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Abstract

We study black-box reward poisoning attacks against reinforcement learning (RL), in which
an adversary aims to manipulate the rewards to mislead a sequence of RL agents with
unknown algorithms to learn a nefarious policy in an environment unknown to the adversary
a priori. That is, our attack makes minimum assumptions on the prior knowledge of the
adversary: it has no initial knowledge of the rewards, transitions, or the learner, and neither
does it observe the learner’s internal mechanism except for its performed actions. We design
a novel black-box attack, U2, that can provably achieve a near-matching performance to the
state-of-the-art white-box attack, demonstrating the feasibility of reward poisoning even in
the most challenging black-box setting.

1 Introduction

Reward poisoning refers to an adversarial attack against reinforcement learning (RL) where the adversary
manipulates the rewards in order to mislead the RL agent’s learning process. It has been considered by many
as a realistic threat against modern RL applications. Many real-world applications—such as recommendation
systems (Zhao et al., 2018; Chen et al., 2019), virtual/conversational assistants (Dhingra et al., 2016; Li
et al., 2016)—extract reward signals directly from user feedback and are thus prone to adversarial corruption.
Reward poisoning has recently been study in various settings (Zhang & Parkes, 2008; Zhang et al., 2009; Ma
et al., 2018; Jun et al., 2018; Peltola et al., 2019; Altschuler et al., 2019; Liu & Shroff, 2019; Ma et al., 2019;
Huang & Zhu, 2019; Rakhsha et al., 2020a;b; Zhang et al., 2020c), but most of the prior work makes strong
assumptions on the knowledge of the adversary. It is often assumed that the adversary has full knowledge
of the environment (i.e., true rewards/transitions) or the agent’s learning algorithm or both. Under such
assumptions, attack strategies have been proposed that can mislead the agent to learn a nefarious policy
with minimal perturbations to the rewards.

However, in many applications, the adversary has limited knowledge about the environment or the agent’s
learning algorithm. For example, on e-commerce platforms, the adversary may take the form of a malicious
seller who wants to mislead the platform’s ranking system to promote their product by posting fake purchases,
reviews, or comments. In such scenarios, the malicious sellers often have very limited knowledge about the
dynamics of the market or the particular ranking algorithm currently used by the platform. In this setting,
the attack strategies developed by prior works cannot be applied, and therefore one can argue that the
security threats anticipated in these works might be pessimistic.

To evaluate the security threat against RL agents in more realistic scenarios, in this work, we investigate
the unknown-unknown attack setting, where we assume that the adversary has no knowledge about the
environment or the agents’ learning algorithm. To the best of our knowledge, we are the first to study
theoretically sound reward-poisoning attacks against RL in this setting. Our contributions are three folds.

1. We develop a black-box attack strategy, U2, that can attack unknown RL agents (learners) in an unknown
environment. U2 operates without any prior knowledge of the rewards, transitions, or the learners and
only requires that learners follow a no-regret RL algorithm.

2. We show that surprisingly, with appropriate choice of hyperparameters, U2 can achieve an attack cost not
much worse than the optimal white-box attack (Rakhsha et al., 2020a;b).
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3. As part of the U2 attack, we develop an exploration subroutine that is of independent interest. This
subroutine can turn any no-regret RL algorithm to apply to the reward-free/task-agnostic (Jin et al.,
2020b; Zhang et al., 2020b) RL settings, where the learner is manipulated to explore the whole state-action
space and allow data to be efficiently collected for arbitrary down-stream tasks (in our case the poisoning
attack task).

Related Work. Reward poisoning against RL has been first studied in batch RL (Zhang & Parkes, 2008;
Zhang et al., 2009; Ma et al., 2019) where rewards are stored in a pre-collected data set by some behavior
policy, and the attacker comes in to modify the batch data. Because all data are available to the attacker at
once, the batch attack problem is somewhat easier. Our paper instead focuses on the online RL attack setting
where reward poisoning must be done on the fly. In online settings, reward poisoning is first introduced and
studied in multi-armed bandits (Ma et al., 2018; Jun et al., 2018; Peltola et al., 2019; Altschuler et al., 2019;
Liu & Shroff, 2019), where the authors show that adversarially perturbed reward can mislead standard bandit
algorithms to pull a suboptimal arm or suffer large regret.

Online reward poisoning attacks in the white-box setting have been studied (Huang & Zhu, 2019; Rakhsha
et al., 2020a;b; Zhang et al., 2020c), where the adversary is assumed to have full knowledge of the MDP
or the learning algorithm. Among them, (Huang & Zhu, 2019; Rakhsha et al., 2020a;b) focus on attacking
the reward function itself, in which case the adversarial rewards are also functions of state and action, but
independent of the learning process. (Zhang et al., 2020c) focuses on attacking a Q-learning agent, and
presents a more powerful attack that can depend on the RL victim’s Q-table Qt. Their analysis shows that
such adaptive attacks can be exponentially faster in enforcing the target policy than non-adaptive attacks
studied in prior works. In comparison, our work focus on the more challenging black-box setting, and our
attack can be applied to any no-regret RL algorithms. Recently, (Xu & Rabinovich) has studied black-box
attacks in which the attacker modifies the environment parameters, which is a different setting and lacks any
theoretical analysis compared to this paper. In another work, (Sun & Huang, 2020) empirically studied the
problem of black-box poisoning attack against policy-based deep RL algorithms. Their algorithm VA2C-P
takes an actor-critic structure and shows strong attack performance against state-of-the-art policy gradient
algorithms, such as REINFORCE, A2C, PPO, etc. In comparison, our work provides a more general and
theoretically sound black-box attack strategy against any efficient RL algorithms, including policy gradient
algorithms.

2 Problem Setup

2.1 Preliminaries and Definitions

In this work, we assume that the environment is modeled as a Markov Decision Process (MDP), defined by
a tuple M = (S,A,R, P, s0, γ), where S is a finite state space, A is a finite action space, R : S × A→ R is
a reward function, P : S × A× S → [0, 1] is the transition probability function, s0 is the initial state, and
γ ∈ (0, 1) is the discounting factor. To simplify the notation, from here on, we will omit s0, γ and denote
M = (S,A,R, P ); when clear from context, we will abuse the notation and also use S,A to denote the size of
the state space and action space respectively. At the beginning, the agent starts from the initial state s0. By
taking action a at state s, the agent receives a reward with expectation R(s, a) and σ2-sub-Gaussian noise
for some σ > 1, and transits to state s′ with probability P (s, a, s′).

A (deterministic) policy is a mapping from states to actions, i.e., π : S → A. We will use the stan-
dard state value function V πM (s) = E [

∑∞
τ=0 γ

τrτ |s0 = s, π] and the state-action value function QπM (s, a) =
E [
∑∞
τ=0 γ

τrτ |s0 = s, a0 = a, π] where the expectations are over the stochasticity in both transition and
reward functions. The optimal value functions are also defined as Q∗M (s, a) = maxπ QπM (s, a) and
V ∗M (s) = maxπ V πM (s). The expected discounted reward ρπM of policy π is defined as E [

∑∞
τ=0 γ

τrτ |π]
which gives ρπM = V πM (s0). Policy π∗ is said to be optimal if ρπ∗M ≥ ρπM for every π 6= π∗ and ε-robust
optimal if ρπ∗M ≥ ρπM + ε also holds. We denote the expected discounted reward of the optimal policy by
ρ∗M . A policy π is called ε-optimal if it is at most ε worse than the optimal policy, i.e. ρπM ≥ ρ∗M − ε,
and ε-suboptimal otherwise. A step is called ε-suboptimal if the action performed is ε-suboptimal, i.e.,
aτ /∈ {π(sτ ) : ρπM ≥ ρ∗M − ε} (action is not chosen by any ε-optimal policy). Let µπ be the (unnormalized)
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state distribution of policy π defined as µπM (s) =
∑∞
τ=0 γ

τP[sτ = s|π]. Let µmin = mins,π µπM (s). We assume
under any policy π, all states are visited with a positive probability, i.e. µmin > 0. Finally, for policy π and a
state-action pair (s, a) we define the neighboring policy of π at (s, a) denoted by π{s; a} as

π{s; a}(x) =
{
π(x) x 6= s

a x = s
.

2.2 Attack Problem

Learners. To provide theoretical insight into teaching effectiveness. We assume that the learners are
sample-efficient. In particular, we make the following assumption on the learner.
Assumption 2.1 (PAC learners). With probability of at least 1 − δ, the learner performs ε-suboptimal
actions at most SubOpt(T, ε, δ) times where SubOpt is sublinear in T . Moreover, for some α, β > 0, the
learner is able to find an α-optimal policy in T steps with probability of at least 1− β.

Assumption 2.1 is satisfied by most sample-efficient RL algorithms in the literature, such as UCRL2 (Auer
et al., 2009), UCBVI (Azar et al., 2017; Dann et al., 2017), UCB-H (Jin et al., 2018), etc. In particular, one
can show that a sub-linear regret is sufficient for the algorithm to satisfy both properties in Assumption 2.1.

Given this assumption, in this work, we focus on a population learning scenario, in which a sequence of L
online RL agents take turns to interact with the environment. Such scenarios are relevant when many learners
aim to learn the same (or similar) task, for example, RL agents as auto-pilots for autonomous transportation
systems or RL agents as virtual personal assistants that learn independently to adapt to the preferences of
their users. In the era of rapid growth of edge devices, we believe that such population/federate learning
scenario will become more and more common in practice, comparing to the traditional centralized learning
systems. Specifically, we consider a setting where each learner interacts with the environment for a total of
T times. At interaction t of learner l, the learner chooses action a(l)

t from state s(l)
t , and the environment

produces reward r(l)
t and next state s(l)

t+1. The learner is moved to s(l)
t+1, but the attacker changes the observed

reward from r
(l)
t to r′(l)t .

We note that while we focus on the population learning setting, there is no technical barrier to apply our
algorithm in the single learner setting. If one is willing to make stronger assumptions on the learner, e.g. if the
learner can “recover” from the change of reward function, then the exact same attack strategy can be applied
to attack a single learner during the learning process. Many learners in practice exhibit such a property,
and the theoretical study of such learners was done under the name of adversarial RL, e.g. (Rosenberg &
Mansour, 2019; Jin et al., 2020a).

Attacker. In this paper, we study the black-box reward poisoning attack problem. In this setting, the
attacker has no prior knowledge about the rewards, the transitions, or the learners. The attacker only knows
that the learners are efficient, i.e. the learners satisfy the (α, β) and SubOpt(T, ε, δ) guarantees, but does
not know the actual parameters α, β and the SubOpt function. The attacker has a target policy π† and
wants to force the learners to follow this policy by making small changes in the observed rewards. This
objective is formulated by an attack cost function Cost(T, L) defined as

Cost(T, L) := 1
L · T

L∑
l=1

T∑
t=1

(
|r(l)
t − r

′(l)
t |+ λ1

[
a

(l)
t 6= π†(s(l)

t )
])

where 1 [.] denotes the indicator function. Intuitively, the attacker needs to pay the cost |r(l)
t − r

′(l)
t | to change

the reward from r
(l)
t to r′(l)t and will be penalised with an additional cost of λ for each step the learner does

not follow the target policy, which we will call a mismatch. The final objective is defined as the average cost
over all L · T steps. Here, λ > 0 is a parameter balancing the trade-off between the two goals. Throughout
the attack process, the attacker only observes the interaction between the learners and the environment, i.e.
s

(l)
t , a

(l)
t , r

(l)
t and does not observe the internal process of learners’ algorithms or the environment.
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3 Overview of U2 and Main Results

In this paper, we introduce an attack strategy for the attacker to enforce the target policy without any
knowledge about either the environment or the learners. We present an explore-and-exploit attack strategy,
U2, and demonstrate its optimality by comparing its attack cost with the optimal white-box attack in the
literature. In what follows, we first introduce a state-of-the-art white-box attack. Our black-box attack U2
builds upon this white-box attack and is introduced in the second half of the section.

3.1 White-box Attack

To begin with, consider the white-box attack problem, in which the attacker has full knowledge of the MDP
and the learner. White-box attacks have been studied extensively in the literature (Huang & Zhu, 2019;
Rakhsha et al., 2020a; Zhang et al., 2020c). Here, we will utilize a state-of-the-art attack method that is
agnostic to the learning algorithm and hence is suitable for designing U2. Below, we briefly summarize the
intuition behind this method. The key idea behind the attack is to design the poisoned rewards r′(l)t to
come from a reward function R′ such that π† is ε-robust optimal in M ′ = (S,A,R′, P ). This way, the only
ε-optimal policy will be the target policy, and all the steps in which π† is not followed will be ε-suboptimal.
Thus, the learner does not follow the target policy in only sublinear number of steps in T .

While such a reward function can successfully force the target policy, it may incur a large attack cost because
R′ may be different from R on the target actions (actions used in the target policy). One way to avoid this
is to add another constraint when designing the adversary reward R′ such that the rewards on the target
actions remain unchanged. Consequently, the attacker will only pay the cost λ+ |r(l)

t − r
′(l)
t | on mismatches

(the steps the target policy is not followed) which will only happen a number of times sublinear in T if the
agent is a no-regret RL learner. Specifically, this adds a constraint R′(s, π†(s)) = R(s, π†(s)) for every state
s. Letting R′ = R−∆ for some ∆: S ×A→ R, this attack can be performed by setting

r
′(l)
t = r

(l)
t −∆(s(l)

t , a
(l)
t ) ∀l, t. (1)

One can bound the cost of this attack using the SubOpt(T, ε, δ), obtaining the following result:
Lemma 3.1. Assume the attacker performs the attack described in (1) for some ∆: S ×A→ R on all the
learners. Then, with probability of at least 1− δ,

Cost(T, L) ≤ (‖∆‖∞ + λ) ·
SubOpt(T, ε, δL )

T

The bound follows directly from the fact that the attacker incurs no cost on steps when a(l)
t = π†(s(l)

t ) and
the cost on other steps which are at most L · SubOpt(T, ε, δL ) steps, is at most ‖∆‖∞ + λ. The problem of
finding the ∆ that minimizes the upper bound in Lemma 3.1 can be formulated as the following program:

min
∆

‖∆‖∞ (P1)

s.t. π† is ε-robust opimal in (S,A,R−∆, P )
∀s : ∆(s, π†(s)) = 0.

If the attacker has full knowledge of the MDP, it can directly solve for (P1), which has been shown to have a
closed-form solution (Rakhsha et al., 2020a):

∆∗M (s, a) =
[
Q
π†
M (s, a)− V π†M (s) + ε

µ
π†{s;a}
M (s)

]+

for a 6= π†(s), and ∆∗M (s, π†(s)) = 0 for every s. Here, [x]+ = max(0, x). For completeness, we state the
above result in the following lemma:
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Algorithm 1 U2
Input: S,A, γ, σ, p, ε,m
Initialize: l← 1
Exploration Phase:

repeat
for t = 1 to T do
Set r′(l)t ∼ Uniform{−1, 1}.

Calculate confidence setM of possible MDPs.
l← l + 1

until M satisfies condition (7).
Attack Phase:
Solve (P2) to get ∆̂ : S ×A→ R
while l ≤ L do

for t = 1 to T do
Set r′(l)t = r

(l)
t − ∆̂(s(l)

t , a
(l)
t ).

l← l + 1

Lemma 3.2. (Rakhsha et al., 2020a). The optimal solution for (P1) is ∆∗M . Moreover, ∆ is a feasible
solution of (P1) if and only if for every state-action pair s, a, ∆(s, a) ≥ ∆∗M (s, a) and ∆(s, π†(s)) = 0.

Note that Lemma 3.2 implies that the choice of norm in the objective of (P1) can be arbitrary, e.g. L1, L2 or
L∞ norms, while the optimal solution ∆∗M (s, a) remains unchanged, showing the robustness of this solution.
This optimal white-box attack serves as a baseline for our black-box attack strategy.

3.2 Black-box Attack

In this work, however, we study the problem in which the attacker has no knowledge of the MDP’s
rewards/transitions, and thus can no longer directly solve (P1) to perform the attack. In this setting, we
propose an attack strategy that consists of two separate phases.

Exploration phase. To begin with, the attacker aims to collect data on the environment by providing
rewards that encourage the learners to explore the whole MDP. This goal is achieved by providing the
following simple yet effective rewards:

r′t ∼ Uniform{−1, 1} (2)

We will show that this simple reward function enforces the learner to provably visit all (s, a) pairs sufficiently
often and allows the attacker to learn about the MDP rewards and transitions to perform the attack. We
discuss the guarantee and the intuition of this simple reward function in Section 4.1.

Attack phase. Once the attacker has gathered enough observations, it can start to attack the rest of
the learners by estimating a set of plausible MDPsM. It then solves for a robust perturbation ∆ that is
guaranteed to enforce the target policy π† on all M ∈M. This robust attack problem can be formulated as a
robust version of problem (P1):

min
∆

‖∆‖∞ (P2)

s.t. ∀(S,A, R̃, P̃ ) ∈M :

π† is ε-robust optimal in (S,A, R̃−∆, P̃ )
∀s : ∆(s, π†(s)) = 0.

In Section 4.2, we describe the process of solving (P2) in detail. Following the two-phase procedure, the
attack cost of U2 can be upper bounded by the following theorem:
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Theorem 3.1. For any m > 0 and p ∈ (0, 1), assume that α < µmin
2
√

2 and β < 1
8SA , then, with probability of

at least 1− 4p, the cost of U2 is bounded by

k0

L
·

(
‖R‖∞ + σ

√
2 log 2k0T

p
+ 1 + λ

)
+ (‖∆∗M‖∞ + λ+m) ·

SubOpt(T, ε, pL )
T

where k0 is a function of MDP M , p, α, β, λ, m, ε, and L as defined in (8).

The given bound on Cost(T, L) consists of two terms. The first and the second term are bounds for the cost
of the exploration phase and the attack phase, respectively. In the first term, k0 is of the order O(1 + α2 logL

m2 ).
Here, m is a hyperparameter of U2 that dictates how closely the attack phase cost should match with the
optimal white-box attack. The value of α can be chosen to be smaller for larger values of T , and a fixed β.
This dependence on T is based on the sample complexity of the learner’s algorithm. For an algorithm such as
(Wang et al., 2020) that the sample complexity matches the lower bound in the dependence on α, one can
choose α = O( 1√

T
) , which leads to k0 ∈ O(1 + logL

m2·T ). Thus, the first term has an order of Õ( 1
L + 1

m2·T ·L )
disregarding the logarithmic terms and diminishes for large enough L.

The second term is m · SubOpt(T, ε, pL )/T worse than the attack cost achievable by the optimal white-box
attack as in Lemma 3.2. The second term is diminishing in T due to the assumption that SubOpt(T, ε, pL )
is sublinear in T . Therefore, U2 can be viewed as a no-regret attack strategy, whose averaged attack cost
diminishes to zero as T and L go to infinity, as is achieved by the attack of (Rakhsha et al., 2020a) in the
white-box setting. Note that even though the optimal value of hyperparameter m to minimize the bound
cannot be found without the knowledge of the learner’s sample complexity bounds, this asymptotic behavior
of algorithm holds for any value of m.

4 Technical Details of U2

In what follows, we present the details of the U2 strategy in both the exploration and attack phase.

4.1 Exploration Phase

In this phase, the goal is to collect observations on the MDP to estimate its parameters, which will be used
in the attack phase to find an effective reward perturbation. With more observations, the attacker will be
able to build a smaller confidence setM on the environment MDP and find a ∆̂ of smaller norm. In the
extreme case where the attacker gathers an infinite number of observations on all (s, a) pairs, it can find the
optimal ∆∗M and match the optimal white-box attack.

In order to gather observations on all (s, a) pairs, the attacker needs to design adversarial rewards that
encourage the learners to explore the environment. Our key observation is that, despite not knowing anything
about the MDP or the learner, the attacker can still utilize the learners’ learning guarantee to provably
collect observations. The idea is to draw r′t from a reward function RE , such that finding a nearly optimal
policy in ME = (S,A,RE , P ) requires properly exploring all states and actions. This condition can be met
by choosing RE in a way that the gap of the optimal Q function is small, i.e. the Q∗ME

(s, a) values are similar
for different actions a. Specifically, we show that the uniform Bernoulli reward function in (2) effectively
enforces the learner to explore, as detailed in the following lemma.
Lemma 4.1. Let s, a be an arbitrary state and action pair, and g(s, a) = minπ:π(s)=a µ

π
M (s). Assume 4β ≤ δ

and α
g(s,a) <

1
2
√

2 . If the feedback as in (2) is given to a learner, then at the end of T steps, with probability
of at least 1− δ, action a is chosen from state s for at least

g(s, a)2

α2 ·
c1 · (log δ

4β )2

log 8
δ + c2 · (log δ

4β )

number of times, where c1 = 0.08 and c2 = 1.34.
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Lemma 4.1 provides a lower bound on the number of data points that will be collected by each learner under
our exploratory reward function. Note that the bound is true for any values of α, β that Assumption 2.1
holds for. Thus, for a fixed T one can find an (α, β) with very small α but large β, to obtain a larger lower
bound. The detailed proof of this lemma is deferred to the Appendix.

After each learner’s interaction in the exploration phase, the attacker builds a confidence setM for plausible
environment MDPs for two main purposes. First, these sets are used in the exploration phase to check
whether the gathered data is enough for the attack phase and the attacker can stop the exploration. Second,
the last set is used in the attack phase to find an effective attack in the environment. After each learner,
let N(s, a) be the number of times state-action pair (s, a) is observed, and let Nmin = mins,aN(s, a). If
Nmin > 0, we define the following empirical estimates of R(s, a) and P (s, a, s′):

R̂(s, a) =

∑
t,l 1

[
s

(l)
t = s, a

(l)
t = a

]
· r(l)
t

N(s, a)

P̂ (s, a, s′) =

∑
t,l 1

[
s

(l)
t = s, a

(l)
t = a, s

(l)
t+1 = s′

]
N(s, a)

We will also define the following confidence sets of reward R(s, a) and transition P(s, a) as

R(s, a) =
{
r ∈ R : |r − R̂(s, a)| ≤ u√

N(s, a)
)
}

P(s, a) =
{
d ∈ Λ(S) : ‖d− P̂ (s, a, ·)‖1 ≤

w√
N(s, a)

}
where Λ(S) is the probability simplex over S and

u =
√

2σ2 log(2SAL/p),

w =
√

2 log(2SAL/p) + 2S log 2.

These two confidence intervals u,w are direct consequences of Hoeffding’s Inequality and (Weissman et al.,
2003). Now let the confidence setM be the set of all MDPs (S,A, R̃, P̃ ) such that for every s, a, R̃(s, a) ∈
R(s, a) and P̃ (s, a, .) ∈ P(s, a). This gives us the following lemma.
Lemma 4.2. With probability of at least 1− p/L, M ∈M.

The failure probability of p/L ensures that following this scheme to buildM after each learner, with probability
of at least 1− p, M will always be inM. The attacker continues the exploration untilM is small enough to
perform a near-optimal attack. Since this decision involves technical details of the attack phase, we turn back
to it in Section 4.3.
Remark 4.1. It’s worth mentioning that the exploration subroutine and the guarantee in Lemma 4.1 are
of independent interests to pure exploration problems in reinforcement learning. A number of recent works
study the problem of task-agnostic exploration (Jin et al., 2020b; Zhang et al., 2020b), where the goal is
to design a learner that can explore the MDP and collect data efficiently to prepare for any downstream
task. In (Zhang et al., 2020b), their algorithm UCBZero can be viewed as a UCB-H (Jin et al., 2018)
algorithm under uniform reward, and they left as an open problem whether other no-regret algorithms can
be transformed into a task-agnostic exploration algorithm. Our analysis in this section provides a positive
answer. We show that any no-regret RL algorithm can provably explore all (s, a) pairs in the MDP given a
simple uniform reward function.

4.2 Attack Phase

After collecting enough data on the environment’s dynamics, the attacker moves on to the attack phase
in which the target policy is enforced to the remaining learners. In the beginning of the attack phase, the
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attacker uses the lastM built in the exploration phase to find an appropriate ∆̂ by solving problem (P2). It
then provides rewards as in (1) with ∆ = ∆̂ to all the remaining learners.

To solve (P2), note that one can utilize Lemma 3.2 to rewrite the first constraint of (P2) as

∀s, a : ∆(s, a) ≥ max
M̃∈M

∆∗
M̃

(s, a). (3)

Thus, the attacker needs to upper bound ∆∗
M̃

(s, a) for M̃ ∈M to find a feasible solution for (P2). For policy π,
define V πlow(s) = min

M̃∈M V π
M̃

(s) and Qπhigh(s, a) = max
M̃∈MQπ

M̃
(s, a). Also let µπlow(s) = min

M̃∈M µπ
M̃

(s).
The attacker sets

∆̂(s, a) =
[
Q
π†
high(s, a)− V π†low(s) + ε/µ

π†{s;a}
low (s)

]+
(4)

for a 6= π†(s), and ∆̂(s, π†(s)) = 0. By the definitions, it is clear that ∆̂ satisfies condition (3), and therefore,
is a feasible solution for (P2).

Computationally, the attacker can calculate quantities V πlow, Qπhigh, and µπlow using robust policy evaluation
(Iyengar, 2005; Nilim & El Ghaoui), a standard robust control procedure that is also used in no-regret
model-based RL algorithms such as UCRL2 (Auer et al., 2009). Robust policy evaluation calculates the
worst-case value function of a policy π, i.e. V πlow(s), when the exact model of environment is not available,
and the transition distributions and rewards are just known to be in certain sets of possible values (usually
confidence intervals obtained from observations). Specifically, if R(s, a) ∈ R(s, a) and P (s, a, .) ∈ P(s, a) for
every s, a, the procedure sets vπ0 (s) = 0 for every state s, and applies the following iterative updates:

vπi+1(s) = min
r∈R(s,π(s))

r + γ min
p∈P(s,π(s))

Es′∼pvπi (s′) (5)

Then, it is shown that V πlow(s) = limi→∞ vπi (s). Note that with our choices of R and P, each iteration of
robust policy evaluation involves S special linear programming problems that can be solved in total time
of O(S2) (Strehl & Littman, 2008). One execution of the robust policy evaluation algorithm gives all the
V πlow(s) values for s ∈ S. The same algorithm can be used to obtain values V πhigh(s) = max

M̃∈M V π
M̃

(s) by
substituting min with max. Then, one can set

Qπhigh(s, a) = max
r∈R(s,a)

r + γ max
p∈P(s,a)

Es′∼pV πhigh(s′)

Note that this computation is equivalent to (5), a single iteration of the robust policy evaluation, and therefore
negligible in terms of computational cost.

Next, we show how to compute µπlow(s). For state s, define the reward function Rs(x, a) := 1 [x = s], and for
M̃ = (S,A, R̃, P̃ ) let M̃s = (S,A,Rs, P̃ ). We have µπ

M̃
(s) = ρπ

M̃s

= V π
M̃s

(s0). Thus, we have

µπlow(s) = min
M̃∈M

µπ
M̃

(s) = min
M̃∈M

V π
M̃s

(s0).

The value of min
M̃∈M V π

M̃s

(s0) can again be calculated using the robust policy evaluation used for V πlow, with
only difference that now the reward function is known to be in the singleton set {Rs}. As one execution
of the robust policy evaluation is needed for each µπ†{s;a}low (s) in ∆̂(s, a), the whole attack phase has time
complexity of O(SA) runs of robust policy evaluation.
Remark 4.2. The robust attack procedure can also be used in the case where the attacker has a set of prior
observations of the environment, and wishes to enforce the target policy to all the learners and not use any of
the learners to collect more data. Such scenarios are applicable, for example, when the attacker is able to
observe the natural behavior of many other learners before starting the attack. One can do similar analysis
for this attack, as included in the supplementary material.
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4.3 Conditions for Stopping Exploration

A key part of the U2 attack strategy is to decide when to end the exploration phase and start the attack
phase. If the exploration is stopped earlier, the attacker is forced to make a large perturbation to the reward
to compensate for the uncertainty, and thus incur a larger attack cost in the attack phase. On the other
hand, a longer exploration phase allows the attacker to estimate ∆∗M more accurately, but incurs a larger
attack cost in the exploration phase.

In U2, the attacker explores the MDP until it is guaranteed that the per step cost of attack phase is at most
m-larger then the per step cost of the optimal white-box attack, i.e. for every s, a

∆̂(s, a) + λ ≤ ∆∗M (s, a) + λ+m (6)

wherem > 0 is a hyperparameter to adjust the amount of the exploration. After each learner in the exploration
phase, the attacker calculates the confidence intervals R, P and then the µπ†{s;a}low (s) values for every s, a. Let
Rhigh(s, a) = maxR(s, a) and Rlow(s, a) = minR(s, a). Define R̂range := maxs,aRhigh(s, a)−mins,aRlow(s, a)
and let

êQ := 2u+ 2γ · R̂range · w
(1− γ)2 ·

√
Nmin

, eµ := 2γ · w
(1− γ)2 ·

√
Nmin

.

The exploration phase ends if for every state and action pair s, a we have

2êQ + ε

µ
π†{s;a}
low (s)

− ε

µ
π†{s;a}
low (s) + eµ

≤ m (7)

We show that given the event M ∈ M, we have V π†M (s) ≤ V
π†

low(s) + êQ, Q
π†
M (s, a) ≥ Q

π†
high(s, a) − êQ, and

µ
π†{s;a}
M (s) ≤ µπ†{s;a}low (s) + eµ. Consequently, it is shown that the goal (6) is satisfied once (7) is satisfied for

every s, a.

This stopping condition gives a simple bound on the cost of the attack phase. However, the number of
learners that will be used for exploration, is also important as it decides the cost of the exploration phase,
and should be bounded. Let Rrange = maxs,aR(s, a)−mins,aR(s, a) and define

N0 = max
[(

2u
Rrange

)2
,

(
8u+ 16γ ·Rrange · w

(1− γ)2 ·m

)2
,

(
2γ · w

(1− γ)2 ·
6ε+m · µmin

m · µ2
min

)2 ]
Then define k0 as

k0 = 8 log(1
p

) + 4α2N0

µ2
min

·
log 16SA+ c2 · (log 1

8SA·β )
c1 · (log 1

8SA·β )2 (8)

where c1 = 0.08 and c2 = 1.34. We then have the following lemma:
Lemma 4.3. With probability of at least 1− 2p, U2 uses at most k0 learners as per (8) in the exploration
phase.

This bound is based on the guarantee from Lemma 4.1 on the effectiveness of the exploration phase in
collecting observations and analysis of how more observations shrink the confidence intervals and reduce the
suboptimality of the attack phase. Together with the guarantee of Eq. (6), Lemma 4.3 gives us the upper
bound on the total attack cost in Theorem 3.1.
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Figure 1: Results of numerical simulations. Plot (a) shows the effectiveness of the exploration phase. Plot
(b) shows the final cost of the attack for different values of T, L. Plot (c) demonstrates the difference in the
effect of ε on U2 and white-box attacks. Details are in Section 5.

5 Numerical Simulations

Figure 2: The environment used in
the experiments. The red arrows
show the target policy.

We validate our theory by simulating our proposed attack on a grid
world environment shown in Fig 2. The environment has |S| = 3 × 3
states, and |A| = 4 actions. For each action, there is 0.8 chance to move
towards the desired direction. Otherwise, a random other direction is
chosen. If a movement is blocked by a wall, the agent stays in place.
The agent starts at top left corner. The three actions leading to the
middle cell have reward 1 and other rewards are zero. The target policy
π† is to keep the agent in the top-right corner and is shown with red
arrows. All learners use Q-learning with UCB exploration algorithm
(Wang et al., 2020), which is a sample efficient model-free RL algorithm
with theoretic guarantee for infinite-horizon MDPs.

The first experiment shows how the reward poisoning of U2 in the exploration phase is forcing the learner to
explore the environment for the attacker. We evaluate the ‖∆̂‖∞ of the attack phase for various number of
learners in the exploration phase. As shown in Fig 1a, the ‖∆̂‖∞ decreases much faster when the rewards are
poisoned, which leads to much better guarantee for the cost of the attack. Also note that the attack is not
feasible with too little exploration, since the µπ†{s;a}low (s) term in (4) can be zero when confidence intervals
over transitions are too large.

The second experiment shown in Fig 1b evaluates the final value of Cost(T, L) for different values of T, L,
and m = 200, ε = 1. We observe that just like the upper bound on the cost in Theorem 3.1, the actual cost
of U2 decreases with both T and L. Even though the guaranteed upper bound on the cost of U2 is always
higher than white-box’s bound, the actual cost of U2 is in some cases smaller. The reason is that U2 poisons
the rewards to create at least an ε gap between the target policy and other policies for all possible MDPs, but
the actual gap created for the true environment is with high probability larger than ε. Due to this difference
between the actual gap and ε, U2 is effectively operating similar to the white-box attack with higher ε. This
shift is apparent in Fig 1c which shows the trade-off in choice of ε. Larger gap causes the learner to converge
to the target policy faster and decreases mismatches and the number of poisonings. On the other hand, it
requires larger ∆ and higher per step cost. Fig 1c shows that both of these trends are shifted between U2
and white-box attack, which shows the dependence on ε is different for these two attack strategies, and for
the same ε, U2 can perform even better than the white-box attack.
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6 Conclusions and Discussion

In this work, we studied the challenging problem of black-box reward poisoning attacks against reinforcement
learning, where the adversary starts off having no information on either the environment or the agents’
learning algorithm. We proposed an explore-and-exploit style attack U2, that can “hijack” the RL agents to
efficiently collect data about the environment, and then carry out a near-optimal attack. We showed that
surprisingly, with appropriate choice of hyperparameters, U2 can achieve an attack cost not much worse than
the optimal white-box attack. There are potential negative social impact of our algorithms, e.g. utilized by
malicious parties. But on the positive side, it also motivates the development of robust RL algorithms to
counter these attacks.
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In this section we provide a brief description of the content provided in the appendices of the paper.

• Appendix A provides additional related works.

• Appendix B provides the details on numerical simulations.

• Appendix C provides the proofs for the white-box attack.

• Appendix D provides the proofs for the exploration phase of U2.

• Appendix E provides the proofs for the stopping condition of U2.

• Appendix F provides the proofs for Theorem 3.1.

• Appendix G provides the analysis of Remark 4.2.

A Additional Related Works

No-regret RL algorithms. There is a long history of research on no-regret RL algorithms, and in the
tabular MDP case, this problem is now considered well-understood. For example, in the episodic setting,
the UCRL2 algorithm (Auer et al., 2009) achieves O(

√
H4S2AT ) regret, where H is the episode length, S is

the state space size, A is the action space size, and T is the total number of steps. The UCBVI algorithm
(Azar et al., 2017; Dann et al., 2017) achieves the optimal O(

√
H2SAT ) regret matching the lower bound

(Osband & Van Roy, 2016; Dann & Brunskill, 2015). More recently, model-free methods (Jin et al., 2018)
and policy-based methods (Cai et al., 2020) have all been shown to be able to achieve the same optimal
regret bound. In our work, we assume that the learner is implementing a no-regret algorithm, i.e. the regret
scales sublinearly with T . We will show that the learning efficiency of the learner will “backfire” on itself in
presence of an attack.

Test-time attacks against RL. Earlier work on adversarial attacks against RL studied test-time attacks,
where an adversary aims to manipulate the perceived state of the environment to mislead a fixed and deployed
RL policy to perform an incorrect action (Huang et al., 2017; Lin et al., 2017; Kos & Song, 2017; Behzadan &
Munir, 2017). For example, in Atari games, the attacker can make small pixel perturbation to a frame, similar
to adversarial attacks on image classification (Goodfellow et al., 2014)), to induce an action π(s†t) 6= π(st).
Although test-time attacks can severely impact the performance of a deployed and fixed policy π, they do
not modify π itself, and thus the adversarial impact will disappear as soon as the attack terminates. On the
other hand, poisoning attacks are training-time attacks that aim at changing the learned policy and thus
have a long-term effect.

Poisoning attacks and teaching. Poisoning attacks is mathematically equivalent to the formulation
of machine teaching with the teacher being the adversary (Goldman & Kearns, 1995; Zhu, 2015; Singla
et al., 2014; Zhu et al., 2018; Chen et al., 2018; Mansouri et al., 2019; Peltola et al., 2019). A recent line of
research has studied robust notions of teaching in settings where the teacher has limited information about
the learner’s dynamics (Dasgupta et al., 2019; Devidze et al., 2020; Cicalese et al., 2020), however, these
works only consider supervised learning settings.

There have been a number of recent works on teaching an RL agent via providing an optimized curriculum
of demonstrations (Cakmak & Lopes, 2012; Walsh & Goschin, 2012; Hadfield-Menell et al., 2016; Haug et al.,
2018; Kamalaruban et al., 2019; Tschiatschek et al., 2019; Brown & Niekum, 2019). However, most of these
works have focused on imitation-learning based RL agents who learn from provided demonstrations without
any reward feedback (Osa et al., 2018). Given that we consider RL agents who find policies based on rewards,
our work is technically very different from theirs. A recent work of (Zhang et al., 2020a) studies the problem
of teaching Q-learning algorithm, however, considers the white-box setting. There is also related literature
on changing the behavior of an RL agent via reward shaping (Ng et al., 1999; Asmuth et al., 2008); here
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the reward function is changed to only speed up the convergence of the learning algorithm while ensuring
that the optimal policy in the modified environment is unchanged.

Reward Shaping: While this paper is phrased from the adversarial angle, the framework and techniques
are also applicable to the teaching setting, where a teacher aims to guide the agent to learn the optimal
policy as soon as possible, by designing the reward signal. Traditionally, reward shaping and more specifically
potential-based reward shaping (Ng et al., 1999) has been shown able to speed up learning while preserving
the optimal policy. (Devlin & Kudenko, 2012) extend potential-based reward shaping to be time-varying
while remains policy-preserving. More recently, intrinsic motivations(Schmidhuber, 1991; Oudeyer & Kaplan,
2009; Barto, 2013; Bellemare et al., 2016) was introduced as a new form of reward shaping to encourage
exploration and thus speed up learning. Our work contributes by mathematically defining the teaching
via reward shaping task as an optimal control problem, and provide computational tools that solve for
problem-dependent high-performing reward shaping strategies.

B Details of Numerical Simulations

On all experiments, the learner’s UCB-Q algorithm is run with hyperparameters εUCBQ = 0.01, δUCBQ = 0.05,
and to allow convergence in a reasonable rate, the UCB bonuses are divided by 5000. All experiments are
run five times and the mean of quantities are reported. We set γ = 0.9, σ = 2, p = 0.05, and λ = 1 for all the
experiments. In the first experiment, in which the effectiveness of exploration phase is evaluated, we have
T = 5000, L = 200 and ε = 1.In the second experiment, m = 200, ε = 1 is used with various values of T, L.

C Proof for the white-box attack

Lemma C.1 (Lemma 3.2). The optimal solution for (P1) is ∆∗M . Moreover, ∆: S × A→ R is a feasible
solution of (P1) if and only if for every state s and action a, ∆(s, a) ≥ ∆∗M (s, a) and ∆(s, π†(s)) = 0.

For completeness, we include the proof of Lemma 3.2 for the white-box attack that immediately follows from
the following two lemmas in (Rakhsha et al., 2020b).
Lemma C.2. (Rakhsha et al., 2020b) Policy π is ε-robust optimal iff we have ρπ ≥ ρπ{s;a} + ε for every
state s and action a 6= π(s).
Lemma C.3. (Schulman et al., 2015) For two policies π and π′ we have:

ρπM − ρπ
′

M =
∑
s∈S

µπ
′

M (s)
(
QπM (s, π(s))−QπM (s, π′(s))

)
. (9)

Proof of Lemma C.1. Based on these two lemmas, we note that ∆ is a feasible solution for (P1) if and
only if for every s, a

ε ≤ ρπ†M ′ − ρ
π†{s;a}
M ′ = µ

π†{s;a}
M ′ (s)

(
V
π†
M ′(s)−Q

π†
M ′(s, a)

)
= µ

π†{s;a}
M (s)

(
V πM (s)−Qπ†M (s, a) + ∆(s, a)

)
(10)

where M ′ = (S,A,R−∆, P ). Rearranging this inequality gives us the condition in the lemma:

∆(s, a) ≥ Qπ†M (s, a)− V πM (s) ε

µ
π†{s;a}
M (s)

= ∆∗M (s, a) (11)

D Proofs for the exploration phase

In this section, we first prove Lemma 4.1 which lower-bounds the number of visits to each (s, a) pair by each
learner in the exploration phase. Then we give the details of Lemma 4.2.
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Lemma D.1 (Lemma 4.1). Let s, a be an arbitrary state and action pair, and g(s, a) = minπ:π(s)=a µ
π
M (s).

Assume 4β ≤ δ and α
g(s,a) <

1
2
√

2 . If the feedback as in (2) is given to a learner, then at the end of T steps,
with probability of at least 1− δ, the action a is chosen from state s for at least

g(s, a)2

α2 ·
c1 · (log δ

4β )2

log 8
δ + c2 · (log δ

4β )
(12)

number of times, where c1 = 0.08 and c2 = 1.34.

Proof of Lemma D.1. We will show that with probability of at least 1− δ, we have

N(s, a) ≥ t∗ := g(s, a)2

α2 · c1 · (log δ/4β)2

log 8
δ + c2 · (log δ/4β)

. (13)

.

Define the probability distribution B(p) with parameter p as the following

P [X = x|X ∼ B(p)] =
{
p if x = 1
1− p if x = −1

(14)

We consider three possible reward distributions during the exploration phase. We call these possibilities
"hypotheses" H0, H1 and H2. H0 is the actual reward distribution simulated for the learner:

H0 : r′t ∼ B(1
2) (15)

H1 is an alternative reward distributions in which s, a is taken in all α-optimal policies, and H2, in contrary,
is a reward distributions in which s, a is not taken in any α-optimal policies:

H1 : r′t ∼

{
B( 1

2 + α
2g(s,a) ) if st = s, at = a

B( 1
2 ) otherwise

(16)

H2 : r′t ∼

{
B( 1

2 −
α

2g(s,a) ) if st = s, at = a

B( 1
2 ) otherwise

(17)

Let M+
E = (S,A,R+

E , P ) be the MDP with rewards described in H1 and Let M−E = (S,A,R−E , P ) be the
MDP with rewards described in H2. The following lemma formalizes this construction.

Lemma D.2. For every α-optimal policy π in M+
E , we have π(s) = a. In contrast, for every α-optimal

policy π in M−E , we have π(s) 6= a.

Proof. Let π and π′ be arbitrary policies such that π(s) 6= a and π′(s) = a. We have ρπ
M+

E

= ρπ
M−

E

= 0. We
can also write

ρπ
′

M+
E

=
∑
s′∈S

µπ
′

M+
E

(s′)R+
E(s′, π′(s′)) = α

g(s, a)µ
π′

M (s) ≥ α (18)

Thus, ρπ
M+

E

≤ ρπ′
M+

E

− α, which shows π is not α-optimal and proves the first part. For the second part, we
write

ρπ
′

M−
E

=
∑
s′∈S

µπ
′

M−
E

(s′)R−E(s′, π′(s′)) = − α

g(s, a)µ
π′

M (s) ≤ −α (19)

Consequently, ρπ′
M+

E

≤ ρπ
M+

E

− α, and therefore π′ is not α-optimal.
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Next, we use the same argument as in the classic lower bound construction in stochastic bandits (Mannor &
Tsitsiklis, 2004). The proof is based on the following idea: a sequence of observations in which (s, a) is rarely
visited has similar likelihood under all H0, H1, and H2. Thus, if these sequences appear with high probability
under H0, they also will happen with high probability under both H1, and H2 too. If in the majority of these
sequences, the learner decides to pick a in s, it will with a large probability of incur large optimality gap in
H2. On the other hand, if the learner decides not to pick a in s, will with a large probability of incur large
optimality gap in H2.

First, we define some events that are used in our analysis. Let A be the event that the bound is not true, i.e.

A = {N(s, a) < t∗}. (20)

Next, let π∗ be the final chosen policy by the learner and B denote the event in which (s, a) is chosen by π∗.
More specifically,

B = {π∗(s) = a}. (21)

Finally let Kn =
∑n
i=1 1

[
r′ti(s,a) = 1

]
where ti(s, a) is the i-th time step when s, a is chosen and define event

C as the following:

C =
{

max
1≤n≤t∗

|2Kn − n| ≤
√

8t∗
3 log 8

δ

}
(22)

Let P0, P1 and P2 denote the probability functions under H0, H1, and H2, respectively. We will show that if
P0(A) ≥ δ, either P1(Bc) ≥ β or P2(B) ≥ β where Bc is the complement of B. Based on Lemma D.2, this
contradicts the learner’s guarantee and will prove the lemma. Now, assume that P0(A) ≥ δ. Then, either
P0(A ∩B) ≥ δ

2 or P0(A ∩Bc) ≥ δ
2 . We consider each of these cases separately. Before that, we need to show

some intermediate lemmas.

Lemma D.3. We have P0(C) ≥ 1− δ
4 .

Proof. Let p =
√

8t∗
3 log 8

δ . The result is trivial if p ≥ t∗. For p ≤ t∗, from the maximal Bernstein inequality
(Theorem B.2 in (Rio, 2017))

P0

(
max

1≤n≤t∗
(2Kn − n) > p

)
≤ exp

(
− p2

2t∗ + 2p/3

)
(23)

≤ exp
(
− p2

2t∗ + 2t∗/3

)
(24)

= δ/8 (25)

Similarly, we have

P0

(
max

1≤n≤t∗
(n− 2Kn) > p

)
≤ δ/8 (26)

From the union bound, we get

P0

(
max

1≤n≤t∗
|2Kn − n| > p

)
≤ δ/4 (27)

It means that P0(C) > 1− δ/4.

Lemma D.4. (Mannor & Tsitsiklis, 2004) If 0 ≤ x ≤ 1/
√

2, then log(1− x) ≥ −dx where d = 1.78.

Let Y be the sequence of all the chosen actions, received rewards, states visited during the whole interaction
with the learner, and the final chosen policy by the learner. We define the likelihood functions L0, L1 and L2
for each of the hypotheses:

Li(y) = Pi(Y = y) (28)

The following lemmas show a lower bound on likelihood of observed history if A happens.

18
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Lemma D.5. If y ∈ A ∩ C, then L1(y)
L0(y) ≥

4β
δ .

Proof. Note that the transition probabilities are the same under H0 and H1. Also, conditioned on the history
up to time t, the choice of action at has the same likelihood under H0 and H1 as it only depends on the
learner’s internal stochasticity. Finally, the received reward has the same distribution unless st = s, at = a.
For brevity, let N = N(s, a),K = KN , ε = α

2g(s,a) . We can write

L1(y)
L0(y) =

( 1
2 + ε)K · ( 1

2 − ε)
N−K

( 1
2 )N

(29)

= (1 + 2ε)K · (1− 2ε)N−K (30)
= (1− 4ε2)K · (1− 2ε)N−2K (31)

Since A ∩ C has happened, we have

K ≤ N < t∗ (32)

N − 2K ≤
√

8t∗
3 log 8

δ
(33)

Thus using Lemma D.4, we can write:

log L1(y)
L0(y) = K · log(1− 4ε2) + (N − 2K) · log(1− 2ε) (34)

≥ −t∗ · 4dε2 −
√

8t∗
3 log 8

δ
· 2dε (35)

Thus, we need to show

t∗ · 4dε2 +
√

8t∗
3 log 8

δ
· 2dε ≤ log δ

4β (36)

Now let t∗ = 1
ε2 · z2, b =

√
2
3 log 8

δ , and c = 1
4d log δ

4β . Then, (36) can be rewritten as

z2 + bz − c ≤ 0 (37)

Since δ ≥ 4β, we have c > 0, and therefore, this is true if z ≥ 0 and

z ≤ −b+
√
b2 + 4c

2 = 2c√
b2 + 4c+ b

(38)

Thus, by Jensen’s inequality, it satisfies to have z ≤ c√
b2+2c which means we need to have:

t∗ = 1
ε2 · z

2 ≤ 1
ε2

1
16d2 (log δ

4β )2

2
3 log 8

δ + 1
2d log δ

4β
(39)

= 4g(s, a)2

α2

3
32d2 · (log δ

4β )2

log 8
δ + 3

4d log δ
4β

(40)

which is true when c1 ≤ 3
8d2 and c2 ≥ 3

4d .

Lemma D.6. If y ∈ A ∩ C, then L2(y)
L0(y) ≥

4β
δ .
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Proof. Following the same argument in proof of Lemma.D.5, we can write

L2(y)
L0(y) =

( 1
2 − ε)

K · ( 1
2 + ε)N−K

( 1
2 )N

(41)

= (1− 2ε)K · (1 + 2ε)N−K (42)
= (1− 4ε2)K · (1 + 2ε)N−2K (43)

where N = N(s, a),K = KN , ε = α
g(s,a) . Since A ∩ C has happened, we have

K ≤ N < t∗ (44)

N − 2K ≥ −
√

8t∗
3 log 8

δ
(45)

Thus using Lemma D.4, we can write:

log L1(y)
L0(y) = K · log(1− 4ε2) + (N − 2K) · log(1 + 2ε) (46)

≥ t∗ · log(1− 4ε2)−
√

8t∗
3 log 8

δ
· log(1 + 2ε) (47)

≥ −t∗ · 4dε2 −
√

8t∗
3 log 8

δ
· 2ε (48)

(49)

where we used log(1 + x) ≤ x for x ≥ 0. Thus, we need to show

t∗ · 4dε2 +
√

8t∗
3 log 8

δ
· 2ε ≤ log δ

4β (50)

Now let t∗ = 1
ε2 · z2, b =

√
2
3 log 8

δ , and c = 1
4 log δ

4β . Then (50) can be rewritten as

dz2 + bz − c ≥ 0 (51)

Since δ ≥ 4β, we have c > 0, and therefore, this is true if z ≥ 0 and

z ≤ −b+
√
b2 + 4cd

2d = 2c√
b2 + 4cd+ b

(52)

Thus, by Jensen’s inequality, it satisfies to have z ≤ c√
b2+2cd which means we need to have:

t∗ = 1
ε2 · z

2 ≤ 1
ε2

1
16 (log δ

4β )2

2
3 log 8

δ + d
2 log δ

4β
(53)

= 4g(s, a)2

α2

3
32 · (log δ

4β )2

log 8
δ + 3d

4 · log δ
4β

(54)

which is true when c1 ≤ 3
8 and c2 ≥ 3d/4.
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Finally, to prove Lemma 4.1, assume P0(A) ≥ δ and consider two cases: P0(A ∩Bc) ≥ δ
2 and P0(A ∩B) ≥ δ

2 .
If P0(A ∩Bc) ≥ δ

2 , first note that P0(A ∩Bc ∩ C) ≥ δ/4. Now we write

P1(Bc) ≥ P1(A ∩Bc ∩ C) (55)
= E1[1A∩Bc∩C ] (56)

= E0[1A∩Bc∩C
L1(Y )
L0(Y ) ] (57)

≥ E0[1A∩Bc∩C
4β
δ

] (58)

= 4β
δ
· P0(A ∩Bc ∩ C) (59)

≥ β (60)

where 1X denotes the indicator function of event X and we used Lemma D.5.

Similarly, when P0(A ∩B) ≥ δ
2 , we have P0(A ∩B ∩ C) ≥ δ/4, and we write

P2(B) ≥ P2(A ∩B ∩ C) (61)
= E2[1A∩B∩C ] (62)

= E0[1A∩B∩C
L2(Y )
L0(Y ) ] (63)

≥ E0[1A∩B∩C
4β
δ

] (64)

= 4β
δ
· P0(A ∩B ∩ C) (65)

≥ β (66)

In both cases, the assumption on learner’s performance in wrong. This shows that P0(A) < δ.

Lemma D.7 (Lemma 4.2). With probability of at least 1− p/L, M ∈M.

Proof of Lemma D.7. From Hoeffding’s inequality, for every s, a we have

P
(
|R(s, a)− R̂(s, a)| > z

)
≤ 2 exp

(
−N(s, a)z2

2σ2

)
(67)

Letting z = u√
Nmin

, we get

P
(
|R(s, a)− R̂(s, a)| > u√

Nmin

)
≤ 2 exp

(
−N(s, a)u2

2σ2 ·Nmin

)
(68)

≤ p

2SAL (69)

Also, (Weissman et al., 2003) bounds the `1 distance between empirical distribution d̂ with N samples and
true distribution d over n outcomes as

P
(
‖d− d̂‖1 ≥ z

)
≤ (2n − 2) exp

(
−Nz

2

2

)
(70)

Thus, for every s, a we have

P
(
‖P (s, a, .)− P̂ (s, a, .)‖1 ≥

w√
Nmin

)
≤ (2S − 2) exp

(
−N(s, a)w2

2Nmin

)
(71)

≤ 2S exp
(
−w

2

2

)
(72)

= p

2SAL (73)
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The lemma immediately follows from the union bound and above bounds.

The following result is an immediate consequence of Lemma D.7.
Corollary D.1. With probability of at least 1−p, we have M ∈M for allMs built after each of the learners
in the exploration phase.

E Proof of Stopping Condition

In this section, we provide rigorous proofs on various consequences induced by the stopping condition (7):

2êQ + ε

µ
π†{s;a}
low (s)

− ε

µ
π†{s;a}
low (s) + eµ

≤ m (74)

In what follows, define event B as

B := {M ∈M for allMs built after each of the learners in the exploration phase} (75)

From Corollary D.1 we have P(B) ≥ 1− p.

We make use of the simulation lemma:
Lemma E.1. (Simulation Lemma (Strehl & Littman, 2008)) Let M1 = (S,A,R1, P1, γ) and M2 =
(S,A,R2, P2, γ) be two MDPs with reward range Rrange. The following condition holds for all states s,
actions a, and stationary, deterministic policies π:

|Qπ1 (s, a)−Qπ2 (s, a)| ≤ 1
(1− γ)2 (‖R1 −R2‖∞ + γ(Rrange)‖P1 − P2‖∞) (76)

Our first result says that the stopping condition guarantees that the attack cost is at most m worse than the
white-box attack:
Lemma E.2. Under event B, the stopping condition (74) guarantees that ∆̂(s, a) ≤ ∆∗M (s, a) +m for every
s, a.

Proof of Lemma E.2. Lemma E.1 and event B imply

Q
π†
M (s, a) ≥ Qπ†high(s, a)− eQ (77)
V
π†
M (s) ≤ V π†low(s) + eQ (78)

where again

eQ = 2u+ 2γ ·Rrange · w
(1− γ)2 ·

√
Nmin

, eµ = 2γ · w
(1− γ)2 ·

√
Nmin

. (79)

Let M = arg min
M̃∈M µ

π†{s;a}
M̃

(s), which means µπ†{s;a}low = µ
π†{s;a}
M

. In Ms and Ms, all the rewards are the
same and either 0 or 1. Thus, utilizing the simulation lemma,

µ
π†{s;a}
M (s) = V

π†{s;a}
Ms

(s0) (80)

≤ V π†{s;a}
M

(s0) + 2γw
(1− γ)2 ·

√
Nmin

(81)

= µ
π†{s;a}
low (s) + eµ (82)
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Under event B, all the confidence intervals hold and therefore R̂range ≥ Rrange. In that case, from Lemma
E.1, we have:

V
π†
M (s) ≤ V π†low(s) + êQ (83)

Q
π†
M (s, a) ≥ Qπ†high(s, a)− êQ (84)

Thus, once (7) is satisfied, we have

m+Q
π†
M (s, a)− V π†M (s) + ε

µ
π†{s;a}
M (s)

(85)

≥ m+Q
π†
high(s, a)− V π†low(s)− 2êQ + ε

µ
π†{s;a}
low (s) + eµ

(86)

≥ 2êQ + ε

µ
π†{s;a}
low (s)

− ε

µ
π†{s;a}
low (s) + eµ

+Q
π†
high(s, a)− V π†low(s)− 2êQ + ε

µ
π†{s;a}
low (s) + eµ

(87)

= Q
π†
high(s, a)− V π†low(s) + ε

µ
π†{s;a}
low (s)

(88)

Consequently,

m ≥

(
Q
π†
high(s, a)− V π†low(s) + ε

µ
π†{s;a}
low (s)

)
−

(
Q
π†
M (s, a)− V π†M (s) + ε

µ
π†{s;a}
M (s)

)
(89)

≥

[
Q
π†
high(s, a)− V π†low(s) + ε

µ
π†{s;a}
low (s)

]+

−

[
Q
π†
M (s, a)− V π†M (s) + ε

µ
π†{s;a}
M (s)

]+

(90)

=∆̂(s, a)−∆∗M (s, a) (91)

Lemma E.3. Under event B, the stopping condition is satisfied after at most N0 observations of each (s, a)
pair.

Proof of Lemma E.3. We show that after N0 observations

2êQ ≤
m

2 (92)
ε

µ
π†{s;a}
low (s)

− ε

µ
π†{s;a}
low (s) + eµ

≤ m

2 (93)

For the first part, note that N0 ≥
(

2u
Rrange

)2
. Thus, under event B, we have

R̂range ≤ Rrange + 2u√
Nmin

≤ 2Rrange (94)

Thus,

êQ = 2u+ 2γ · R̂range · w
(1− γ)2 ·

√
Nmin

≤ 2u+ 4γ ·Rrange · w
(1− γ)2 ·

√
Nmin

(95)

From Nmin ≥
(

8u+16γ·Rrange·w
(1−γ)2·m

)2
we get êQ ≤ m

4 .

From

Nmin ≥
(

2γ · w
(1− γ)2 ·

6ε+m · µmin

m · µ2
min

)2
, (96)
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we get

eµ = 2γ · w
(1− γ)2 ·

√
Nmin

≤ m · µ2
min

6ε+m · µmin
(97)

With the same argument as in (82), we have

µ
π†{s;a}
M (s)− eµ ≤ µ

π†{s;a}
low (s) ≤ µπ†{s;a}M (s) + eµ (98)

note that (97) shows that eµ < µmin ≤ µ
π†{s;a}
M (s) so we can write

ε

µ
π†{s;a}
low (s)

− ε

µ
π†{s;a}
low (s) + eµ

≤ ε

µ
π†{s;a}
M (s)− eµ

− ε

µ
π†{s;a}
M (s) + 2eµ

(99)

= 3εeµ
(µπ†{s;a}M (s)− eµ)(µπ†{s;a}M (s) + 2eµ)

(100)

≤ 3εeµ
(µπ†{s;a}M (s)− eµ) · µπ†{s;a}M (s)

(101)

Thus, it suffices to show

3εeµ
(µπ†{s;a}M (s)− eµ) · µπ†{s;a}M (s)

≤ m

2 (102)

⇔6εeµ ≤ m · µ
π†{s;a}
M (s) · (µπ†{s;a}M (s)− eµ) (103)

⇔(6ε+m · µπ†{s;a}M (s))eµ ≤ m ·
(
µ
π†{s;a}
M (s)

)2
(104)

⇔eµ ≤
m ·

(
µ
π†{s;a}
M (s)

)2

6ε+m · µπ†{s;a}M (s)
(105)

which follows from (97) noting that µmin ≤ µ
π†{s;a}
M (s) and f(x) = x

a+x is increasing for a, x > 0.

Lemma E.4. With probability 1 − p, N0 observations on each (s, a) pair can be made after at most k0
learners.

Proof of Lemma E.4. Setting δ = 1
2SA , Lemma 4.1 and union bound imply that with probability of at

least 1/2, each learner give the following number of observations for each s, a

µ2
min
α2 ·

c1 · (log 1
8SA·β )2

log 16SA+ c2 · (log 1
8SA·β )

(106)

Let k1 be the number of learners among the k0 learners for which the above bound holds. Then after k0
learners, we have at least

k1 ·
µ2

min
α2 ·

c1 · (log 1
8SA·β )2

log 16SA+ c2 · (log 1
8SA·β )

(107)

observations.

From Hoeffding’s inequality we have

P

k1 ≤

1
2 −

√
log 1/p

2k0

 · k0

 ≤ p (108)
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Thus, with probability of at least 1− p,

k1 ≥

1
2 −

√
log 1/p

2k0

 · k0 (109)

and consequently

Nmin ≥

1
2 −

√
log 1/p

2k0

 · k0 ·
µ2

min
α2 ·

c1 · (log 1
8SA·β )2

log 16SA+ c2 · (log 1
8SA·β )

(110)

Now we have k0 ≥ 8 log 1/p which gives

1
2 −

√
log 1/p

2k0
≥ 1/4 (111)

thus

Nmin ≥
1
4 · k0 ·

µ2
min
α2 ·

c1 · (log 1
8SA·β )2

log 16SA+ c2 · (log 1
8SA·β )

≥ N0 (112)

F Proof of the main theorem

Finally, we prove our main theorem by combining all the building blocks above.
Theorem F.1 (Theorem 3.1). For any m > 0 and p ∈ (0, 1), assume that α < µmin

2
√

2 and β < 1
8SA , then, with

probability of at least 1− 4p, the cost of U2 is bounded by

Cost(T, L) ≤ k0

L
·

(
‖R‖∞ + σ

√
2 log 2k0T

p
+ 1 + λ

)
(113)

+ (‖∆∗M‖∞ + λ+m) ·
SubOpt(T, ε, pL )

T

where k0 is a function of MDP M , p, α, β, λ, m, ε, and L as defined in (8).

Proof of Theorem F.1. Let k1 denote the number of learners in the exploration phase, and ξ(l)
t be the

noise in reward of step t of learner l, i.e. r(l)
t = R(s(l)

t , a
(l)
t ) + ξ

(l)
t . For the total cost we have

Cost(T, L) = 1
L · T

L∑
l=1

T∑
t=1

(
|r(l)
t − r

′(l)
t |+ λ1

[
a

(l)
t 6= π†(s(l)

t )
])

(114)

= 1
L · T

k1∑
l=1

T∑
t=1

(
|R(s(l)

t , a
(l)
t ) + ξ

(l)
t − r

′(l)
t |+ λ1

[
a

(l)
t 6= π†(s(l)

t )
])

+ (115)

1
L · T

L∑
l=k1+1

T∑
t=1

(
∆̂(s(l)

t , a
(l)
t ) + λ1

[
a

(l)
t 6= π†(s(l)

t )
])

≤ 1
L · T

k1∑
l=1

T∑
t=1

(
|R(s(l)

t , a
(l)
t )|+ |ξ(l)

t |+ 1 + λ
)

+ (116)

1
L · T

L∑
l=k1+1

T∑
t=1

(
(∆̂(s(l)

t , a
(l)
t ) + λ) · 1

[
a

(l)
t 6= π†(s(l)

t )
])

≤k1 · (‖R‖∞ + 1 + λ)
L

+
∑k1
l=1
∑T
t=1 |ξ

(l)
t |

L · T
+ ‖∆̂‖∞ + λ

L · T

L∑
l=k1+1

T∑
t=1

1
[
a

(l)
t 6= π†(s(l)

t )
]

(117)
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Define events C and D as the following

C := {k1 ≤ k0} (118)

D :=
{

k0∑
l=1

T∑
t=1
|ξ(l)
t | ≤ σ · k0T ·

√
2 log 2k0T

p

}
(119)

That is, C is the event that the attacker uses at most k0 learners in the exploration phase, and D is the event
that sum of absolute value of noises in first k0 learners is bounded as in (119). Also let E be the event that
for all of L learners, the number of ε-suboptimal steps taken is at most SubOpt(T, ε, pL ).

We show that under event F = B∩C ∩D∩E the bound on the cost holds, and then show that P(F ) ≥ 1−4p.
From event C we get

k1 · (‖R‖∞ + 1 + λ)
L

≤ k0 · (‖R‖∞ + 1 + λ)
L

(120)

Also C ∩D implies

∑k1
l=1
∑T
t=1 |ξ

(l)
t |

L · T
≤
∑k0
l=1
∑T
t=1 |ξ

(l)
t |

L · T
≤
σ · k0 ·

√
2 log 2k0T

p

L
(121)

Finally note that under B, since ∆̂ is a solution of (P2), the target policy is an ε-robust optimal for learners
in the attack phase. Thus, all the steps that learners in the attack phase do not follow the target policy are
ε-suboptimal. From event E and Lemma E.2 we get

‖∆̂‖∞ + λ

L · T

L∑
l=k1+1

T∑
t=1

1
[
a

(l)
t 6= π†(s(l)

t )
]
≤ (‖∆̂‖∞ + λ) ·

SubOpt(T, ε, pL )
T

(122)

≤ (‖∆∗M‖∞ + λ+m) ·
SubOpt(T, ε, pL )

T
(123)

Putting all the bounds together, we get that under event F we have

Cost(T, L) ≤ k0 · (‖R‖∞ + 1 + λ)
L

+
σ · k0 ·

√
2 log 2k0T

p

L
+ (‖∆∗M‖∞ + λ+m) ·

SubOpt(T, ε, pL )
T

(124)

which is the bound in the theorem.

Now note that from Corollary D.1 we have P(B) ≥ 1−p. Lemma E.3 and Lemma E.4 show that P(C|B) ≥ 1−p.
Thus, we have P(B ∩C) = P(C|B) · P(B) = (1− p)2 ≥ 1− 2p. Note that from Hoeffding’s inequality we have

P

(
|ξ(l)
t | >

√
2σ2 log 2k0T

p

)
≤ p

k0T
(125)

Applying this lemma to all k0T steps of first k0 learners, from union bound we get P(D) ≥ 1− p. Finally,
from the definition of SubOpt and union bound, we have P(E) ≥ 1− p. Thus, we have

P(F ) = P(B ∩ C ∩D ∩ E) ≥ 1− (1− P(B ∩ C))− (1− P(D))− (1− P(E)) ≥ 1− 4p (126)

which concludes the proof.

G Technical Details of Attack with Prior Data

In the remark in Section 4.2, we highlighted a stand-alone application of the attack phase procedure, in which
the attacker uses some prior set of observations to do the attack without an exploration phase. Here, we
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provide the analysis of this attack. Let N(s, a) be the number of times (s, a) is observed in the data and let
Nmin = mins,aN(s, a). Define

e(s, a) = 2eQ + ε[
µ
π†{s;a}
M (s)− eµ

]+ − ε

µ
π†{s;a}
M (s)

where

eQ = 2u+ 2γ ·Rrange · w
(1− γ)2 ·

√
Nmin

, eµ = 2γ · w
(1− γ)2 ·

√
Nmin

.

Here, Rrange = maxs,aR(s, a)−mins,aR(s, a).

We show that with probability of at least 1− 2p the cost of this attack is at most
1
T
· (‖∆∗M + e‖∞ + λ) · SubOpt(T, ε, p

L
) (127)

Proof. If M ∈M, which happens with probability at least 1− p, from Lemma E.2 we have

Q
π†
high(s, a) ≤ Qπ†M (s, a) + eQ (128)
V
π†

low(s) ≥ V π†M (s)− eQ (129)

Also with similar argument as in (82), we have

µ
π†{s;a}
low (s) ≥

[
µ
π†{s;a}
M (s)− eµ

]+
(130)

Thus, we have

Q
π†
high(s, a)− V π†low(s) + ε

µ
π†{s;a}
low (s)

≤ Qπ†M (s, a)− V π†M (s) + ε[
µ
π†{s;a}
M (s)− eµ

]+ + 2eQ (131)

= Q
π†
M (s, a)− V π†M (s) + ε

µ
π†{s;a}
M (s)

+ e(s, a) (132)

which gives

e(s, a) ≥
(
Q
π†
high(s, a)− V π†low(s) + ε

µ
π†{s;a}
low (s)

)
−

(
Q
π†
M (s, a)− V π†M (s) + ε

µ
π†{s;a}
M (s)

)
(133)

≥

[
Q
π†
high(s, a)− V π†low(s) + ε

µ
π†{s;a}
low (s)

]+

−

[
Q
π†
M (s, a)− V π†M (s) + ε

µ
π†{s;a}
M (s)

]+

(134)

= ∆̂(s, a)−∆∗M (s, a) (135)

As ∆̂ is a solution of (P2), the target policy is ε-robust optimal for the learner. Consequently, the steps
in which the target policy is not followed are ε-suboptimal and with probability of at least 1 − p at most
SubOpt(T, ε, pL ) for all the learners. Thus, by a union bound, with probability of at least 1− 2p we have

Cost(T, L) = 1
L · T

L∑
l=1

T∑
t=1

(
|r(l)
t − r

′(l)
t |+ λ1

[
a

(l)
t 6= π†(s(l)

t )
])

(136)

≤ 1
L · T

· (‖∆̂‖∞ + λ) · L · SubOpt(T, ε, p
L

) (137)

≤ 1
T
· (‖∆∗M + e‖∞ + λ) · SubOpt(T, ε, p

L
) (138)

which proves the claim.
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