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Abstract

Data poisoning attacks, in which a malicious adversary aims to influence a model
by injecting “poisoned” data into the training process, have attracted significant
recent attention. In this work, we take a closer look at existing poisoning attacks
and connect them with old and new algorithms. By choosing an appropriate loss
function for the attacker and optimizing with algorithms that exploit second-order
information, we design poisoning attacks that are effective on neural networks.
We present efficient implementations by parameterizing the attacker and allowing
simultaneous and coordinated generation of tens of thousands of poisoned points,
in contrast to existing methods that generate poisoned points one by one. We
further perform extensive experiments that empirically explore the effect of data
poisoning attacks on deep neural networks. Our paper set up a new benchmark
on the possibility of performing indiscriminate data poisoning attacks on modern
neural networks.

1 Introduction

Adversarial attacks have repeatedly demonstrated critical vulnerabilities in modern machine learning
(ML) models [25, 33, 21]. As ML systems are deployed in increasingly important settings, significant
effort has been levied in understanding attacks and defenses towards robust machine learning.

In this paper, we focus on data poisoning attacks. ML models require a large amount of data to
achieve good performance, and thus practitioners frequently gather data by scraping content from
the web [11, 35]. This gives rise to an attack vector, in which an adversary may manipulate part of
the training data by injecting poisoned samples. For example, an attacker can actively manipulate
datasets by sending corrupted samples directly to a dataset aggregator such as a chatbot, a spam filter,
or user profile databases; the attacker can also passively manipulate datasets by placing poisoned data
on the web and waiting for collection. Moreover, in federated learning, adversaries can also inject
malicious data into a diffuse network [29, 22].

A spectrum of such data poisoning attacks exists in the literature, including targeted, indiscriminate
and backdoor attacks (see Appendix A for a detailed comparison). We focus on indiscriminate
attacks for image classification, where the attacker aims at decreasing the overall test accuracy of
a model by adding a small portion of poisoned points. Current indiscriminate attacks are most
effective against convex models [2, 18, 19, 30], and several defenses have also been proposed [31, 6].
However, existing poisoning attacks are less adequate against more complex non-convex models,
especially deep neural networks, either due to their formulation being inherently tied to convexity
or computational limitation. For example, most prior attacks generate poisoned points sequentially.
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Thus, when applied to deep models or large datasets, these attacks quickly become computationally
infeasible. To our knowledge, a systematic analysis on poisoning deep neural works is still largely
missing—a gap we aim to fill in this work.

To address this difficult problem, we design more versatile data poisoning attacks by formulating the
problem as a bilevel optimization problem, in which the attacker crafts some poisoned points with the
aim of decreasing the test accuracy, while the defender optimizes its model on the poisoned training
set. We exploit second-order information and apply the Total Gradient Descent Ascent (TGDA)
algorithm to address the attacker’s objective, even on non-convex models.

Moreover, we address computational challenges by proposing an efficient architecture for poisoning
attacks, where we parameterize the attacker as a separate network rather than optimizing the poisoned
points directly. By applying TGDA to update the attacker model directly, we are able to generate tens
of thousands of poisoned points simultaneously in one pass, potentially even in a coordinated way.

In this work, we make the following contributions:

(1) We construct a new data poisoning attack based on TGDA that incorporates second-order opti-
mization. In comparison to prior data poisoning attacks, ours is significantly more effective and runs
at least an order of magnitude faster.
(2) We propose an efficient attack architecture, which enables a more efficient, clean-label attack.
(3) We conduct experiments to demonstrate the effectiveness of our attack on neural networks and its
advantages over previous methods.

2 Total Gradient Descent Ascent Attack

In this section, we formulate the indiscriminate attack and introduce our attack algorithm.

Formulation. In data poisoning attacks, there are two parties, namely the attacker L and the defender
F. The defender aims at minimizing its loss function f under data poisoning:

w∗ = w∗(Dp) ∈ argmin
w

L(Dtr ∪ Dp,w), (1)

while the attacker aims at maximizing a different loss function ℓ on the validation set Dv:

Dp∗ ∈ argmax
Dp

L(Dv,w∗), (2)

where the loss function L(·) can be any task-dependent target criterion, e.g., the cross-entropy loss.
Thus we have arrived at the bilevel optimization problem [23, 17, 19]):

max
Dp

L(Dv,w∗), s.t. w∗ ∈ argmin
w

L(Dtr ∪ Dp,w). (3)

Previous approaches. While the inner minimization can be solved via gradient descent, the outer
maximization problem is non-trivial as the dependence of L(Dv,w∗) on Dp is indirectly through the
parameter w of the poisoned model. Thus, applying simple algorithms (e.g., Gradient Descent Ascent)
directly will result in zero gradient. Nevertheless, we can rewrite the desired derivative using the
chain rule: ∂L(Dv,w∗)

∂Dp
= ∂L(Dv,w∗)

∂w∗

∂w∗
∂Dp

. The difficulty lies in computing ∂w∗
∂Dp

, i.e., measuring how
much the model parameter w changes with respect to the poisoned points Dp. Various approaches
compute ∂w∗

∂Dp
by solving this problem exactly via KKT conditions [2, 18], or approximately using

gradient ascent [23].

TGDA attack. However, we can avoid such calculation using the Total gradient descent ascent
(TGDA) algorithm [7, 8]: TGDA takes a total gradient ascent step for the attacker and a gradient
descent step for the defender:

xt+1 = xt + ηtDxℓ(xt,wt), (4)
wt+1 = wt − ηt∇wf(xt,wt) (5)

where Dx := ∇xℓ − ∇wxf · ∇−1
wwf · ∇wℓ is the total derivative of ℓ with respect to x, which

implicitly measures the change of w with respect to Dp.

We thus apply the total gradient descent ascent algorithm and call this the TGDA attack. Avoiding
computing ∂w∗

∂Dp
enables us to parameterize Dp and generate points indirectly by treating L as a
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separate model. Namely that Dp = Lθ(D′
tr), where θ is the model parameter and D′

tr is part of the
training set to be poisoned. Thus, we have arrived a poisoning attack that generates Dp in a batch
rather than individually, which greatly improves the attack efficiency.

3 An Efficient Attack architecture

In this section, we discuss how we use the TGDA attack to efficiently perform data poisoning attacks.
We observe that existing data poisoning attacks have two limitations:
(1) Existing attacks work under subtly different assumptions, on, for example, the attacker’s knowl-
edge, the attack formulation, and the training set size. These inconsistencies result in unfair com-
parisons between methods (see Table 3 in Appendix B for a detailed comparison). Thus we set
an experimental protocol for generalizing existing attacks in Appendix B and benchmarking data
poisoning attacks for systematic analysis in the future.

(2) They approach the problem by optimizing individual points directly, thus having to generate
poisoned points one by one. We design a new poisoning scheme that allows simultaneous and
coordinated generation of Dp in batches requiring only one pass that involves three stages:

Pretrain: The goals of the attacker L are to: reduce the test accuracy (i.e., successfully attack) and
generate Dp that is close to Dtr (i.e., thwart potential defenses). The attacker achieves the first
objective during the attack by optimizing ℓ. However, ℓ does not enforce that the distribution of the
poisoned points will resemble those of the training set. To this end, we pretrain L to reconstruct Dtr,
producing a parameter vector θpre. This process is identical to training an autoencoder.
For the defender, we assume that F is fully trained to convergence. Thus we perform standard training
on Dtr to acquire F with wpre.

Attack: We generate poisoned points using the TGDA attack. We assume that the attacker can inject
ϵN poisoned points, where N = |Dtr| and ϵ is the power of the attacker, measured as a fraction of
the training set size.
(a) Initialization: We take the pretrained model L with parameter θpre and F with pretrained parameter
wpre as initialization of the two networks; the complete training set Dtr; a validation set Dv and part
of the training set as initialization of the poisoned points D0

p = Dtr[0 : ϵN ].
(b) TGDA attack: We then perform TGDA attack using the updates in Section 2. We use total gradient
ascent to update attacker parameter θ of L, and gradient descent to update defender parameter w of F.
(c) Label Information: We specify that D0

p = {xi, yi}ϵNi=1. Prior works (e.g., [19, 23]) optimize x to
produce xp, and perform a label flip on y to produce yp . This approach neglects label information
during optimization. In contrast, we fix yp = y, and concatenate x and y to D0

p = {xi; yi}ϵNi=1 as
input to L. Thus we generate poisoned points by considering the label information. We emphasize
that we do not optimize or change the label during the attack, but merely use it to aid the construction
of the poisoned xp. Thus, our attack belongs to the clean label category.

Testing: Finally, we discuss how we measure the effectiveness of an attack. In a realistic setting,
the testing procedure should be identical to the pretrain procedure, such that we can measure the
effectiveness of Dp fairly. The consistency between pretrain and testing is crucial as the model F is
likely to underfit with fewer training steps.

4 Experiments

We evaluate our TGDA attack on various models for image classification tasks and show the efficacy
of our method for poisoning neural networks. Specifically, our results confirm that (1) we can attack
neural networks with improved efficiency and efficacy using the TGDA attack. (2) The poisoned
points are visually similar to clean data, making the attack intuitively resistant to defenses.

See Appendix C for a detailed list of our experimental settings (hardware and package, model details,
dataset split, pretrain hyperparameters and complete baseline methods).

4.1 Comparison with Benchmarks

MNIST. We compare our attack with the Back-gradient and the Label flip attacks with ϵ = 3% on
MNIST in Table 1. Since the Back-gradient attack relies on generating poisoned points sequentially,
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Table 1: The attack accuracy/accuracy drop (%) and attack running time (hours) on the MNIST
dataset. We only record the attack running time since pretrain and testing time are fixed across
different methods. As the label flip attack does not involve optimization, its running time is always 0.
Our attack outperforms the Back-gradient attack in terms of both effectiveness and efficiency across
three different models.

Target Model
Clean Label Flip Back-gradient TGDA(ours)

Accuracy Accuracy/Drop Running time Accuracy/Drop Running time Accuracy/Drop Running time

LR 92.35 90.83 / 1.52 0 hrs 89.82 / 2.53 27 hrs 89.56 / 2.79 1.1 hrs
NN 98.04 97.99 / 0.05 0 hrs 97.67 / 0.37 239 hrs 96.54 / 1.50 15 hrs

CNN 99.13 99.12 / 0.01 0 hrs 99.02 / 0.09 2153 hrs 98.02 / 1.11 75 hrs

Table 2: The attack accuracy/accuracy drop (%) and attack running time (hours) on CIFAR-10.
Clean Label Flip MetaPoison TGDA(ours)

Accuracy/Drop 69.44 68.99 / 0.45 68.14/1.13 65.15 / 4.29

Running time 0 hrs 0 hrs 75hrs 346 hrs

we cannot adapt it into our unified architecture and run their code directly for comparison. For the
label flip attack, we flip the label according to the rule that y ← 10− y as there are 10 classes.

We observe that label flip attack, though very efficient, is not effective against neural networks.
Although [23] shows empirically that the Back-gradient attack is effective when attacking subsets
of MNIST (1,000 training samples, 5,000 testing samples), we show that the attack is much less
effective on the full dataset. We also observe that the complexity of the target model affects the
attack effectiveness significantly. Specifically, we find that neural networks are generally more
robust against indiscriminate data poisoning attacks, among which, the CNN architecture is even
more robust. Overall, our method outperforms the baseline methods across the three target models.
Moreover, with our unified architecture, we significantly reduce the running time of poisoning attacks
by more than an order of magnitude.

CIFAR-10. We compare our attack with the Label flip attack and the MetaPoison attack with
ϵ = 3% on CIFAR-10 in Table 2. We omit comparison with the Back-gradient attack as it is too
computationally expensive to run on CIFAR-10. We observe that the TGDA attack is very effective
at poisoning the CNN architecture, but the running time becomes infeasible on larger models (e.g.,
ResNet). Also, MetaPoison is a more efficient attack (meta-learning with 2 unrolled steps are much
quick than calculating total gradient), but since its original objective is to perform targeted attack, its
application on indiscriminate attack is not effective. Moreover, the difference between the efficacy
of the TGDA attack on MNIST and CIFAR-10 suggests that indiscriminate attacks may be dataset
dependent, with MNIST being harder to poison than CIFAR-10.

4.2 Visualization of attacks

We visualize some poisoned points Dp generated by the TGDA attack in Figure 1. The poisoned
samples against NN and CNN are visually very similar with Dtr, which provides heuristic evidence
that the TGDA attack may be robust against data sanitization algorithms. We further quantitatively
evaluate the robustness of TGDA attack agaisnt data sanitization algorithms in Appendix C.

Figure 1: We visualize the poisoned data generated by the TGDA attack (left: CIFAR-10; right:
MNIST).
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Figure 2: A taxonomy of data poisoning attacks for image classification. According to different
objectives, Target attacks aim to misclassify a specific target set of images, backdoor attacks aim
to misclassify any image with a specific trigger, and indiscriminate attacks aim at reducing the
test accuracy in general. Among indiscriminate attacks, we can also identify three types of attacks
according to the adversary’s capability.

A Background on Data Poisoning Attacks

In this appendix, we categorize existing data poisoning attacks according to the attacker’s power and
objectives, and specify the type of attack we study in this paper.

A.1 Power of an attacker

Injecting poisoned samples. Normally, without breaching one’s database (i.e., changing the existing
training data Dtr), an attacker can only inject poisoned data, actively or passively to the defender’s
database, such that its objective can be achieved when the model is retrained after collection. Where
the goal of the attacker can be presented as:

w∗ = w∗(Dp) ∈ argmin
w

L(Dtr ∪ Dp,w), (6)

where w∗ is the desired model parameter, which realizes its respective objectives. We focus on such
attacks and further categorize such objectives in the next subsection.

Perturbing training data Dtr. An attacker may change Dtr directly on one occasion, where the
attacker is also the “defender”. Such an attacker can be the dataset owner, who intends to preserve a
proprietary dataset to release but prevents others from benefiting by training it [16, 36, 10, 9], thus
allows modification up to the entire Dtr to make it unlearnable.

For simplicity, we refer to injecting poisoned samples as data poisoning attacks, and perturbing
training data as dataset protection in this paper.

A.2 Objective of an attacker

Data poisoning attacks can be further classified into three categories according to the adversary’s
objective [12]. See Figure 2 for a taxonomic illustration.

Targeted attack. The attacker adds poisoned data Dp and acquire w∗ such that a particular target
example from the test set is misclassified as the base class [28, 1, 15, 38].This topic is well studied in
the literature, and we refer the reader to [27] for an excellent summary of existing methods.

Backdoor attack. This attack aims at misclassifying any test input with a particular trigger pattern
[14, 34, 4, 26]. Note that backdoor attacks require access to the input during inference time to plant
the trigger.

Indiscriminate attack. This attack aims to acquire w∗ by injecting poisoned data which decreases
the model accuracy overall (or deny of service). We consider image classification tasks where
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Table 3: Summary of existing poisoning attack algorithms. While some papers may include exper-
iments on other datasets, we only cover vision datasets as our main focus is image classification.
The attacks: Random label flip and Adversarial label flip attacks [2], P-SVM: PoisonSVM attack
[2], Min-max attack [31], KKT attack [19], i-Min-max: improved Min-max attack [19], MT: Model
Targeted attack [32], BG: Back-gradient attack [23].

Attack Dataset Model |Dtr| |Dtest| ϵ Code Multiclass Batch

Random label flip toy SVM / / 0-40%  ✓ ϵ|Dtr|

Adversarial label flip toy SVM / / 0-40%  × ϵ|Dtr|

P-SVM MNIST-17 SVM 100 500 0-9%  × 1

Min-max MNIST-17/Dogfish SVM 60000 10000 0-30%  ✓ 1

KKT MNIST-17/Dogfish SVM/LR 13007/1800 2163/600 3%  × 1

i-Min-max MNIST SVM 60000 10000 3%  ✓ 1

MT MNIST-17/Dogfish SVM/LR 13007/1800 2163/600 /  ✓ 1

BG MNIST SVM, NN 1000 8000 0-6%  ✓ 1

the attacker aims to reduce the overall classification accuracy. Existing methods make different
assumptions on the attacker’s knowledge:

• Perfect knowledge attack: the attacker has access to both training and test data (Dtr and Dtest), the
target model, and the training procedure (e.g., the min-max attack of [19]).

• Training-only attack: the attacker has access to training data Dtr, the target model, and the training
procedure (e.g., [23, 3]).

• Training-data-only attack: the attacker only has access to the training data Dtr (e.g., the label flip
attack of [2]).

In this work, we focus on training-only attacks because perfect knowledge attacks are not always
feasible due to the proprietary nature of the test data, while existing training-data-only attacks are
weak and often fail for deep neural networks, as we show in Section 4.

B Experimental Protocol

Figure 3: Comparing the efficacy
of poisoning MNIST-17 with the
PoisonSVM and Back-gradient at-
tacks. The training set size is var-
ied, while the ratio of the number of
poisoned points to the training set
size is fixed at 3%. These attacks
become less effective as training set
sizes increase.

We first summarize existing indiscriminate data poisoning at-
tacks in Table 3, where we identify that such attacks work under
subtly different assumptions, on, for example, the attacker’s
knowledge and the training set size. These inconsistencies
result in unfair comparisons between methods .

Thus we set an experimental protocol for generalizing existing
attacks and benchmarking data poisoning attacks for systematic
analysis in the future. Here we fix three key variants: (1) the
attacker’s knowledge: as discussed in Appendix A, we consider
training-only attacks;

(2) the dataset size: existing works measure attack efficacy
with respect to the size of the poisoned dataset, where size
is measured as a fraction ϵ of the training dataset. However,
some works subsample and thus reduce the size of the training
dataset. As we show in Figure 3, attack efficacy is not invariant
to the size of the training set: larger training sets appear to
be harder to poison. Furthermore, keeping ϵ fixed, a smaller
training set reduces the number of poisoned data points and thus
the time required for methods that generate points sequentially,
potentially concealing a prohibitive runtime for poisoning the full training set. Thus we consider not
only a fixed ϵ, but also the complete training set for attacks.
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Table 4: Comparison with pGAN on MNIST with loss defense.
Method TGDA (w/wo defense) pGAN(w/wo defense)

Target Model LR NN CNN LR NN CNN

Accuracy Drop (%) 2.79/2.56 1.50/1.49 1.11/1.104 2.52/2.49 1.09/1.07 0.74/0.73

C Additional Experiments

C.1 Experimental Settings

Hardware and package: Experiments were run on a cluster with T4 and P100 GPUs. The platform
we use is PyTorch. Specifically, autodiff can be easily implemented using torch.autograd.
As for the total gradient calculation, we follow [37] and apply conjugate gradient for calculating
Hessian-vector products.

Dataset: We consider image classification on the MNIST [5] (60,000 training and 10,000 test images),
and CIFAR-10 [20] (50,000 training and 10,000 test images) datasets. We are not aware of prior work
that performs indiscriminate data poisoning on a dataset more complex than MNIST or CIFAR-10,
and, as we will see, even these settings give rise to significant challenges in designing efficient and
effective attacks. Indeed, some prior works consider only a simplified subset of MNIST (e.g., binary
classification on 1’s and 7’s, or subsampling the training set to 1,000 points) or CIFAR-10 (e.g.,
binary classification on dogs and fish). In contrast, we set a benchmark by using the full datasets for
multiclass classification.

Training and validation set: During the attack, we need to split the clean training data to the training
set Dtr and validation set Dv . Here we split the data to 70% training and 30% validation, respectively.
Thus, for the MNIST dataset, we have |Dtr| = 42000 and |Dv| = 18000. For the CIFAR-10 dataset,
we have |Dtr| = 35000 and |Dv| = 15000.

Attacker models and Defender models: (1) For the attacker model, for MNIST dataset: we use
a three-layer neural network, with three fully connected layers and leaky ReLU activations; for
CIFAR-10 dataset, we use an autoencoder with three convoluational layers and three conv transpose
layers. The attacker takes the concatenation of the image and the label as the input, and generates
the poisoned points. (2) For the defender, we examine three target models for MNIST: Logistic
Regression, a neural network (NN) with three layers and a convolutional neural network (CNN) with
two convolutional layers, maxpooling and one fully connected layer; and only the CNN model for
CIFAR-10 (as CIFAR-10 contains RBG images).

Hyperparameters: (1) Pretrain: we use a batch size of 1,000 for MNIST and 256 for CIFAR-10, and
optimize the network using our own implementation of gradient descent with torch.autograd.
We choose the learning rate as 0.1 and train for 100 epochs. (2) Attack: for the attacker, we choose
α = 0.01, m = 1 by default; for the defender, we choose β = 0.1, n = 20 by default. We set the
batch size to be 1,000 for MNIST; 256 for CIFAR10 and train for 200 epochs, where the attacker is
updated using total gradient ascent and the defender is updated using gradient descent. We follow
[37] and implement TGA using conjugate gradient. We choose the poisoning fraction ϵ = 3% by
default. Note that choosing a bigger ϵ will not increase our running time, but we choose a small ϵ
to resemble the realistic setting in which the attacker is limited in their access to the training data.
(3) Testing: we choose the exact same setting as pretrain to keep the defender’s training scheme
consistent.

Baselines: There is a spectrum of data poisoning attacks in the literature. However, due to their attack
formulations, only a few attacks can be directly compared with our method. For instance, the Poison
SVM [2] and KKT [19] attacks can only be applied to convex models for binary classification; the
Min-max [19] and the Model targeted [32] attacks can be only applied to convex models. Thus we
compare with two baseline methods that can attack neural networks: the Back-gradient attack [23]
and the Label flip attack [2]. Moreover, it is also possible to apply certain targeted attack method (e.g.,
MetaPoison [17]) in the context of the indiscriminate attack. Thus we compare with MetaPoison on
CIFAR-10 under our unified architecture. We follow [17] and choose K = 2 unrolled inner steps, 60
outer steps and an ensemble of 24 inner models.
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Table 5: TGDA attack on MNIST with MaxUp defense.
Method TGDA (w/wo defense)

Target Model LR NN CNN

Accuracy Drop (%) 2.79/2.77 1.50/1.50 1.11/1.11

C.2 Against Defenses:

To further evaluate the robustness of TGDA attack against data sanitization algorithms:

(1) We perform the loss defense [19] by removing 3% of training points with the largest loss. We
compare with pGAN [24], which include constraint on the similarity between clean and poisoned
sample thus inherently robust against defenses. In Table 4, we observe that although we do not
add explicit constraint on detectability in our loss function, our method still reaches comparable
robustness against such defenses with pGAN.

(2) We examine the robustness of our TGDA attack against strong data augmentations, e.g., the
MaxUp defense3 [13]. In a nutshell, MaxUp generates a set of augmented data with random
perturbations and then aims at minimizing the worst case loss over the augmented data. Such training
technique addresses overfitting and serves as a valid defense against adversarial examples. However,
it is not clear if MaxUp is a good defense against indiscriminate data poisoning attacks. Thus, we
implement MaxUp under our testing protocol, where we add random perturbations to the training and
the poisoned data, i.e., {Dtr ∪ Dp}, and then minimize the worst case loss over the augmented set.
We report the results in Table 5, where we observe that even though MaxUp is a good defense against
adversarial examples, it is not readily an effective defense against indiscriminate data poisoning
attacks. Part of the reason we believe is that in our formulation the attacker anticipates the retraining
done by the defender, in contrast to the adversarial example setting.

3We follow implementation in https://github.com/Yunodo/maxup
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