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ABSTRACT

Stochastic Gradient Descent (SGD) is a popular training algorithm,

a cornerstone of modern machine learning systems. Several secu-

rity applications benefit from determining if SGD executions are

forgeable, i.e., whether the model parameters seen at a given step

are obtainable by more than one distinct set of data samples. In

this paper, we present the first attempt at proving impossibility of

such forgery. We furnish a set of conditions, which are efficiently

checkable on concrete checkpoints seen during training runs, under

which checkpoints are provably unforgeable at that step. Our ex-

periments show that the conditions are somewhat mild and hence

always satisfied at checkpoints sampled in our experiments. Our

results sharply contrast prior findings at a high level: We show that

checkpoints we find to be provably unforgeable have been deemed

to be forgeable using the samemethodology and experimental setup

suggested in prior work. This discrepancy arises because of unspec-

ified subtleties in definitions. We experimentally confirm that the

distinction matters, i.e., small errors amplify during training to pro-

duce significantly observable difference in final models trained. We

hope our results serve as a cautionary note on the role of algebraic

precision in forgery definitions and related security arguments.
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1 INTRODUCTION

Stochastic gradient descent (SGD) has been the de-facto training

algorithm for neural networks. Its intrinsic security properties are

therefore important to enunciate precisely. One fundamental prop-

erty of SGD is forgeability: Is it possible to obtain the same model

parameters (outputs) from two different minibatches (inputs)? If yes,

then we say that the output is forgeable. Forgeability has emerged

in the context of several applications such as machine unlearn-

ing [43], model ownership [10, 22, 46], and membership inference

tests [23, 24]. If a model is forgeable, certain training samples used

could have been replaced with other samples without changing

the output. It can be argued counterfactually that these samples

were never utilized in the first place, since there exist others that

can replace them without a change in output. Thus, forgeability

provides a way to unlearn some data samples seen in training. On

the other hand, if a model is unforgeable, training samples are ir-

replaceable in creating the final model. It has been suggested that

knowing the specific samples used is information that can be used

to claim ownership of the model [10, 22, 46]. Many such security

applications naturally arise from the basic property of forgeability.

Despite its emerging applications, characterizing forgery in prac-

tice has remained an intriguing open problem. Creating exact

forgery of model checkpoints has not been demonstrated yet. Prior

work has shown that it is possible to forge intermediate model

parameters within certain error (under a vector norm) and conjec-

tured that forgery could be made exact with zero error, but this

remains a conjecture hitherto [23, 24, 43]. Similarly, we are not

aware of any general conditions over data distributions seen in

practice under which models are provably unforgeable. Therefore,

exact forgery remains an important property to define and study.

We can model SGD as a deterministic procedure by fixing the

training dataset, the initial model parameters, and all other training

hyperparameters in advance. The randomization seeds for sampling

minibatches from the training dataset can be treated as the inputs

to the SGD procedure. Each input results in an execution trace: a

sequence of intermediate model parameters obtained after each

minibatch is used for training. The output is the final model. We

can look at forgery from the lens of forging execution traces rather

than outputs. In this paper, we formally define the notion of exact

forgery of states or checkpoints in an SGD execution trace. It asks
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whether two different inputs produce the same execution state.

If a state is forgeable, then under two different inputs the next

intermediate model state obtained is exactly the same. This will

imply that the inputs effectively “collide” and the entire execution

trace will be the same when collisions occur. It is easy to see that

the resulting output is also forgeable if a trace is forgeable. The

converse is not true: Unforgeability of one trace does not rule out

the existence of another trace that produces the same final output.

We are only interested in one-step forgeability of checkpoints in

this work. Extending definitions that consider multiple steps or

traces to forge final outputs is promising future work.

Our main contribution is to present the first systematic charac-

terization of exact forgeability of trace checkpoints. Our central

theorem states that if certain conditions hold at an intermediate

checkpoint of the execution trace, then it is unforgeable at that

step. If an execution trace is unforgeable for at least one training

step, then the whole execution trace is also unforgeable. A verifier

with access to the whole execution trace can replay the training

and check that there is one unforgeable training step. The condi-

tions of our theorem are testable on concrete executions and we

devise efficient procedures to check them at any given intermediate

checkpoint. Our checks scale well with increasing neural network

parameters, taking about 21 minutes per checkpoint on average

for networks with millions of parameters. The conditions define

a specific regime of data distributions under which unforgeability

holds, but these conditions are mild enough in practice that they are

satisfied in all checkpoints sampled in our experimental evaluation.

Our work provides the first regime where training checkpoints are

algebraically unforgeable, partially answering the conjecture about

when exact forgery might, if at all, be feasible in practice.

The implications of showing unforgeability go beyond experi-

mental evidence. Our goal is to point out the lack of formal defini-

tions, without which contradictory interpretations arise from the

same experimental setups. For instance, our results are in sharp con-

trast to prior work, showing that exact forgery is impossible on the

same experimental setup [24, 43]. This contrast arises because prior

work considers approximately equal (or close) intermediate states

as sufficient to define forgery, unlike our work. We empirically

confirmed that when we replace an intermediate model state with

the “approximately” same state obtained by procedures suggested

in prior work, the final output of the execution is not the same as

the original. Therefore, it is possible to observe the difference in

outputs for white-box distinguishers. While approximate forgery

may suffice to deceive some algorithms that distinguish output

models, say via black-box testing of models, it is not sufficient to

rule out all such distinguishing algorithms. Exact forgery deals with

the most powerful of distinguishing algorithms and is, therefore,

useful in rigorous security arguments. Our result shows that the

difference between the exact and approximate case is significant

empirically.

Contribution. We present the first theoretical impossibility result

for exact one-step forgery of SGD execution states. Our theorem

specifies conditions under which traces are provably unforgeable,

which are efficiently testable on concrete executions, given the train-

ing dataset and model parameters. Our results on exact forgery di-

rectly contrast those in prior work which use approximate forgery.

2 PROBLEM

The property of forgery has been the basis for several recent security

applications. For concreteness, we describe one such application,

i.e., data non-repudiation in standard neural network training.

2.1 Motivating Application

Several lawsuits have been filed against machine learning (ML)

companies claiming that part of the training data infringed copy-

right [6, 36]. From a technical standpoint, how can an entity prove

that their data point has been used in the training process that

resulted in a given ML model? Or, conversely, what information

should the ML model provider release in order to prove that they

have trained using a particular dataset? At large, these questions

revolve around data non-repudiation in training ML models.

The answer to these questions is not immediate. Let us consider

the following scenario: given a training dataset, the ML model

provider trains a model using stochastic gradient descent (SGD).

The ML provider wants to release the necessary information to

reproduce their training such that an honest verifier can indepen-

dently check data non-repudiation claims. Prior work on proof-

of-learning or proof-of-unlearning logs [22, 43] have envisioned

similar motivating applications that facilitate auditing the integrity

of the training procedure. For data non-repudiation, the information

that is released to the verifier is the same as prior works [22, 43].

Specifically, theML providermaintains a training logwhich consists

of the data samples used in each minibatch and the model param-

eters at every training step (checkpoint). The initialized state of

the model, all the training hyperparameters, and any other sources

needed to replay the execution are maintained in the log as well.

The verifier can check the validity of the logged information at a

later point in time, by reproducing the model parameters at the

𝑡𝑡ℎ training step using the (𝑡 − 1)𝑡ℎ checkpoint and the minibatch

information from the log. Thus, one can check whether specific data

samples were used to train the model. If the computation is done on

the same hardware and software stack there should be no difference

between the recomputed state and the one in the log, modulo nu-

merical instability and hardware implementation differences [35].

One can abstract away these sources of non-determinism and revisit

their role in Section 6.4.

Using such training logs as proofs for training integrity with

a given dataset is problematic [10, 46]. One fundamental issue is

that there might exist forged gradient updates: Given a state of the

model parameters at some training step, there exists an alternative

minibatch that produces the same model parameters as those of the

original minibatch. For data repudiation, forging at one training

step is not enough. The adversary has to be able to forge all training

steps where the repudiated sample has been used in order to forge

the entire trace released to the honest verifier.

2.2 Definition of the Forgery Game

Our training and forgery setup characterizes precisely the ques-

tions raised in several several prior applications [22, 24, 43]. We

define forgery as a game, extending the game framework proposed

by Salem et al. [40]. We illustrate the game in Algorithm 1. In the

forgery game, there is a verifier (V) that simulates the ML system

made up of the training pipeline specifying the training algorithm
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(T ), the data distribution (D) and the training dataset (𝐷). The

verifier challenges the adversary (A) to the forgery game by asking

it to produce a forgery for a randomly chosen state of model param-

eters using the training algorithm T . There are three sequential
phases in the definition of the game.

Setup Phase. The game starts with a setup. The training dataset𝐷

consists of samples {(x𝑖 , y𝑖 )}𝑚𝑖=1 where x𝑖 ∈ ℝ𝑖𝑛
and y𝑖 ∈ {0, 1}𝑜𝑢𝑡 ,

(𝑥𝑖 , 𝑦𝑖 ) sampled from a data distribution D. The dataset 𝐷 has

𝑚 data samples. The dataset sampling process is not controlled

by either the verifier or the adversary. All hyperparameters of

the training algorithm such as the learning rate (𝛾 ), the model

architecture, batch size (𝑘), loss function (L), and so on, are fixed

during setup as well. The initial model parameters (𝜃0) are sampled

from a well-defined probability distribution over real vectors of

dimension 𝑛, and a number of training steps 𝑇 is also given. The

verifier then chooses a minibatch at each step 𝑡 of the training at

random from 𝐷 . The size of each minibatch is a fixed constant 𝑘 .

The choice of minibatches is captured by a vector r which has 𝑇

elements, one for each training step 𝑡 ∈ {0, . . . ,𝑇 }. Each element

of r is a bitstring chosen uniformly at random from {0, 1}𝑚 with

exactly 𝑘 1𝑠 in it. A 1 in the 𝑖𝑡ℎ bit location means that the 𝑖𝑡ℎ

sample in 𝐷 is selected in the minibatch and 0 means it is excluded.

Therefore, the minibatch used the gradient update at a step 𝑡 is

completely determined by the bitstring r[𝑡].

Tracing Phase. The verifier runs the training algorithm for 𝑇

training steps to obtain an execution trace 𝐸. The training algorithm

is instantiated with the widely used stochastic gradient descent. The

training algorithm takes as input an initial state of model parame-

ters𝜃0 ∈ ℝ𝑛
, a training dataset𝐷 sampled from the data distribution

D, number of training steps 𝑇 , and vector of selector bitstring r
created during setup. It finally learns a model 𝑓𝜃𝑇 : ℝ𝑖𝑛 → {0, 1}𝑜𝑢𝑡
that minimizes the loss L on the training dataset. At a given train-

ing step 𝑡 < 𝑇 , the training algorithm picks the minibatch b𝑡 of size
𝑘 {(x1, y1), . . . , (x𝑘 , y𝑘 )} from the training dataset 𝐷 according to

the vector r[𝑡]. The training algorithm then performs one step of

gradient descent that updates the parameters by minimizing the

loss L as follows: 𝜃𝑡+1 = 𝜃𝑡 − 𝛾 1

𝑘

∑𝑘
𝑖=1 ∇𝜃𝑡L(𝑓𝜃𝑡 (x𝑖 ), y𝑖 ). It con-

tinues updating the model parameters until 𝑇 training steps and

returns the model parameters for all training steps 𝐸 = {𝜃0, . . . , 𝜃𝑇 },
which we call an execution trace. The training algorithm for a fixed

r, hyperparameters, and training dataset 𝐷 is completely determin-

istic. An execution trace 𝐸 depends only on the input r to T as it

determines the sampled minibatches at each step. We thus call r as
the input to T for the purpose of the forgery game.

Forgery Phase. Once the verifier has obtained the execution trace,

it challenges the adversary with a randomly chosen checkpoint

𝑡 ∈ {1, . . . ,𝑇 } . The adversary has access to everything in 𝐸 and

wins the checkpoint forgery game if it outputs a minibatch
ˆb𝑡 ≠ b𝑡

such that the next model parameter state obtained is the same as

in the trace. Specifically, the adversary is asked to output some

ˆb𝑡 ≠ b𝑡 , such that for the given 𝜃𝑡 ∼ 𝐸, the training algorithm 𝑇

produces
ˆ𝜃𝑡+1 and that 𝜃𝑡+1 = ˆ𝜃𝑡+1. The adversary’s advantage is

the probability of winning over random choices of 𝑡 .

This game definition encompasses previous forgery-related at-

tacks [23, 41, 43] when the adversaryA can (1) interact with the ML

Algorithm 1: The one-step forgery game.

Input: Training algorithm T , Training dataset

𝐷 = {(x𝑖 , y𝑖 )𝑚𝑖=1} sampled from a data distribution

𝐷 ∼ D𝑚
, VerifierV , Adversary A, Number of

training steps 𝑇 , Initial model parameters 𝜃0

1 V chooses random indices r ∈ {0, 1}𝑇×𝑚 ;

2 {𝜃0, 𝜃1, . . . , 𝜃𝑇 } ← T (𝜃0, 𝐷,𝑇 , r);
3 V releases to A 𝐸, r;
4 A chooses 𝜃𝑡 ∼ {𝜃0, . . . , 𝜃𝑇−1};
5

ˆ𝜃𝑡+1, ˆb𝑡 = {(x̂1, ŷ1), . . . , } ← A(𝐷, 𝜃𝑡 , b𝑡 ,T);
6 V accepts if 𝜃𝑡+1 = ˆ𝜃𝑡+1 ∧ ˆb𝑡 ≠ b𝑡

system by intercepting the minibatch samples used to obtain the

model parameters 𝜃𝑡+1 (they know the samples used for training)

and (2) substitute the minibatch for a given checkpoint from the

training 𝐷 at a chosen checkpoint 𝜃𝑡 with a different minibatch.

Herewe study the existence of forgery under a givenmodel check-

point and training dataset. We are interested in showing that when

certain conditions are met on a given checkpoint, the adversary

has probability zero of winning the game at that checkpoint.

2.3 Problem Statement

We have defined the existence of forgery under a given model

checkpoint 𝜃𝑡 and training dataset. This implies that the gradient

update rule in the training algorithm is computed with respect to

the same state of model parameters 𝜃𝑡 but on a different set of

samples corresponding to
ˆb𝑡 = {(x̂1, ŷ1), . . . , (x̂𝑘 , ŷ𝑘 )}.

A forgery is possible if 𝜃𝑡+1 = ˆ𝜃𝑡+1 which implies

𝛾

𝑘

𝑘∑︁
𝑖=1

∇𝜃𝑡L(𝑓𝜃𝑡 (x𝑖 ), y𝑖 ) =
𝛾

𝑘

𝑘∑︁
𝑖=1

∇𝜃𝑡L(𝑓𝜃𝑡 (x̂𝑖 ), ŷ𝑖 ) (1)

where {(x1, y1), . . . , (x𝑘 , y𝑘 )} ≠ {(x̂1, ŷ1), . . . , (x̂𝑘 , ŷ𝑘 )}.
The above equation can be simplified since the learning rate 𝛾

and batch size 𝑘 are the same for the forged and original batch.

Note that we can compute the gradients of all of the samples in

the dataset 𝐷 with respect to the checkpoint 𝜃𝑡 . We denote 𝑔𝑖 =

∇𝜃𝑡L(𝑓𝜃𝑡 (x𝑖 ), y𝑖 ) as a gradient computed for the 𝑖𝑡ℎ data point in

𝐷 . The two minibatches b𝑡 (original) and ˆb𝑡 (forged) are different.
Hence, their corresponding bitstrings that determine which samples

are selected from the dataset at a training step are r̂[𝑡] ≠ r[𝑡].
We henceforth drop the script 𝑡 where clear from context, e.g.,

r[𝑡] = [𝑟1, . . . , 𝑟𝑚], 𝑟𝑖 ∈ {0, 1}. We can rewrite Equation (1) as

follows:

𝑚∑︁
𝑖=1

𝑟𝑖g𝑖 =
𝑚∑︁
𝑖=1

𝑟𝑖g𝑖 , (2)

where (𝑟1, . . . , 𝑟𝑚) ≠ (𝑟1, . . . , 𝑟𝑚) and
∑
𝑖 𝑟𝑖 =

∑
𝑖 𝑟𝑖 = 𝑘 .

Equation (2) is further simplified as

𝑚∑︁
𝑖=1

𝑧𝑖𝑔𝑖 = 0, (3)

where the coefficients 𝑧𝑖 = 𝑟𝑖 − 𝑟𝑖 ∈ {−1, 0, 1}. Each gradient vec-

tor has 𝑛 dimensions, g𝑖 ∈ ℝ𝑛
. Using standard matrix notation,

we can write the gradients as columns of a matrix 𝐺 ∈ ℝ𝑛×𝑚
as
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𝐺 = [g1 | . . . |g𝑚], and z = (𝑧1, . . . , 𝑧𝑚)𝑇 , z ∈ {−1, 0, 1}𝑚 to write

Equation (3) as:

𝐺z = 0 (4)

In this paper, we study the question of existence of an assignment

to 𝑧𝑖s that satisfy the equations above.

3 OVERVIEW

We have mathematically defined the problem of forgeries as finding

whether a system of equations such as (4) has solutions. It is worth

asking though what algebraic properties we require to have for the

problem of forgery to be well-defined and have intuitive semantics.

3.1 When is forgery well-defined?

In Equation (4), one would like vector addition to be commuta-

tive and associative, as otherwise unexpectedly the order of the

summation of terms may matter. One can record the order of the

summation along with what elements are selected in the batch

at a training time. This will introduce multiple counter-intuitive

issues. For instance, the definition of forgery will need to state the

order of the terms in the sum. The summation operation is often

paralellized using vector instructions sets supported by hardware,

for which ordering can be unpredictable at runtime. Further, even

trivial forgeries produced by reordering of gradients within the

same minibatch may become possible. Therefore, a mathematical

definition as in Equation (4) would require that the element-wise

addition of the gradient vectors forms an abelian group.

Floating-point addition is not associative [15]. For instance, in

64-bit floating-point precision ( 1
3
+ 1

3
) + 1

4
≠ 1

3
+ ( 1

3
+ 1

4
), as the

two sums differ by a small rounding error 𝜖 ≈ 10
−15

. In light of

this, one can readily see that floating-point numbers with addition

do not define an abelian group and, therefore, exact forgery is not

well-defined therein. Our results, therefore, concern themselves

with exact forgery defined over fixed-point numbers only.

A different approach that prior work has taken to circumvent

this issue is to consider non-exact, so-called approximate forgeries.

Approximate forgeries satisfy the forgery equation (2) only with

some precision 𝛿 , i.e., | |∑𝑚
𝑖=1 𝑟𝑖𝑔𝑖 −

∑𝑚
𝑖=1 𝑟𝑖𝑔𝑖 | | < 𝛿 , where | | · | | is

some vector norm. Prior works have studied such forgeries in the

context of unlearning training data [43], as attacks to slow down

training convergence or hurt the performance of training [41], and

in membership inference attack repudiation [23]. However, this

loose definition of forgery lacks any concrete basis. As the training

process of a neural network is fully deterministic (for a fixed seed),

an honest verifier has no motivation to accept that two minibatches

produce the same gradient updates, unless the updates coincide on

all bits. A verifier can simply reject approximate forgery, unless

the updates are exactly the same. Another rationale for accepting

approximate forgeries is that they may have originated from minor

hardware, library discrepancies, or that they are sufficient for the

application context. However, in Section 6.4 we show that even

when 𝛿 is tiny (e.g., as the above rounding error, 𝛿 = 𝜖), subsequent

training steps will significantly expand it, resulting in clearly ob-

servable differences in model parameters. Therefore, it is futile to

consider approximate forgeries at a single intermediate checkpoint.

Figure 1: Gradient distribution of a parameter in LeNet5 [27]

with respect to the samples in the training datasetMNIST [26]

where the gradients are log(abs(grad)). The distribution

“looks” close to a lognormal distribution as suggested in re-

cent work [5]. But it is far enough from a lognormal distribu-

tion as that a standard Kolmogorov-Smirnoff [31] test fails.

3.2 Challenges

Our work provides the first proofs of unforgeability. Before present-

ing our approach, we present promising approaches we considered

and explain why they do not serve our purpose.

Collisions by chance: A natural question is whether collisions

arise by chance in the gradient updates using SGD. Notice

that the gradients are high-dimensional vectors, as large as

the number of parameters in the model (e.g., LeNet5 [27] has

61, 706 parameters). If we could argue that every gradient

vector has high entropy 𝑒 ≫𝑚, given any fixed sum of the

other gradient vectors, then the probability that Equation

(4) is satisfied for some choice of z is at most

(𝑚𝑘 )2
2
𝑒 , which is

negligible. It would be possible to argue this if the gradient

distributions could be modelled as closed-form probability

distributions. However, this is not the case in practice. Previ-

ous results [5, 44] as well as our own experiments reveal that

the dimensions of the gradient vector definitely have suffi-

cient entropy. The gradient distribution is similar to Laplace

or lognormal, but not exactly the same. We illustrate the dis-

tribution of the gradient on one dimension at one particular

checkpoint for LeNet5 across the MNIST dataset in Figure 1.

We find that the distribution “looks” close to a lognormal,

but it fails to be one as per a standard statistical test [31].

This makes it hard to theoretically argue about any desired

relation between the distribution of the different gradient

vectors.

Integer Coefficients: Another approach is to devise conditions

under which Equation (4) cannot be satisfied, without re-

sorting to properties of probabilistic distributions. One such

condition is when vectors of𝐺 are linearly independent. The

column vectors of 𝐺 are linearly independent if and only if
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they are not expressible as linear combinations of one an-

other, i.e., z ≠ 0, thereby trivially showing unsatisfiability

of system (4). Linear independence is much stronger than

what we need to rule out the possibility of satisfying Equa-

tion (4). Specifically, the values of z are integers {−1, 0, 1}.
Even if some gradient vectors are linearly dependent on

other vectors, it does not imply that there exists an integer

combination of the gradient vectors that adds to 0. Towards
ruling out (4), one could consider doing a milder check, i.e.,

checking whether there exists a non-trivial integer vector

z ∈ ℤ𝑚
that satisfies (4). Unfortunately, this seems as hard as

solving the integer programming problem, which is known

to be NP-hard [11].

Short Vector Solutions: Notice that the set of vectors z ∈ ℤ𝑚

satisfying Equation (4) form an integer lattice with 𝐺 as

the basis. A valid forgery implies the existence of a short

non-zero vector in the lattice, i.e, ∥z∥1 ≤ 2𝑘 . If we can rule

out the existence of such short vectors, we can conclude

that forgery is impossible. This suggests that one can try to

lower bound the size (in 𝐿1 or 𝐿2 norm) of the shortest non-

zero vector in the lattice. Unfortunately, this would require

solving𝑂 (𝑘)-approximate shortest vector problem (SVP) for

the lattice, which is again a hard problem that underpins

several constructions in lattice-based cryptography [17].

The above approaches, though promising, seem to run into in-

compatibility with empirical observations or computational in-

tractability at the outset. There are further issues to consider as

well which we explain in Section 4.3—the algorithms used to imple-

ment the associated checks should work with minimal assumptions

about the algebraic structure of the gradient vector operations. Our

proposed approach, explained next, keeps assumptions minimal

and gives the first practical conditions for checking unforgeability.

3.3 Our Approach

The checks outlined so far are still stronger than what we strictly

need. Recall that forgery is impossible if conditions below hold:

• (C1) 𝑧𝑖 ∈ {−1, 0, 1}, 𝑧𝑖 ∈ z; and
• (C2) 𝐺z = 0 has no non-trivial solution for z.

It is important to note at this point that typically in machine

learning libraries we work with a finite-bit representation of the

real values of the gradients, either floating-point or fixed-point. We

devise a fast condition to check when (C1) and (C2) are not true

if the reals use fixed-point representation. Specifically, addition in

fixed-point precision has desirable algebraic properties (more in

Section 4.3) under two’s complement arithmetic. Our key obser-

vation about arithmetic in fixed-point precision is this: if the sum

or difference of any subset of gradient vectors is 0, then the parity

(exclusive-or) of the least significant bits of those vectors must be 0.

We briefly explain why this is so. Consider any number 𝑥 and its

negative −𝑥 . In two’s complement arithmetic, it is easy to deduce

that the least significant bit (LSB) of 𝑥 and −𝑥 is always the same
1
.

This implies that 𝐿𝑆𝐵(𝑥−𝑥) equals 𝐿𝑆𝐵(𝑥 +𝑥) in two’s complement

arithmetic. This fact holds only for the LSB bit because it is the only

bit that is not affected by carries during the addition operation.

1
Representing −𝑥 is computed as taking the complement of the bits in 𝑥 and adding

one, which implies that 𝐿𝑆𝐵 (𝑥 ) = 𝐿𝑆𝐵 (−𝑥 )

Extending the above observation to vectors, one can see that the

result of adding or subtracting two vectors is simply the addition

or subtraction of values dimension-wise. Thus, for any two vectors

g𝑖 and g𝑗 , the operations (g𝑖 − g𝑗 ) and (g𝑖 + g𝑗 ) result in vectors

that have the same LSB. Condition (C1) encodes that there are only

three operations we can do on the gradient vectors to obtain a

forgery. We can include a gradient vector g𝑖 , include −g𝑖 , or skip
vector g𝑖 in the summation of Equation (3). As discussed previously,

𝐿𝑆𝐵(g𝑖 − g𝑗 ) = 𝐿𝑆𝐵(g𝑖 + g𝑗 ) in each dimension. Thus, one can

now consider the values of 𝑧𝑖 as {0, 1} instead of {−1, 0, 1}, with 0

representing skipping a gradient in 𝐺 and 1 representing including

the gradient (or its negation) in the summation of Equation (4). To

rule out that any +/− combination of gradient vectors in𝐺 sum to

0, one can check that the combinations of 𝐿𝑆𝐵(g𝑖 ) do not sum to 0.

We formally prove that LSB checks are sufficient for unforgeability

of gradients in Section 4.1 and give an illustrative example here.

Example 1. Let us take 3 gradient vectors g1, g2, g3 ∈ ℝ3
com-

puted at some fixed step during training as columns of 𝐺 below.

The next model parameters are updated using a minibatch consist-

ing of first two. So the gradient update vector is Γ = g1 + g2 =

(−1.0, 3.25, 5.75)𝑇 . The goal of forgery is to find another subset

of vectors that sums to the same update vector Γ. In this exam-

ple, however, the gradient vectors are linearly independent and no

other +/− combination results in Γ. We use big parenthesis () to
denote vectors / matrices defined over real numbers and square

brackets [] to denote their fixed-point binary representation to

visually distinguish them below.

𝐺 =
©«
1.0 −2.0 0.25

2.0 1.25 2.0

3.75 2.0 1.0

ª®¬ =

0001.00 1110.00 1111.01

0010.00 0001.01 0010.00

0011.11 0010.00 0001.00


For illustration purposes, the above fixed-point representations

use 4 bits for the integer part and 2 bits for the fractional part. We

then obtain the matrix corresponding the least significant bits of

the gradient vectors as 𝐿𝑆𝐵(𝐺) := [𝐿𝑆𝐵(g1), 𝐿𝑆𝐵(g2), 𝐿𝑆𝐵(g3)]:

𝐿𝑆𝐵(𝐺) =

0 0 1

0 1 0

1 0 0


Our proposed check on the gradient matrix yields that 𝐿𝑆𝐵(𝐺)

matrix is full rank, i.e., no non-trivial solution to 𝐿𝑆𝐵(𝐺z) = 0 exists.
As explained above, when this happens, there are no forgeries

possible for any subset of g1, g2, g3 of size 𝑘 = 2.

In the next section, we present our main theorems for sufficient

conditions of the absence of forgeries.

4 UNFORGEABILITY: PROOF & ALGORITHM

We prove the key result here as Theorem 4.4. It states that no

solutions satisfy the system of equations (4) if no solutions satisfy

the corresponding boolean system of equations defined over their

LSB. Absence of solutions to system (4) implies unforgeability. The

algorithm for checking the conditions of the theorem is the classical

Gaussian elimination over boolean fields (LSB).

4.1 Formal Proofs

We present formal proofs for the claims in the previous section.
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Lemma 4.1. If system (4) has no non-trivial solutions z ∈ ℤ𝑚
, then

forgeries cannot exist.

Proof. Let forgery be defined as the pair of bitstrings (r, r̂)
corresponding to the indices of the minibatch at a training step and,

respectively, the forged minibatch. If (r, r̂) does exist, then z = r− r̂
is a non-trivial solution to (4). Hence, the premise is incorrect. □

Our goal henceforth is to devise algorithms that detect when

the homogeneous system of equations (4) does not have non-trivial

solutions. Before proceeding further, we draw attention to two

points. First, Equation (4) is no longer equivalent to Equation (2) as

we dropped the accompanying constraint

∑
𝑖 𝑟𝑖 =

∑
𝑖 𝑟𝑖 = 𝑘 . Rather,

Equation (4) is more general than (2), thus it provides the sufficient

(and not necessary) condition when forgeries cannot exist. Second,

usually in neural nets 𝑛 > 𝑚, i.e., there are more model parameters

than data points, thus, in such a case, (4) is overdetermined, and

one may expect that no non-trivial solutions to exist.

Theorem 4.2. If the system of equations (4) has no non-trivial

solution for z ∈ ℝ𝑚
then forgeries cannot exist.

Proof. If (4) has no solutions z ∈ ℝ𝑚
then it has no solutions for

z ∈ ℤ𝑚
as ℤ ⊂ ℝ. Then by Lemma 4.1, forgeries cannot exist. □

Theorem 4.2 allows to transfer the problem from integer vari-

ables to reals. Over reals, if for the homogeneous system 𝐺z = 0

the rank equals the number of variables, i.e., if 𝑟𝑎𝑛𝑘 (𝐺) =𝑚, then

the system has no non-trivial solutions, thus leading to absence

of forgeries (4) and cannot have non-trivial integer solutions. This

approach is sound and yields the sufficient condition for absence

of forgeries as long as the 𝑟𝑎𝑛𝑘 (𝐺) =𝑚. However, computing the

rank may be too computationally intensive or impossible all along

(as we will see further). To tackle this problem, we shift once again

the domain, but this time, to booleans.

Consider the system of equations (3) only for the least significant

bits
2
, i.e., shift the domain from reals to booleans:

𝑚⊕
𝑖=1

𝑧𝑖 · g𝑖 = 0, (5)

where ⊕ is exclusive-or (XOR), 𝑧𝑖 are boolean unknowns, and g𝑖
is a boolean vector composed of the least significant bits

3
of the

elements of the original vector g𝑖 . Under the boolean domain, the

exclusive-or (⊕) and logical-and (&) form a field {ℤ2, ⊕,&}.
The next lemma establishes the relationship between solving the

system of equations (5) and equations (4).

Lemma 4.3. If system (4) has a non-trivial solution z ≠ 0, z ∈
{−1, 0, 1}𝑚 , then the system (5) has a non-trivial solution z ∈ ℤ𝑚

2
.

Proof. Let the vector elements be represented using 𝑡 bits of

fractional part precision. Then, we can assume that 2
𝑡g𝑖 ∈ Z𝑚 , and

that g𝑖 = 2
𝑡g𝑖 (mod 2) is a boolean vector. Then

𝑚∑︁
𝑖=1

2
𝑡g𝑖𝑧𝑖 = 0 ,

2
Assume the reals have fixed-point precision.

3
Recall that we consider fixed-point precision, so least significant bit is just the last bit

of the representation of real.

implies that

𝑚∑︁
𝑖=1

2
𝑡g𝑖𝑧𝑖 (mod 2) =

𝑚∑︁
𝑖=1

g𝑖𝑧𝑖 = 0 (mod 2) .

Finally, observe that z is non-trivial, and hence there exists 𝑖 such

that 𝑧𝑖 ∈ {−1, 1}, which implies that z := z (mod 2) ∈ Z𝑚
2
\ {0} is

a non-trivial solution to system (5). □

A corollary of the Lemma 4.3 obtained by stating its contraposi-

tive is the following: If the system (5) has no non-trivial solutions,

then system (4) also has no non-trivial solutions. Lemma 4.1 states

that when no non-trivial solutions to system (4) exist, forgery is

impossible. This immediately gives our main result stated below.

Theorem 4.4. If system (5) has no non-trivial solutions for z ∈ ℤ𝑚
2
,

then forgeries cannot exist.

Theorems 4.2 and 4.4 provide sufficient conditions for unforge-

ability. In both of the cases, the checks reduce to finding if a homoge-

nous system of equations has non-trivial solutions over a particular

domain, either real or boolean. When the system is overdetermined

𝑛 > 𝑚, this is equivalent to showing that the rank of the corre-

sponding matrix of the system equals the number of variables.

4.2 Algorithm

Based upon the findings of Theorem 4.4, we develop an unforge-

ability check called LSBUnforgeability given in Algorithm 2. It

takes as input the model parameters (𝜃𝑡 ), dataset (𝐷), loss function

(L) and a precision 𝛿 . The first step is to check that the dimension

of the model parameters, and consequently gradient vectors, is

larger than the dataset size. We obtain the gradient matrix 𝐺 corre-

sponding to the gradients of all of the samples in 𝐷 with respect to

the parameters 𝜃𝑡 (lines 7 − 10). We require the loss function (the

same as in the training algorithm) to compute the gradients. From

the gradient matrix, we obtain a boolean matrix consisting of the

least significant bit given some specified precision 𝜖 . We specify

the precision amount in Section 6.1, and provide implementation

details of TakeLSB in Section 5 for gradients obtained using the

standard machine learning libraries.

Finally, we call the ComputeBoolRank on the boolean matrix

𝐵. This procedure computes the maximal number of independent

{0, 1}𝑛 column vectors in 𝐵 under the ⊕ operation, known as the

rank 𝑟 . If the rank is maximal, then forgeries cannot exist, so the

algorithm returns 𝑈𝑛𝑓 𝑜𝑟𝑔𝑒𝑎𝑏𝑙𝑒 . If the rank is not maximal then

LSBUnforgeability is inconclusive. To check the rank, we can

reduce the matrix to row echelon form with the classical Gaussian

elimination algorithm. Section 5 gives the implementation details.

4.3 Note on Satisfying Algebraic Assumptions

Both the definition of forgery and our checks for unforgeability

make certain minimal assumptions about algebraic computation

during gradient updates. We explain their role carefully.

Fixed-point numbers form a group but not a field. In fixed-point

precision, the numbers are assumed to have 𝑝 bits for the integer

part, and 𝑞 bits for the fractional part, and in software are usually

represented with integers, 𝑎, 𝑏 ∈ Z. The addition in fixed-point is

defined as modular addition over integers, i.e., 𝑎 + 𝑏 (𝑚𝑜𝑑 2
𝑝+𝑞).

Clearly, addition over fixed-point numbers forms an abelian group.
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Algorithm 2: LSBUnforgeability. The outline of our pro-

cedure to check the condition under which the forgery of

gradients for a given checkpoint and dataset is impossible.

If it returns 𝑇𝑟𝑢𝑒 then forgery is impossible.

Input: The checkpoint 𝜃𝑡 of the model 𝑓𝜃𝑡 , Dataset 𝐷 , Loss

function L, Precision 𝛿 .

Output: {Inconclusive,Unforgeable}
1 𝜙 ← □, 𝑛 ← |𝜃𝑡 |,𝑚 ← |𝐷 |;
2 if 𝑛 ≤ 𝑚 then

3 return Inconclusive;

4 end

5 𝐺 = 𝐸𝑚𝑝𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥 (𝑛,𝑚);
6 𝐵 = 𝐸𝑚𝑝𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥 (𝑛,𝑚);
7 for (𝑥𝑖 , 𝑦𝑖 ) ∈ 𝐷 do

8 𝑔𝑖 ← ∇L𝜃𝑡 (𝑓𝜃𝑡 (𝑥𝑖 ), 𝑦𝑖 );
9 𝐺 [:, 𝑖] ← 𝑔𝑖 ;

10 end

11 for 𝑖 ∈ 1, . . . ,𝑚 do

12 𝐵 [:, 𝑖] ← TakeLSB(𝐺 [𝑖], 𝛿);
13 end

14 𝑟 ← ComputeBoolRank(𝐵);
15 if 𝑟 =𝑚 then

16 return Unforgeable;

17 end

18 return Inconclusive;

Thus, forgery is well-defined with fixed-point precision. On the other

hand, the multiplication is defined as a combination of modular

multiplications and shifts, i.e., 𝑎 · 𝑏 (𝑚𝑜𝑑 2
𝑝+𝑞)/2𝑞 . Unfortunately,

this operation is not associative. For example, in 1-bit fractional

precision ( 1
2
· 1
2
) ·4 ≠ 1

2
· ( 1

2
·4) as 0 ·4 ≠ 1

2
·2. Therefore, fixed-point

arithmetic does not satisfy algebraic axioms of a field. This limits the

algorithms one can reliably use with fixed-point arithmetic when

deducing unforgeability. Consider the standard way of computing

rank, or checking linear independence, of a matrix. A standard

method for finding ranks is Gaussian elimination, but it requires

vector elements to satisfy axioms of a field (or at least a principal

ideal domain
4
). Therefore, one cannot compute ranks directly for

matrices using Gaussian elimination with fixed-point numbers.

Hence, to run the rank algorithms we must specify and make sure

we work with a field.

The least significant bits (LSBs) of fixed-point numbers form a field.

The LSBs form the standard boolean field {Z2, ⊕,&}. Thus Gaussian
elimination can run on LSBs and so we can use our unforgeability

check algorithm to compute the rank.

On other fields in fixed-point precision. It is tempting to define

other finite fields in fixed-point arithmetic so we can use similar

unforgeability checks based on Gaussian elimination. For instance,

by taking the two least significant bits. But then multiplication is

not associative (as pointed out above) and multiplicative inverse

does not exist for every element, hence the axioms of a field do not

hold. Another alternative is to redefine the multiplication (change it

4
The set of fixed-point numbers with addition and multiplication has zero divisors

(e.g.
1

2
· 1
2
= 0) and thus does not form a principal ideal domain.

from a modular) to obtain the finite field 𝐺𝐹 (2𝑝+𝑞), however, then
the same multiplication needs to be used as well during training of

the neural network, thus it may introduce other, potential issues,

e.g., with efficiency. Very few checks satisfy the strong algebraic

requirements highlighted above. Our unforgeability check on LSBs

is one such check, as they allow simple finite field in fixed-precision.

5 IMPLEMENTATION

We implement Algorithm 2 in C++: we start with a reference im-

plementation of Gaussian elimination over booleans, and introduce

a single optimization enhancement by packing bits into 64-bit in-

tegers to speed up addition of rows during row reduction of the

matrix. Our entire implementation is less than 100 lines of code

and it can run on multiple cores
5
. Note that there are more efficient

algorithms for Gaussian elimination over finite fields [30]. We opted

for a standard algorithm due to its simplicity and ease of implemen-

tation, which proved sufficient for the examined datasets. For very

large datasets, the unforgeability check can use more optimized

rank checking algorithms
6
, such as [30] which reports a running

time of 520 minutes on a 10
6 × 106 boolean matrix using 64 cores.

Extracting fixed-point LSB from floating-point. For our evaluation

(Section 6.1), we provide a brief description about taking certain

fixed-precision LSBs of floating-point numbers. Specifically, let us

examine how to extract the 𝑡-bit LSB of a 64-bit float based on the

IEEE format [3], i.e., the float has 1-bit sign 𝑠 , 11-bit exponent 𝑒 , and

52-bit mantissa𝑚 and represents the number (−1)𝑠2𝑒−1023 (1+ 𝑀
2
52
)

or equivalently (−1)𝑠2𝐸 (1 + 𝑀
2
52
). When 𝐸 = 0, as the sign and

the leading 1 play no role, the 𝑡-bit LSB of the number is the 𝑡-

bit of the mantissa (or it is 0 if 𝑡 > 52). Having 𝐸 ≠ 0 is similar,

but first we logically shift the mantissa by 𝐸 positions (to the left

if 𝐸 < 0, otherwise to the right), and then take the 𝑡-bit of the

result
7
. For instance, when 𝐸 = −10, 𝑡-bit LSB of the float is the

𝑡 + 10 bit of the mantissa. Hence, extracting LSBs is straightforward,

and subtraction, logical shift and masking are the only operations

required for its implementation. All of these use two’s complement

arithmetic, as needed for our results to apply.

6 EVALUATION

Our main goal is to evaluate whether our LSB check is conclusive

in practice. Our benchmarks and experimental setup mirror those

of [43] and [24], as our forgery game encompasses prior setups, with

the difference that our definition of forgery is exact, while theirs is

approximate. Our formal results are valid under the well-defined

arithmetic of fixed-point precision, not floating-point. Therefore,

we want to evaluate LSB checks at a fixed bit-precision, but we

also want to measure how the check’s conclusiveness changes with

more samples or with less precision bits. Our aim is to check

whether replacing one checkpoint at an intermediate step with an

approximately forged one leads to divergence, i.e., the subsequent

model parameters are noticeably far from the original trace.

In summary, we aim to answer the following research questions:

5
Our code is available at https://github.com/teobaluta/unforgeability-SGD

6
We were only able to find implementation of this algorithm for a specific HPC

framework, and not in the common languages such as C/C++. As our implementation

was feasible to run, we decide not to switch to the advanced algorithm.

7
When 𝐸 > 0, the leading 1 plays role and should be taken into account.

https://github.com/teobaluta/unforgeability-SGD
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(RQ1) How conclusive is our LSB check under a given precision

using the same experimental setup as prior work?

(RQ2) How conclusive is our LSB check under a given precision

when increasing the dataset size?

(RQ3) What precision is sufficient for LSB checks to be conclusive?

(RQ4) Does approximate forgery at a given training step result

in noticeably different model parameters after continuing

training for more steps, i.e., does training diverge?

(RQ5) Howmuch divergence do rounding errors arising fromfloating-

point arithmetic introduce after training for more steps?

Benchmarks & Experimental Setup. In our experiments, we use

the same as benchmarks as [24, 43]. More precisely, we focus on

LeNet5 [27] with 61, 706 parameters on MNIST [26] dataset, ResNet-

mini [16] with 1, 487, 370 parameters and VGG-mini with 5, 742, 986

parameters on the CIFAR10 [25] dataset. As reference implementa-

tion for LeNet5 we used [34], confirmed through correspondence

with the authors [43]. For the ResNet-mini and the VGG-mini im-

plementation we used as reference the one at [38], i.e., the same

one specified in [24]. For all of these model architectures, we do

not use batch normalization, same as [24, 43]. We use a fixed learn-

ing rate 0.01, and train with batch sizes of 64 for various epochs,

each with some number of training steps (depending on the batch

size and dataset size). Prior work on approximate forgery [43] con-

siders 𝑀 = 400 candidate minibatches, which is what we use in

Section 6.1
8
. To train models, we use NVIDIA GPU 2080X, CUDA

11.7. Furthermore, we ran LSBUnforgeability (Algorithm 2) on

Ubuntu 20.04 box, with 80 cores and 256GB RAM. For the VGG-

mini experiments and experiments with larger sizes of𝑀 , we used

a storage over the network, which added an overhead to our results.

Reproducibility. We train ourmodels using PyTorch 1.13.1+cu117
for GPUs. In PyTorch we use np.float64 floating-point precision

for training. For reproducibility, we avoid using nondeterministic

algorithms for some operations and set a specific seed for our com-

putation [35]. This ensures that under multiple runs on the same

hardware and software stack, we obtain the same gradients and

model parameters when training.

Notations. Gradients are 𝑛-dimensional vectors over reals. To

represent distance (sometimes we call it difference, or error) be-

tween gradients 𝑔1, 𝑔2, we use either 𝐿2 norm, i.e., | |𝑔1 − 𝑔2 | |2 =√︃∑𝑛
𝑖=1 (𝑔𝑖1 − 𝑔

𝑖
2
)2, or 𝐿∞ norm, i.e | |𝑔1 − 𝑔2 | |∞ =𝑚𝑎𝑥𝑖 ( |𝑔𝑖

1
− 𝑔𝑖

2
|).

6.1 Are LSB Checks Conclusive?

If our check does not determine that the matrix is full rank, then

there might exist forgeries. It is reasonable to expect that the least

significant bits of the gradients will not be strongly biased, as the

training process introduces sufficient entropy at least in the LSBs of

the gradients. This in turn will lead to full rank boolean matrix, i.e.,

positive unforgeability check. We check this in our experiments.

From Floating-point to Fixed-point Precision. We convert the 64-

bit floating-point precision gradients (called sources
9
) output by

8
Based on email correspondence with the authors of [43], in Fig. 1 and Fig. 2 in the [43]

paper, the number of batches is 400.

9
Wewant to stress out that we introduce this convention only because wewant to reuse

the floating-point source gradients output by the PyTorch training process (currently,

Epoch Step Time (s) Unforgeable

0 839 22 ✓
1 402 22 ✓
1 447 24 ✓
2 0 23 ✓
2 42 23 ✓
2 194 22 ✓
2 232 23 ✓
2 361 24 ✓
2 481 22 ✓
2 505 23 ✓
2 534 22 ✓
3 187 22 ✓
3 401 22 ✓
3 410 22 ✓
3 722 23 ✓
3 736 22 ✓
4 186 23 ✓
4 217 24 ✓
4 295 23 ✓
4 296 22 ✓
4 610 23 ✓
4 695 23 ✓
4 827 22 ✓
4 936 22 ✓
5 332 23 ✓

Table 1: All 25 evaluated checkpoints for LeNet5 on MNIST

with fixed precision of 26 bits are unforgeable.

PyTorch into fixed-point precision. We consider a high number of

precision bits taken from the source float-point gradients, i.e., 26

bits
10
. This is within the scope of precision required typically for

machine learning training.

Following the procedure used in prior work, we randomly sample

25 checkpoints at different training epochs and steps from the first

5 epochs for LeNet5, ResNet-mini, and, respectively, 5 checkpoints

for VGG-mini. We run LSBUnforgeability on these checkpoints

for𝑀 = 400 candidate minibatches, sampled without replacement.

For efficiency reasons, we run only 5 checkpoints for VGG-mini.

The average running time of the algorithm on the checkpoints is

around 23 seconds on LeNet5 (Table 1), 1291 seconds for ResNet-

mini models (Table 2), and, respectively, 9588 seconds for VGG-mini

models (Table 3). Furthermore, all of these are unforgeable, showing

that the conditions we state in our theorem are satisfied in practice.

(RQ1): The unforgeability check LSBUnforgeability is efficient

(feasible for large neural networks) and effective. It outputs con-

clusively that forgeries are impossible on all evaluated cases.

One may ask what happens if multiple datasets are concatenated,

or if the size of the dataset were larger.We thus additionally consider

larger number of batches𝑀 for LeNet5 on MNIST, and ResNet-mini

on CIFAR10. We find that the tests are conclusive for both LeNet5

it supports only floats), however, if the training had been conducted in fixed-point

precision, the amount of precision bits would have been uniquely determined.

10
In fact, any sufficiently large amount can be taken.
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Epoch Step Time (s) Unforgeable

0 98 1561 ✓
0 259 1202 ✓
0 646 1555 ✓
0 480 1129 ✓
1 84 1408 ✓
1 416 1183 ✓
2 182 1465 ✓
2 249 1449 ✓
2 286 1448 ✓
2 743 1254 ✓
2 750 1124 ✓
3 115 1401 ✓
3 130 1186 ✓
3 215 952 ✓
3 250 1522 ✓
3 261 1266 ✓
3 275 1154 ✓
3 317 1393 ✓
4 714 1423 ✓
4 28 1154 ✓
4 677 1337 ✓
5 74 965 ✓
5 452 1380 ✓
5 541 1319 ✓
5 644 1056 ✓

Table 2: All 25 evaluated checkpoints for ResNet-mini on

CIFAR10 with fixed precision of 26 bits are unforgeable.

Epoch Step Time (s) Unforgeable

1 209 7078 ✓
1 262 9945 ✓
1 257 10254 ✓
3 11 10259 ✓
3 450 10406 ✓

Table 3: All 5 evaluated checkpoints for VGG-mini on CI-

FAR10 with fixed precision of 26 bits are unforgeable.

Architecture 𝑀 Avg. Time (s) Unforgeable

LeNet5

600 45.84 25 / 25

800 91.56 25 / 25

ResNet-mini

600 5810.2 5 / 5

800 8817 5 / 5

Table 4: Even when varying the number of minibatches 𝑀 ,

LSBUnforgeability remains conclusive for both LeNet5

and ResNet-mini at precision 26.

and ResNet-mini at precision 26 when we vary the number of

batches (Table 4).

(RQ2): The unforgeability check LSBUnforgeability is conclu-

sive even on larger sample sizes compared to [43].

6.2 Precision at which LSB Checks are

Conclusive?

One might ask what precision is enough to prove unforgeability

with our LSB check? We focus on scenarios with lower number of

precision bits, that may potentially allow approximate forgeries.

We take 5 different LeNet5 checkpoints and vary the selection of

precision bits from 1 to 24 from the source gradients. In Table 5,

we give the exact ranks of the systems obtained for these 5 check-

points, and gray out the full ranks which essentially correspond to

unforgeability. For each of the 5 checkpoints, none of the systems

for bits below 14 have full rank, i.e., LSBUnforgeability cannot

exclude forgery for such cases. Indirectly, this means that poten-

tial approximate forgeries with precision up to 2
−13

(around 10
−4

in 𝐿∞) are still possible. This range already covers all approximate

forgeries we present in Section 6.4. On the other hand, with around

20-bit precision the checkpoints transition to unforgeable. Hence,

it would be unlikely to produce approximate forgeries with a preci-

sion higher than 2
−21

(around 10
−6
) at any of these checkpoints,

regardless of the technique used to generate them. We cannot com-

pletely exclude the possibility, as carries from the lower (beyond

taken precision) bits may still propagate, however, such carries will

only randomize the LSBs, thus yielding similar, full-rank matrices.

(RQ3): LSBUnforgeability is conclusively finds unforgeability

for precision over 20 bits in all evaluated cases.

Therefore, when interpreting results of approximate forgery

even in fixed-point arithmetic, the precision considered plays a

significant role in determining whether forgery works at all.

6.3 Divergence with Approximate Forgery?

Our next experiments provide evidence that approximate forgeries

at an intermediate step in training leads to large differences in

the final model after training more steps. We argue that while

obtaining a limited precision (e.g., up to 𝛿 = 3 decimals) forgeries at

a particular step is feasible, in subsequent training steps these errors

will once again increase. We test this hypothesis by implementing

the search for approximate forgeries [43].

We randomly sample 25 saved checkpoints for LeNet5, ResNet-

mini and VGG-mini from the first 5 epochs with 𝜃𝑡 model parame-

ters (same ones as in Section 6.1). The target checkpoint that we

want to forge is 𝜃𝑡+1. Then, according to the previously proposed

strategy, for each checkpoint 𝜃𝑡 , we sample𝑀 = 400 forgery can-

didate batches with size 64. Then, we perform one training step

from 𝜃𝑡 using these samples and greedily select the one with the

smallest 𝐿2 and, respectively, 𝐿∞ distances from the target check-

point: 𝑎𝑟𝑔𝑚𝑖𝑛𝑀 | |𝜃𝑡+1 − 𝜃 ′𝑡+1 | |𝑝 , 𝑝 ∈ {2,∞}. Then, to test potential

divergence, we keep training the forged model parameters with the

same data as the target trace. We train for 3, 000 additional steps

for LeNet5 and ResNet-mini, and 10, 000 more for VGG-mini. In

Figure 2, we show for LeNet5 and ResNet-mini that the distance

between the initial and forged models’ parameters increases. For

VGG-mini, the 𝐿∞ difference between the training run and the

forged run initially decreases, but, as with LeNet5 and ResNet-mini,

it eventually diverges (Figure 3). We observe that the larger the

model (number of parameters), the slower the divergence. It takes

about 8, 000 training steps for the 𝐿∞ distance to be greater than
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Bit

1 3121 6794 2727 4422 2542

2 4277 9336 3717 6093 3457

3 5794 12091 5048 8175 4624

4 7645 14882 6708 10657 6108

5 9873 17859 8756 13394 7843

6 12491 20533 11207 16241 9943

7 15105 22588 13848 19127 12306

8 17487 24049 16544 21400 14837

9 19457 24978 18810 23031 17284

10 21224 25342 20720 24206 19417

11 22709 25477 22344 25015 21304

12 23930 25561 23638 25414 22778

13 24785 25594 24547 25565 23991

14 25276 25600 25123 25593 24852

15 25496 25600 25399 25598 25313

16 25581 25600 25518 25599 25539

17 25595 25600 25575 25600 25593

18 25597 25600 25592 25600 25598

19 25599 25600 25598 25600 25599

20 25600 25600 25598 25600 25600

21 25600 25600 25600 25600 25600

22 25600 25600 25600 25600 25600

23 25600 25600 25600 25600 25600

24 25600 25600 25600 25600 25600

Table 5: Even at smaller precision on LeNet5 checkpoints,

our LSB check can determine unforgeability. The grayed out

cells correspond to full rank, i.e., the checkpoints at this bit

precision are not forgeable.

the initial distance, with respect to the forged parameters. This is

due to the gradient descent updates being smaller in magnitude

than the initial error for VGG-mini.

We run one more series of experiments with longer training.

More precisely, we train only LeNet5 (for efficiency reasons) for

17, 000 training steps. The propagation of distance is given in Fig-

ure 4 and we can observe a similar outcome. Therefore, based on

these two experiments (refer to Appendix A for 𝐿2 results), it is

clear that even not-so close approximate forgeries will diverge in

the successive training steps.

(RQ4): Approximate forgeries in floating-point precision eventu-

ally diverge and always result in clearly distinct model parame-

ters by the end of training.

Impact of Larger𝑀 on Forgeries. We check whether increasing

the number of candidate minibatches helps with obtaining better

approximate forgeries. We increase the number of candidate mini-

batches and run the approximate forgery attack for𝑀 ∈ {600, 800}
by sampling without replacement, on all models, including VGG-

mini. When increasing the number of candidate batches, there is

no real improvement in the obtained approximate forgeries, for
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ResNet-mini

Figure 2: The approximately forged model parameters di-

verge after subsequent training of LeNet5 on MNIST and

ResNet-mini on CIFAR10. The solid line indicates the mean

𝐿∞ distance over the 25 checkpoints while the translucent re-

gion indicates the maximum and the minimum 𝐿∞ distance

boundaries for the corresponding architecture.

0 2000 4000 6000 8000 10000
Training steps

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035
L

VGG-mini

Figure 3: The approximately forged model parameters di-

verge after subsequent training of VGG-mini on CIFAR10.

The solid line indicates the mean 𝐿∞ distance over the 25

checkpoints while the translucent region indicates the maxi-

mum and the minimum 𝐿∞ distance boundaries for the cor-

responding architecture.

all evaluated models. At the same time, doubling the number of

batches means that the running time of the attack also doubles.

Specifically, we run the approximate forgery, as in the evaluation

of [43] for 25 checkpoints, to find the best 𝐿∞ norm for LeNet5,

ResNet-mini and VGG-mini for all 𝑀 ∈ {400, 600, 800}. Among

all of the 25 evaluated checkpoints the attacks’ best approximate

forgery among all 25 checkpoints was 1.56 × 10
−4

in 𝐿∞ norm

on VGG-mini when𝑀 = 800. However, increasing the number of

batches did not improve the average 𝐿∞ distance by much, i.e., by

less than 10
−5

. For the largest number of batches𝑀 = 800, the time
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Figure 4:𝐿∞ distance between the forged batch and the benign

training for LeNet5 on MNIST over 5 checkpoints. The solid

line indicates the mean 𝐿∞ distance over the 5 checkpoints

while the translucent region indicates the maximum and

the minimum 𝐿∞ distance boundaries for the corresponding

architecture.

Shuffle Error Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5

(epoch 1, step 100) 4.62e-14 2.83e-04 1.33e-03 1.66e-03 2.33e-03 3.16e-03

(epoch 2, step 100) 2.49e-14 8.25e-04 1.47e-03 1.59e-03 4.27e-03 5.67e-03

(epoch 3, step 100) 3.02e-14 8.93e-04 1.98e-03 4.22e-03 4.88e-03 4.49e-03

(epoch 4, step 100) 3.38e-14 1.12e-03 3.35e-03 3.53e-03 4.73e-03 4.52e-03

(epoch 5, step 100) 4.62e-14 2.13e-03 4.27e-03 3.75e-03 5.86e-03 4.33e-03

Table 6: Even very small differences of 10
−14

(called shuffle

errors) due to the summation order in floating-point produce

divergence over 5 epochs of training.

taken for VGG-mini is 40× larger than for LeNet5 and 2× larger

than for ResNet-mini. We give the detailed results in Appendix B.

6.4 Divergence due to Floating-point Errors?

Recall from Section 4.3 that forgeries are not well-defined for reals

implemented with floating-point precision. We first confirm that

additions of gradients in floating-point lead to non-zero rounding

errors. For this purpose, we run a series of experiments at different

training epochs. At each epoch, we sample uniformly at random a

minibatch of 1024. Then we sum up the gradients in 1000 different

random orders, and check the number of different sums we get.

The final results show that at each of the tested epochs, 1000 out of

1000 sums are different, i.e., each shuffle leads to a distinct sum. The

sums differ on 𝐿∞ errors in the range 10
−12

to 10
−17

. Hence, we can

conclude that even when one considers the same minibatches but in

different summation order, one may not produce this trivial forgery

on all 𝑛 bits. In our experiments, in 100% of the cases, different order

resulted in different values. Thus, in floating-point precision, forg-

eries resist standard definition, rather, they will require at minimum

an additional specification of the order of summation.

We investigate what happens if the above produced errors are

kept small throughout training. If such is the case then one may

argue that approximate forgeries with such precision (i.e., equal on

almost all 𝑛 bits) should be accepted as valid under the premise that

the errors may have originated from minor hardware or library

discrepancies. To test the propagation of small errors, among all

of the previously generated potential pairs of sums, we sample

a random pair at 5 different checkpoints. For each pair, we pro-

duce the resulting parameters (at the sample epoch/step), and then

train independently each of them for 5 additional epochs on the

same randomly sampled minibatches of size 1024. At the end of

the training, we compare the differences between the final parame-

ters, i.e., we compute the 𝐿∞ norm between the parameter vectors.

The results at different training epochs are presented in Table 6.

We can see that the small initial errors (differences between the

parameters), quickly expand and even after the first training epoch

(around 1000 training steps) become pronounced, large errors. This

means that even if we consider very close approximate forgeries

(as close as a rounding error produced during floating-point addi-

tion), the subsequent training process will rapidly expand the small,

initial difference and the almost identical pair of parameters pro-

duced by the approximate forgery will diverge into clearly distinct

parameters. Therefore, based on these experiments, we can make

two key observations. First, approximate forgeries clearly lead to

distinguishable final output models in training, and therefore, are

ill-suited for use in formal definitions. Second, even exact forgeries

in floating-point precision diverge due to rounding errors of addi-

tions. Additionally, we have shown that small errors introduced

due to hardware and library discrepancies lead to clear parameter

discrepancies after a few rounds of training.

7 DISCUSSION

In this paper we have argued for refining the definitions of forge-

ability, irrespective of applications and datasets. Next, we discuss

the setup limitations, and the complexity of the proposed test.

7.1 Limitations

Our tests were conclusive for all of the experimental setups con-

sidered in prior work. These setups assume that the adversary is

constrained to use samples from the dataset that the ML trainer has

released for verification. The ML trainer and the verifier are honest,

and the adversary can only modify the choice of minibatches from

the fixed dataset at a training step (see Section 2.2). This is a post-

deployment adversary, that aims to construct forged gradient up-

dates for data samples after the execution traces and their logs have

been released. If the adversary can modify the dataset, then they

could form
ˆb𝑡 from samples outside of the training dataset such as

synthetically generated samples [46], or sampling more points from

the distribution, until the test fails. Despite recent works proposing

adversaries that synthesize data, there is no evidence that such

attacks are possible at a higher precision (not approximate) [10].

Moreover, these attacks should be efficient enough to be mounted

for every instance where a data point is used, not just one training

step (whereas verifying impossibility for one is enough). Without

breaking the requirement that the test be run with respect to a

dataset, we can ask how often is the test conclusive if one were to

consider a larger dataset. We evaluate this in Section 7.2.

A pre-deployment adversary, on the other hand, can manip-

ulate both the training hyperparameters and the dataset. A more
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powerful test is required, one that does not assume that the ad-

versary cannot manipulate the setup phase. The verifier therefore

can only check that the update is valid, i.e., given some minibatch

ˆb𝑡 ≠ b𝑡 , the model parameters
ˆ𝜃𝑡+1 satisfy the forgery condition

𝜃𝑡+1 = ˆ𝜃𝑡+1. In theory, such an adversary can construct a valid exe-

cution trace that is unforgeable with respect to𝐷 , but forgeable with

respect to a trace obtained from a different dataset and hyperparam-

eters. Formal statements about the existence of such adversaries at

high precision would unlock more practical applications that rely

on proof-of-learning logs [22].

One limitation of our check is that it works under the condition

that the size of the datset is less than the model parameters, which

is typically the case for many deep learning models and datasets.

Howver, future unforgeability checks can consider the scenario

where the number of model parameters is less than the dataset size,

and design checks that are conclusive. These scenarios might be

more relevant to large language models, such as a T5-base trans-

former model [37, 39] (around 220 million parameters
11
) trained

the C4 crawl dataset (estimated at 365 million records) [8, 37].

7.2 Theoretical Complexity

Attacks proposed in [43] that find approximate forgeries (greedy)

search the space of minibatches with the smallest distance in pa-

rameter space to the targeted model parameters. Instead, one can

try running such search algorithm until an exact forgery is found,

if one wants to utilize them to answer the decision problem of

forgeability. However, as our evaluation points out, there might

not be a solution for exact forgery, in which case the search would

exhaust all possible

(𝑚
𝑘

)
minibatches to decide that there is no so-

lution. Our test is rank computation whose worst running time is

O(𝑛 ·𝑚2) where 𝑛 and𝑚 are the number of model parameters and,

respectively, the dataset size. The computational difficulty of other

search procedures when exact forgery is possible is unknown; we

briefly alluded to these approaches in Section 3.2.

8 RELATEDWORK

Approximate Forgery & Applications. Prior work has shown that

different minibatches can produce similar model parameters us-

ing SGD, with direct implication to applications such as unlearn-

ing, proof-of-learning, and membership inference tests. A recent

work [43] argues that approximate unlearning is not refutable or

auditable because forgery of minibatches that contain the to-be-

unlearned samples (say x) is possible. This implies that we could

have obtained a similar model parameter state had we used a dif-

ferent minibatch (without x) from the training dataset. Thus, one

cannot distinguish whether these execution traces correspond to

the training dataset with the x samples. Another recent work [24]

proposes using approximate forgery for repudiating membership

inference tests. In this application, the authors have considered

forging multiple checkpoints throughout the training process in

order to find similar execution traces for 𝐷 and 𝐷 −x. The resulting
models have similar parameters up to some error in vector norms

due to forging at multiple checkpoints. On these models, member-

ship inference attacks are not able to distinguish whether x has

11
https://github.com/google-research/text-to-text-transfer-transformer/blob/main/

released_checkpoints.md#t511

been used. We motivated forgery using the proof-of-learning logs

introduced in [22], which allows a verifier or a third-party auditor

to check that 1) the computation was done over a given dataset and

2) that all the steps of the computation have been done correctly to

obtain a final set of parameters. The verifier asks the ML owner /

adversary to produce a sequence of batch indices and intermediate

model updates such that starting from the initialization one can

replicate the path to the final model parameters. Their proposed ap-

proach is to select only a subset of checkpoints to verify the model

parameters for. However, there is no guarantee that an adversary is

not able to forge the minibatch (find a different from the one used

by the model owner) to produce the desired model parameters via

SGD. In light of our results, we argue that one should consider exact

forgery under fixed-point precision, since white-box verifiers are

able to examine the forgery under all available precision, whereas

previously demonstrated forgeries (i.e., with different samples) have

as high an approximation error as 10
−3

(in 𝐿∞). Such approxima-

tion errors in forgeries are much higher than ones that could be

attributed to floating-point errors—which we evaluated to introduce

differences of the order of 10
−14

. In addition, [43] describes forgery

under other setups, e.g., when one considers similar datasets to the

one used for training or where the initial model parameters are not

the same, i.e., not forgery at a checkpoint but rather across multiple

training steps at a time. These proposed problems are beyond the

scope of our results but are interesting future work.

Algebraic Precision. Our work highlights the role of algebraic

precision in specifying properties and drawing refutable conclu-

sions about experimental observations about training with SGD.

This issue is shared with other prior works that are not concerned

with forgery as well. For instance, data reordering attacks on SGD

distort the training execution trace to an adversary’s advantage

(e.g., longer convergence times, drop in task performance) [41].

These attacks use alternative minibatches from the same dataset

reshuffled or reordered to produce similar but different model pa-

rameters after some training steps. In our experiments, we also

show that it is possible to obtain this type of training divergence

under minibatch reshuffling to change the training execution trace

because of floating-point errors that propagate (Section 6.4). We

pinpoint that these phenomena are due to the non-associativity of

floating-point computations. If one did not have the exact order

they would not be able to reproduce the execution trace of the

training algorithm. This observation is also related to the problem

of reproducibility in machine learning research which has been

a known issue in creating artifacts [33, 35, 42]. To this end, our

approach works under fixed-point precision, where additions have

the required algebraic properties such as associativity and commu-

tativity. There is on-going research into making training available

in lower or fixed-point precision [14]. Quantization techniques

are commonly used to accelerate inference of deep learning mod-

els but these do not apply to our setup since the gradient update

computation is still being done in floating-point [19, 20] or in bifur-

cation/mixed precision (both floating-point and 8-bit integer) [4].

Other techniques propose complete fixed-point precision training

pipelines that achieve good task performance [7, 13, 29]. On the

other hand, these errors that accumulate because of choosing a

different order of samples during SGD introduce some noise that

https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511
https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511
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helps making training data less “distinguishable”. This is in line

with recent work on repudiating membership inference attacks

using approximate forgery [23, 24] but other types of noise have

been purposefully added to the gradient computation to add pri-

vacy. For instance, it is common to add Laplace or Gaussian noise

to gradients in order to achieve differential privacy [1]. Noise is

also added to gradients in order to defend against bias attacks in

inverting gradients [2, 9].

Finding Pre-images for Neural Networks. Our work considers

finding collisions in the gradient update step due to freedom of

choosing the minibatches in training. There has been research in

understanding collisions at inference time rather than during train-

ing, for instance, when two different inputs produce similar [28]

or the same activations or logits with a given ML model [32]. The

problem of exact forgeries in this paper is that of finding a second

pre-image in gradient descent, whereas prior work on gradient

inversion considers the problem of finding any pre-image—finding

the input to the model from the gradients [48]. Without bias in

the model architecture, one work shows that recovering input data

points can be uniquely determined from the gradients [9]. More

advanced gradient inversion techniques deal with different types

of neural networks [12, 21, 47]. Gradient inversion considers recov-

ering the input data sample that results in a given gradient vector.

However, recovering the set of data samples used in a minibatch

given a gradient update vector has yielded much lesser success thus

far, though attacks exist [18, 45].

9 CONCLUSION

In this paper, we identified mild and sufficient conditions under

which gradient updates at one step of standard SGD training are

unforgeable. Ours is the first result on proving unforgeability to

the best of our knowledge. We found that these conditions are

satisfied for the same benchmarking setup as prior work, i.e., single-

step forging is not possible for LeNet5 and ResNet-mini neural

networks on MNIST and CIFAR10, respectively. Our work explains

that algebraic precision plays a crucial role in making refutable

claims about model comparison. We believe these aspects matter

practically to forgery-based security arguments and beyond.
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A DIVERGENCE RESULTS

We ran the approximate forgery [43] to select batches (𝑀 = 400)

that minimize the 𝐿2 norm for both ResNet-mini and LeNet5 on

CIFAR10 and MNIST, respectively (Figure 5). We observe the same

trend for the 𝐿2 norm as we did for the 𝐿∞ norm. The training di-

verges in 𝐿2 norm in less than 100 training steps. This suggests that

approximate forgeries are detectable for a verifier that compares

the benign training and the forged run. In Figure 6, we demonstrate

that with extended training of LeNet5 on MNIST, the divergence

(in 𝐿2) keeps increasing. This suggests that a single approximate

forgery determines a significant change in the model parameters

for subsequent training steps.

https://github.com/cleverhans-lab/Forging
https://github.com/cleverhans-lab/Forging
https://pytorch.org/docs/1.13/notes/randomness.html?highlight=reproducibility
https://pytorch.org/docs/1.13/notes/randomness.html?highlight=reproducibility
hhttps://www.reuters.com/legal/sarah-silverman-sues-meta-openai-copyright-infringement-2023-07-09/
hhttps://www.reuters.com/legal/sarah-silverman-sues-meta-openai-copyright-infringement-2023-07-09/
https://github.com/nikhilbarhate99/Image-Classifiers
https://github.com/nikhilbarhate99/Image-Classifiers
https://arxiv.org/abs/2203.17189


Unforgeability in Stochastic Gradient Descent CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Archictecture 𝑀 Time (s)

𝐿∞
(Avg, Max, Min)

Avg. 𝐿2
(Avg, Max, Min)

LeNet5

400 205.58 (6.62e-04, 1.16e-03, 3.12e-04) (9.43e-03, 2.21e-02, 8.42e-04)

600 165.85 (6.38e-04, 1.11e-03, 3.12e-04) (9.26e-03, 2.10e-02, 7.09e-04)

800 206.21 (6.23e-04, 1.02e-03, 1.56e-04) (9.10e-03, 2.33e-02, 4.93e-04)

ResNet-mini

400 2010.92 (1.55e-03, 2.28e-03, 3.12e-04) (3.21e-02, 5.12e-02, 1.94e-03)

600 2817.59 (1.51e-03, 2.28e-03, 3.12e-04) (3.16e-02, 5.12e-02, 1.91e-03)

800 3768.89 (1.48e-03, 2.23e-03, 3.13e-04) (3.13e-02, 5.18e-02, 1.93e-03)

VGG-mini

400 4314.00 (6.62e-04, 1.16e-03, 3.12e-04) (9.43e-03, 2.21e-02, 8.42e-04)

600 6711.57 (6.38e-04, 1.11e-03, 3.12e-04) (9.26e-03, 2.10e-02, 7.09e-04)

800 8489.83 (6.23e-04, 1.02e-03, 1.56e-04) (9.10e-03, 2.33e-02, 4.93e-04)

Table 7: The approximate forgery attacks onlymarginally im-

proves with increasing the number of candidate minibatches

(𝑀) considered from 400 to 800. The time represents the total

time to load the model, sample the minibatches and pick the

best update for all 25 checkpoints considered.

B APPROXIMATE FORGERY SCALABILITY

We ran approximate forgery [43] procedure and selected a larger

number of batches, i.e.,𝑀 ∈ {400, 600, 800}. Our aim was to evalu-

ate if the approximate forgery attack can find minibatches which

result in closer model parameters in 𝐿∞ distance. We find that the

improvement is marginal for all of the evaluated models (MNIST,

ResNet-mini and VGG-mini), while the time taken doubles as the

batch size also doubles (Table 7).
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