
Compiler Toolchains for Deep Learning Workloads
on Embedded Platforms

Anonymous Author(s)
Abstract
As the usage of deep learning becomes increasingly popular
in mobile and embedded solutions, it is necessary to convert
the framework-specific network representations into exe-
cutable code for these embedded platforms.
This paper starts with a survey and benchmark of the avail-
able open source deep learning compiler toolchains, which
focuses on the capabilities and performance of the toolchains
in regard to targeting embedded microcontrollers that are
combined with a dedicated accelerator in a heterogeneous
fashion.
The second part focuses on the implementation and eval-
uation of a compilation flow that targets such a solution
and reuses one of the existing toolchains to demonstrate the
necessary steps for hardware developers to build a software
flow for their product.
CCS Concepts: • Computing methodologies → Artifi-
cial intelligence.
Keywords: deep learning, embedded, deep learning com-
piler
ACM Reference Format:
Anonymous Author(s). 2020. Compiler Toolchains for Deep Learn-
ingWorkloads on Embedded Platforms. In Proceedings of Burlingame
’21: First International Research Symposium on Tiny Machine Learn-
ing (tinyML) (Burlingame ’21). ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
As AI is moving to the edge, the limitations of the popular
deep learning frameworks in regard to embedded platforms
become apparent. These frameworks are mostly designed for
the server and workstation use and incorporate many fea-
tures that are not relevant for the inference on low power de-
vices. This prevents them from running on microcontrollers
and other embedded devices.
Due to this, the deployment of deep learning models on
embedded devices typically relies on the manual implemen-
tation of the previously trained network. The developers
have to implement the required layer types, preferably using
the vendor-optimized math kernel libraries of the platform.
This process is labour-intense, error prone and can easily

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Burlingame ’21, March 22, 2021, Burlingame, CA
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

result in inferior performance due to missing optimizations.
In addition, the support of new platforms can result an ex-
tensive effort as the function kernels might need to be reim-
plemented for them.
The necessary effort increases even further if custom dedi-
cated deep learning accelerators are employed. Due to their
use of domain-specific instruction sets, which often utilize
longer pipelines that cover common neural network sub-
patterns, these accelerators cannot be easily targeted by
standard compiler toolchains. Compiler backends for such
devices can be difficult to implement due to the coarse-
granularity of the accelerator instruction set architectures.
A solution to automate these tasks are deep learning compil-
ers. These toolchains operate similar to standard compilers,
but introduce a number of important peculiarities: Instead
of handwritten source code, deep learning compilers process
serialized trained neural network descriptions. Additionally,
they are able to automatically employ the optimized math
kernel libraries or alternative optimizations of the function
kernels. A benefit of employing domain-specific compilers is
the option to introduce additional optimizations that target
deep learning models. Typical optimizations are layer fusion
or general network graph optimizations and quantization
schemes. Lastly, these toolchains are able to target hetero-
geneous platforms and dedicated accelerators by employing
runtimes on the target devices. These runtime take care of
the scheduling and additional support operations that are
necessary as well as the deserialization of the compiled net-
works.
This paper will start with an overview of the available opti-
mizations and math kernel libraries for deep learning work-
loads on embedded platforms. These should be incorporated
by the compiler toolchains. The following sections will cover
a survey of the compiler features and the achieved perfor-
mance on different embedded and low-power platforms,
while the last part of the paper contains the implementa-
tion of a compilation flow for a new custom target.

2 Related Work
Two recent studies focus on the employed techniques and
the use with with FPGA platforms [49], as well as an in-
depth overview over the different approaches for common
problems of the available deep learning compilers [30]. In
contrast to these publications, this work focuses on embed-
ded platforms. In addition to the survey and benchmark
a compilation toolchain for a new device has been imple-
mented. This was done to demonstrate the steps that are
currently required to support custom accelerators with a
software stack.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Burlingame ’21, March 22, 2021, Burlingame, CA Anon.

2.1 Deep Learning Optimizations
Deep Learning toolchains can employ a multitude of domain-
specific optimizations in addition to standard compiler opti-
mizations. These include weight pruning, which cuts redun-
dant and unnecessary weights from the networks to reduce
its size and - depending on the implementation - the com-
pute workload. While a wide range of pruning algorithms
exist, none of them are currently employed by deep learning
compilers [4, 29, 41, 47].
In contrast, quantization schemes are employed bymost deep
learning compilers. This optimization converts the floating
point representations for weights, intermediate results and
outputs into fixed-point formats, while mostly keeping the
accuracy of the original network. This enables the network
to take up less storage and reduces its bandwidth require-
ments during the execution as well as the computational
intensity, if optimized function kernels for the quantized
representations exist [23, 25, 32, 42, 48].
Additional strategies include optimizations on the neural
network graph like layer fusion, dead node elimination and
others [27, 43].

2.2 Math Kernel Libraries
Math kernel libraries are away to provide developerswith op-
timized function kernels for common operations, increasing
the efficiency of software solutions that employ them, while
decreasing the redundancy of implementations. They are typ-
ically platform-specific and provided by the device-vendors1.
Table 1 presents an overview of the supported platforms per
library. These libraries differ largely in their implementation
strategies and offered functionality. While all libraries pro-
vide function kernels, their implementations follow different
approaches: ARM CMSIS-NN [26] and Nvidia cuDNN [11]
mostly resort to a low number of kernels that deliver consis-
tent performance across the majority of the configuration
space. Solutions like Intel’s oneDNN2 [14] library implement
most operations with multiple different strategies, based on
the available instruction set extensions, data types and the
layer configuration. oneDNN then selects the best suited
function kernel at runtime3. While this strategy can be able
to achieve better performance in certain edge cases, it re-
quires much more maintenance and implementation effort
compared to the more general function kernels.

2.3 Deep Learning Accelerators
In recent years plenty of deep learning accelerators emerged
in commercial and research applications. Commercial accel-
erators for embedded platforms include the NVDLA from
Nvidia [36], Google’s EdgeTPU [5] as well as ARM’s Ethos-U

1Efforts for device-independent solutions exist as well, but have not
found the same rate of adaption, e.g. XNNPack [19]

2previously known as MKL-DNN
3only for its x86_64 CPU backend
4only supports GAP processors[17] from Greenwave technologies
5experimental, JIT approach implemented by Fujitsu[31]
6Intel GPUs only, no JIT solution, static instead
7OpenPower & IBM Power, both experimental, no JIT
8also experimental, no JIT

Table 1. Overview over the available math kernel libraries
and their supported platforms

Co
rte

x-
M

RI
SC

-V

A
RM

64

x8
6_
64

CU
DA

O
pe
nC

L

Po
w
er
PC

O
th
er
s

CMSIS-NN[26] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

PULP-NN[18] ✗ ✓4 ✗ ✗ ✗ ✗ ✗ ✗

cuDNN[11] ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

MIOpen[24] ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

oneDNN[14] ✗ ✗ ✓5 ✓ ✗ ✓6 ✓7 IBMz8
XNNPack[19] ✗ ✗ ✓ ✓ ✗ ✗ ✗ x86,

ARMv7
+NEON

NPU [2]. Most of these solutions employ custom compila-
tion toolchains that are limited to support of only one deep
learning framework for its input formats.
Research platforms include the Eyeriss accelerators (v1, v2)
[8, 9], VTA [35] as well as a many FPGA-based solutions [40].
These typically do not focus on the software toolchain and
explore novel architecture approaches instead.
FPGA deep learning high-level synthesis frameworks are
also mentioned here as they represent a mixture of deep
learning compilers and accelerators. These frameworks syn-
thesize FPGA overlays from the deep learning models that
are able to execute them [46].

3 Survey & Benchmark
The survey section of the paper covers open source projects
that are still in development. Its focus lies on the inference of
deep learning models on embedded hardware. The support
for the training step will not be evaluated as it is uncommon
to execute it on the embedded device itself.
The evaluated deep learning compilers are TensorFlow Lite
(TFLite) [44], TensorFlow XLA (TF XLA) [45], Glow [39],
TVM [7], ONNC [33] and nGraph [15], which has been tested
as part of Intel’s openVINO toolkit.

3.1 Common Strategies
All evaluated toolchains follow the typical compiler struc-
ture. The frontend converts the serialized pretrained models
into its high-level intermediate representation (IR). Most
toolchains utilize a two-level IR: The high-level IR is a graph-
level representation of the compiled model and the low-level
IR describes the operations on the tensor level. The graph-
level IR is typically used for target-independent optimiza-
tions and operator fusion. The tensor-level IR is used by the
backend to optimize the individual layers for the designated
target device.
One exception is TFLite, which does not perform target-
dependent optimizations at the compilation stage. Instead,
its compiler (TFLite converter) generates a graph-level rep-
resentation, that does not contain execution details, as the
device-specific function kernels are part of the runtime. This

Compiler Toolchains for Deep Learning Workloads on Embedded Platforms Burlingame ’21, March 22, 2021, Burlingame, CA

allows for a better portability of the compiler output across
devices, but prevents more target-specific optimizations at
the offline compilation stage.
The majority of the evaluated toolchains employs a runtime9,
which needs to be present on the target device to execute
the compiled neural network. The functionality of the run-
time differs between projects. All runtimes provide support
infrastructure to unpack the compiled neural networks and
an API for the integration into the user program. Solutions
like TFLite and ONNC deliver the operation execution strate-
gies for the platform as part of the runtime. Glow and TVM
utilize the runtime for heterogeneous targets and in addi-
tion TVM requires the runtime for data collection during the
auto-tuning step. TVM delivers function kernels that have
been generated by its Auto-tuner in a separate file alongside
the model description.
The main difference between the evaluated projects is the
provisioning of the function kernels. Most solutions utilize
handcrafted implementations that integrate math kernel li-
braries. This requires maintenance and updating of imple-
mentations for each layer type across all supported plat-
forms10. To circumvent these limitations, TVM employs an
Auto-Tuning solutions which tries to find the best suited
function kernels by using an AI-guided flow that incor-
porates measurements and estimations of execution times
on the real target. Glow bypasses all of these problems by
reusing the same generalized function kernels across all tar-
gets, where its target-dependend optimizations are only ap-
plied by the standard compiler backend for general purpose
targets.

3.2 User Accessibility
The user accessibility mostly depends on the user interface
of the offline compiler stage, the integration of the compiler
output into the target application and the supported input
formats.
For the supported frameworks and formats, ONNX[37] is the
most important as it is an industry standard and converters
from most frameworks exist. See table 2 for an overview
of the supported formats and frameworks of each compiler
toolchain.
All compiler stages either support a command-line interface,
like traditional compiler toolchains, or the use through a
Python API, which allows for the integration in the original
training script of the deep learning model. One exception is
Intel’s openVINO that provides an additional graphical user
interface through a web-interface [21]. This enables more
direct feedback to the developer on the impact of different
optimizations on the overall model performance.
For the integration in the user application, all toolchains pro-
vide a C or C++ API. TVM and TFLite provide an additional
Python interface through their standard runtimes11.

9The only exception that never uses a runtime is TensorFlow XLA,
Glow’s AOT flow for CPUs does not require a runtime on the target

10TFLite, ONNC and others employ this strategy
11TFLite provides an additional runtime for microcontrollers, which

does not come with a Python API

Table 2. Overview of the supported deep learning frame-
work formats.

D
L
Fr
am

ew
or
k

TV
M

TF
Li
te

TF
XL

A

Gl
ow

O
N
N
C

op
en
VI
N
O

ONNX[37] ✓ ✗ ✗ ✓ ✓ ✓

TensorFlow[1] ✓ ✓ ✓ ✗ ✗ ✓

TensorFlow Lite flatbuffer ✓ ✓ ✗ ✓ ✗ ✗

PyTorch[38] ✓ ✗ ✗ ✗ ✗ ✗

MXNet[6] ✓ ✗ ✗ ✗ ✗ ✓

Caffe[34] ✓ ✗ ✗ ✓ ✗ ✓

Keras[12] ✓ ✓ ✓ ✗ ✗ ✗

3.3 Supported Platforms & Extensibility
The range of supported platforms varies between the evalu-
ated toolchains. In addition, the level of optimization for the
supported platforms fluctuates widely. One such example is
TFLite’s support of the x86_64 platform: While its runtime
can be compiled for it, the function kernels are not optimized,
resulting in worse performance compared to other platforms
or compilers.
For TF XLA no conclusive information about its support for
different architectures could be found, as the official docu-
mentation and publications contradict each other [20, 28].
The support for bare-metal use cases and embedded proces-
sors is much less common, as only TFLite, ONNC and Glow
are able to target Cortex-M CPUs. For an overview of the
supported platforms see table 3.
While all toolchains include some kind of support for het-
erogeneous platforms, the implementation differs between
them. The most complete solution has been implemented by
TVM in its Bring-Your-Own-Codegen (BYOC) flow [10], that
allows developers to target new libraries and accelerators
from TVM’s high-level IR. It does not only provide an API
to include new backends, it also supports the developer by
implementing solutions for common problems, like the CPU
fallback for unsupported operations, an infrastructure for
custom operator fusion rules and the option to change the
data layout of tensors. Most other toolchains only supply a
simple API and require the developer to reimplement many
of these tasks.
A stark contrast to TVM is TFLite. Its compilation stage does
not provide an interface for the inclusion of additional target-
specific tasks and optimizations. New platforms are targeted
by porting the runtime to them and deploying optimized
function kernels with it. As this flow only allows the target-
ing of general purpose hardware, its support for the currently
available accelerators has been realized by additional tools.
These modify the flatbuffer file, which has been generated
by the offline compilation stage, before it can be executed on
the accelerator platform inside a modified runtime [3, 13].

Burlingame ’21, March 22, 2021, Burlingame, CA Anon.

This approach breaks the portability of TFLite’s flatbuffer
files and requires additional work to keep these tools com-
patible with the current scheme of the TFLite flatbuffer files.
Some compiler toolchains like Glow, which reuse LLVM’s
backends12 can easily target new architectures, if an LLVM
already exists. In that case Glow’s AOT compilation mode
can be reused, if other targets need to be supported, a sep-
arate runtime needs to be used and the AOT flow can no
longer be utilized.

Table 3. Overview of the supported hardware by compiler
toolchain.

Hardware TVM TF Lite TF XLA Glow ONNC openVINO
x86_64 ✓ ✓ ✓ ✓ ✓ ✓

Cortex-A ✓ ✓ ?13 ✓ ✓ ✗

Cortex-M ✗ ✓ ?13 ✓ ✓ ✗

GPU ✓ ✗ ✓ ✗ ✗ ✗

(CUDA)
GPU ✓ ✓ ✓ ✓ ✗ ✓

(OpenCL)
Bare-Metal ✗ ✓ ?13 ✓ ✓ ✗

DLA ✓ ✓ ✓ ✓ ✓ ✓

3.4 Features
For the embedded use case, the AOT compilation and quanti-
zation support are the most important compiler features. For
the optimal execution on the target devices, the toolchains
should be able to incorporate math kernel libraries or auto-
tuning to provide optimal function kernels for the execution.
Features like support for the backpropagation and training
steps are not as important for embedded devices (yet) and
are only supported by TF XLA, Glow and openVINO as they
mostly target HPC and cloud applications.
For the optimization of the layer execution TFLite, ONNC
and openVINO rely on math kernel libraries, while Glow
utilizes the same set of generalized function kernels across
all targets, only utilizing the LLVM backend optimization
steps. TVM is the only evaluated toolchain that employs
an auto-tuning process to find good performing function
kernels automatically.
All toolchains except TVM only implement a limited number
of static quantization schemes with fixed bit-widths for inter-
mediates and weights. This is a limitation for the targeting
of devices that employ different schemes in their hardware
implementation. TVM has implemented a more flexible quan-
tization system, that offers different sizes and requantization
strategies. However, it is more difficult to configure it cor-
rectly and to find a suitable accuracy compared to the other
solutions.

12for its AOT flow
13inconclusive data

3.5 Performance
The performance was tested on an ARM Cortex-M55 fast
model14, an Cortex-A7215 and a Intel Celeron J190016. All
of these platforms provide a SIMD vector extension and
have been tested with the same simple MNIST test network,
consisting of convolutional, fully connected, ReLU and max-
imum pooling layers. The batch size has been set to one and
the final activation function has been removed after training,
as it is common in embedded applications.
The Cortex-M55 could only be targeted by TFLite17 and

2.58

2.90

3.00

2.3 2.5 2.7 2.9 3.1

TFLite (micro)

ONNC (Release)

ONNC (Debug)

Million

Instruction Count

Figure 1. The instruction counts for a single inference that
have been estimated by the Cortex-M55 fast model.

ONNC18. While Glow is able to target Cortex-M CPUs, it was
not able to support the novel instruction set of the platform
(ARMv8.1M). The testing showed that TFLite required less
instructions to complete an inference run (2.6M instead of
3M instructions, see figure 1), while ONNC allocated signifi-
cantly less memory (1.6 KiB instead of 3 KiB. See figure 2 for
details).

3,138

1,561

1,564

0 500 1,000 1,500 2,000 2,500 3,000 3,500

TFLite (micro)

ONNC (Release)

ONNC (Debug)

Peak Memory Allocation

Figure 2. The peak allocations of RAM and ROM for the
available toolchains during a single inference (batch size =
1).

The next test platform was the Cortex-A72. ONNC could not
14as no hardware was available at the time of testing
15using a Raspberry Pi 4 with 4GB of system memory
16using 8GB of DDR3 system memory
17using its micro-runtime
18using a special Cortex-M version of the toolchain

Compiler Toolchains for Deep Learning Workloads on Embedded Platforms Burlingame ’21, March 22, 2021, Burlingame, CA

1.77

3.84

0.91

0.47

6.51

0.41

1.79

0.75 0.46 0.37

1.66

2.93

0.68 1.01
0.68 1.01

2.15

9.81

1.08

6.56

4.15

1.71

0

2

4

6

8

10

G
low

 (float)

G
low

 (quant)

TVM
 (float)

TVM
 (quant)

TVM
 (A

utoTVM
, float)

TVM
(AutoTVM

, quant)

TVM
 (M

KL, float)

TVM
 (M

KL, quant)

TF Lite (float)

TF Lite (quant)

TF Lite (float, Python)

TF Lite (quantized, Python)

openVIN
O
 (float)

O
N
N
C (float)

Comparison of Inference Times
Cortex A72 Celeron J1900

Figure 3. Comparison of the inference times on the ARM
Cortex-A72 and Intel Celeron J1900 platforms.

be compiled for it, as it relied on Intel MKL for its function
kernels19. Instead Glow, TVM and TFLite have been tested
in addition to the standard TensorFlow Python runtime. An
overview of the measured inference times can be seen at
figure 3.
The quantized TFLite version achieved the fastest infer-
ence speed with 0.37ms, followed by the quantized and
auto-tuned TVM program, using the C API of its runtime
(0.41ms). Glows fastest output achieved a mean inference
time of 1.77ms by using floating-point representations. Be-
sides Glow, all compilers achieved faster inference times
using quantized networks - suggesting that they employ
optimized function kernels for quantized operations, while
Glow uses its generalized standard kernels and wraps them
into additional quantization and dequantization steps, which
causes additional overhead. The worst result by a compiler
was achieved by TVM, for its floating-point auto-tuned so-
lution, which tried to apply x86 function templates to the
ARM platform20. However, the slowest result of 6.51ms was
still significantly faster than the use of the network in com-
bination with the standard TensorFlow runtime - requiring
104.64ms for a single inference run. This makes the slowest
and incorrectly optimized compiled version 16 times faster,
while the fastest compiled version achieved a speedup of
282.6 times.
The Intel Celeron CPU allowed for the additional testing
of nGraph21 and ONNC’s standard flow22. See figure 3 for
the inference time results of the platform. In comparison to
the Cortex-A results the ranking of the toolchains by their

19While the CMake script for the standard runtime contained a pa-
rameter to disable the MKL integration, it could not be build when it was
selected

20it could not be determined, if it was caused by user error or by TVM,
but it reoccured over multiple tries and did not occur with the quantized
version

21as part of openVINO
22besides its Cortex-M version

inference time changed, suggesting different levels of opti-
mizations across the supported target devices for some deep
learning toolchains. In addition, TVM was tested with the
Intel MKL BYOC-based backend instead of its auto-tuning
flow. This backend is not optimized for performance as it
is a demo for the BYOC functionality and was used to es-
timate the overhead which results from it. For the Celeron
J1900, the floating-point versions of the compiled networks
achieved faster inference speeds across all toolchains. This
suggests either a lack of optimized kernels or a better imple-
mentation of the floating-point components of the hardware
itself. The fastest results have been achieved by TVM with
0.68ms (FP) and 1.01ms (quantized). TVM did not show a
significant difference between the standard and the BYOC
flow results, which implies that the overhead of the BYOC
flow is neglectable. The next best results were achieved by
TFLite’s floating point network (1.08ms, using the Python
API), Glow (also floating point, 1.66ms) and ONNC (1.71ms).
openVINO’s compiled program did require 4.15ms for a
single inference, which made it the slowest floating point
version out of the tested compiled networks. It was not able
to quantize the network, as that is only supported on newer
CPU platforms. Only TFLite’s quantized networks took more
time than openVINO to complete their inference run.
In addition to the inference times, the peak memory allo-
cations have been measured. The measured results varied
by two orders of magnitude between the toolchains. Glow’s
compiled networks required 10.11MiB at peak, followed by
TVM with 21MiB to 26MiB. As the higher allocations have
been measured for the MKL-BYOC variant, it suggests, that
the BYOC flow requires some memory overhead compared
to the standard flow during the execution. TFLite required
13.6MiB for a quantized version of the network utilizing only
its C-API, which took significantly longer than the other re-
sults for a inference. The same configuration, but with a
floating point version of the network allocated 237.65MiB
which is more than the expected increase by four times23.
ONNC could only be tested with a floating point network
as its open source standard branch does not support quan-
tization. Its peak memory allocation of 51.18MiB is more
in line with the expected memory allocation. openVINO’s
implementation allocated 489.28MiB of memory during the
inference, only TFLite’s Python runtime used more memory
with 895.76MiB (quantized) or 1,248.30MiB (floating point).
The prediction accuracy for the compiled networks stayed
mostly the same, even for the quantized variants, with the ex-
ception of TVM. It only reached an accuracy of around 50 %,
which might have been user error due to its configurable
quantization scheme.

4 Implementation
For the implementation, an abstract accelerator has been
defined and an instruction set simulator was implemented.
The simulator was verified with TensorFlow and is able to
estimate the hardware utilization and cycle count for input
and output parallel execution strategies.
The simulated accelerator uses an instruction set that is sim-
ilar in its capabilities to other solutions like Nvidia’s NVDLA

23as 8-bit integers are 4 times smaller than 32-bit floating point values

Burlingame ’21, March 22, 2021, Burlingame, CA Anon.

10 10
21 23 23 26

238

14

1,248 896
489

51

2,342

1

10

100

1,000

10,000

G
low

 (float)

G
low

 (quant)

TVM
 (float)

TVM
 (quant)

TVM
 (float, M

KL)

TVM
 (quant, M

KL)

TFLite (float)

TFLite (quant)

TFLite (float, Python)

TFLite (quant, Python)

nG
raph/openVIN

O
 (float)

O
N
N
C (float)

TF Keras (Interpreter + XLA)

Peak Memory Usage (MiB)

Figure 4. Comparison of the peak memory allocation on the
Intel Celeron J1900 platform.

[36]. It only supports signed integer formats for operations
and the majority of them are limited to eight bit.
For the software flow TVM was used due to its BYOC func-
tionality. This flow starts with the definition of annotation
rules for supported nodes and patterns in TVM’s graph-level
IR24. These are then merged into subgraphs, which will be
executed by the accelerator. TVM manages the execution of
unsupported operations on the CPU as well as the invoking
of the subgraphs from the standard runtime. After the an-
notation, the network graph is partitioned to separate the
supported sections of the network into subgraphs. These
subgraphs are then passed on to the custom code genera-
tion, where they are converted into a JSON format for better
portability across different instruction set variants. The final
generation of the accelerator command stream happens at
runtime before the initial inference. This allows to target
different ISA variants with different memory sizes with a
single serialized file. A custom runtime component executes
the code generation and passes back a run function for each
subgraph to the standard TVM graph runtime.
Besides the quantization and data layout transformation
functionality, which was provided by TVM, the memory
planning for DMA operations between system and acceler-
ator memory, the assembly generation, the configuration
register file management and tiling for larger tensor sizes
needed to be implemented by the custom runtime compo-
nent. The tiling was implemented by primarily splitting the
workload along the output channel dimension.

5 Evaluation
The correct functionality was initially tested with neural
networks that only contained supported operations as sin-
gle nodes and patterns. Additional testing with the MNIST
network from the performance benchmark revealed that
the current TVM quantization flow inserts additional meta
nodes into the graph. These nodes prevent the merging of

24called Relay

multiple compute layers into a single subgraph. Due to this,
the network was split into three subgraphs, which requires
the system to move the intermediate results back to the
shared system memory between the subgraph executions.
This results in reduced performance and efficiency due to un-
necessary bus transactions. Otherwise, the custom backend
worked as intended and generated the expected inference
results.
For a more realistic test case Google’s MobileNetV1 [22]
with the ImageNet dataset [16] has been used. The addi-
tional batch normalization layers prevented the use of the
larger convolutional pipelines, as they are located between
the convolutional and activation function nodes. This adds
additional bus transactions between accelerator memory and
compute units, which reduces the efficiency of real hardware.
The network was evaluated with three iterations of the ac-
celerator and its toolchain:

• Without support for depthwise convolutions:
These layers are executed by the standard runtime on
the CPU. This results in a lower share of the network
to be accelerated by the target device. The estimated
cycle counts can be seen in figure 5a.

• Software-only Implementation:
The depthwise convolutions are mapped to a the stan-
dard convolution instruction of the DLA. The ISA has
not been changed. This allows for a larger share of the
network to be accelerated, but the depthwise layers
are constraint to a small utilization of the processing
elements.

• Full support:
The ISA has been extended to provide a dedicated
instruction for deptwhise convolutional layers. This
instruction allows for a higher utilization, resulting in
shorter execution times.

This was done to evaluate the flexibility of the coarse-grained
ISA for the support of new layer types, as the deep learning
field develops new layer types at a very rapid pace, which
makes it difficult to develop accelerators that can stay up-to-
date without changing the hardware architecture. A solution
would be to update the software flow, to enable it to map
new layers to existing instructions. In the case of deptwhise
convolutions, this approach was represented by the second
test scenario. While the implementation was possible, it re-
sulted in drastically increased cycle counts if compared to a
native solution (compare figure 5b and 5c). This was caused
by the low utilization of the PEs as only one filter could be
processed at a time.
Additionally, these scenarios were tested with different sizes
of the accelerators exclusive memory and the vector ALU as
well as input and output parallel mode for cycle and utiliza-
tion estimations to evaluate the impact of operation tiling on
the overall performance. The evaluated memory sizes were
512 KiB and 256MiB. The last configuration does not require
any tiling to take place, while the first is the smallest size
which is supported by the implementing tiling methods25.
As shown in figure 5a, the output parallel hardware achieved

25For convolutional layers only a split along the output channel dimen-
sion was implemented, as the splitting along the rows and columns requires
extensive effort to implement and validate all edge cases that can occur

Compiler Toolchains for Deep Learning Workloads on Embedded Platforms Burlingame ’21, March 22, 2021, Burlingame, CA

lower cycle counts due to its higher utilization in the early
layers of the network. However, this changed as soon as tiling
was required due to the limited amount of device memory.
As the tiling splits the workload along the channel dimen-
sion of the output tensor, the parallelization opportunity for
this architecture shrinks. This results in a lower utilization,
and a faster execution of input parallel strategies. Addition-
ally, it can be seen in figure 5c, which includes an additional
1024KiB configuration, that the cycle count does not scale
linearly with the available memory. Instead, a combination
of larger vector ALU with 128 processing elements (PEs)
and 1024 KiB of memory can be faster than a configuration
with 64 PEs and 256MiB of memory. The reason is, that the
1024 KiB configuration only requires tiling of the initial lay-
ers of the network, which allows it to compensate for the
additional cycles in the later layers where it can calculate
twice as many results per cycle as the 64 PE configuration
with 256MiB of memory. A benefit of the simulator is the
ability to quickly evaluate the performance for different net-
works across multiple configurations of memory sizes, vector
ALUs and ISA variant.

6 Conclusion
This evaluation has shown that, while all evaluated toolchains
deliver reasonable performance across different platforms,
their support for low-powered embedded devices and hetero-
geneous solutions with dedicated accelerators is still at an
early stage. They are limited by the use of existing compiler
backends, which prevent the targeting of dedicated hard-
ware. Another limitation is the use of static quantization
schemes that do not offer an easy solution to adapt them for
different hardware implementations.
Additionally, while it was possible to target a novel accelera-
tor using TVM, our implementation showed two drawbacks:
The more flexible quantization flow of TVM introduces an-
notation nodes into the code generation, that prevent the
solution from reaching higher efficiency. It is currently not
possible to connect the BYOC flow with the micro-TVM run-
time, which is still under development. This prevents its use
in conjunction with microcontrollers and Cortex-M CPUs.
An observation during the testingwas that the coarse-grained
ISAs of the accelerator is hard to adapt to new layer and
operation types. While these kind of ISAs achieves good
performance results by using extensive pipelines, they are
inflexible. This can be a limitation for hardware solutions
that are supposed to be sold for longer time periods, as they
are at the risk to quickly become obsolete, if they cannot be
adapted to new layer and function types efficiently. This is
especially problematic due to the fast innovation speed of
the deep learning research community.

References
[1] M. Abadi, A. Agarwal, P. Barham, and more. TensorFlow: Large-

scale machine learning on heterogeneous systems, 2015. URL https:
//www.tensorflow.org/. Software available from tensorflow.org.

[2] ARM. Arm ethos-u. [Online], 2020. URL https://developer.arm.com/ip-
products/processors/machine-learning/ethos-u55.

[3] ARM. ARM Ethos-U: Tflite compiler. [Online], 2020. URL https:
//git.mlplatform.org/ml/ethos-u/ethos-u-vela.git/.

[4] D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag. What is the state of
neural network pruning?, 2020.

0

5

10

15

20

25

30

35

M
ill
io

n

Cycle Count per Configuration

CONV Cycles REQUANT Cycles

(a) The total cycle count for the accelerated operations of MobileNet
without support for depthwise convolutions across testing configu-
rations.

0

10

20

30

40

50

M
ill
io

n

Cycle Count per Configuration

CONV Cycles DEPTH Cycles REQUANT Cycles

(b) The total cycle count for the accelerated operations ofMobileNet
with software emulated support for depthwise convolutions across
testing configurations.

0

5

10

15

20

25

30

35

40

M
ill
io

n

Cycle Count per Configuration

CONV Cycles DEPTH Cycles REQUANT Cycles

(c) The total cycle count for the accelerated operations of MobileNet
with hardware support for depthwise convolutions across testing
configurations.

Figure 5. The first part of the label describes the size of the
on-device memory, the second value represents the number
of processing elements in the vector unit and the last letter
stands either for an input (I) or output (O) parallel hardware
implementation.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://developer.arm.com/ip-products/processors/machine-learning/ethos-u55
https://developer.arm.com/ip-products/processors/machine-learning/ethos-u55
https://git.mlplatform.org/ml/ethos-u/ethos-u-vela.git/
https://git.mlplatform.org/ml/ethos-u/ethos-u-vela.git/

Burlingame ’21, March 22, 2021, Burlingame, CA Anon.

[5] S. Cass. Taking ai to the edge: Google’s tpu now comes in a maker-
friendly package. IEEE Spectrum, 56(5):16–17, 2019.

[6] T. Chen,M. Li, Y. Li, M. Lin, N.Wang,M.Wang, T. Xiao, B. Xu, C. Zhang,
and Z. Zhang. Mxnet: A flexible and efficient machine learning library
for heterogeneous distributed systems, 2015.

[7] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy. Tvm: An
automated end-to-end optimizing compiler for deep learning, 2018.

[8] Y. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks.
IEEE Journal of Solid-State Circuits, 52(1):127–138, 2017.

[9] Y. Chen, T. Yang, J. Emer, and V. Sze. Eyeriss v2: A flexible accelerator
for emerging deep neural networks on mobile devices. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 9(2):292–308,
2019.

[10] Z. Chen and I. Cody Yu, Amazon Web Services. How to bring your
own codegen to tvm. [Online], 2020. URL https://tvm.apache.org/
2020/07/15/how-to-bring-your-own-codegen-to-tvm.

[11] S. Chetlur, C.Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer. cudnn: Efficient primitives for deep learning. CoRR,
abs/ 1410.0759, 2014.

[12] F. Chollet et al. Keras. [Online], 2015. URL https://keras.io.
[13] G. Coral. Edge tpu compiler documentation. [Online], 2019. URL

https://coral.ai/docs/edgetpu/compiler/.
[14] I. Corporation. oneapi onednn. [Online], 2020. URL https://github.

com/oneapi-src/oneDNN/.
[15] S. Cyphers, A. K. Bansal, A. Bhiwandiwalla, J. Bobba, M. Brookhart,

A. Chakraborty, W. Constable, C. Convey, L. Cook, O. Kanawi, R. Kim-
ball, J. Knight, N. Korovaiko, V. Kumar, Y. Lao, C. R. Lishka, J. Menon,
J. Myers, S. A. Narayana, A. Procter, and T. J. Webb. Intel ngraph: An
intermediate representation, compiler, and executor for deep learning,
2018.

[16] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[17] E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Rotenberg, and
L. Benini. Gap-8: A risc-v soc for ai at the edge of the iot. In 2018 IEEE
29th International Conference on Application-specific Systems, Architec-
tures and Processors (ASAP), pages 1–4, 2018.

[18] A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini. Pulp-nn:
Accelerating quantized neural networks on parallel ultra-low-power
risc-v processors, 2019.

[19] Google. Xnnpack - github repository. [Online], 2019. URL https:
//github.com/google/XNNPACK.

[20] Google. TensorFlow: Xla documentation. [Online], 2020. URL https:
//www.tensorflow.org/xla?hl=en.

[21] Y. Gorbachev, M. Fedorov, I. Slavutin, A. Tugarev, M. Fatekhov, and
Y. Tarkan. Openvino deep learning workbench: Comprehensive anal-
ysis and tuning of neural networks inference. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV) Work-
shops, Oct 2019.

[22] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W.Wang, T. Weyand,
M. Andreetto, and H. Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[23] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference, 2017.

[24] J. Khan, P. Fultz, A. Tamazov, D. Lowell, C. Liu, M. Melesse, M. Nand-
himandalam, K. Nasyrov, I. Perminov, T. Shah, V. Filippov, J. Zhang,
J. Zhou, B. Natarajan, and M. Daga. Miopen: An open source library
for deep learning primitives, 2019.

[25] R. Krishnamoorthi. Quantizing deep convolutional networks for effi-
cient inference: A whitepaper, 2018.

[26] L. Lai, N. Suda, and V. Chandra. Cmsis-nn: Efficient neural network
kernels for arm cortex-m cpus, 2018.

[27] R. M. Larsen and T. Shpeisman. Tensorflow graph optimizations.
[Online], 2019. URL https://research.google/pubs/pub48051/.

[28] C. Leary and T. Wang. Xla: Tensorflow, compiled. TensorFlow Dev
Summit, 2017.

[29] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In
Advances in neural information processing systems, pages 598–605,
1990.

[30] M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, L. Gan, G. Yang,
and D. Qian. The deep learning compiler: A comprehensive survey,
2020.

[31] F. Limited. oneapi onednn aarch64. [Online], 2020. URL https://github.
com/fujitsu/dnnl_aarch64.

[32] D. D. Lin, S. S. Talathi, and V. S. Annapureddy. Fixed point quantization
of deep convolutional networks, 2015.

[33] W. Lin, D. Tsai, L. Tang, C. Hsieh, C. Chou, P. Chang, and L. Hsu.
Onnc: A compilation framework connecting onnx to proprietary deep
learning accelerators. In 2019 IEEE International Conference on Artificial
Intelligence Circuits and Systems (AICAS), pages 214–218, 2019.

[34] A. Markham and Y. Jia. Caffe2: Portable high-performance deep learn-
ing framework from facebook. NVIDIA Corporation, 2017.

[35] T. Moreau, T. Chen, L. Vega, J. Roesch, E. Yan, L. Zheng, J. Fromm,
Z. Jiang, L. Ceze, C. Guestrin, and A. Krishnamurthy. A hardware-
software blueprint for flexible deep learning specialization, 2018.

[36] Nvidia. Nvidia deep learning accelerator. [Online], 2018. URL https:
//http://nvdla.org/.

[37] ONNX. Onnx - official webpage. [Online], 2020. URL https://onnx.ai/.
[38] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. In Advances in
neural information processing systems, pages 8026–8037, 2019.

[39] N. Rotem, J. Fix, S. Abdulrasool, G. Catron, S. Deng, R. Dzhabarov,
N. Gibson, J. Hegeman, M. Lele, R. Levenstein, et al. Glow: Graph
lowering compiler techniques for neural networks. arXiv preprint
arXiv:1805.00907, 2018.

[40] A. Shawahna, S. M. Sait, and A. El-Maleh. Fpga-based accelerators of
deep learning networks for learning and classification: A review. IEEE
Access, 7:7823–7859, 2019.

[41] H. Song, M. Huizi, and D. William J. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding, 2015.

[42] P. Stock, A. Joulin, R. Gribonval, B. Graham, and H. Jégou. And the
bit goes down: Revisiting the quantization of neural networks, 2019.

[43] T. Team. Tensorflow 2 graph optimizations documentation. [Online],
2019. URL https://www.tensorflow.org/guide/graph_optimization.

[44] T. Team. TensorFlow Lite. [Online], 2020. URL https://www.tensorflow.
org/lite/.

[45] X. Team et al. Xla: Domain-specific compiler for linear algebra that
optimizes tensorflow computations, 2019.

[46] S. I. Venieris, A. Kouris, and C.-S. Bouganis. Toolflows for mapping con-
volutional neural networks on fpgas: A survey and future directions,
2018.

[47] Z.Wang, J.Wohlwend, and T. Lei. Structured pruning of large language
models, 2019.

[48] P. Warden. How to quantize neural networks with tensorflow. [On-
line], 2016. URL https://petewarden.com/2016/05/03/how-to-quantize-
neural-networks-with-tensorflow.

[49] Y. Xing, J. Weng, Y. Wang, L. Sui, Y. Shan, and Y. Wang. An in-depth
comparison of compilers for deep neural networks on hardware. In
2019 IEEE International Conference on Embedded Software and Systems
(ICESS), pages 1–8. IEEE, 2019.

https://tvm.apache.org/2020/07/15/how-to-bring-your-own-codegen-to-tvm
https://tvm.apache.org/2020/07/15/how-to-bring-your-own-codegen-to-tvm
https://keras.io
https://coral.ai/docs/edgetpu/compiler/
https://github.com/oneapi-src/oneDNN/
https://github.com/oneapi-src/oneDNN/
https://github.com/google/XNNPACK
https://github.com/google/XNNPACK
https://www.tensorflow.org/xla?hl=en
https://www.tensorflow.org/xla?hl=en
https://research.google/pubs/pub48051/
https://github.com/fujitsu/dnnl_aarch64
https://github.com/fujitsu/dnnl_aarch64
https://http://nvdla.org/
https://http://nvdla.org/
https://onnx.ai/
https://www.tensorflow.org/guide/graph_optimization
https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/
https://petewarden.com/2016/05/03/how-to-quantize-neural-networks-with-tensorflow
https://petewarden.com/2016/05/03/how-to-quantize-neural-networks-with-tensorflow

	Abstract
	1 Introduction
	2 Related Work
	2.1 Deep Learning Optimizations
	2.2 Math Kernel Libraries
	2.3 Deep Learning Accelerators

	3 Survey & Benchmark
	3.1 Common Strategies
	3.2 User Accessibility
	3.3 Supported Platforms & Extensibility
	3.4 Features
	3.5 Performance

	4 Implementation
	5 Evaluation
	6 Conclusion
	References

