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Abstract
Existing deep neural networks are optimized to
predict the right thing, yet they may rely on the
wrong evidence. Using the wrong evidence for
prediction undermines out-of-distribution gener-
alization, underscoring the gap between machine
perception and human perception. In this paper,
we introduce an overlooked but important prob-
lem: “doubly right object recognition,” which
requires the model not only to predict the right
outcome, but also to use the right reasons that
are aligned with human perception. The exist-
ing benchmarks fail to learn or evaluate the dou-
bly right object recognition task, because both
the right reason and spurious correlations are pre-
dictive of the final outcome. Without additional
supervision and annotation for what is the right
reason for recognition, doubly right object recog-
nition is impossible. To address this, we collect
a dataset, which contains annotated right reasons
that are aligned with human perception and train
a fully interpretable model that only uses the
attributes from our collected dataset for object
prediction. Through empirical experiments, we
demonstrate that our method can train models that
are more likely to predict the right thing with the
right reason, providing additional generalization
ability on ObjectNet, and demonstrating zero-shot
learning ability.

1. Introduction
Deep neural networks focus on predicting the right “what”
in the image, yet they often ignore the correctness of “why”
for the predictions (He et al., 2016; Simonyan & Zisserman,
2015; Dosovitskiy et al., 2021; Tan & Le, 2019). Using the
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Figure 1. Doubly Right Object Recognition. Without the right
inductive knowledge, the model often predicts the right thing for
the wrong reasons. Our benchmark allows training doubly right
classifiers that predict the right thing using the right reasons.

right reason for the prediction is important, especially in
critical applications, such as medical imaging (Singh et al.,
2020; Ancona et al., 2018; Eitel & Ritter, 2019; Pereira
et al., 2018). Existing methods investigate how to get the
reasons that contribute to the models’ prediction (Nguyen
et al., 2016; Olah et al., 2017; Simonyan et al., 2014; Shriku-
mar et al., 2017; Zeiler & Fergus, 2014; Smilkov et al., 2017;
Selvaraju et al., 2016). However, due to the spurious corre-
lations in the dataset, not every evidence is right (Singla &
Feizi, 2022). Existing classifiers have no knowledge to dis-
criminate which evidence is right or not, which causes the
model to often predict the right thing for the wrong reason.
While using the wrong evidence can help in-distribution
accuracy, generalization gets difficult when the distribution
shifts (Mao et al., 2021).

In this paper, we introduce the doubly right object recogni-
tion problem. As shown in figure 1, besides predicting the
correct “what” is the image, we also desire the prediction to
be based on the correct “why”. We propose a dataset bench-
mark evaluating doubly right object recognition. Existing
attribute datasets (Pham et al., 2021; Bau et al., 2017) con-
tain untrimmed attributes, which include nuisance concepts
that are spuriously correlated with the prediction. To address
this, we collect a new attribute prediction dataset (section 2)
that annotates the right attributes, which are aligned with hu-
man perception, for object classification. To ensure that the
model only bases the prediction on the obtained reasons, our
model first linearly transforms the learned representation to
attributes that are aligned with human perception, and then
learns a linear read-out layer using the transformed feature.
The model’s prediction is totally interpretable because it can
only be based on the attribute features that correspond to a
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semantic concept.

Empirical experiments and visualizations show that our ap-
proach can predict the right thing for the right reasons. On
our annotated attributes of the validation set images, we ob-
tain a recall@7 for the correct attribute of 68.78% when the
prediction is correct. In addition, with the right prediction
reason, we can improve generalization ability on the out-
of-distribution benchmark as well as conducting zero-shot
classification. We will release our data, code, and model.

The major contributions of our paper are: 1) we propose a
new benchmark task “doubly right object recognition” and
a new dataset that allows training and evaluation on our
proposed task, 2) demonstrate the additional advantage that
“doubly right object recognition” can improve the general-
ization in out-of-distribution generalization and zero-shot
learning setting.

2. Doubly Right Object Recognition: Training
Set and Benchmark

Relying on spurious attributes can harm generalization when
the spurious correlations are changed in a new environment.
However, without additional assumptions or constraints,
the model will learn to use spurious correlations for the
prediction. In other words, it is theoretically impossible to
learn the right attribute for the prediction rather than the
spurious ones without additional knowledge (Mao et al.,
2022). Our goal is to use minimal human effort to enable
the model to learn the right ones. For this, we first list the
core attributes for each class, and then automatically collect
images containing the attributes using Google image search.

Dataset collection details. We manually annotated a few
descriptive attributes for each of the 40 object classes in our
classification categories. Using our prior human knowledge,
we ensured that we only annotate those visual attributes
for an object that actually describe the object thus avoiding
spurious attributes. For example, for ‘bike’ the annotated
attributes are wheel, seat, beam, handlebar, metal, etc. Un-
like general attributes like tree, ground, road, which could
be spuriously correlated with ‘bike’ in images, our small
set of causal attributes only describe the object and are not
spurious. In total, we have 135 causal attributes with 6.2
attributes on average per object class.

Once we have the lists of causal attributes for object classes,
we do image search over the internet to collect attribute
training images. For example, we have tire attribute for
‘bike’ object class. We search ‘bike tire’ images over the
internet and collect the top 50 image results. These images
are then used to train attribute prediction model to predict
the attribute tire. Similarly, for a ‘car’ too, we collect images
by searching ‘car tire’ and add them to the tire attribute
training set. This way we collect a total of 11,335 images

for 135 attributes. Some of the example training images are
shown in figure 4.

Benchmark Different images, even if they are from the
same category, contain different sets of attributes. To vali-
date the precision of the predicted reason from the model,
we annotate each image in the validation set with attributes.
We use Amazon Mechanical Turk to crowdsource the at-
tribute annotation. We provide image-attribute pairs to the
turkers and for each pair, we ask if the given attribute is
applicable to the given object in the image or not. Note
that, in the image-attribute pairs we show to turkers, we
only use those causal attributes (from the lists we created
earlier) that are useful for describing the object in the im-
age. For example, when we give an image of a ‘bike’, we
only ask for attributes (like wheel, handlebar) that describe
a ‘bike’. We do not ask turkers to annotate attributes like
headlight/windshield for a ‘bike’ image. This way, we get
a list of attributes for each image that actually describe the
object in the image. We use annotations from 3 turkers for
each image-attribute pair and take a majority vote to decide
if the attribute is present in the image. Finally, we have 2000
images belonging to our 40 classification object categories
annotated with causal attributes having an average of 5.8
attributes per image (some examples are shown in Fig. 4).
We use this benchmark dataset to verify if our method is
actually predicting right for the right reasons or is it using
the wrong reasons to predict (see Fig. 3).

Evaluation metric. We use 3 attribute recall-based met-
rics to find if a classification model is able to predict
the right reasons for object classification. 1. Average Re-
call@k: calculated as the fraction of annotated attributes
in top-k predicted attributes for an image and averaged
over all test set images. 2. Strict DoublyRight score: cal-
culated as

∑
RecallR/N, where RecallR is attribute recall

for rightly predicted image and N is the number of im-
ages in the test set. 3. Relaxed DoublyRight score: cal-
culated as (

∑
RecallR+

∑
(1−RecallW ))/N where RecallW is

the attribute recall for wrongly predicted images. Both
DoublyRight score metrics favor methods that predict both
correct objects and their correct reasons. Strict DoublyRight
score favors more accurate methods as it completely penal-
izes wrong predictions, while Relaxed DoublyRight score fa-
vors more interpretable methods because counting (1-recall)
for wrongly predicted images tells that the method predicted
wrong because it found wrong reasons in the image.

3. Experiments
We train an interpretable object classification model on our
attribute prediction dataset that first learns to rotate the repre-
sentation in a neural network into the space of interpretable
attributes, and then train a linear classifier using the inter-
pretable concepts. We first evaluate our method’s perfor-
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Predicted class: mountain bike
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Figure 2. Right reasons for right prediction According to learned attribute weights by the model, a ‘mountain bike’ is described by
attributes- two wheels, seat, handlebar, tire, riding, beam. The model predicts the above image as a ‘mountain bike’ because it finds these
describing attributes in the image. The model provides explainable reason for its decision in terms of core visual attributes in the image.

Table 1. Doubly Right evaluation. High scores on the benchmark set show that our method predicts correct attributes as right reasons.

Method Avg. Recall@7 Strict DoublyRight score Relaxed DoublyRight score

DoublyRight 65.47% 63.04% 68.96%
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Figure 3. Effectiveness of DoublyRight method. We plot at-
tribute recall@7 for both correct and incorrect classifications. For
most of the correct classifications, the predicted top attributes are
also correct and for the incorrectly classified images, the predicted
attributes are also incorrect. It shows that our method makes right
choices if the reasons (predicted attributes) are right and makes
wrong choices if the reasons are wrong.

Table 2. Generalization on ObjectNet images. Our interpretable
model using right reasons for prediction outperforms baseline
ResNet50 by 2.6% in top-1 accuracy on out-of-distribution images.

Model ObjectNet acc. Imagenet acc.

ResNet50 49.98% 96.11%
DoublyRight 52.58% 91.84%

mance on our proposed doubly right object recognition task.
We then validate on two established generalization tasks:
out-of-distribution generalization and zero-shot learning,
where we demonstrate that our approach improves general-
ization by capturing the right reason.

3.1. Interpretability

Once the object classification linear model is trained, we
can analyze the learned attribute weights to find ‘what does
the model think about the object class?’ By looking at the
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Figure 4. Example images. On top are some of the examples of
images, collected using Google image search, used to train our
attribute prediction model. Below are some examples of attribute
annotation in our benchmark test set which is used to evaluate the
effectiveness of our Doubly Right approach.

predicted attributes and the learned weights for the predicted
object class, we can explain why the model has made its
choice. As seen in figure 2, the model classifies the image
as a ‘mountain bike’. As we can see the learned attribute
weights (in red) for ‘mountain bike’, the model thinks that a
mountain bike image should have the following attributes-
two wheels, seat, handlebar, tire, riding, beam. It predicts
attributes like - riding, two wheels, handlebar, round, beam
in the image. Since these attributes match the description
of ‘mountain bike’ learned by the model weights, the model
predicts the image is of ‘mountain bike’. This way, the
model gives its reasons for its decision in terms of the pre-
dicted attributes which makes the model interpretable and
its predictions explainable.
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Table 3. Explainable zero-shot. We provide explaining attributes (from training set attributes) for unseen classes and ask the classification
model to classify images of the unseen class among the seen and unseen classes.

Unseen object class Explaining attributes Zero-shot accuracy

Green apple green, spherical, round, shiny 76%
Bagel round, bread 62%
Cheeseburger bread, sauce, meat, layered 40%
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Figure 5. Zero-shot adaptability. We add new weights (shown in
bold green lines) for attributes Spherical, Green, Round, Shiny to
the classifier for the ‘Green Apple’ class and the classifier is now
able to classify into one more class that is unseen during training.

Right reasons lead to right predictions. Wrong reasons
lead to wrong predictions. Using the benchmark dataset
of annotated attributes for the validation set images, we
show that our model gives right predictions when it predicts
right attributes and gives wrong predictions when it predicts
wrong attributes. We plot attribute recall@7, calculated by
finding the number of annotated attributes in top-7 predicted
attributes, for both correctly and incorrectly classified im-
ages in figure 3. We find that, for most of the images that are
correctly classified, the correct attribute recall is high. While
for most of the images that are incorrectly classified, the
correct attribute recall is low. We also evaluate our method
on the evaluation metrics defined in section 2 and find that it
performs well (table 1). This shows that our model is actu-
ally Doubly Right- gives right predictions when its reasons
for the predictions are right.

3.2. Improved Generalization: ObjectNet Performance

Visual attributes of objects do not change much with changes
in orientation, viewpoint and background. For example, a
‘cup’ would still be made of ceramic material, have a cylin-
drical shape and have a handle to hold even if it is placed
upside down in an unusual surrounding like a bathroom.
Since our model uses attributes for object classification, it
is able to generalize on out-of-distribution dataset Object-
Net (Barbu et al., 2019) which has test images of objects
with diverse viewpoints and backgrounds. We evaluate the
performance of our method on 2,723 ObjectNet images
belonging to 16 object classes that are common between Ob-

jectNet and our 40 object classes. We found that our method
outperforms baseline Resnet50 (trained to predict our 40
classes) by 2.6% in terms of top-1 classification accuracy,
thus showing better generalizability (figure 2). This shows
that an interpretable model using right attributes for classifi-
cation could help in generalizability for out-of-distribution
images.

3.3. Zero-Shot Learning

As our object classification model is able to learn attributes
for objects, we can manually provide attributes for unseen
objects and our classification model can identify the object
without even a single training example, thus having zero-
shot learning ability. To enable our model to classify a new
object class, we manually describe the new object class
using our existing set of learned attributes, and add a new
set of attribute weights for it to the existing model (see
Fig. 5). For example, we manually provide attributes of
a ‘green apple’ (an unseen category not in the 40 training
classes) as a list of attributes = [green, spherical, round,
shiny]. We then add a new weight vector for ‘green apple’
to the already trained weights of the classifier such that the
weights of the attributes not in the above list are zero and the
weights of the attributes present in the above list are equal
to the mean of the weights of the top-7 attributes of the
existing 40 categories. Thus the values in the new weight
vector describe the attributes of ‘green apple’ numerically.
We evaluated our approach on validation set images of a few
of the unseen ImageNet classes (in table 3) and found that
it performs well even with minimal information provided
in terms of visual attributes. This shows that the in-built
interpretability of our model could be easily adapted for
zero-shot classification.

4. Conclusion
We study the problem of doubly right object recognition,
where the classifier not only needs to classify the image
correctly, but also needs to use the right reason to make the
prediction. We collect a new dataset that allows the training
and benchmarking on the doubly right prediction task. Our
work is the first one that shows the importance of doubly
right prediction, and connects models’ better interpretation
ability to improved generalization.
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