

W X W XMSE

(b) Case 1.1.2: QDROP and NWQ

W WMSE

W X W XMSE

W WMSE

FP32 Model

W X W XMSE

W WMSE

W X W XMSE

W WMSE

D

�

� �

FP32 Model

Quantized Model

W X W XMSE

W WMSE

W XMSEW X

W X W XMSE

W MSE

W XMSEW X

(a) Case 1.1.1: AdaRound and BRECQ

W X W XMSE

W WMSE

W XMSEW X

W X W XMSE

W MSE

W XMSEW X

D

��

�

�

Only optimize

Only optimizeD

Only optimize

Only optimize

Jointly optimize:
Jointly optimize:

D

Only optimize

DDecouple Jointly optimize:

Figure 1: Different settings for weight’s quant-step sw. W/X/α/sx denote weight/input/weight’s
adaround param/X’s quant-step. Blue/orange box denote FP32/quantized values. The solid/dotted
arrow line denote quantization forward/gradient backward process. sw in (d) is decoupled as quant-
step sw and de-quant-step s′w. Case 1.1.1 and others denote different quantization methods as Sec3.2.

the integer weight using sw during fake quantization simulation (quant-process), the sw used to
convert integer weight into the FP32 counterpart (dequant-process) can be different. Or to say, the
conventional weight’s quant-step sw can be decoupled apart as quant-step sw and dequant-step s′w
according to different functions. With these operations, the adaround learning process is still stable
since the adaround learning base, integer weight, is fixed. Nevertheless, can we obtain accuracy gain
through decoupling? Now that PTQ evolves close to QAT, what will we gain if we directly optimize
weight’s quant-step into PTQ reconstruction like QAT as (c) of Figure.1? Considering all above, we
thoroughly explore the setting of weight’s quant-step into six possible cases through decoupling over
various networks as Sec.3.2, where Case 1.1 is the current PTQ setting(AdaRound/BRECQ/NWQ),
Case 1.2 is the current QAT’s weight quant-step setting like LSQ (Esser et al., 2020) applied on PTQ
reconstruction. We experimentally find a new setting Case 2.2, where we decouple quant-step, freeze
integer weight and jointly optimize dequant-step as Formula 6, consistently performs the best.

At deeper optimization side, as Figure 2, Case 2.2 makes quant output better fit FP32 counterpart
and achieves a wider optimization space. The decoupled de-quant step s′w of weight finally achieves
adaptive per-channel transformation on the output feature. Indeed, through visual and theoretical
analysis, Case 2.2 equals to an adaptive per-channels linear transformation directly on output feature
towards its FP32 counterpart as shown in Fig.2. Therefore, it is different from the common per-
channel quant-step or offset like LSQ or LSQ+ (Bhalgat et al., 2020). Because current per-channel
quant-step or offset does not change the distribution of output feature, which only optimizes the
current input while ignores current PTQ’s output feature reconstruction. In addition, current PTQs
freeze Conv’s bias away from PTQ reconstruction. We find out it is helpful to finetune bias b, which
provides further translating on quant output to narrow quant-error gap.

Considering above and keep every setting as before, we introduce a scaling, ϵ, and a translating factor,
η, into current quantization settings, namely AdaQTranform, to help better reconstruct quant output.

Although our AdaQTransform share some similarity on mathematics with normalization layer in
network, it significantly differs from normalization as we shown in Sec.3.3.2. The normalization
layer in PTQ can seen as a special form of AdaQTransform. AdaQTransform can be both helpful to
networks/layers with normalization, e.g., high-level tasks like classification networks(ResNets(He
et al., 2016)), or without normalization, e.g., low-level tasks like image super-resolution(EDSR (Lim
et al., 2017)). In addition, based on AdaQTransform, we build a general unified paradigm subsuming
quantization settings of current PTQs, QATs and our new decoupling case. The detailed expansions
from the unified paradigm to specific quant-settings can be seen in Sec.3.3. Our contributions are:

• We fully explore weight’s quant-step and other ignored parameters in PTQ. Based on the explo-
ration, we propose AdaQTransform, which directly transforms the quant output towards the FP32
counterpart(ground truth), making a wider optimization space and a narrower quant-error gap.
• Based on AdaQTransform, for the first time, we build a general unified paradigm subsuming

quantization parameter settings for current PTQs, QATs and other possible cases.
• We evaluate AdaQTransform across CNNs, ViTs, LLMs and image super-resolution network

EDSR, which proves that AdaQTransform is orthogonal to current PTQs and consistently helps
them to find a better optimum and achieve better PTQ performance without extra inference cost.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Post Training Quantization (PTQ): As one of the best weight PTQ, AdaRound (Nagel et al., 2020)
proposed an adaptive rounding for weight rather than rounding-to-nearest operation. BRECQ (Li et al.,
2021a) found block-wise reconstruction behaves better than layer-wise ones. QDROP (Wei et al.,
2022) explored how activation quantization affected weight tuning, and proposed a random activation
quantization during weight adaround learning. NWQ (Wang et al., 2022) proposed a network-wise
PTQ with inter-layer dependency. MRECG (Ma et al., 2023)/Bit-Shrink (Lin et al., 2023) tried
to solve oscillation/sharpness problem. PD-Quant (Liu et al., 2023) proposed to consider global
information based on prediction difference metric. PTQ4ViT (Yuan et al., 2022), APQ-ViT (Ding
et al., 2022), and RepQ-ViT (Li et al., 2023) tried to solve the PTQ for Vision Transformer(ViT).

Differently, we find weight’s quant-step can be safely decoupled, and experimentally find the best
case for PTQ reconstruction among six possible cases. Based on this best case, we theoretically
propose an AdaQTransform to provide adaptive per-channel linear transformation on output feature.

Training-Aware Quantization (QAT): Opposite to PTQ, QAT requires the whole FP32 training
pipeline, including huge amounts of training data and the full FP32 training pipeline. Jacob et.al (Jacob
et al., 2018b) proposed a fake quantizer simulation into QAT and to optimize by gradient descent
with straight-through estimator (STE). PACT (Choi et al., 2018) proposed parameterized clipping
activation to learn the quantization range. LSQ (Esser et al., 2020) proposed to learn the quantization
step directly. LSQ+(Bhalgat et al., 2020) further proposed a learnable offset. Nagel (Nagel et al.,
2022) tried to sovle oscillations in QAT. LSQ’s learnable quant-step on PTQ is shown as (c) of Fig.1.

However, from Tab.1 Case 1.2, we find LSQ’s(QAT) weight quant-step updating setting, where sw is
learnable and jointly optimized with sx, is not the best for PTQ reconstruction. This is because PTQ
owns only a tiny unlabeled calibration set thus it freezes FP32 weight as ground truth, totally different
from QAT. Therefore, it is not suitable to directly borrow QAT’s quant-step update setting into PTQ.

3 METHOD

3.1 PRELIMINARIES AND CURRENT SOTA OF PTQ

As current PTQ SOTAs, we perform per-channel weight quantization and per-layer activation quan-
tization. A classic linear symmetric PTQ process is as Formula (1,2,3). sw/sx, wl/wu/xl/xu is the
quant-step, upper/lower bound of quantization levels of FP32 weight w and FP32 activation x. ⌊ w

sw
⌉

/ ŵ are called quantized(integer) / de-quantized weight. ⌊·⌉/⌊·⌋ indicates rounding/floor operation.
h(α) is AdaRound (Nagel et al., 2020) parameter of weight. σ(·) is Sigmoid function. They first
initialize sw through minimizing the MSE between FP32 and quantized weight as Formula (1). Then
freezing sw and optimizing AdaRound h(α) activation quantization as (2) through output feature
reconstruction as (3). We can see FP32 weight w and FP32 bias b are freezed in current PTQs.
ŵ = clip(⌊w

sw
⌉;wl, wu) · sw, minsw ||ŵ −w||2F (1)

ŵ=clip(⌊w
sw
⌋+h(α);wl,wu)·sw;h(α)=clip(σ(α)∗1.2−0.1, 0, 1); x̂=clip(⌊ x

sx
⌉;xl,xu)·sx (2)

PTQ Reconstruction: ŷ = ŵ ∗ x̂+ b =
∑

((⌊ w

sw
⌋+ h(α)) · sw) ∗ (

[
x

sx

]
· sx); min

α,sx
||ŷ − y||2F (3)

Fake and Real Quantization. In order to better optimize PTQ parameters through gradient descent,
the quantization function is simulated in FP32 format, denoted as the ’Fake Quant’ bracket of
Formula 4. During practical inference acceleration, the FP32 simulation is converted to be integer-
arithmetic-only (Jacob et al., 2018a) as the ’Real Quant’ bracket of Formula (4).

y =
∑

w ∗ x+b︸ ︷︷ ︸
FP32

≈
∑

ŵ ∗ x̂+b︸ ︷︷ ︸
Fake Quant

= s·
∑

wint ∗
[
x

sx

]
+b︸ ︷︷ ︸

Real Quant

= ŷ,

where s = sw · sx, wint = clip(⌊w
sw
⌋+ h(α);wl, wu) (4)

where [·] denotes rounding and clipping operations. wint is integer weight, which can be obtained
early before practical fixed-point inference as the lower part of Formula (4).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 EMPIRICAL OBSERVATIONS: DECOUPLE QUANT-STEP OF WEIGHT

As the ’Real Quant’ of Formula 4, the wint and sw are determined before deployment, thus they
can be treated as independent parameters. Given this property, for fake quantization, as Formula 5,
we propose to decouple the quant-step of weight into quant-step sw, which quantize FP32 weight to
integer value, and dequant-step s′w, which de-quantize integer weight back. Different from weight,
quant-step of activation can not be decoupled since integer activation is different for different input.

ŵ = clip(⌊w
sw
⌋+ h(α);wl, wu)·sw ⇒ ŵ = clip(⌊ w

sw
⌋+ h(α);wl, wu) · s′w (5)

Under the condition where the quant-step of weight can be decoupled, for the first time, we fully ex-
plore different settings of weight’s quant-step into six cases, based on whether quant-step is decoupled,
and if decoupled, quant-step sw and de-quant step s′w are learnable or not after initialization.

• Case 1: the original single quant-step sw is not decoupled as convention.
⊙ Case 1.1: not participates joint PTQ reconstruction optimization, as (a) of Fig. 1.

♢ Case 1.1.1: Weight PTQ and activation PTQ are seperated, like AdaRound/BRECQ.
♢ Case 1.1.2: Consider Weight AdaRound into activation PTQ, like QDROP/NWQ.

⊙ Case 1.2: participates joint optimization during feature reconstruction, as (b) of Fig.1.
♢ current QAT methods, like LSQ. QAT’s updating setting is not the best for PTQ.

• Case 2: the original single quant-step sw is decoupled as two independent params sw and s′w.
⊙ Case 2.1: Only quant-step sw participates joint PTQ reconstruction optimization.
⊙ Case 2.2: Only dequant-step s′w participates PTQ reconstruction optimization, as(d) of Fig.1.

♦ frozen sw: a fixed base for adaround learning; learnable s′w: adaptive transformation.
⊙ Case 2.3: sw and s′w both participate in joint PTQ reconstruction optimization.

To evaluate their efficiency, we conduct experiments on MobileNet-v2, ResNet-18, and MnasNet2.0.

Table 1: Acc@1 on ImageNet among different quant-step settings across various nets.

Methods W/A MobileNet-v2 ResNet-18 MnasNet2.0
Case 1.1.1 (AdaRound, last PTQ SOTAs) 3/2 0.32 41.65 1.07
Case 1.1.2 (NWQ, current PTQ SOTAs) 3/2 38.92 60.82 52.17
Case 1.2 (LSQ, QAT’s SOTA on PTQ) 3/2 39.65 60.26 49.78

Case 2.1 3/2 38.77 59.90 48.40
Case 2.2 3/2 42.60 61.06 54.19
Case 2.3 3/2 41.42 60.86 49.33

We find out that Case 2.2, where we decouple the original quant-step sw as sw and s′w then make only
dequant-step s′w learnablely participates joint PTQ reconstruction, shown as (d) of Fig 1, consistently
provides the best performance, which even does a better job than Case 2.3. This is because (i) there
is only a tiny unlabeled calibration set in PTQ, a frozen FP32 weight during finetuning makes the
lowest quant-error. To further narrow quant-error gap, we need to apply AdaRound. and (ii) a stable
AdaRound learning requires a fixed integer base but Case 2.1 and 2.3 bring fluid integer base.

Table 2: Visualization of Decoupling Case 2.2 during PTQ Reconstruction.

0 5k 15k 20K 0 5k 15k 20K

sw1 0.544 0.544 0.544 0.544 sw2 0.943 0.943 0.943 0.943
s′w1 0.544 0.508 0.444 0.442 s′w2 0.943 0.902 0.796 0.795

Loss of Case 1.1.2 107 59.3 55.2 50.7 Loss of Case 2.2 107 54.4 51.1 46.5

We visualize the learning process of the dequant-step s′w in Case 2.2 on W3A2 ResNet-18 as Tab. 2.
At iteration 0, sw and s′w is decoupled from the the same value, then sw is frozen and s′w is learnable
during PTQ reconstruction with weight’s adaround param and activation quant-step. We can see Case
2.2’s dequant-step s′w is updated accordingly and provides lower loss than current PTQ Case 1.1.2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a-1) PTQ[s output feature

(a-3) FP32 output feature (ground truth)

Scale = 0.5

Translate=0.5

Scale = 2

Translate=-0.2

per-channel transform

(a-2) AdaQTransformed output feature

 AdaQTransform

Higher reconstruction loss Lower reconstruction loss

Figure 2: AdaQTransform: adaptive per-channel transformation on output feature.

3.3 FROM DECOUPLING TO ADAPTIVE QUANT TRANSFORMATION

Superficially, from empirical experiments in Sec.3.2, Case 2.2 consistently provides better accuracy
and lower reconstruction loss. At deeper side, as Fig.2, Case 2.2 provides a better fit for each output
channel to its FP32 ground truth. That is, Case 2.2 achieves adaptive per-channel scaling on the output
feature. In theory, PTQ reconstruction in Formula.3 for Case 2.2 can be denoted as Formula.6, where
wfloor = ⌊ w

sw
⌋ is frozen after initialization as Formula.1. Recall that We perform per-channel weight

quantization and per-tensor activation quantization. Thus s′w is a vector with out-channels elements
while sx is a scalar with one element. Therefore, the decoupled-out s′w theoretically provides direct
per-channel scaling on output feature to further minimize the quant-error gap.

ŷ = s′w ·
{
sx ·

∑
(wfloor + h(α)) ∗

[
x

sx

]}
+ b, objective: min

α,sx,s
′
w

||ŷ − y||2F (6)

A deeper look at Formula 6, there are two params, wfloor and b, left frozen. wfloor is frozen since
a stable up or down rounding learning requires a fixed base. Bias b is frozen due to inherited PTQ
tradition. However, as we know, current PTQ works step closer and closer towards QAT. We find
out it is enough to finetune bias b with self-distillation between FP32 and quant output, which helps
narrow the quantization error caused by quantized weight and quantized input, making their output fit
closer to its FP32 counterpart, as shown in Fig.2. Therefore, in addition to per-channel scaling, our
decoupling Case 2.2 can be further equipped with per-channel translating as

ŷ = s′w ·
{
sx ·

∑
(wfloor + h(α)) ∗

[
x

sx

]}
+ b′, objective: min

α,sx,s
′
w,b′
||ŷ − y||2F (7)

The PTQ reconstruction objective becomes the right of Formula 7. In order to be notation-consistent
with previous methods as Formula 3, we introduce a per-channel scaling and translating factor, η, ξ,
to denote Formula.7 as Formula.8, dubbed as Adaptive Quant Transformation (AdaQTransform).

ŷ = ξ ·
{∑

((⌊
w

sw
⌋+ h(α)) · sw) ∗ (

[
x

sx

]
· sx)

}
+ b+ η, objective: min

α,sx,ξ,η
||ŷ − y||2F (8)

3.3.1 NO EXTRA INFERENCE COST IN ADAQTRANSFORM

Although AdaQTransform add extra parameters to obtain finer-grained PTQ reconstruction, it cause
no extra cost in actual inference as prior works like MRECG (Ma et al., 2023) and NWQ (Wang et al.,
2022). After PTQ reconstruction is finished, the inference can be converted as Formula (9),

ŷ = s̃ ·
{∑

(wint ∗
[
x

sx

]
)

}
+ b̃, where s̃ = ξ · sw · sx, b̃ = b+ η (9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3.2 DIFFENRENCE BETWEEN ADAQTRANSFORM AND NORMALIZATION

Our AdaQTransform is significantly different from normalization, such as Batch/Group/Layer Nor-
malizaion (BN/GN/LN), here we take BN as a example, in three points.

First, BN is used to stabilize FP32 model training while AdaQTransform is used to help quantized
model better fit FP32 counterpart during self distillation. BN normalizes data with statistical mean and
variance then accordingly scales and shifts them back. AdaQTransform directly learns a per-channel
linear transformation from quantized feature to FP32 counterpart.

Second, current PTQ publications all fold BN into its proceeding Conv layer before quantization.
Current QATs do not fold BN but they choose to update both statistical mean, variance and learnable
scale, shift. As far as we know, there is no study exploring how BN influence PTQ up to now. For
Conv-BN structures, if BN is not folded into its preceding Conv, and participates PTQ reconstruction,
it achieves finer-grained per-channel transformation by making BN’s per-channel scaling and trans-
lating parameter γ and β learnable as Formula (10) with frozen sw and frozen mean µ and var σ2.
Compare Formula (10) with Formula (8), it can be seen as a special form of our AdaQTransform.

ŷ=
γ√
σ2+ϵ

·
{∑

(wint ·sw)∗(
[
x

sx

]
·sx)

}
+β− γµ√

σ2+ϵ
+b, objective: min

α,sx,γ,β
||ŷ − y||2F (10)

Thirdly, AdaQTransform is both applicable to networks/layers with normalization or without
normalization like image super-resolution networks, e.g., EDSR (Lim et al., 2017), layers such as
the latter Conv in Conv-BN-Conv, two Convs in Conv-(ReLU)-Conv, as demonstration in Sec.4

3.3.3 ADAQTRANSFORM IS ORTHOGONAL TO CURRENT REDISTRIBUTION METHODS

The core process of current redistribution methods for quantization, like LSQ+ (Bhalgat et al., 2020)
with translating offset zx or RepQ-ViT (Li et al., 2023) with the scaling vector scale, is as follows.

LSQ+: ŷ = ŵ ∗ x̂+ b =
∑

(⌊
w

sw
⌉ · sw) ∗ (

[
x− zx
sx

]
· sx + zx) + b (11)

RepQ-ViT: ŷ = ŵ ∗ x̂+ b =
∑

(⌊
w · scale

sw
⌉ · sw) ∗ (

[
x/scale

sx

]
· sx) + b (12)

We can see their redistribution on output will be recovered. Thus they do no change the distribution of
output feature. Differently, our AdaQTransform is directly performed on output feature and changes
the distribution of output features, which further narrows the quant-error gap between y and ŷ,and is
more suitable for PTQ’s output feature reconstruction. Therefore, AdaQTransform is orthogonal to
redistribution PTQs. Example for RepQ-ViT is as follows and experiments is as Tab.4

ŷ = ξ · ŵ ∗ x̂+ b+ η = ξ ·
∑

((⌊
w · scale

sw
⌋) · sw) ∗ (

[
x/scale

sx

]
· sx) + b+ η (13)

3.4 FROM ADAQTRANSFORM TO GENERAL QUANTIZATION PARADIGM

Formula 8 also builds a general quantization paradigm expressing quantization settings from current
PTQs to current QATs and to our PTQ-suitable AdaQTransform. We can induct each one as follows,

• From General Quant Paradigm to AdaRound/BRECQ:
h(α)=AdaRound, ξ = 1, η = 0, objective: min

sw

||ŵ −w||2F ,min
α
||ŷ − y||2F then min

sx

||ŷ − y||2F .

• From General Quant Paradigm to QDROP/NWQ:
h(α)=AdaRound, ξ = 1, η = 0, objective: min

sw

||ŵ −w||2F then min
α,sx

||ŷ − y||2F
• From General Quant Paradigm to LSQ on PTQ:
h(α) = Round(w

sw
− ⌊ w

sw
⌋), ξ = 1, η = 0, objective: min

sw,sx

||ŷ − y||2F .

• From General Quant Paradigm to Our AdaQTransform:
h(α)=AdaRound, ξ, η learnable, objective: min

sw

||ŵ −w||2F then min
α,sx,ξ,η

||ŷ − y||2F .

• From General Quant Paradigm to QAT’s LSQ:
h(α) = Round(w

sw
− ⌊ w

sw
⌋), ξ=1, η=0, objective: min

w,sx,sw,b
CrossEntropy(ˆLogitlast, label).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1: AdaQTransform PTQ

Input: Pretrained FP32 Model {W l}Nl=1; calib set;
Params :Activation’s quant-step sx; W ’s quant

param: sw, α. AdaQTranform: ξ, η

1st: Iterative MSE Optimization for sw as (1).

2nd: PTQ Reconstruction.
for j = 1 to T iterations do

for i = 1 to N layers do
Get output from FP32 and quantized
Ŵ i sw,α←−−−W i as Formula.2
x̂i sx←− xi as Formula.2
yi = W i ∗ xi + bi;
ŷi = ξ · Ŵ i ∗ x̂i + bi + η; # as Formula.8
∆i = ||yi − ŷi||2F

∆ =
∑

∆i, # Optimize sx, α, ξ, η as (8)
Output: Quantized model Figure 3: Visualization of AdaQTransform

4 EXPERIMENT

We evaluate AdaQTransform across various CNNs, ViTs, LLMs and image super-resolution networks
using Pytorch (Paszke et al., 2019). Experimental settings are kept the same as each baselines. By
convention, the first and last layer are quantized into 8 bits. AdaQTransform as Formula.8 is adopted.
Integer inference with acceleration is performed with TVM on practical hardware.

4.1 EXPERIMENTS ON IMAGENET AND MS COCO

Table 3: Acc@1 on ImageNet among current PTQ methods.

Methods W/A Mobile-v2 Res-18 Reg-600 Mnas2.0
Full Prec. 32/32 72.49 71.08 73.71 76.68

AdaRound(Nagel et al., 2020) 4/4 64.33 69.36 - -
AdaQuant(Hubara et al., 2021) 4/4 47.16 69.60 - -

BRECQ(Li et al., 2021b) 4/4 66.57 69.60 68.33 73.56
QDROP(Wei et al., 2022) 4/4 68.84 69.62 71.18 73.71

PD-Quant (Liu et al., 2023) 4/4 68.33 69.30 71.04 73.30
MRECG (Ma et al., 2023) 4/4 68.84 69.46 71.22 -
NWQ (Wang et al., 2022) 4/4 69.14 69.85 71.92 74.60
AdaQTransform(ours) 4/4 70.01 69.88 71.97 74.80
BRECQ(Li et al., 2021b) 3/3 23.41 65.87 55.16 49.78
QDROP(Wei et al., 2022) 3/3 57.98 66.75 65.54 66.81

PD-Quant (Liu et al., 2023) 3/3 57.64 66.12 65.09 64.88
MRECG (Ma et al., 2023) 3/3 58.40 66.30 66.08 -
NWQ (Wang et al., 2022) 3/3 61.24 67.58 67.38 68.85
AdaQTransform(ours) 3/3 63.44 67.73 67.81 69.52
BRECQ(Li et al., 2021b) 2/2 0.24 42.54 3.58 0.61
QDROP(Wei et al., 2022) 2/2 13.05 54.72 41.47 28.77

PD-Quant (Liu et al., 2023) 2/2 13.67 53.14 40.92 28.03
MRECG (Ma et al., 2023) 2/2 14.44 54.46 43.67 -
NWQ (Wang et al., 2022) 2/2 26.42 59.14 48.49 41.17
AdaQTransform(ours) 2/2 32.19 60.12 51.20 44.54

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

We first experiment on ImageNet classification task over various CNNs and vision transformers as
shown in Tab.(3,4). The calibration set consists of 1024 unlabeled images randomly selected from
the training set. We adopt Adam optimizer, the same learning rate as (Wei et al., 2022; Ma et al.,
2023) and 20k iterations for network-wise PTQ reconstruction as (Wang et al., 2022). The average
experimental results over 5 runs are summarized in Tab.3. In W4A4, our method provides about
0-1% Acc@1 improvement compared to the strong baseline including NWQ (Wang et al., 2022),
MRECG (Ma et al., 2023). In W3A3, our method improve MobileNet-v2 by 2.2% and MnasNet2.0
by 0.67%. In W2A2, where BRECQ shows nearly 0% Acc@1 on Mobile-v2 and Mnas2.0, our
method still far outperforms NWQ by more than 3% on Mobile-v2, and Mnas2.0.

Table 4: Acc@1 on ImageNet for ViTs and DeiTs.

Methods W/A ViT-S ViT-B DeiT-S DeiT-B
FP32 32/32 81.39 84.54 79.80 81.80

RepQ-ViT (Li et al., 2023) 6/6 80.43 83.62 78.90 81.27
AdaQTranform-RepQ-ViT 6/6 80.59 83.89 79.12 81.53
PTQ4ViT (Yuan et al., 2022) 4/4 42.57 30.69 34.08 64.39
APQ-ViT (Ding et al., 2022) 4/4 47.95 41.41 43.55 67.48

NWQ (Wang et al., 2022) 4/4 57.79 56.87 65.76 76.06
AdaQTransform-NWQ 4/4 58.12 57.24 66.34 76.20

RepQ-ViT (Li et al., 2023) 4/4 65.05 68.48 69.03 75.61
AdaQTranform-RepQ-ViT 4/4 70.40 76.47 73.50 78.93

For vision transformers, we experiments on ViT (Dosovitskiy et al., 2021) and DeiT (Touvron et al.,
2021) as Tab.4. Our AdaQTransform outperforms NWQ by 0.5%, and outperforms PTQ4ViT (Yuan
et al., 2022) and APQ-ViT (Ding et al., 2022) by a large margin, about 10%-32% better. Then we
apply AdaQTranform into RepQ-ViT. We can see AdaQTransform helps RepQ-ViT improve about
4% in W4A4 and 0.3% in W6A6. Thus it demonstrates AdaQTranform helps narrow the quant-error
gap between the quantized and FP32 activation.

Table 5: mAP on MS COCO for object detection.

Methods W/A Faster RCNN RetinaNet
ResNet-50 ResNet-18 ResNet-50 MobileNet-v2

FP32 32/32 40.26 34.91 37.39 33.31

BRECQ (Li et al., 2021a) 4/4 37.19 33.41 34.67 29.81
QDROP (Wei et al., 2022) 4/4 38.53 33.57 35.81 31.47
NWQ (Wang et al., 2022) 4/4 38.54 33.63 35.98 31.81
AdaQTransform(ours) 4/4 38.62 33.87 35.96 31.93

QDROP (Wei et al., 2022) 3/3 33.49 31.21 32.13 27.55
NWQ (Wang et al., 2022) 3/3 35.25 31.88 32.45 28.43
AdaQTransform(ours) 3/3 35.72 32.25 32.48 28.86

QDROP (Wei et al., 2022) 2/2 21.05 21.95 20.27 12.01
NWQ (Wang et al., 2022) 2/2 25.01 23.92 22.95 16.21
AdaQTransform(ours) 2/2 27.79 26.10 24.13 18.10

For object detection, we experiments on one-stage RetinaNet (Lin et al., 2017) and two-stage Faster
RCNN (Ren et al., 2015), where Res-18, Res-50 and Mobile-v2 are selected as backbones respectively.
As (Wei et al., 2022; Li et al., 2021b), we quantize the input and output layers of the network to 8
bits, do not quantize the head of the detection model, and quantize the neck (FPN). Results are shown
in Tab.5. In W3A3 setting, AdaQTransform improves the mAP of Res-50-based Faster RCNN by
0.5% and Mobile-v2-based RetinaNet by 0.4%. In harder W2A2 setting, AdaQTransform achieves
about 1% mAP improvement over the current best method across all four experimental networks,
which obtains a 2.78% improvement on Res-50-based Faster RCNN.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.2 EXPERIMENTS ON IMAGE SUPER-RESOLUTION. (NETWORKS WITHOUT NORMALIZATION)

As shown on Sec. 3.3.2, layer normalization can be seen as a special form of our AdaQTransform. To
show the effectiveness of AdaQTransform on networks without layer normalization, we experiment
on image super-resolution networks, i.e., EDSR of scale 4 (Lim et al., 2017). We borrow base
code from AdaBM (Hong & Lee, 2024) and follow all the same settings except that we apply our
AdaQTransform to AdaBM. The calibration dataset, 100 LR images, is randomly sampled from the
DIV2K (Timofte et al., 2017) training dataset. The quantization range for activation is initialized
using MinMax and quantization step for weight is initialized by OMSE. Then we freeze the network
weights and finetune the quantization parameters for 10 epochs using Adam optimizer. For evaluation
metrics, we measure reconstruction accuracy using the peak signal-to-noise ratio (PSNR) and the
structural similarity index (SSIM) on Set5/Set14/Urban100/BSD100 (Huang et al., 2015). To compare
the computational complexity of the quantized network, we report the feature average bit-width
(FAB) that is averaged throughout the images of the test dataset.

As shown in Tab. 6, where AdaQTrans† denotes we apply our AdaQTransform to AdaBM (Hong
& Lee, 2024), we can see our AdaQTransform consistently helps AdaBM improve the PSNR and
SSIM on 4 experimental test sets and 4/3/2-bit quantization settings. Tab. 6 demonstrates our
AdaQTransform differs from layer normalization and gains from a wider optimization space: it helps
the quant output feature better fit the FP32 counterpart and achieves lower PTQ quantization error.

Table 6: PTQ for EDSR of scale 4.

Model W/A Set5 Set14 BSD100 Urban100

FAB PSNR/SSIM FAB PSNR/SSIM FAB PSNR/SSIM FAB PSNR/SSIM

EDSR (X4) 32/32 32 32.10 / 0.893 32 28.57 / 0.781 32 27.56 / 0.736 32 26.02/ 0.784

AdaBM-paper 4/4MP 3.8 31.02 / 0.860 3.7 27.87 / 0.751 3.5 26.91 / 0.700 3.7 25.11 / 0.736
AdaQTrans† 4/4MP 3.7 31.17 / 0.870 3.5 27.99 / 0.761 3.5 27.04 / 0.713 3.7 25.03 /0.742

AdaBM 4/4 4 29.42 / 0.821 4 26.81 / 0.724 4 26.44 / 0.687 4 23.87 / 0.685
AdaQTrans† 4/4 4 31.41 / 0.845 4 27.55 / 0.742 4 26.81 / 0.698 4 24.64 / 0.718

AdaBM 3/3 3 28.93 / 0.804 3 26.49 / 0.711 3 26.24 / 0.679 3 23.53 / 0.667
AdaQTrans† 3/3 3 29.01 / 0.810 3 26.55 / 0.716 3 26.27 / 0.683 3 23.56 / 0.672

AdaBM 2/2 2 28.76 / 0.791 2 26.38 / 0.702 2 26.17 / 0.673 2 23.45 / 0.657
AdaQTrans† 2/2 2 28.84 / 0.802 2 26.44 / 0.712 2 26.23 / 0.681 2 23.46 / 0.666

As shown in Fig.4, our AdaQTransform helps AdaBM produces visually better reconstructed images
with more details, e.g., AdaBM is relatively slur on the arch curve while AdaQTransform is clearer.

GT(img014) AdaBM AdaQTransform

22.15dB / 4bit21.96dB / 4bit

Figure 4: Qualitative results on Urban100 with 4-bit EDSR-based models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 7: AdaQTransform for LLMs on LAMADA.

Method W/A Opt-1.3B Opt-6.7B

FP32 32/32 72.0% 79.8%

Naive 8/8 69.1% 41.9%
SmoothQuant

(Xiao et al., 2023) 8/8 70.8% 80.0%

AdaQTransform† 8/8 71.2% 80.1%
SmoothQuant 6/6 66.2% 75.4%

AdaQTransform† 6/6 67.5% 75.6%

Table 8: Exploration for BN and AdaQTransform

Methods W/AMobile-v2Res-18Reg-600

NWQ(BN-Floded) 3/3 61.24 67.58 67.38
BN-Not-Folded 3/3 63.26 67.67 67.65

Decoupling 3/3 63.17 67.64 67.42
AdaQTransform 3/3 63.44 67.73 67.81

NWQ(BN-Floded) 2/2 26.42 59.14 48.49
BN-Not-Folded 2/2 32.09 60.09 51.18

Decoupling 2/2 31.43 59.91 50.32
AdaQTransform 2/2 32.19 60.12 51.20

4.3 EXPERIMENTS ON LARGE LANGUAGE MODELS (LLM)

As Tab.7, we appaly our AdaQTransform to SmoothQuant (Xiao et al., 2023), denoted as
AdaQTransform†, on LLM models Opt-1.3B and Opt-6.7B. We can see our AdaQTransform can help
SmoothQuant to further improve performance, especially in W6A6, about 1.3% gain on Opt-1.3B.

4.4 ABLATION STUDY ON IMAGENET

4.4.1) AdaQTransform V.s. BN: For networks with normalization(BN/GN/LN), as we know, there
have not been an academic PTQ work exploring BN’s folding or not. Thus we explore it as Tab.8
based on NWQ which adopts BN-Folded setting by default. For BN-Not-Folded, we jointly optimize
BN’s learnable params γ and β. It provides almost the same accuracy whether to update BN’s
statistical params µ, σ or not. We see BN-Not-Folded provides better performance than BN-Folded
(NWQ). AdaQTransform provides tiny better accuracy than BN-Not-Folded, since AdaQTransform
can be applied on layers with BN (equals to BN-Not-Folded) and other layers without BN. Therefore,
as Sec.3.3.2, AdaQTransform subsumes BN-Not-Folded, and covers a wider application range.

4.4.2) Visualization for AdaQTransform: As Fig.3.4, AdaQTransform achieves adaptive per-
channel transformation with adaptive ξ, η for different output channels during PTQ reconstruction,
and converges to a lower loss than baseline methods.

4.5 INFERENCE COST COMPARISON

We perform pure 4-bit/8-bit integer inference with TVM on hardware. The inference source code
is borrowed from HAWQ (Yao et al., 2021). As convention, the first and last layer is in 8 bits. The
middle layer convolution is 4bits. Input is 8-bit integers with shape (8, 3, 224, 224). The average
inference time per sample over 30 measurement, each with 50 inference, is as follows. AdaQTranform
improves accuracy without extra inference cost.

Table 9: W4A4 integer inference cost with TVM on hardware

Net Acc@1 Time params Prams*Bit FLOPs*Bit

Mobile-V2-NWQ (Wang et al., 2022) 69.14% 0.16 ms 3.51 M 20.79 M 6.36 G

Mobile-V2-AdaQTransform 70.01% 0.16 ms 3.51 M 20.79 M 6.36 G

5 CONCLUSION

In this paper, we propose a novel PTQ approach called AdaQTransform, based on full exploration on
weight’s quantization step through Decoupling over various networks and bitwidths. AdaQTransform
provides adaptive per-channel transformation on the output feature produced from per-tensor quan-
tized input activation, thus helps quant output better fit FP32 feature and achieves lower PTQ feature
reconstruction error. The extra AdaQTransform params can be merged during inference thus without
extra inference cost. For the first time, AdaQTransform builds a general paradigm in quantization
parameter update settings from current PTQs to QATs. Experiments on CNNs, ViTs, LLMs, and
image super-resolution networks demonstrate AdaQTransform sets up a new PTQ SOTA.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen Blankevoort, and Nojun Kwak. Lsq+: Improving
low-bit quantization through learnable offsets and better initialization. In CVPRW, June 2020.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srinivasan,
and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural networks.
CoRR, 2018.

Yifu Ding, Haotong Qin, Qinghua Yan, Zhenhua Chai, Junjie Liu, Xiaolin Wei, and Xianglong Liu.
Towards accurate post-training quantization for vision transformer. In ACM-MM, pp. 5380–5388.
ACM, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
ICLR, 2021.

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmen-
dra S. Modha. Learned step size quantization. In ICLR. OpenReview.net, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pp. 770–778, 2016.

Cheeun Hong and Kyoung Mu Lee. Adabm: On-the-fly adaptive bit mapping for image super-
resolution. In CVPR, pp. 2641–2650, June 2024.

Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from transformed
self-exemplars. In CVPR, pp. 5197–5206, 2015.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Accurate post training
quantization with small calibration sets. In ICML, pp. 4466–4475, 2021.

Benoit Jacob, Skirmantas Kligys, Bo Chen, and Menglong Zhu. Quantization and training of neural
networks for efficient integer-arithmetic-only inference. In CVPR, 2018a.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In CVPR, 2018b.

Raghuraman Krishnamoorthi. Raghuraman krishnamoorthi. quantizing deep convolutional networks
for efficient inference: A whitepaper. arXiv preprint arXiv:1806.08342, 2018.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. ICLR, 2021a.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. arXiv preprint
arXiv:2102.05426, 2021b.

Zhikai Li, Junrui Xiao, Lianwei Yang, and Qingyi Gu. Repq-vit: Scale reparameterization for
post-training quantization of vision transformers. In ICCV, pp. 17227–17236, 2023.

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual
networks for single image super-resolution. In CVPRW, July 2017.

Chen Lin, Bo Peng, Zheyang Li, Wenming Tan, Ye Ren, Jun Xiao, and Shiliang Pu. Bit-shrinking:
Limiting instantaneous sharpness for improving post-training quantization. In CVPR, pp. 16196–
16205, June 2023.

Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In ICCV, pp. 2999–3007, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jiawei Liu, Lin Niu, Zhihang Yuan, Dawei Yang, Xinggang Wang, and Wenyu Liu. Pd-quant:
Post-training quantization based on prediction difference metric. In CVPR, pp. 24427–24437, June
2023.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Xuefeng Xiao, Rui Wang, Shilei Wen, Xin Pan, Fei Chao,
and Rongrong Ji. Solving oscillation problem in post-training quantization through a theoretical
perspective. In CVPR, pp. 7950–7959, June 2023.

Markus Nagel, Rana Ali Amjad, Mart van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In ICML, volume 119, pp. 7197–7206,
2020.

Markus Nagel, Marios Fournarakis, Yelysei Bondarenko, and Tijmen Blankevoort. Overcoming
oscillations in quantization-aware training. In ICML, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In NeurIPS, 2019.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. NeurIPS, 28, 2015.

Radu Timofte, Eirikur Agustsson, and et.al. Ntire 2017 challenge on single image super-
resolution: Methods and results. CVPRW, pp. 1110–1121, 2017. URL https://api.
semanticscholar.org/CorpusID:484327.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herve
Jegou. Training data-efficient image transformers amp; distillation through attention. In ICML,
2021.

Changbao Wang, Dandan Zheng, Yuanliu Liu, and Liang Li. Leveraging inter-layer dependency for
post -training quantization. In NeurIPS, 2022.

Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu, and Fengwei Yu. Qdrop: Randomly dropping
quantization for extremely low-bit post-training quantization. In ICLR, 2022.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. SmoothQuant:
Accurate and efficient post-training quantization for large language models. In ICML, 2023.

Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang,
Qijing Huang, Yida Wang, Michael W. Mahoney, and Kurt Keutzer. Hawqv3: Dyadic neural
network quantization. ICML, 2021.

Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu, and Guangyu Sun. Ptq4vit: Post-training
quantization for vision transformers with twin uniform quantization. In ECCV, volume 13672, pp.
191–207. Springer, 2022.

12

https://api.semanticscholar.org/CorpusID:484327
https://api.semanticscholar.org/CorpusID:484327

	Introduction
	Related Work
	Method
	Preliminaries and Current SOTA of PTQ
	Empirical Observations: Decouple Quant-Step of Weight
	From Decoupling to Adaptive Quant Transformation
	No Extra Inference Cost in AdaQTransform
	Diffenrence between AdaQTransform and Normalization
	AdaQTransform is Orthogonal to Current Redistribution Methods

	From AdaQTransform to General Quantization Paradigm

	Experiment
	Experiments on ImageNet and MS COCO
	Experiments on Image Super-Resolution. (Networks without normalization)
	Experiments on Large Language Models (LLM)
	Ablation Study on ImageNet
	Inference Cost Comparison

	Conclusion

