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Figure 1: Our method enables the humanoid robot to perform stably across various simulated envi-
ronments. We successfully transfer the policy to the physical robot in various real-world environ-
ments.

Abstract: Humanoid robots are a key focus in robotics, with their capacity to
navigate tough terrains being essential for many uses. While strides have been
made, creating adaptable locomotion for complex environments is still tough. Re-
cent progress in learning-based systems offers hope for robust legged locomotion,
but challenges persist, such as tracking accuracy at high speeds and on uneven
ground, and joint oscillations in actual robots. This paper proposes a novel train-
ing framework to address these challenges by employing a two-phase training
paradigm with reinforcement learning. The proposed framework is further en-
hanced through the integration of command curriculum learning, refining the pre-
cision and adaptability of our approach. Additionally, we adapt DreamWaQ to
our humanoid locomotion system and improve it to mitigate joint oscillations. Fi-
nally, we achieve the sim-to-real transfer of our method. A series of empirical
results demonstrate the superior performance of our proposed method compared
to state-of-the-art methods.
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1 Introduction

The humanoid robot has gained significant interest due to its human-like capabilities in performing
various tasks [1, 2, 3]. Recent advances in reinforcement learning-based legged locomotion sys-
tems [4, 5, 6, 7] have shown great potential in dealing with complex, challenging environments. In
this paper, we aim to address the challenges of achieving robust walking for humanoid robots on
difficult terrains. We propose a two-phase sim-to-real (Sim2Real) learning framework, integrated
with novel learning-based state estimation and curriculum learning, for humanoid locomotion.

The proposed framework divides the training process into two phases. In the first phase, the robots
are trained on less challenging terrains with hand-crafted reference motion based on their structural
and kinematic characteristics. Several reward functions are introduced to encourage the robots to
imitate these motions quickly. A sinuous wave reference motion creates alternating leg movements
for stable walking, encouraging quick imitation. However, these rewards may hinder exploration in
phase two, which focuses on challenging terrains where adaptive gaits are necessary. Therefore, in
phase two, by eliminating the reliance on predefined reference motions, our approach enables the
robot to navigate more complex terrains with enhanced agility and efficiency.

Besides the two-phase training paradigm, we incorporate a curriculum learning strategy and a
learning-based state estimation method into our framework. We adopt curriculum learning on ve-
locity command tracking, as proposed by Margolis et al. [8]. This progressive expansion in velocity
enables the robot to develop robust and wide-ranging command tracking capabilities, essential for
the overall training process. Our experimental validation shows that our robot can achieve a maxi-
mum speed of 1 m/s on diverse terrains. Furthermore, inspired by the DreamWaQ method [9], we
design an estimator network to estimate the robot’s base velocity. Compared to the original method,
we utilize multi-frame(20) observations rather than single-frame inputs to the actor policy.

We design qualitative and quantitative experiments with various baselines to evaluate the proposed
approach, as shown in Fig. 1. Empirical results indicate that our method outperforms the baselines in
terms of command tracking, task success rate, and robustness. The proposed approach demonstrates
excellent robustness, even when transferred to novel terrains that are not initially present in the
simulated environments. Our contributions can be summarized as follows:

• We propose a simple yet effective two-phase training paradigm that enables us to learn
robust, relatively high-speed locomotion controllers to traverse various challenging terrains
on a real humanoid robot.

• We improve the DreamWaQ method by changing the input for the policy network from
single-frame to multi-frame(20) information. This straightforward yet practical approach
enhances walking stability and significantly benefits the Sim2Real transfer.

• We adopt a velocity command curriculum to our training framework, enabling the robot to
work at a wide range of velocity commands over challenging terrains.

2 Related Work

Reinforcement Learning for Legged Locomotion. Deep reinforcement learning has shown great
potential in legged locomotion control and is becoming the mainstream control algorithm for legged
robots. Applying the teacher-student training paradigm in Sim2Real learning of legged locomotion
is popular among research works. Lee et al. [10] applied teacher-student training to the quadruped
robot ANYmal, resulting in a robust controller capable of traversing challenging terrains. Kumar et
al. [11] trained locomotion policies with rapid motor adaptation, enabling them to adapt to environ-
mental changes quickly. The teacher-student training paradigm applies a neural network to perform
system identification. In contrast, another stream of research uses a separate neural network to per-
form state estimation, which is relevant to this work. Ji et al. [12] trained a state estimator policy to
estimate robot base velocity and feet contact. DreamWaQ [9] further extends learning based state
estimation into estimating hidden states. Learning with reference motion can promote the training

2



Temporal partial

Observation

(𝐨𝑡
𝐻)

Privileged 

observations (𝒔𝑡
H’)

1000

Hz

PD

Controller

Reward

𝒐𝑡+1
′

Value

Encoder

Actor

Decoder

Critic

Torques

Joint state

Gradient descent

Loss

Action

𝑣𝑡
′

𝑧𝑡
′

Figure 2: Overview of our method: The temporal partial observation oHt is encoded by an encoder
which outputs the velocity estimation v′

t and the latent z′t to be received by actor-network and
decoder. The decoder predicts the observation at the next time step, denoted by o′

t+1, combining
with ot+1 obtained from the simulation to calculate the loss. The details of loss function designing
are in Sec 3.3. Action from the actor network presents the joints’ target position; then the PD
Controller calculates the torques. This framework applies to both phases.

process and make the resulting gait more natural. Peng et al. [13] introduced the use of Deep Mimic
[14] to learn robotic locomotion skills by imitating animals. Escontrela et al. [15] further utilized
Adversarial Motion Priors (AMP) to train control policies for a quadrupedal robot, highlighting that
AMP can effectively substitute complex reward functions. Yang et al. Bohez et al. [16] trained a
low-level locomotion controller for a quadruped robot by imitating actual animal data for various
tasks. Curriculum learning, which can help with exploration, is essential in legged robotics. Mar-
golis et al. [17] applied curriculum learning to train a locomotion controller for the Mini Cheetah
robot, enabling it to achieve speeds of up to 3.9m/s, surpassing traditional controllers’ speeds by
a large margin. Other notable works include directly learning locomotion skills in the real world
[18, 19], learning from both proprioceptive observation and exterioceptive observation [20, 21, 22],
applying unsupervised skill discovery to discover locomotion skills [23].

Reinforcement Learning for Humanoid Locomotion. Humanoid locomotion is one of the most
challenging tasks in legged locomotion and has been getting increased attention in recent years. Due
to the embodiment difference and the inherent instability of bipedal robots, algorithms that work
well on quadruped robots may need improvements to function fully on a bipedal robot. Kumar et
al. [7] extended the A-RMA algorithm to the bipedal robot Cassie. Learning-based state estimation
is further enhanced and studied in [24]. Imitating human motion is also of significant attention in
bipedal locomotion. Cheng et al. [25] relaxes imitation constraints on legs and focuses on imitating
the upper body movements of a humanoid robot. Zhang et al. [26] introduced AMP into humanoid
locomotion. Other works include designing appropriate reward functions [27], using transformers
to represent locomotion policy [28], Sim2Real learning of humanoid control policy [29].

3 Method

The overall architecture of our method can be depicted as illustrated in Fig. 2. It provides a schematic
representation of the network’s composition, detailing the interconnected layers and components that
constitute the system.

3.1 Network Input

Estimator Network: Similar to the works from Kumar et al. [11] and Margolis et al. [8], an es-
timator network using the history observation oHt = [ot ot−1 . . . ot−H ]T , is necessary for es-
timating the latent variable. In contrast to Nahrendra et al. [9], we utilize oHt as part of the in-
put for the policy network, rather than inputting a single frame of observation ot, demonstrating
considerably superior performance. The single observation ot is a 40-dimensional vector encom-
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passing a rich set of sensory inputs and robot dynamics. It is an n × 1 vector defined as follows:
ot = [pt ct yt qt q̇t at−1]

T
, Where pt (2D) is the current phase indicated a regular mo-

tion which is generated by a sinusoidal signal, ct (3D) is a velocity commands used to give the
current desired speed direction of the body, yt (5D) is the body angle (only roll and pitch used) and
angular velocity, qt (10D) is the amount by which the joint angles changes relative to the default
joint angles, q̇t (10D) is the joint angular velocity, and at−1 (10D) is the previous action.

Policy Network: The latent variable obtained from the output of the estimator network are zt and
body velocity vt, and then, they are coated together with the temporal proprioceptive observation
oHt as the input of the policy network. Finally, the complete policy network, parameterized by ϕ,
can be expressed as πϕ(at|oHt , zt,vt).

Value Network: The value network receives more information from the world’s state, which can
be obtained directly from the simulation environment. The privileged observation st is defined as:
st = [ot vt ht ft]

T
, where ht and ft means the topographical scans. Specifically, ht denotes

the terrain map of the robot’s surroundings, while ft represents a localized terrain map for the robot’s
left and right feet.

3.2 Reward

The design of the reward function is pivotal in shaping the agent’s policy, as it directly influences
the actions selected and the resulting motion patterns exhibited by the humanoid robot. In humanoid
locomotion, the reward signal reflects the efficiency and effectiveness of movement and embodies
the safety and adaptability required for navigating unpredictable terrains and situations.

In this work, we develop a reward system that propels the humanoid towards achieving agile, sta-
ble, and energy-efficient locomotion across diverse environments and tasks. The rewards delineated
in [9, 29] facilitate the acquisition of basic ambulation; however, the stability of the robot’s move-
ments leaves room for improvement. The reward architecture comprises several components:

r = rgait + rcommand + rroot − renergy + p · rreference
where rgait regulates gait patterns, rcommand promotes speed commands tracking, rroot ensures the
upright posture and correct orientation of the robot’s base link, renergy penalize excessive energy
consumption, rreference encourages adherence to reference motion, p ∈ {0, 1} equals one only in
training phase one. The detailed reward function and weights are in Table 4.

3.3 Loss Function

For estimator, similar to Nahrendra et al. [9], in our approach, we require an encoder-decoder
framework where the decoder generates o′

t+1 to compute the encoder’s loss explicitly. The specific
method involves calculating the mean-squared-error (MSE) loss between the estimated body veloc-
ity v′

t and the ground truth vt from the simulator. Additionally, we employ the standard β-VAE loss
to compute the loss for decoder result o′

t+1 and the ground truth ot+1, and sum these two losses. To
further increase the sim-to-real robustness of the learned policy, we also utilize adaptive bootstrap-
ping (AdaBoot), a technique similar to that used in Nahrendra et al. [9], to stabilize the estimator’s
updates.

Lest = LMSE + LVAE

LMSE = MSE(vt,v′
t), LVAE = MSE(ot+1,o

′
t+1) + βKL(g(zt|oHt+1)∥p(zt))

3.4 Learning System

Two-phase training: The training is divided into two phases. In the first phase, the reference motion
is incorporated as a reward to encourage the robot to learn to move quickly according to a standard
sinusoidal gait. In the second phase, the reward for the reference motion is removed to allow the
robot to learn better strategies to adapt to the set terrain. The terrain includes planes, steps, slopes,
and stairs. During the first phase, the difficulty of the terrain is relatively low, with more simple
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terrains and lower stairs height. However, in the second phase, we increase the difficulty of the
terrain, raising the proportion of high-difficulty terrains such as steps and stairs to 50% with higher
stairs height. In this way, our robot can step up to 16cm high stairs at most.

Commands Curriculum Learning: During training, we observed that robots tend to walk in place
on dangerously uneven terrains, even with high linear velocity tracking rewards. To address this,
inspired by Margolis et al. [8], we implemented a curriculum learning strategy for velocity, which
means the robot initially focuses on learning to follow the reference gait phase at low speeds. Once
the average velocity reward exceeds a threshold r = 0.75, we gradually increase the linear velocity
commands by △vx,y = 0.05 m/s and angular velocity commands by △ωz = 0.05 rad/s, enabling
effective speed tracking.

Multi-Observation with Estimation: We have identified that single-frame observation augmented
with estimator-predicted information [9] [24], while capable of tracking velocity commands in simu-
lation, often result in joint tremors and suboptimal performance on varied terrains. Conversely, rely-
ing on multi-frame(20) observation without estimator [29] integration leads to slow movement and
weak action robustness. To address these issues, we developed our proprietary ”Multi-Observation
with Estimation” method to train policies. This approach effectively tracks velocity commands,
navigates through diverse terrains, and demonstrates excellent robustness and adaptability when de-
ployed on actual hardware. It seamlessly transfers the policy from simulation to the real robot.

3.5 Sim-to-Real

To accomplish the sim-to-real transfer, we designed various randomizations and delays for instruc-
tions. Firstly, we applied randomizations to the observation and the robot’s properties for domain
randomization. In order to mimic the effects of real-world deployment as closely as possible, we
introduced a random delay of up to 15% in both action and torque to help bridge the sim2real gap.
Besides, We adjusted the center of gravity offset and link mass to adapt to the gap in the real en-
vironment. Additionally, we apply a random force to each link every time an action is outputted.
These measures have significantly improved the situation where the robot’s hardware undergoes
some design adjustments, which necessitated retraining with past methods. A detailed summary of
the domain randomization and the execution delays is presented in Appendix Table 5.

4 Experimental Results

We conduct Numerous comparative and ablation studies in simulation and reality. This section will
provide a detailed account of the specific experimental designs and the final comparative results.

The comparative experiments we performed are as follows: Baseline: a no estimator policy with
frame stacks observation; DreamWaQ: the reproduced method presented in Nahrendra et al. [9];
A-RMA: the reproduced method presented in Kumar et al. [7]; Ours w/o CC: Our policy without
commands curriculum, fixed at [-1, 1] m/s; Ours w/o Ref : Our policy without rewards associated to
reference motion; Ours w/o LVAE: Our policy without LVAE loss; Phase 1: Our training strategy
for the first phase with reference motion.

Reference motion: In experiment Ours w/o Ref, the significant differences in the contact forces
between the robot’s two feet can cause considerable strain on its motors and links, resulting in
significant wear and tear, as shown in Fig. 3, the figure illustrates the contact forces for both the
left and right feet, highlighting a stark contrast between the policy executed with reference motion
and one without it. The latter demonstrates a substantial variability in force application, an issue
absent in our policy. The absence of reference motion can result in imbalances, potentially leading to
motor damage in real robots, whereas our approach ensures consistent stability and motor protection.
Additionally, the uncoordinated movements significantly increase the likelihood of the robot falling,
underscoring an urgent need for synchronized actions and balanced force distribution to enhance
reliability and prevent such incidents. Consequently, we omitted this comparison in the following
analysis.
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(a) Actions of our policy

(b) Actions of our policy without reference motion

Figure 3: The upper-left diagram reveals that the ground contact forces produced by the strategy,
which lack reference motions, surpass the endurance limits of the motors extremely. The lower-left
illustration indicates that the hip and knee joints, under the no-reference strategy, are inclined to
move to more extreme positions, potentially causing damage to real robots. Right-side comparison
strikingly outlines the difference in gaits between those informed by reference motions and those
without, underscoring the no-reference strategy’s challenge in sustaining stability.

Multi-task: We conducted experiments comparing the robot’s performance between Phase one and
two. In the first experiment, the robot was tested for its ability to climb stairs at a speed of 1 m/s,
with success defined as clearing a six-step staircase. The second experiment evaluated the robot’s
ability to traverse slopes with varying gradients at the same speed. Our approach, not constrained by
predefined reference motion, showed effective traversal of steps and slopes, as detailed in Table 1.
In contrast, other strategies exhibited instability on terrains deviating from reference motion param-
eters. While alternative methods struggled to climb steps over 5 cm high, our system maintained an
85% success rate on 10 cm steps. Similar proficiency was observed in traversing slopes steeper than
15 degrees, with Phase two being the only one to navigate them effortlessly.

Table 1: The rate of successful stair ascents, evaluated across a spectrum of increasing stair heights,
correlates with the performance on inclines of varying degrees, showcasing the adaptability of the
system to diverse elevation challenges.

Sim Real

Phase 2 Phase 1 D’WaQ A-RMA Phase 2 Phase 1 D’WaQ A-RMA

0.03m 1.00 0.75 0.70 0.65 1.00 0.70 0.75 0.55
0.05m 1.00 0.15 0.15 0.20 0.95 0.05 0.10 0.10
0.08m 0.95 0.05 0 0.05 0.85 0 0 0
0.10m 0.85 0 0 0 0.80 0 0 0

5◦ 1.00 0.95 0.85 0.70 1.00 0.95 0.75 0.70
10◦ 1.00 0.80 0.85 0.55 1.00 0.85 0.8 0.40
15◦ 1.00 0.60 0.45 0.30 0.95 0.45 0.2 0.25
20◦ 0.95 0 0 0 0.95 0 0 0

Estimator loss: The estimator loss plays a crucial role in assessing the robot’s ability to accurately
predict linear velocity and latent vectors, which significantly aids in our ability to follow speeds
and traverse various terrains effectively. We recorded all the loss curves of the methods mentioned
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(a) Estimator loss (b) MSE loss (c) MSE loss (d) KL divergence

Figure 4: Without our policy, the predictions for vt rendered by the DreamWaQ exhibit a signifi-
cantly inferior performance when juxtaposed with our approach. Furthermore, the subsequent ot+1

generated by DreamWaQ also needs to catch up in comparison to the outcomes yielded by our
strategic implementation. The KL divergence across policies indicates a comparable level of learn-
ing. However, upon a comprehensive assessment, our strategy demonstrates superior performance
in estimating the velocity vt and latent variables zt.

above. The result is shown in Fig. 4. It shows that our Multi-Observation with Estimation policy
demonstrates superior predictive capabilities for vt and zt compared to DreamWaQ, which relies
solely on single observation within its actor policy.

Stability: We conducted a comprehensive empirical analysis comparing our proposed strategy
alongside DreamWaQ and a standard baseline across a continuum of simulated and actual robotic
platforms. This battery of tests was designed to rigorously evaluate the adaptability and versatility
of each algorithm in diverse environmental conditions. Furthermore, we subjected the algorithms
to a series of perturbations that simulate the unpredictable nature of real-world conditions, thereby
evaluating their resilience and robustness. This final testing phase is instrumental in gauging the
practical applicability and reliability of the algorithms under non-ideal circumstances.

While all robotic systems encountered increased challenges on low-µ surfaces, precipitating slip-
page and an elevated risk of collapse, our strategy adeptly traversed the array of terrains as shown
in Table 2 In the context of disturbance rejection trials, the intrinsic instability of the alternative al-
gorithms led to an almost inevitable collapse under lateral forces and suboptimal success rates from
anterior and posterior forces. Conversely, our strategy consistently exhibited unparalleled stability,
withstanding forces applied across all directional vectors, resulting in Table 3. Appendix B shows
that our robotic system has demonstrated the ability to traverse various terrains and obstacles.

Table 2: Success rate of passing various terrain.

Ours A-RMA D’WaQ Ours w/o LVAE Baseline
Urban 1.00 0.70 0.75 0.90 0.70
PVC floor 0.90 0.20 0.10 0.00 0.00
Grasslands 1.00 0.40 0.35 0.15 0.55
Wired-strewn 0.85 0.00 0.00 0.00 0.00

Table 3: Success rate of stability under external force.

Ours A-RMA D’WaQ Ours w/o LVAE Baseline
Front 1.00 0.45 0.40 0.40 0.10
Side 0.85 0.05 0.20 0.15 0.00
Back 0.90 0.20 0.05 0.35 0.05

Commands Tracking: The robotic system’s primary objective is to track the velocity commands
issued to it accurately. Consequently, the efficacy of commands tracking emerges as a pivotal metric
for evaluating the success of our experimental endeavors. This performance is vividly illustrated
in Fig. 5. Observation have elucidated that when faced with arduous terrains, including stairs with
heights exceeding 6 cm or a 15-degree inclined uneven terrain within our training set. Baseline,
DreamWaQ and A-RMA tend to prioritize safety, consequently adopting a more cautious and slowed
pace. Furthermore, the variant of our approach that forgoes a commands curriculum exhibits a di-
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(a) Plane (b) Plane with obstacles (c) Uneven Terrain (d) Stairs

Figure 5: The first tier of images presents a compendium of scenarios for testing, encompassing a flat
plane, a plane with obstacles, uneven terrain, and a staircase. The second stratum delineates velocity
profiles, illustrating the strategy’s actual performance in tracking predefined commands trajectories,
represented by a black line. The third layer encompasses box plots that depict the distribution of
velocity tracking errors within the simulated environment, the horizontal line indicating the median
value.

minished capacity for velocity tracking, potentially due to the vast exploration space overwhelming
the actor’s learning process. Additionally, ours without LVAE have indicated that the Euclidean
distance of the observations may not accurately represent the discrepancy from the target, resulting
in suboptimal walking posture and inadequate speed following. In striking contrast, our refined ap-
proach showcases an enhanced aptitude for swiftly and adeptly acquiring and adjusting to velocity
directives. Consequently, our strategy must incorporate a commands curriculum to ensure proficient
learning and adaptation to the velocity commands.

5 Limitation

Our policy, though effective in its intended tasks, is limited by the lack of perception for terrain
movements. To address this, we plan to integrate perception systems into our future work, thereby
enhancing our strategies’ adaptability to more complex challenges and expanding the operational
capabilities of our robotic systems. Additionally, we recognize our approach has limitations, par-
ticularly in parameter tuning for diverse robots, which is a complex engineering task. Adjusting
reward parameters based on a robot’s size and carefully selecting domain randomization parameters
are essential; for instance, center of mass randomization exceeding 0.06 cubic meters can severely
impact real-world performance. Time-related parameters need finely tuned to match the anatomical
proportions of different robots to ensure optimal dynamic responses. To address these challenges
and improve our strategies’ adaptability, we plan to investigate solutions such as imitation learning,
aiming to enhance our system’s robustness and applicability across various robotic platforms.

6 Conclusion

In this paper, we have presented a comprehensive study on the enhancement of steady humanoid
robot locomotion, achieved through the refinement of estimator and actor policies. This research
has broad implications, establishing a foundation for versatile and adaptive locomotion across varied
terrains and obstacles through a two-phase training method that expands the robot’s gait capabili-
ties. Additionally, the study demonstrates an exceptional velocity tracking capability with a velocity
commands curriculum that underscores the system’s precision and responsiveness.
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A DETAILED EXPERIMENT SETUP

A.1 REWARD

In this section, we detail the reward function and the weights. The reward function is comprised
of several critical components, each serving a distinct purpose. The exponential function is rep-
resented by exp(·), and the variance function is denoted by var(·). The terms (·)des and (·)cmd

are used to denote the desired and commanded values, respectively. The robot’s body frame is
defined by the coordinates x, y, and z, with x and z oriented in the forward and upward direc-
tions. The rotation angles of the robot’s coordinate system are given by roll, yaw, and pitch.
Pf(t), Id(t), Ic(t), Tair, v, ω, h, df , dk, g, θ, τ represent the height of the foot at time t, the phase at
time t in the gait cycle, the contact status of the foot at time t, the aerial time of the foot, the lin-
ear velocity of the robot’s root, yaw rate, height, foot distance, knee distance, the projection of the
gravity vector onto the robot’s body frame, joint position, and joint torque.

Table 4: Setup of reward function and scales.
Reward Equation (ri) Scale (wi)

Feet clearance
(
pdes
f(t) − pf(t)

)2

· (1− Id(t)) -0.01
Feet air time Tair · Ic(t) -0.001
Follow gait phase (1− Id(t)) · Ic(t) -0.001
Feet slip ω · Ic(t) -0.005
Feet&Knee distance exp{−100·|0.3−df,k|}+exp{−100·|0.125−df,k|}

2 0.4

Lin. velocity tracking exp
{
−4

(
vcmd
xy − vxy

)2}
2.4

Ang. velocity tracking exp
{
−4

(
ωcmd

yaw − ωyaw
)2}

1.1

Velocity mismatch
exp{−10(−vz)

2}+exp{−5(−ωroll, pitch)
2}

2 0.5

Orientation |g|2 1.0
Feet orientation |gfeet|2 1.0
Default joint exp

{
−2 (θ − θzero)

2
}

0.5

Body height
(
hdes − 0.6505

)2
-1.0

Root accelerations exp

{
−
(
θ̈root

)3
}

0.2

Joint accelerations θ̈
2

−1× 10−6

Joint velocity θ̇
2

−5× 10−3

Joint power τ 2 −1× 10−5

Action rate (at − at−1)
2 −0.01

Smoothness (at − 2at−1 + at−2)
2 −0.01

Joint position tracking exp
{
−2 (θ − θtarget)

2
}

3.2

A.2 DOMAIN RANDOMIZATION

We leverage domain randomization during training to narrow the reality gap. Specifically, we set
the range of parameters as shown in Table 5, mainly consisting of delay of action and torque, ran-
domization of position, velocity, friction, KP/KD factor, and CoM.

A.3 IMPLEMENTATION DETAILS

Our humanoid robot, named N1, is equipped with a total of 18 degrees of freedom. In this work, we
have immobilized the 8 joints associated with the arms, focusing exclusively on the 10 joints related
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Table 5: Overview of Domain Randomization. Presented are the domain randomization terms and
the associated parameter ranges. Additive randomization increments the parameter by a value within
the specified range while scaling randomization adjusts it by a multiplicative factor from the same
range.

Parameter Unit Range Operator Type

Joint Position rad [-0.05, 0.05] additive Gaussian (lo)
Joint Velocity rad/s [-1.5, 1.5] additive Gaussian (lo)
Angular Velocity rad/s [-0.2, 0.2] additive Gaussian (lo)
Linear Velocity m/s [-0.1, 0.1] additive Gaussian (lo)
Euler Angle rad [-0.06, 0.06] additive Gaussian (lo)
Action Delay ms [0, 10] - Uniform
Torque Delay ms [0, 10] - Uniform
Friction - [0.1, 2.0] - Uniform
Kp factor % [80, 120] scaling Gaussian (lo)
Kd factor % [80, 120] scaling Gaussian (lo)
Motor Strength % [80, 120] scaling Gaussian (lo)
Payload kg [-5, 5] additive Gaussian (lo)
CoM m [-0.02, 0.02] additive Gaussian (lo)
Link Mass % [0.9, 1.1] scaling Gaussian (lo)

to the legs. The motors’ hip (pitch) and knee joint torque can reach up to 150 Nm, while the motors’
torque of the foot joints is 36 Nm. This robot’s total height and weight are 0.95 m and 23 kg.

Our RL control strategy operates at 100 Hz, coupled with an internal PD controller that runs at 1000
Hz. It ensures synchronization with the operational frequency of the actual hardware. We employ
Isaac Gym for training and conduct sim-to-sim validation in various simulation environments, in-
cluding MuJoCo, PyBullet, and Gazebo. This multi-environment approach ensures the robustness
and adaptability of our models. We utilize the Proximal Policy Optimization (PPO) algorithm [30].
The details of our training parameters are presented in Table 6, where we outline the specifics that
contribute to the enhanced performance of our model.

Table 6: Training hyperparameters
Parameter Value

Number of environments 4096
Training epochs 2
Learning rate 10−5

Gamma γ 0.995
Lambda λ 0.95
Batch size 24
Episode Length 3000
Backbone hidden layers [512, 512, 128]
Encoder hidden layers [768, 256, 64]
Activation function ELU

Decoder observation 19
Number of Observation frame stack 5
Number of Privileged frame stack 3
Number of Aggregated Observation 219
Number of Aggregated Privileged Observation 846
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B ALGORITHM

We present our complete algorithmic process in the following algorithm, where four networks are
continuously updated through sampling from the simulation based on the process outlined below.

Input: Encoder network estϕ, decoder network decφ, policy network πθ, value function
Vψ , environment, number of epochs E, mini-batch size M

Output: Optimized encoder network estϕ, policy network πθ
Initialize encoder network estϕ, decoder network decφ, policy network πθ and value
function Vψ

Initialize advantages At = 0 and value targets Vt = 0
for each epoch e = 1 to E do

for each mini-batch b = 1 to M do
Initialize observation o0 , obtain frame stack observationoH0 and collect rollouts
for each step t = 1 to T do

Compute linear velocity vt and latent features zt ∼ estϕ(·|oHt )

Compute action at ∼ πθ(·|oHt , vt, zt)

Execute at in the environment and observe ot+1, o
H
t+1, rt, dt

Compute advantage estimate Ât, value target V̂t linear velocity target v̂t and
next step observation targetôt+1; Update advantages At = ρtAt−1 + Ât and
value targets Vt = γVt−1 + V̂t

end
Perform multiple PPO updates using At and Vt to optimize πθ and Vψ and estimator
updates using ot+1, zt and vt to optimize estϕ and decφ;

end
end
return the optimized policy network πθ and the encoder policy networkestϕ;

Algorithm 1: Training algorithm

C GENERALIZATION

This section presents a series of experimental images that vividly illustrate our algorithm’s intricate
implementation details and robust generalization capabilities across various initial poses for robotic
walking tasks, shown in the Fig. 6. We have achieved smooth locomotion across a spectrum of initial
postures, as evidenced by the images depicting the robot’s initial stance.

Figure 6: Training with diverse initial poses: An illustrative analysis of robotic locomotion across
varied starting configurations.
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Within the simulated environment, the Fig. 7 display the robot’s upright and stable gait, underscoring
the algorithm’s exceptional precision in control within the virtual platform. We have further sub-
stantiated the algorithm’s reliability, shown in Fig. 8, and practical utility by advancing to real-world
scenarios. The deployment of our algorithm on an actual robot has endowed it with the ability to
navigate in various straight-legged postures, as illustrated by the images portraying the robot’s com-
mendable equilibrium and stability. This rigorous process is a testament to the algorithm’s resilience
and adaptability.

These outcomes furnish compelling validation for our algorithm’s ongoing refinement and appli-
cation, simultaneously presenting innovative perspectives and methodologies that hold significant
promise for future research within related domains.

Figure 7: Diverse initial poses in simulation: A testament to our algorithm’s robustness and stability.

Figure 8: Simulated locomotion across diverse initial poses: Demonstrating algorithmic adaptability
in sim-to-real transitions.
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D REAL-MACHINE EXPERIMENTATION

We conducted multiple experiments on the actual machine, testing our policy on various terrains,
including grasslands, wire-strewn ground, slopes, and stairs. Our robot’s traversal across grasslands
is a testament to its ability to handle the soft and unpredictable ground, while its passage through
areas with wireless showcases its resilience against obstacles that could impede movement. The
robot’s ascent on slopes highlights its dynamic balance and the algorithm’s capacity to adjust to
inclines that require precise foot placement and torque control. Most notably, the robot’s ability
to climb and descend stairs indicates our algorithm’s advanced control mechanisms, ensuring that
each step is calculated for maximum efficiency and safety. The images reveal a robot that is not just
mobile but one that can adapt to and stabilize on a wide array of environmental conditions, thereby
proving the algorithm’s robustness and stability in a comprehensive sim-to-real context.

These visual records are more than just demonstrations of our robot’s physical capabilities; they are
evidence of the sophisticated algorithms that enable it to interact intelligently with its surroundings,
providing a solid foundation for further research and development in robotics.

Figure 9: The sequence of images presented illustrates the diverse terrains our robot navigates with
proficiency, ranging from the soft contours of grasslands to the challenging unevenness of wire-
strewn areas, the inclines of varying gradients, and the ascents and descents of stairs. Each scenario,
captured in a vertical progression from top to bottom, demonstrates not only the robot’s adaptability
but also its ability to maintain equilibrium on surfaces that demand different levels of traction and
stability.
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