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Abstract
Class activation map (CAM) generation aims at highlighting regions of a class in an image by the classification model.

However, the regions obtained are usually small and local. Existing methods attribute the problem to the ineffective CAM

extraction model and pay much attention on enlarging the regions via developing new models for CAM generation, but

limited success has been made. Different from the existing methods, this paper attributes such incompleteness extraction to

the finite discriminative cues within a single classification model and improves CAM generation by providing more

discriminative cues via training multiple classification models with consideration of class relationships. To this end, the

similarities between classes are firstly measured, and hierarchical clustering is then implemented to cluster initial clusters

into multiple semantic meanings level of clusters. Afterward, multiple classification models are trained on these different

levels of clustering, and multiple class activation maps with various and complementary discriminative cues are obtained.

Finally, the class activation map is obtained via the combination of these maps. A new orthogonal module and a two-

branch network for CAM generating are also proposed to improve CAM generation via making the regions orthogonal and

complementary. Experimental results on the PASCAL VOC 2012 dataset show the superior performance of the proposed

CAM generation method.

Keywords Class activation map (CAM) � Representative class selection � Orthogonal module

1 Introduction

Class activation map highlights the regions of a specific

class in an image based on the classification model. It is an

important task in computer vision as it can locate regions of

a specific class from weak labels and thus can help many

weakly supervised tasks such as segmentation

[2, 7, 10, 12, 14, 25], detection [21, 24, 27, 29] and

recognition [3, 5, 9, 20, 22].

The existing methods extract class activation map by

two steps. The first one trains a classification network for

all classes, and the second one highlights the regions based

on the feedback of the classification network. However,

these methods face the problem that the regions are usually

small and local, such as the extraction of ‘‘Head’’ for object

‘‘Person’’ only, and many important regions are lost.

Solving such drawback has become an emerging

research topic. Although researchers have proposed diverse

CAM extraction methods [18, 30], they all attribute the

problem to the ineffective CAM extraction method. Many

efforts have been paid to enlarge the regions via developing

new CAM generation method. For example, erase strategy

[28] deletes regions already obtained and generates more

regions by implementing the CAM generation again. Fur-

thermore, some methods replace the classical convolution

operator by a new convolution operator with a larger

inception area, thus enlarging the regions. Although they

improve the CAM generation reasonably and partially, the

CAM generation, the experimental results reveal that the

improvement is limited, i.e., CAM is still small and rough.

Different from the existing methods, we believe such

a drawback is caused mainly by the single classification

model, where discriminative cue cannot be provided suf-

ficiently to activate more regions. When considering the
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classification of all classes in a single classification model,

one class should be different from all the rest classes,

which inevitably leads to the discriminative region small

and local, just as the extraction results by the existing

methods.

In order to prove such an assumption, some CAM results

are displayed in Fig. 1, where class activation map of

‘‘Cat’’ based on four different settings of classification

models is shown. The classification models are trained on

PASCAL VOC dataset, and the setting ‘‘{Cat, Dog, Cow,

Sheep, Horse}/5’’ means that the 20 classes are merged

into five clusters, and ‘‘Cat’’ is within cluster ‘‘{Cat, Dog,

Cow, Sheep, Horse}.’’ Here, the cluster is formed by

similar classes via clustering, and the classification model

is trained based on the clustering results. One can see from

Fig. 1 that the clusters containing ‘‘Cat’’ have different

semantic levels in the four settings, and the classes for

comparing with ‘‘Cat’’ vary. The class activation maps are

shown from the second column to the fifth column,

respectively. One can see the activation regions by the four

models are different. Moreover, since these regions are

complementary to each other, better results can be obtained

by their combination, as shown in the sixth column. The

results in Fig. 1 reveal that the CAM extraction is sensitive

to the classes selected for comparing, and different regions

can be obtained through varying the comparison classes.

Through controlling the training classes by the class

relationships, the desired and diverse regions can be

obtained and better CAM extraction can be obtained via

their combination.

Based on such motivation, this paper solves class acti-

vation map generation by the new view of forming multiple

classification models to extract diverse and complementary

class activation maps. In order to make the activated

regions different and complementary, we form the classi-

fication models based on different levels of semantic

meanings. We classify the initial classes into different

semantic levels based on their similarity relationship using

hierarchical clustering and extract the class activation maps

based on different semantic levels so that the regions

highlighted are different and complementary. Better results

are obtained via the combination of these class activation

maps.

Specifically, we propose a new CAM generation method

consisting of four steps. In the first step, the similarities of

classes are measured based on the classification network. In

the second step, we cluster the initial classes into multiple

levels of clusters via hierarchical clustering and train

multiple classification models according to the clustering

levels. In the third step, we extract CAMs from the clas-

sification models using a new two-branch classification

network structure with the orthogonal constraint. Finally,

we combine the class activation maps to form the final

CAM. We verify our method on PASCAL dataset, and the

Fig. 1 First column: initial

images. Second–fifth columns:

the CAM results by different

levels of clustering. Sixth

column: the combination

results. Last column: ground

truth. f�g=N: a cluster � by
clustering classes into N classes
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experimental results demonstrate the effectiveness of the

proposed method.

The main contributions of the proposed method are

listed as follows. Firstly, we implement class activation

map by forming multiple classification models with dif-

ferent semantic meanings, which can capture more dis-

criminative cues, and highlight different and

complementary regions. Secondly, a hierarchical clustering

method based on class-to-class relationships is proposed,

and the clustering results of classes with different semantic

meanings are obtained. Thirdly, a two-branch CAM gen-

eration method and the feature orthogonal constraint are

proposed to obtain better CAM generation.

The rest of the paper is organized as follows. Section 2

illustrates the related work of the proposed method. The

detailed steps are introduced in Sect. 3. Section 4 displays

and discusses the experimental results. Finally, the con-

clusion is drawn in Sect. 5.

2 Related work

Class activation map generation is to extract regions of an

image activated by a classification network for a specific

class. On the one hand, it helps us understand the opera-

tions of the convolutional neural network in the process of

classifying an image. On the other hand, since the classi-

fication network is trained by image-level labels only, it

can be used in weakly supervised tasks to transfer image-

level labels to pixel-level object regions. Therefore, it can

help many weakly supervised tasks, such as image seg-

mentation and detection.

The early CAM generation methods focus on generating

class activation map via capturing the regions preserved in

the top convolutional layer. In order to preserve spatial

cues, some special layers such as global max pooling [16]

and log-sum-exp pooling [17] are used to replace the FC

layers that causes the loss of spatial information. In the

method [30], average pooling layer with the final FC layer

is used to replace the FC layers, and the weights between

nodes of average pooling layers and nodes of FC layer

(representing class label) are used to average the channel

maps of the last convolution feature. Good localization is

obtained. However, such a method changes the structure of

the original network. To overcome such a drawback, the

method in [18] proposes Grad-CAM which uses the gra-

dients as the weights; therefore, the CAM can be extracted

from the original classification networks directly.

However, the activated regions of those early methods

are usually local and small, while many regions important

to pixel-level tasks are lost. To enlarge the activation

regions, several methods have been proposed. Erasing

strategy which erases the regions already activated is an

effective method to overcome such drawback. For exam-

ple, after erasing the activated regions, the method in [23]

uses the CAM extraction again to highlight activation

regions in the rest regions. Similar to the method in [23], a

two-phase-based CAM generation method is proposed in

[11], which firstly obtains the activation regions in the first

phase and then obtains the new regions from the rest

regions in the second stage. The method in [13] searches

activation regions based on the rule that the activation

regions should mostly increase the classification error after

erasing. The method in [28] searches complementary

activation regions via adversarial complementary learning

(ACoL). The method in [15] erases the activation regions

to train a counterpart classifier with consideration of

adversarial complementary attention. The method in [4]

enlarges the activation map by attention-based dropout

layer which hides the most discriminative part and infor-

mative region to extract more regions of objects. The

method in [1] aims to expand the class activation map by

random walk strategy with affinity matrix, which is learned

by AffinityNet.

Although erasing strategy partially improves the CAM

generation, the improvement is limited by the finite dis-

criminative cues of the single classification model. It is the

fact that the regions for distinguishing a class from all the

rest classes are small and local. In this paper, we improve

CAM generation by discovering more discriminative cues

through forming new structure of classes by their similarity

relationships.

3 The proposed method

3.1 Overview

Toward the goal of expanding the class activation map, we

propose to mine more discriminative cues of a category by

clustering original categories into multilevel hypercate-

gories to generate better CAMs. The flowchart of the

proposed method is shown in Fig. 2, including measuring

the similarity of the classes, hierarchical clustering of the

initial classes, generating CAM via a new two-branch

framework and fusing the final CAM. In Sect. 3.2, the

similarities of classes are calculated by the distances

between their features, which is extracted from the classi-

fication network. In Sect. 3.3, we use a hierarchical clus-

tering strategy to merge the most similar classes

hierarchically, and cluster results with multiple semantic

levels are obtained. In Sect. 3.4, we train the networks

according to each level of clustering results via a new two-

branch CAM generation framework with feature orthogo-

nal module and generate multiple class activation maps for
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each class of each image. In Sect. 3.5, we combine the

CAMs to form the final CAM.

3.2 Measuring the similarities between classes

We calculate the similarity relationship between classes

based on the distance of features, where the key is how to

represent class by a feature that can describe classes well.

To this end, we use deep classification network to represent

the class with deep features. Specifically, we firstly train a

classification network considering all classes. Then, by the

fact that the weight vector of the node in the last FC layer,

which maps the deep feature to the specific class labels,

represents the combination manner of the class, we use it as

the feature of class directly. Let nc be the number of

classes. We use the weight vector xi of the ith node in the

last FC layer as the feature of the ith class. By using nk as

the node number in the previous FC layer, each class is

described by a nk � 1 vector xi.

Given a pair of classes ðci; cjÞ with vectors ðxi; xjÞ, the
Euclidean distance is used to calculate their similarity, i.e.,

dðxi; xjÞ ¼ kxi � xjk2 ð1Þ

3.3 Hierarchical clustering for initial classes

Since the single classification network used in the existing

CAM generation methods contains finite discriminative

cues, which limits the highlighting of more regions, we

discover more discriminative cues through merging classes

into groups under hierarchical semantic levels, so that the

multiple classification models can provide discriminative

cues that are different and complementary.

It is worth noting that the classes can be clustered ran-

domly. Although such a method is simple, it ignores the

important fact that the discriminative cues complementary

to each other should be provided by the classes purposely

selected. For example, the discriminative cues are more

complementary for two pairs (‘‘Cat,’’ ‘‘Dog’’) and (‘‘Cat,’’

‘‘Bus’’) than (‘‘Cat,’’ ‘‘Dog’’) and (‘‘Cat,’’ ‘‘Sheep’’). By

the fact that the classes have similarities in multiple

semantic levels, we cluster the class hierarchically

according to their semantic meanings.

Specifically, after representing each class ci by the

feature vector xi, we perform the clustering by K-means

algorithm with cluster number N, i.e., implementing the

following two steps iteratively until convergence.

E step : aj ¼
1

ncj
�
X

i2Cj

xi ð2Þ

M step : argmin
XN

j¼1

X

i2Cj

xi � aj
�� ��

2

0
@

1
A ð3Þ

where aj represents the cluster center of the jth cluster Cj

and ncj represents the number of classes in the jth cluster.

After K-means clustering, we can obtain cluster set C1.

An example can be found in the bottom block of Fig. 3,

where the initial 20 classes of PASCAL VOC dataset are

clustered into 12 clusters. One can see similar classes, such

as ‘‘Cat’’ and ‘‘Dog,’’ are classified into one cluster. The

clustering results mean that the similar classes are merged

to form a new class with more rough semantic meanings,

which can provide different discriminative cues compared

with the initial class.

By using the same K-means-based clustering method,

we further perform clustering on the clusters in C1 to

obtain new clustering results C2 with more rough semantic

meanings, as shown in the green block in Fig. 3, where the

12 clusters are clustered into eight clusters by the K-means

algorithm. One can see the clusters ‘‘Sheep, Cow’’ and

‘‘Horse’’ are further merged, which indicates that classes

with close semantic meanings can be clustered. We

implement such clustering process further on the results of

the second level to obtain the clustering results of the third

level C3, as shown in the purple block, where the 20 classes

are finally clustered into five clusters.

Fig. 2 Overview of our approach. It consists of four steps such as the class clustering, classification network training, CAM generation and fusion
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Since one level of clustering is based on the clusters of

the previous level, the results are hierarchically organized,

as shown in Fig. 3. On the one hand, the semantic meanings

of these levels are different, which can provide diverse

discriminative cues. On the other hand, these cluster sets

are organized in the hierarchical structure, which can

guarantee the variations of the discriminative cues in

a gradual manner.

3.4 Generating CAMs with feature orthogonal
module

Based on the clustering results, we next train the classifi-

cation model CNNi for each level of clustering result Ci.

The traditional methods mainly use single-branch-based

network for the classification. Different from these meth-

ods, we use two-branch-based networks with different

parameters to capture more discriminative cues. In addi-

tion, to enlarge the discriminative cues as much as possible,

we force the two networks to generate different CAMs

using the orthogonal constraint on the deep convolutional

features.

3.4.1 Two-branch-based classification structure

The proposed two-branch-based classification network is

shown in Fig. 4, where two branches CNN1 and CNN2 with

different parameters are used to obtain features f1 and f2,

followed by FC layer to obtain the classification results fc1
and fc2, respectively. The two outputs should be compared

with the ground-truth labels, which are measured by clas-

sical classification losses Lc1 and Lc2.

Since the two branches are forced to highlight different

regions, feature orthogonal module is proposed to connect

the two branches, which forces the descriptions of the two

branches to be orthogonal, as shown in Fig. 4. Specifically,

we propose feature orthogonal loss function to connect the

two branches:

Lo ¼ f1 � f2k ksum ð4Þ

where � represents the Hadamard product between the

features f1 and f2, and xk ksum is the sum of all elements in

x.

It is seen that the loss is large when the features are

similar and is small otherwise. Hence, such loss penalizes

the similar features and rewards dissimilar features.

So far, we define the overall loss function of the two-

branch network as:

Lall ¼ Lc1 þ Lc2 þ kLo ð5Þ

where Lc1 and Lc2 represent the classical classification loss

functions of the two branches, and k is a parameter to

balance the orthogonal loss and the classification loss.

Note that the orthogonal module has been used in [28] to

highlight different class activation regions [28]. Our

orthogonal module is different from the module in [28] due

to the fact that the orthogonal module in [28] is formed in

terms of the class activation map, i.e., making the extracted

regions orthogonal. Meanwhile, we formulate orthogonal

module by the feature space and make the deep feature

Fig. 3 Blue, green and purple represent the merging of categories for the first, second and third levels of clustering, respectively. All categories in

curly brackets are considered as a cluster (color figure online)

Fig. 4 Detailed illustration of our CAM extraction model. It consists

of two subbranches that do not share parameters. We force the

features of the two branches to be orthogonal by adding additional

loss Lo
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orthogonal, which can not only force the two networks to

capture diverse cues, but also avoid failures caused by the

same deep descriptions of the two networks.

3.4.2 CAM generation

Given an image and a classification model, the CAM is

generated simply by two steps.

Step 1 Two CAMsM1 andM2 are extracted from the two

branches using the CAM generation method [18].

Step 2 Two CAMs are combined to obtain the final

CAM by the average operation, i.e.,

M ¼ 1
2

P2
i¼1 Mi.

3.4.3 Generating CAMs for multiple levels of clustering

Considering there are multiple levels of classification net-

works, the proposed two-branch CAM generation method

is implemented on these classification networks to obtain

multiple CAMs for each class of each image.

3.5 CAM fusion

Assuming the number of clustering level is k, a total of

k number of classification networks are obtained. There-

fore, a total of k number of CAMs are generated.

We next combine these CAMs to obtain the final CAM.

For an image, the CAM of a class such as ‘‘Cat’’ is

obtained by

M ¼ M0 þ
1

k � 1

Xk�1

i¼1

Mi �M0
0 ð6Þ

where M0 is the CAM of the classification model CNN0

based on the initial classes, and Mi is the CAM by the ith-

level clustering results for the class such as ‘‘Cat.’’ M0
0 is

CAM of the rest classes.

4 Experiment

4.1 Experimental setup

4.1.1 Dataset

The PASCAL VOC 2012 [6] is used to verify our method,

which consists of 20 object categories. Training dataset

with 10,582 images and validation dataset with 1449

images are both employed.

4.1.2 Implementation details

In image normalization, the short side of the image is

resized to 224. Then, the center area with size 224� 224 is

cut out from the image as the normalized image.

The classification network is initialized by the CNN

models pre-trained on the ImageNet. We train our network

on the NVIDIA GeForce GTX1080 with 8GB memory and

PyTorch 0.4 framework. We set the initial learning rate to

0.0001. When the decrease in the loss within five epochs is

smaller than a threshold, we reduce the learning rate by

ratio 0.5. The batch size is set to 20. Each classification

network is trained by 100 epochs.

In the step of obtaining the feature vector of class, we

use ResNet-50 [8] as the backbone network to train the

classification model. In order to balance the performance

and training burden, we cluster the categories by four

levels, and specifically, the cluster numbers for the four

levels are set to 20, 12, 8 and 5, respectively.

For the loss function, we set Lc1 and Lc2 as binary cross-

entropy loss and set the hyperparameter k ¼ 0:0001 for Lo.

4.1.3 Evaluation criteria

Two widely used metrics are employed to evaluate the

performance of our approach and the comparison methods:

mean intersection over union (mIoU) and mean localiza-

tion error values (mLEV). MIoU is the standard measure of

semantic segmentation, which measures the fitness

between CAM and ground truth (larger is better), i.e.,

mIoU ¼ 1

n
�
X

i

pii= pi þ
X

j

pji � pii

 !
ð7Þ

where n is the number of classes, pji is the number of pixels

of class j predicted to belong to class i and pi is the total

number of pixels of class i.

The mLEV indicates the ratio of the inaccuracy in the

localization of the CAM (lower is better), which is defined

as

mLEV ¼ 1

n
�
X

k

miniminmf ðbi;BkmÞ ð8Þ

where n is the number of all images and bi is the algorithm

generating bounding box. The ground-truth bounding

boxes are Bkm;m ¼ 1. . .Mk, where k represents the kth

class and Mk is the number of all instances of the kth class

in the current image. If the overlap between bi and Bkm is

more than 50%, f ðbi;BkmÞ will be 0, and 1 otherwise.

Since CAM is a probability map rather than a binary

mask, the threshold T ¼ 0:15 commonly used in CAM

evaluation is also used to binarize the class activation map.
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4.2 Subjective results

The class activation maps of our approach are shown in

Fig. 5, where the original images, the CAMs of the mul-

tiple levels of clustering, the CAMs without clustering (i.e.,

the baseline method) and the CAMs by the proposed

method are displayed. It can be seen that the activation

maps of different clustering levels are different. In addi-

tion, the class activation map of the proposed method is

obviously better than the CAMs of clustering levels and the

baseline Grad-CAM [18], which proves the effectiveness

of our approach on capturing more discriminative regions.

The CAM results of the two-branch-based network are

displayed in Fig. 6, where (a) and (g) are input images and

ground truth, respectively. (b) and (c) are the results of the

two-branch network without the orthogonal module, which

is equivalent to training two classification networks inde-

pendently. (d) and (e) are the results of the two-branch

network with the orthogonal module, and (f) is the results

of the fusion of (d) and (e). It can be seen that the two-

branch network with the orthogonal module is superior to

the one without orthogonal module.

4.3 Objective results

4.3.1 The results by different clustering settings

We first display the results of the proposed method by

different clustering settings. The results are shown in

Table 1, where the number N in the first column presents

the clustering setting. For example, N ¼ f20; 12; 8g means

a three-level clustering by clustering the classes into clus-

ters with cluster numbers 20, 12 and 8. The second column

presents the mIoU values of the training set and the vali-

dation set, and the third column presents the mLEV values

of the training set and the validation set. Quality measures

are average for all images in training set or validation set of

PASCAL VOC 2012.

As can be seen from Table 1, the mIoU values of the

baseline (i.e., N ¼ f20g) on the validation and training sets

are 23.59% and 28.37%, and the mLEV values are 68.50%

and 64.49%. When the clustering settings in our model are

set to f20; 12g, f20; 12; 8g, f20; 12; 8; 5g, f20; 12; 8; 5; 2g,
the mIoU values on the validation dataset are improved to

24.73%, 25.75%, 25.97% and 25.53%, and the mLEV

values are improved to 67.86%, 65.77%, 65.08% and

65.81%, respectively. Moreover, mIoU values on the

training set are improved to 29.15%, 29.67%, 30.24% and

29.68%, respectively, and the mLEV values are improved

to 63.70%, 63.02%, 61.82% and 62.56%. It can be seen the

CAM generation is improved by using clustering strategy.

Fig. 5 a Input image; b–
e results of the different

clustering levels with cluster

numbers 5, 8, 12, 20,

respectively. e is the result of

baseline; f results of our
approach; g ground truth. By

comparing the results from

Column (b) to Column (f), one
can easily observe that our

approach using relationship

between categories improves

the results of CAM obviously
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Meanwhile, the results of N ¼ f20; 12; 8; 5g are the best

compared with f20; 12; 8; 5; 2g. This indicates that setting
large number of levels is harmful to the CAM generation.

Additional experiments are conducted to show the

impact of different clusters of the specific hypercategory

level on the performance. We validate the performance of

two another serial settings: one series is f20; 15g,
f20; 15; 11g, f20; 15; 11; 8g, f20; 15; 11; 8; 6g, and the

other series are f20; 10g, f20; 10; 5g, f20; 10; 5; 3g,
f20; 10; 5; 3; 2g. The experiments show there is slight

performance gain when the number of the clusters is set to

f20; 15; 11; 8g. And while the number of clusters is set to

f20; 10; 5; 3g, the performance drops from 25.97% to

25.53% and even drops to 24.25% when two additional

clusters are included, resulting from that the new cluster

number is too small to catch the discriminative cues. More

details can be found in Table 1.

4.3.2 Comparisons with existing methods

We compare our approach with several existing CAM

generation methods, such as CAM [30],1 Grad-CAM [18],

ACoL [28]2 and CBAM [26].3 We use the code published

by the author to train the model. For CAM and Grad-CAM,

we use ResNet-50 and VGG-16 [19] as backbone networks

to generate CAM. For ACoL, we use the VGG-16 rec-

ommended in the code as the backbone. For CBAM,

ResNet-50 is used (for fair comparison) as the backbone

network.

The mIoU and mLEV values of the existing methods

and our method are shown in Tables 2 and 3. It is seen from

the tables that the proposed method is superior to the

existing methods on both training and validation datasets,

because our method can capture more discriminative cues

by using multiple semantic level of classification models,

which results in the generation of more complementary and

better class activation maps.

4.3.3 Ablation study

In this subsection, we conduct ablation study on our

approach. Table 4 shows the results of the ablation study by

Fig. 6 a and g: input image and

ground truth. b and c: the CAM

results of the two-branch

network without the orthogonal

module. d and e: the results of

the two-branch network with the

orthogonal module. f: the CAM

result by combining (d) and (e)

Table 1 mIoU values and mLEV values by the different clustering

settings of our methods

Hierarchical clustering setting mIoU mLEV

Baseline N ¼{20} [18] 28.37/23.59 64.49/68.50

N ¼ f20; 12g 29.15/24.73 63.70/67.86

N ¼ f20; 12; 8g 29.67/25.75 63.02/65.77

N ¼ f20; 12; 8; 5g 30:24=25:97 61:82=65:08

N ¼ f20; 12; 8; 5; 2g 29.68/25.53 62.56/65.81

N ¼ f20; 15g 30.05/25.56 62.02/65.71

N ¼ f20; 15; 11g 30.32/25.86 61.70/65.19

N ¼ f20; 15; 11; 8g 30:43=26:08 61:63=64:92

N ¼ f20; 15; 11; 8; 6g 30.14/25.91 61.91/65.17

N ¼ f20; 10g 30.12/25.83 61.96/65.23

N ¼ f20; 10; 5g 30:24=25:92 61:78=65:15

N ¼ f20; 10; 5; 3g 29.57/25.53 62.59/65.50

N ¼ f20; 10; 5; 3; 2g 28.20/24.25 64.67/67.13

Bold indicates the best setting of given clustering numbers

1 https://github.com/metalbubble/CAM.
2 https://github.com/xiaomengyc/ACoL.
3 https://github.com/Jongchan/attention-module.
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whether using the category clustering method or the feature

orthogonal module or not. The manners of their combina-

tions are shown in the first and second columns. The third

to fourth columns present the mIoU and mLEV values of

the training set and the validation set.

The results of the ablation experiments of our proposed

method are shown in Table 4. When using the proposed

feature orthogonal module only, mIoU values on the vali-

dation and training sets increase by 0.73% and 0.97% to the

baseline method (without using both the clustering and

orthogonal methods), and mLEV values on the validation

and training sets decrease by 1.24% and 1.65%, respec-

tively. When using the category clustering method only,

the mIoU and mLEV values are both improved (1.36% and

0.67%, and 0.97% and 1.30%, respectively). When using

both the category clustering method and the feature

orthogonal module, mIoU and mLEV values are further

improved (2.38% and 1.87%, and 3.42% and 2.67%,

respectively), which demonstrates the usefulness of the

proposed method using clustering strategy and orthogonal

module simultaneously.

5 Conclusion

This paper proposes a new class activation map generation

method, which extracts CAM by multiple-level class

grouping and orthogonal constraint. A hierarchical clus-

tering method based on class relationships is firstly pro-

posed to cluster classes into multiple levels of clusters, in

order to capture diverse discriminative cues. Then, the

clusters are treated as new classes to train multiple classi-

fication networks. To generate CAM more accurately, a

new two-branch-based network is proposed for training,

and an orthogonal module forcing feature orthogonal is

proposed to obtain diverse CAMs of the two branches.

Finally, the fusion method is proposed to combine the

CAMs of the multiple networks and generate the final

CAM. The experimental results show that our method

improves CAM generation in terms of larger mIoU values

and smaller mLEV values.
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