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Abstract
Effective modelling of large-scale spatio-temporal
datasets is essential for many domains, yet exist-
ing approaches often impose rigid constraints on
the input data, such as requiring them to lie on
fixed-resolution grids. With the rise of founda-
tion models, the ability to process diverse, het-
erogeneous data structures is becoming increas-
ingly important. Neural processes (NPs), particu-
larly transformer neural processes (TNPs), offer a
promising framework for such tasks, but struggle
to scale to large spatio-temporal datasets due to
the lack of an efficient attention mechanism. To
address this, we introduce gridded pseudo-token
TNPs which employ specialised encoders and de-
coders to handle unstructured data and utilise a
processor comprising gridded pseudo-tokens with
efficient attention mechanisms. Furthermore, we
develop equivariant gridded TNPs for applications
where exact or approximate translation equivari-
ance is a useful inductive bias, improving accu-
racy and training efficiency. Our method consis-
tently outperforms a range of strong baselines in
various synthetic and real-world regression tasks
involving large-scale data, while maintaining com-
petitive computational efficiency. Experiments
with weather data highlight the potential of grid-
ded TNPs and serve as just one example of a
domain where they can have a significant impact.

1. Introduction
The proliferation of data from in situ sensors, remote ob-
servations, and scientific computing models is transforming
spatio-temporal modelling. This has led to a surge of in-
terest from the machine learning community to develop
new tools and models to support these efforts. However,
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building such models is non-trivial: the data are typically
heterogeneous, irregular in space and time, and multi-modal,
with each modality potentially sampled at different spatio-
temporal locations. A field that has greatly benefitted from
these recent advancements, and will serve as the motivating
real-world use case throughout this work, is medium-range
weather and environmental forecasting. Here, a new gener-
ation of models have improved performance and reduced
computational costs (Bodnar et al., 2025; Lam et al., 2023;
Price et al., 2025; Bi et al., 2023; Nguyen et al., 2023; Chen
et al., 2023b;a). These models operate on environmental
variables that are regularly structured in space and time,
allowing them to leverage architectures from the vision
and language community, such as the Vision Transformer
(ViT; Dosovitskiy et al. 2020), Swin Transformer (Liu et al.,
2021), and Perceiver (Jaegle et al., 2021). They are trained
and deployed on data from computationally intensive sci-
entific simulation and analysis techniques, which integrate
observational data (e.g. from weather stations, ships, buoys,
etc.) with simulation data to provide the best estimate of
the atmosphere’s state. They are currently not trained on
observational measurements directly.

We are now on the cusp of a second generation of such
models that will integrate unstructured observational data
alongside or instead of analysis data altogether, improv-
ing accuracy and reducing computational costs. Achieving
this is challenging, as such models need to be able to 1)
handle data at arbitrary input locations, and 2) effectively
combine modalities that are not necessarily recorded at the
same locations. Only a few works have attempted this more
ambitious problem (Allen et al., 2025; McNally et al., 2024;
Xu et al., 2025; Xiao et al., 2024), and the optimal archi-
tectures remain unclear. This presents fertile ground for
impactful research, with findings easily transferable to other
spatio-temporal domains. For instance, the same techniques
could be used to model real-life systems governed by partial
differential equations (PDEs), by pre-training on synthetic
PDE simulations, followed by fine-tuning on real-world un-
structured observations such as wind tunnel measurements.

What framework is most suitable for spatio-temporal tasks
containing both structured and unstructured data? Here we
advocate for neural processes (NPs; Garnelo et al. 2018a;b)
a family of meta-learning models that map from datasets
of arbitrary size and structure to predictions over outputs at
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arbitrary locations. NPs support a probabilistic treatment of
observations, enabling them to output uncertainty estimates
that are crucial for downstream decision making. Moreover,
NPs are flexible—unlike other models that only perform
forecasting, they can solve more general state estimation
problems, including forecasting, data fusion, data interpo-
lation and data assimilation. Although early versions of
NPs were limited, recent developments (Kim et al., 2019;
Gordon et al., 2020; Nguyen & Grover, 2022; Ashman et al.,
2024a; Feng et al., 2023; Bruinsma et al., 2021; Ashman
et al., 2024b) have significantly improved their effective-
ness, especially for small-scale spatio-temporal regression
problems. NPs are now being used in a wide-range of ap-
plications, from climate downscaling, data assimilation and
sensor placement (Vaughan et al., 2022; Andersson et al.,
2023; Chen et al., 2024; Niu et al., 2024), to tasks as diverse
as molecular property prediction (Garcı́a-Ortegón et al.,
2024). Among NP variants, the convolutional conditional
neural process (ConvCNP; Gordon et al., 2020) is the lead-
ing approach for spatio-temporal modelling. The ConvCNP
employs a set convolution operation to project unstructured
data onto a regular grid through kernel-based interpolation.
While effective, the success of transformers over convolu-
tional neural networks (CNNs; LeCun et al., 1998) suggests
potential for improvement. Indeed, recent developments
in transformer-based NPs (TNPs; Nguyen & Grover 2022;
Feng et al. 2023; Ashman et al. 2024a) have shown impres-
sive performance on small-scale problems. However, unlike
the aforementioned large-scale environmental models for
gridded data, TNPs are yet to fully leverage efficient atten-
tion mechanisms. As a result of the quadratic computational
complexity of full attention, they have been unable to scale
to complex spatio-temporal datasets. This is because such
efficient techniques require structured—more specifically,
gridded—data, limiting their immediate applicability.

Motivated by the approach taken by the ConvCNP, we
pursue a straightforward solution: encoding the input
data onto a structured grid before passing it through a
transformer-based architecture. We introduce attention-
based mechanisms for encoding the unstructured data,
as well as for processing the resulting structured grid,
giving rise to gridded TNPs—a general-purpose tool for
spatio-temporal state estimation. Our core contributions are:
1. We develop a novel attention-based grid encoder, in-

spired by the idea of ‘pseudo-tokens’ (Jaegle et al., 2021;
Feng et al., 2023; Lee et al., 2019), which outperforms
existing encoders for spatio-temporal data.

2. Equipped with the above-mentioned pseudo-token grid
encoder, we enable TNPs to use efficient attention mech-
anisms, utilising advancements such as the ViT (Dosovit-
skiy et al., 2020) and Swin Transformer (Liu et al., 2021).

3. We develop an efficient k-nearest-neighbour attention-
based grid decoder, facilitating the evaluation of predic-

tive distributions at arbitrary spatio-temporal locations.
Remarkably, we find that this outperforms full attention.

4. We adapt computationally expensive methods proposed
in the literature (Ashman et al., 2024a) to efficiently
incorporate translation equivariance into gridded TNPs,
improving learning efficiency. Additionally, to account
for symmetry imperfections often present in real-
world data, we build on Ashman et al. 2024b to achieve
approximate translation equivariance with gridded TNPs.

5. We empirically evaluate our model on a range of
synthetic and real-world spatio-temporal regression
tasks, demonstrating both the ability to i) maintain strong
performance on large spatio-temporal datasets and ii)
handle multiple sources of unstructured data effectively,
all while maintaining a low computational complexity.

2. Background
We consider a supervised learning setting with input and out-
put spaces X = RDx and Y = RDy . A dataset consists of
input-output pairs (x,y) ∈ X × Y , with context and target
sets Dc,Dt containing |Dc|=Nc and |Dt|=Nt points. Let
Xc ∈ (X )Nc ,Yc ∈ (Y)Nc and Xt ∈ (X )Nt ,Yt ∈ (Y)Nt

denote the inputs and outputs for Dc and Dt. We denote a
single task as ξ = (Dc,Dt) = ((Xc,Yc), (Xt,Yt)).

2.1. Neural Processes

Neural processes (NPs; Garnelo et al. 2018a;b) can be
viewed as neural-network-based mappings from context
sets Dc to predictive distributions at target locations Xt,
p( · | Xt,Dc). In this work, we restrict our attention
to conditional NPs (CNPs; Garnelo et al. 2018a), which,
unless deployed autoregressively, target marginal predic-
tive distributions by assuming that the predictive densities
factorise: p(Yt|Xt,Dc) =

∏Nt

n=1 p(yt,n|xt,n,Dc). We de-
note all parameters of a CNP by θ. CNPs are trained
in a meta-learning fashion, in which the expected predic-
tive log-probability is maximised θML = argmaxθ LML(θ),
where LML(θ) = Ep(ξ)

[∑Nt

n=1 log pθ(yt,n|xt,n,Dc)
]
. In

the limit of infinite tasks and model capacity, the global
maximum is achieved if and only if the model recovers
the ground-truth predictive distributions (Proposition 3.26
by Bruinsma, 2022). For real-world datasets, with only a
finite number of training tasks, we approximate this expecta-
tion with an average over tasks. In Appendix A we present
a unifying construction for CNPs involving three compo-
nents: the encoder e :X × Y → Z , which encodes each
(xc,n,yc,n) ∈ Dc into a token representation zc,n ∈ Z ,
the processor ρ :

(⋃∞
n=0Zn

)
×X→Z , which processes

the set of context tokens and the target input xt to obtain a
target dependent token zt ∈ Z , and the decoder d :Z→PY ,
which maps from the target token to the predictive distribu-
tion over the output at that target location. PY denotes the
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space of distributions over the output space Y .

2.2. Transformers and Transformer Neural Processes

Transformers can be viewed as general set functions (Lee
et al., 2019), making them ideal for NPs, which must ingest
datasets. This section briefly overviews transformers and
their integration into CNPs, leading to the TNP family.

Self-Attention and Cross-Attention Broadly speaking,
transformer-based architectures consist of two operations:
multi-head self-attention (MHSA) and multi-head cross-
attention (MHCA). Informally, the MHSA operation up-
dates a set of tokens using the same set, whereas the MHCA
operation updates one set of tokens using a different set.
More formally, let Z ∈ RN×Dz denote a set of N Dz-
dimensional input tokens. The MHSA operation updates
this set of tokens for ∀ n = 1, . . . , N as

zn←cat
({ N∑

m=1

αh(zn, zm)zm
TWV,h

}H

h=1

)
WO. (1)

Here, WV,h ∈ RDz×DV and WO ∈ RHDV ×Dz are the
value and projection weight matrices, where H denotes
the number of ‘heads’, and αh is the attention mecha-
nism. This is most often a softmax-normalised transformed
inner-product between pairs of tokens: αh(zn, zm) =
softmax({zTnWQ,hW

T
K,hzm}Nm=1)m, where WQ,h ∈

RDz×DQK and WK,h ∈ RDz×DQK are the query and key
matrices. The MHCA operation updates one set of tokens,
Z1 ∈ RN1×Dz , using another set of tokens, Z2 ∈ RN2×Dz ,
in a similar manner for ∀ n = 1, . . . , N1:

z1,n←cat
({N2∑

m=1

αh(z1,n,z2,m)z2,m
TWV,h

}H
h=1

)
WO. (2)

MHSA / MHCA operations are combined with layer-
normalisation and point-wise MLPs to obtain MHSA /
MHCA blocks. Unless stated otherwise, we adopt the order
used by Vaswani et al. (2017) (detailed in Appendix G).

Pseudo-Token-Based Transformers Transformers based
on pseudo-tokens, first introduced by Jaegle et al. 2021
with the Perceiver, remedy the quadratic computational
complexity induced by the standard transformer by
condensing the set of N tokens, Z ∈ RN×Dz , into a
smaller set of M ≪ N ‘pseudo-tokens’, U ∈ RM×Dz ,
using the MHCA operation. The processor acts on these
pseudo-tokens (instead of the original set), reducing the
computational complexity from O(N2)—the cost of
MHSA on the original set—to O(NM +M2)—the cost
of MHCA between the original set and the pseudo-tokens,
followed by MHSA on the pseudo-tokens.

Transformer Neural Processes Transformer neural pro-
cesses (TNPs) use transformer-based architectures as the
processor in the CNP construction described in Section 2.1.
First, each context point (xc,n,yc,n) ∈ Dc and target input
xt,n ∈ Xt are encoded to obtain an initial set of context
and target tokens, Z0

c ∈ RNc×Dz and Z0
t ∈ RNt×Dz . Trans-

formers are then used to process the union Z0 = Z0
c∪Z0

t us-
ing a series of MHSA and MHCA operations, keeping only
the output tokens corresponding to the target inputs. These
processed target tokens are then mapped to predictive distri-
butions using the decoder. The specific transformer-based
architecture is unique to each TNP variant, generally consist-
ing of MHSA operations acting on the context tokens—or
pseudo-token representation of the context—and MHCA
operations updating the target tokens given the context to-
kens. We provide a diagram of two popular TNP variants in
Appendix A: the regular TNP (Nguyen & Grover, 2022) and
the induced set transformer NP (ISTNP; Lee et al. 2019).

The application of TNPs to large datasets is impeded by the
use of MHSA and MHCA operations acting on the entire
set of context and target tokens. Even when pseudo-tokens
are used in pseudo-token TNPs (PT-TNPs), the number of
pseudo-tokens M required for accurate predictive inference
generally scales with the complexity of the dataset, and the
MHCA operations between the pseudo-tokens and the con-
text and target tokens quickly becomes prohibitive as the
size of the dataset increases. This motivates the use of effi-
cient attention mechanisms, as used in the ViT (Dosovitskiy
et al., 2020) and Swin Transformer (Liu et al., 2021).

2.3. Translation Equivariance in TNPs

A useful inductive bias in spatio-temporal modelling, where
the data are roughly stationary, is translation equivariance
(TE): upon translating the data in space or time, the predic-
tions of the model should translate accordingly. Previous
works have already considered such symmetries in TNP ar-
chitectures. Ashman et al. (2024a) introduced the translation
equivariant TNP (TE-TNP), denoted by TNP (T ), where
T represents the d-dimensional group of translations (with
d the dimensionality of the data). Here, translation equiv-
ariance is achieved by restricting the attention mechanism
αh,n,m = αh(zn, zm,xn−xm) to only depend on differ-
ences, rather than absolute input locations, resulting in the
TE-MHSA and TE-MHCA operations. These are defined
analogously to Equations 1 and 2, with αh,n,m defined as:

αh,n,m =
eρh(zT

nWQ,h[WK,h]
T zm,xn−xm)∑N

m=1 e
ρh(zT

nWQ,h[WK,h]
T zm,xn−xm)

, (3)

where ρh : R × RDx → R is a learnable function, param-
eterised by an MLP, and the initial tokens {zn}Nn=1 only
depend on output values. TE-MHCA is defined analogously.
A more thorough treatment is provided in Appendix B.

3



Gridded Transformer Neural Processes for Spatio-Temporal Data

Strictly equivariant architectures introduce useful inductive
biases but can be overly restrictive for modelling complex
real-world data that are rarely perfectly symmetric. To ad-
dress this, Ashman et al. (2024b) propose the approximately
equivariant NP, which also generalises beyond translation to
other symmetry groups. This is achieved through a simple
architecture modification, by introducing additional fixed
basis functions that enable the model to learn symmetry-
breaking features in a data-driven manner. Here, we focus
on the approximately TE-TNP, denoted as TNP (T̃ ), repre-
senting approximate equivariance with respect to T (d).

Ashman et al. (2024b) show approximately equivariant
TNPs outperform their non-equivariant counterparts, but
they suffer from large time and space complexity due to
the need to pass pairwise distances through an MLP when
evaluating the weights of the translation equivariant atten-
tion mechanism. For this reason, their application has been
limited to relatively small datasets.

3. Related Work
Transformers for Point Cloud Data A closely related
research area is point cloud data modelling (Tychola et al.,
2024), with transformer-based architectures employed for a
variety of tasks (Lu et al., 2022). To handle large datasets,
the use of efficient attention mechanisms has been explored.
Several notable approaches use voxelisation, whereby un-
structured point clouds are encoded onto a structured grid
(Mao et al., 2021; Zhang et al., 2022), prior to employing
efficient architectures that operate on grids. Our pseudo-
token grid encoder draws inspiration from the voxel-based
set attention (VSA) of He et al. (2022), which also cross-
attends local neighbourhoods of unstructured tokens onto a
structured grid of pseudo-tokens. However, VSA uses the
same initial pseudo-token values for all grid locations, as the
‘cloud’ in which points exist has no unobserved information.
Their use of a fixed set of initial values manifests a specific
implementation in which all tokens attend to the same set of
pseudo-tokens. In contrast, spatio-temporal problems may
involve potentially unobserved, fixed topographical infor-
mation, such as elevation, land use and soil type. To enable
the model to capture this, we employ different pseudo-token
values for each grid location.

Models for Structured Weather Data Our method is
motivated by the need to develop models that can 1) scale
to massive spatio-temporal datasets and 2) flexibly han-
dle unstructured data. Here, unstructured data refers to,
for example, observations that do not lie on a regular grid
(e.g., off-the-grid weather station data, solutions to PDEs
on unstructured meshes) or multi-modal data collected at
varying spatial locations. Recent advances, particularly
in weather modelling, have made significant progress on

the first goal. However, most of these approaches (as dis-
cussed in Section 1) are based on efficient transformer-based
architectures that can only be applied on structured, grid-
ded data. Moreover, they primarily focus on forecasting1,
hence constraining predictions to the same spatial locations
as the inputs. Some methods partially address this limita-
tion by handling missing data (Nguyen et al., 2023), but
they still assume a gridded data structure, hence not sat-
isfying the second desideratum. An alternative that can
address both points is using graph neural networks (GNNs;
Bronstein et al. 2021) as a backbone, but attempts in the
weather community proved that GNNs are harder to scale
than transformer-based approaches leading to worse perfor-
mance (e.g. 36.7M parameters for GraphCast (Lam et al.,
2023) compared to 1.3B for Aurora (Bodnar et al., 2025)).

NPs arise as a promising framework due to their ability to
model stochastic processes, which can be evaluated at any
target location, and to flexibly condition on unstructured
data. Indeed, our work reflects a more general trend towards
more flexible methods, reflected in works such as Aardvark
(Allen et al., 2025) and FuXi-DA (Xu et al., 2025), both
end-to-end weather prediction models that handle both un-
structured and structured data, as well as AtmoRep (Lessig
et al., 2023) and Prithvi WxC (Schmude et al., 2024). In
Appendix C, we discuss these methods in detail and provide
an extended comparison between our approach and GNNs.

4. Gridded Transformer Neural Processes
While TNPs have shown promising performance on small
to medium-sized datasets, they are unable to scale to large
spatio-temporal data. To address this, we consider the use
of efficient attention mechanisms that have proved effective
for gridded spatio-temporal data (Bodnar et al., 2025; Lam
et al., 2023; Price et al., 2025; Nguyen et al., 2023; Bi et al.,
2023). Such methods are not immediately applicable with-
out first structuring the unstructured data. We achieve this by
drawing upon methods developed in point cloud modelling—
notably the VSA (He et al., 2022)—and develop the pseudo-
token grid encoder: an effective attention-based method for
encoding unstructured data onto a grid.

We provide an illustrative diagram of our proposed ap-
proach in Figure 1, which decomposes the processor
ρ :
(⋃∞

n=0Zn
)
× X → Z into three parts: 1. the grid

encoder, ρge :
⋃∞

n=0Zn → ZM , which embeds the set
{(xc,n, zc,n}Nc

n=1 into tokens {um}Mm=1 at gridded loca-
tions {vm}Mm=1; 2. the grid processor, ρgp : ZM → ZM ,
which transforms the token values; and 3. the grid decoder,
ρgd : ZM ×X → Z , which maps the tokens onto the loca-
tion xt. Here, the latent space Z = Ztoken ×X . We discuss

1Predicting the entire gridded state at time t+1 given a history
of previous gridded state(s).
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Figure 1. Illustration of the complete gridded TNP pipeline. We highlight the encoder (blue), processor (red) and decoder (green).

the choices for these components in this section.

Grid Encoder: the Pseudo-Token Grid Encoder Let
zn ∈RDz be the token representation of the input-output
pair (xn,yn) after point-wise embedding. We introduce a
set of

∏Dx

d=1Md pseudo-tokens U0 ∈ RM1×···×MDx×Dz

at corresponding grid locations V ∈ RM1×···MDx×Dx

(i.e. pseudo-token um1,...,mDx
∈ RDz is associated with

location vm1,...,mDx
∈ RDx). For ease of reading, we re-

place the product
∏Dx

d=1Md with M and the indexing nota-
tion m1, . . . ,mDx

with m. The pseudo-token grid encoder
obtains a pseudo-token representation U ∈ RM×Dz of Dc

on the grid V by cross-attending from each set of tokens
{zc,n}n∈N(vm;k) to each initial pseudo-token u0

m:

um ← MHCA
(
u0
m, {zc,n}n∈N(vm;k)

)
∀m ∈M. (4)

Here, N(vm; k) denotes the index set of input locations
for which vm is amongst the k nearest grid locations. In
practice, we found that k = 1 suffices. While this opera-
tion seems computationally intensive, we apply two tricks
to make it computationally efficient. First, note that pro-
vided the pseudo-token grid is regularly spaced, the set of
nearest neighbours for all grid locations can be found in
O(Nc). Second, the operation described in Equation 4 can
be performed in parallel for all m ∈M by ‘padding’ each
set {zc,n}n∈N(vm;k) with maxi |N(vi; k)| − |N(vm; k)|
‘dummy tokens’ and applying appropriate masking, resulting
in a computational complexity of O (M maxi |N(vi; k)|).
Restricting the neighbourhood size can further reduce this.
We illustrate the pseudo-token grid encoding in Figure 2.
In our experiments, we compare the performance of the
pseudo-token grid encoder with simple kernel-interpolation
onto a grid, a popular method used by the ConvCNP. We pro-
vide a detailed description of this approach in Appendix D.

Figure 2. An illustration of the pseudo-token grid encoder in 2-D.
For an efficient implementation of cross-attention to the pseudo-
token grid, we pad sets of neighbourhood tokens with ‘dummy’
tokens, so that each neighbourhood has the same cardinality.

Grid Processor: Efficient Attention Transformers
While we can choose any architecture for processing
the pseudo-token grid, including CNNs, we focus on
transformer-based architectures employing efficient atten-
tion mechanisms—we consider the ViT (Dosovitskiy et al.,
2020) and Swin Transformer (Liu et al., 2021). Typically,
ViT uses patch encoding to downsample a grid of tokens
to a coarser grid of tokens, upon which MHSA operations
are applied. We explore both patch encoding and directly
encoding to a smaller grid via the grid encoder, which, when
used in gridded TNPs, we collectively refer to as ViTNPs.
The Swin Transformer has the advantage of being able to
operate with a finer grid of pseudo-tokens, as only local
neighbourhoods of tokens attend to each other at any one
time. We refer to its use in gridded TNPs as Swin-TNP.

Grid Decoder: the Cross-Attention Grid Decoder In
PT-TNPs, all pseudo-tokens U cross-attend to all target
tokens Zt, with computational complexity of O(MNt),
which is prohibitive for large Nt and M . We propose
nearest-neighbour cross-attention, in which the pseudo-
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tokens {um}m∈Ñ(xt,n;k)
attend to the target token zt,n:

zt,n ← MHCA
(
z0t,n, {um}m∈Ñ(xt,n;k)

)
. (5)

Here, Ñ(xt,n; k) denotes the index set of the k grid locations
that are closest to xt,n.2 With equally spaced grid locations,
this can be computed for all target tokens in O(Nt), and
the operation in Equation 5 can be parallelised with a com-
plexity of O(kNt), leading to a significant computational
reduction for k ≪M . We also found that nearest-neighbour
outperformed full cross-attention in practice, likely due to
its beneficial inductive bias for spatio-temporal data.

4.1. Handling Multiple Data Modalities

Spatio-temporal datasets often include multi-modal data.
For structured data (i.e. gridded data, with modalities shar-
ing the same input locations), this is typically addressed
by concatenating the modes along the channel dimension.
In contrast, unstructured data—where different modalities
can be recorded at distinct locations—require a different ap-
proach. While existing frameworks mentioned in Section 3
generally lack support for this setup, our method can be
extended to such scenarios. One approach, which we call
the single pseudo-token grid encoder, is to use modality-
specific encoders and apply the pseudo-token grid encoder
to the union of tokens. Formally, let Dc =

⋃S
s=1Dc,s de-

note the context dataset partitioned into S source-specific
smaller datasets. For each source and context datapoint, we
obtain zc,n,s = es(xc,n,s,yc,n,s), where es : X × Ys → Z
denotes the source-specific point-wise encoder and Ys the
output space for source s. The set of context tokens is
obtained as Zc = {{zc,n,s}

Nc,s

n=1}Ss=1. In a second ap-
proach, called the multi pseudo-token grid encoder, we
first form a separate pseudo-token grid for each modal-
ity. For each set of source-specific context tokens Zc,s =

{es(xc,n,s,yc,n,s)}
Nc,s

n=1 , we obtain a gridded pseudo-token
representation Us ∈ RM×Dz . We then pass their point-wise
concatenation through some function to obtain a unified
gridded pseudo-token representation. Both methods can be
applied analogously to kernel-interpolation grid encoding.

4.2. Introducing Translation Equivariance

To improve training efficiency and generalisation capabili-
ties, we also consider incorporating translation equivariance
into gridded TNPs, as a useful inductive bias for spatio-
temporal modelling. As mentioned in Section 2.3, the TNP
(T ) of Ashman et al. (2024a) cannot be naively applied to
large data because of the need to pass pairwise distances
through an MLP when computing the attention weights, re-
sulting in high time and space complexity. When working

2For dimension d=dim(xt,n), we select the nearest ceil(k1/d)
neighbours per dimension. Appendix E provides more details.

with unstructured data, the need to dynamically compute
this quantities cannot be overcome, as the locations of the
points change at each pass. However, if we instead operated
on a uniformly discretised domain, we can simply maintain
a fixed matrix of attention weighting biases, closely resem-
bling the relative positional encodings (Shaw et al., 2018)
commonly used in transformers. Fortunately, this is ex-
actly the case in the Swin-TNP processor, where the initial,
unstructured data has already been projected onto a fixed,
structured grid of pseudo-tokens of window size. Given that
attention is only performed among these structured pseudo-
tokens, we can efficiently implement the TE attention mech-
anism by introducing of a set of learnable relative positional
encodings added to the pre-softmax-normalised attention
weights. This comes with negligible computational cost.

For the pseudo-token grid encoding and grid decoding, we
must compute relative positional encodings dynamically
using the TE-MHCA mechanism proposed by Ashman et al.
(2024a). However, due to the use of the nearest-neighbour
cross-attention mechanisms, the number of pairwise compu-
tations scales only linearly with the number of context and
target points. This allows for an efficient and scalable imple-
mentation of the gridded Swin-TNP (T ) model. The encoder
and decoder equations are analogous to Equations 4 and 5,
but we replace the MHCA operations with TE-MHCA. Fi-
nally, we relax strict equivariance through an approximately
TE model—Swin-TNP (T̃ ). This can be implemented fol-
lowing Ashman et al. (2024b) by adding a few learnable
basis functions to the inputs of the TE components of the
architecture. We provide more details in Appendix G.

5. Experiments
We evaluate our gridded TNPs on synthetic and real-world
regression tasks involving large datasets. We show con-
sistent improvements over baselines, especially as task
complexity and dataset size increase, while maintaining
low computational complexity. Throughout, we compare
gridded TNPs with two different grid encoders (GEs)—
the kernel-interpolation grid encoder (KI-GE) and our
pseudo-token grid encoder (PT-GE)—and two different grid
processors—Swin Transformer and ViT. We also compare
to the following baselines: the CNP (Garnelo et al., 2018a),
the PT-TNP using the induced set-transformer architecture
(Lee et al., 2019; Ashman et al., 2024a)3, and the ConvCNP
(Gordon et al., 2020). We do not compare to the regular
ANP or TNP (Kim et al., 2019; Nguyen & Grover, 2022) as
they are unable to scale to the considered context set sizes.
Details on experiments, architectures, datasets and hardware
can be found in Appendices F and G. We also provide a
public implementation of gridded TNPs in the repository

3For all experiments, we use the maximum number of pseudo-
tokens allowed by memory constraints.
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https://github.com/cambridge-mlg/gridded-tnp.

To illustrate the generality of our framework, we include
an additional study in Appendix G.6 using the large-scale
EAGLE fluid-dynamics dataset (Janny et al., 2023). The re-
sults show that gridded TNPs can be effectively and directly
applied—without task-specific modifications—to PDE mod-
elling on irregular meshes.

5.1. Meta-Learning Gaussian Process Regression

We begin with two synthetic 2-D regression tasks with
datasets drawn from a Gaussian process (GP) with a squared-
exponential (SE) kernel approximated using structure ker-
nel interpolation (SKI) (Wilson & Nickisch, 2015). Each
dataset contains 1.1× 104 datapoints (Nc = 1× 104 con-
text and Nt = 1× 103 target points), with inputs sampled
uniformly from U[−6,6]. We consider two SE kernel length-
scales: ℓ = 0.1 and ℓ = 0.5, implying roughly 10, 000 and
500 ‘wiggles’, respectively, in each dataset. While both se-
tups are non-trivial for typical NP synthetic experiments, we
expect the former to be intractable for most NPs—it requires
the model to both assimilate finely grained information and
modulate its predictions accordingly. In Figure 3, we plot
the test log-likelihoods against the time taken for a single
forward pass (FPT) for two ViT variants (with and without
patch encoding), and Swin-TNP. We compare them to two
strong baselines: the PT-TNP withM = 256 pseudo-tokens,
and the ConvCNP with the same grid sizes as the Swin-TNP.
Training and inference for all models is performed on one
NVIDIA GeForce RTX 2080 Ti.

Figure 3. Test log-likelihood vs. forward pass time (FPT) for the
GP datasets. Baselines are hatched. The considered grid sizes are
64×64 and 32×32, shown as 64 and 32. For ViTNPs, we include
results with and without patch encoding, the former indicated by
the → symbol in-between the pre- and post-patch-encoded grid
sizes. KI / PT: kernel-interpolation / pseudo-token grid encoding.

Our results show that gridded TNPs outperform all baselines
(hatched markers in Figure 3)—especially on the more com-
plex datasets, where they significantly surpass the strongest
ConvCNP baseline—while maintaining competitive com-
putational complexity. Further, by comparing the darker to
the lighter markers, we observe that the PT-GE outperforms
the KI-GE. We show in Appendix G.1 a table of all results

(including the use of mean aggregation grid encoder, as used
by FuXi-DA (Xu et al., 2025)), an ablation of the grid size,
and the predictive means of selected models on an example
dataset with ℓ = 0.1, illustrating gridded TNPs’ superior
ability to capture complex data. We also provide a smaller-
scale experiment comparing gridded TNPs to the standard
TNP (which cannot scale to the larger-scale version due to
the lack of efficient attention). We show that in regimes
where the standard TNP is applicable, gridded TNPs are
able to recover its performance. These additional results
demonstrate that the improvements in efficiency of gridded
TNPs do not come at the expense of predictive performance.

5.2. Real-World Weather Data

We perform two experiments on data from the ERA5 reanal-
ysis by the European Centre for Medium-Range Weather
Forecasts (ECMWF; Hersbach et al. 2020). We train on data
between 2009-2017, validate on 2018 and test on 2019. Af-
ter outlining the experimental setups, we present key conclu-
sions from aggregated results, highlighting the consistency
across experiments. Training and inference are performed
using a single NVIDIA A100 80GB with 32 CPU cores.

Combining Weather Station Observations with Struc-
tured Reanalysis This experiment tests our models’ ability
to combine sparse, unstructured observations with struc-
tured, on-the-grid data. For this, we use skin temperature
(skt) and 2m temperature (t2m).4 We construct each con-
text dataset by combining the t2m at a random subset of
9, 957 weather station locations (proportion sampled from
U[0,0.3]) with a coarsened 180× 360 grid—corresponding
to a grid spacing of 1◦—of skt values. The targets are the
t2m values at all 9, 957 weather station locations.

Combining Multiple Sources of Unstructured Wind
Speed Observations We also evaluate the ability of grid-
ded TNPs to model sparsely sampled eastward (u) and
northward (v) components of wind at three different pres-
sure levels: 700hPa, 850hPa and 1000hPa (surface level).
This dataset is considered unstructured, with input loca-
tions that differ across the six variables. We perform spatio-
temporal interpolation over a latitude / longitude range of
[25◦, 49◦] / [−125◦,−66◦], which corresponds to the con-
tiguous US, spanning four hours. The proportion of the
543, 744 observations used as the context dataset is sampled
from U[0.05,0.25]. The target set size is fixed at 135, 936.

The conclusions of the two weather experiments, empirically
supported by the results in Table 1 (where we bold the results
that support each conclusion), are as follows:

1. Gridded TNPs outperform all baselines while maintain-

4skt is the Earth’s surface temperature, directly output by
atmospheric models, while t2m is found by interpolating between
the lowest model temperature and skt (Owens & Hewson, 2018).
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Table 1. Test log-likelihood (↑) for the t2m station prediction (left) / multi-modal wind speed (right) experiments. The standard errors of
the log-likelihood are all below 0.010/0.020. For the station experiment,��NN indicates that NN-CA is not employed. For the wind speed
experiment, m- and s- stand for multi and single GE. FPT: forward pass time for a batch size of eight in ms.

(a) t2m station prediction experiment.

Model GE Grid size Log-lik.↑ FPT

1) CNP - - 0.636 32
PT-TNP - M = 256 1.344 230

ConvCNP��NN SetConv 64× 128 1.535 96

Swin-TNP PT-GE 64× 128 1.819 127

2) ViTNP KI-GE 48× 96 1.628 167
ViTNP KI-GE 144× 288→48× 96 1.734 171

3) ViTNP KI-GE 144× 288→48× 96 1.734 171
ViTNP PT-GE 144× 288→48× 96 1.808 215

Swin-TNP KI-GE 64× 128 1.683 121
Swin-TNP PT-GE 64× 128 1.819 127

4) ViTNP PT-GE 144× 288→48× 96 1.808 215
Swin-TNP PT-GE 64× 128 1.819 127

5) Swin-TNP PT-GE 64× 128 1.819 127
Swin-TNP��NN PT-GE 64× 128 1.636 144

7) ConvCNP��NN SetConv 64× 128 1.535 96
ConvCNP SetConv 192× 384 1.689 74

Swin-TNP PT-GE 64× 128 1.819 127
Swin-TNP PT-GE 192× 384 2.053 306

(b) Multi-modal wind speed experiment.

Model GE Grid size Log-lik.↑ FPT

1) CNP - - −1.593 33
PT-TNP - M = 64 3.988 166

ConvCNP��NN SetConv 24× 60 6.143 210

Swin-TNP m-PT-GE 24× 60 8.603 375

2) ViTNP m-KI-GE 12× 30 5.371 349
ViTNP m-PT-GE 24× 60 → 12× 30 7.288 392

3) ViTNP m-KI-GE 24× 60 → 12× 30 6.906 372
ViTNP m-PT-GE 24× 60 → 12× 30 7.288 392

Swin-TNP m-KI-GE 24× 60 7.603 355
Swin-TNP m-PT-GE 24× 60 8.603 375

4) ViTNP m-PT-GE 24× 60 → 12× 30 7.288 392
Swin-TNP m-PT-GE 24× 60 8.603 375

6) Swin-TNP s-PT-GE 24× 60 8.073 364
Swin-TNP m-PT-GE 24× 60 8.603 375

7) ConvCNP��NN SetConv 24× 60 6.143 210
ConvCNP SetConv 48× 120 7.841 64

Swin-TNP m-PT-GE 24× 60 8.603 375
Swin-TNP m-PT-GE 48× 120 9.383 369

ing relatively low computational complexity.
2. Performing patch encoding prior to projecting onto the

latent grid gives better performance in ViTNPs.
3. Pseudo-token approaches outperform kernel interpola-

tion in the grid encoder, especially for coarse grids.
4. Swin-TNP achieves performance comparable to or better

than that of ViTNP at a lower computational cost.
5. In the grid decoder, nearest-neighbour cross-attention

both reduces the computational cost and improves pre-
dictive performance relative to full cross-attention, as
highlighted in the t2m station experiment.

6. For the multi-modal experiment, the use of the multi (m-)
grid encoders outperform the use of single (s-) ones.

7. When varying the grid size, even the smaller Swin-TNP
outperforms the larger ConvCNP baseline.

In Appendices G.2 and G.3 we show per-experiment results,
as well as predictive errors for an example dataset for the
Swin-TNP, ConvCNP, and PT-TNP, indicating that Swin-
TNP also has the most accurate predictive uncertainties. For
the t2m station prediction experiment, we provide results
for the Swin-TNP using either solely t2m or skt measure-
ments, showing that the model leverages both information
sources. Additionally, we experiment with different num-
bers of nearest neighbours in the encoder and decoder, as
well as with richer context sizes, to evaluate the robustness
of the model under varying configurations.. Finally, in Ap-

pendix G.5 we conduct further experiments using larger grid
sizes for the strongest baseline—ConvCNP—and show that
even at its largest configuration, ConvCNP underperforms
relative to our best Swin-TNP variant and typically requires
more parameters.

Incorporating Translation Equivariance Finally, we
study the effect of translation equivariance with the effi-
cient Swin-TNP (T ) and the approximately equivariant
Swin-TNP (T̃ ). The architectures are analogous to the non-
equivariant Swin-TNP. For the wind speed experiment, we
also show the ability of Swin-TNP (T ) to generalise spa-
tially, by testing on a region unseen during training (i.e. we
train on the US, and test on Europe). The results in Ta-
ble 2 show that 1) equivariant models outperform their non-
equivariant counterpart, 2) they generalise spatially, and 3)
relaxing strict equivariance further boosts performance.

6. Conclusion
This paper introduces gridded TNPs, an extension to the
family of TNPs which enables the use of efficient attention-
based transformer architectures—such as the ViT and Swin
Transformer—and thus facilitates the application of TNPs
on large-scale spatio-temporal data. We also propose a
method to leverage gridded TNPs to address the scalability
issues of translation equivariant TNPs, and incorporate a
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Table 2. Test log-likelihood (↑) for Swin-TNP (T ) and (T̃ ), compared to the non-equivariant Swin-TNP. For the t2m station experiment
we report results for Swin-TNP PT-GE 64 × 128, while for the wind speed experiment, we use Swin-TNP m-PT-GE 24 × 60. FPT:
forward pass time for a batch size of eight in ms.

(a) t2m stations. (b) Wind speed.
US Europe

Model Log-lik. (↑) FPT Log-lik. (↑) Log-lik. (↑) FPT
Swin-TNP (T ) 1.895 125 9.972 10.087 373

Swin-TNP (T̃ ) 1.926 142 10.086 10.429 467
Swin-TNP 1.819 127 8.603 −13.265 375

useful inductive bias for spatio-temporal tasks. Gridded
TNPs consist of three components: the grid encoder, the
grid processor, and the grid decoder. Through a comprehen-
sive study, we identify the optimal design choices for each
component. The best-performing gridded TNP variant in-
corporates: 1. our novel pseudo-token grid encoder to move
unstructured data onto a structured grid of pseudo-tokens,
2. the Swin Transformer to process this grid, 3. the pseu-
do-token grid decoder equipped with the nearest-neighbour
cross-attention to evaluate at arbitrary locations, 4. and ap-
proximate translation equivariance for efficient training and
generalisation capabilities. We show that gridded TNPs out-
perform strong baselines on large-scale synthetic and real-
world regression tasks, with context sets with over 100,000
datapoints. This work marks a step toward building flexible
architectures for large, unstructured spatio-temporal data,
with applications including, but not limited to, weather and
environmental, as well as PDE modelling.
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A. A Unifying Construction of Conditional Neural Processes
The many variants of CNPs differ in their construction of the predictive distribution p(·|xt,Dc). Here, we introduce a
construction of CNPs that generalises all variants. CNPs are formed from three components: the encoder, the processor,
and the decoder. The encoder, e : X × Y → Z , first encodes each (xc,n,yc,n) ∈ Dc into some latent representation, or
token, zc,n ∈ Z . The processor, ρ :

(⋃∞
n=0Zn

)
×X → Z , processes the set of context tokens e(Dc) = {e(xc,n,yc,n)}n

together with the target input xt to obtain a target dependent token, zt ∈ Z .5 Finally, the decoder, d : Z → PY , maps from
the target token to the predictive distribution over the output at that target location. Here, PY denotes the set of distributions
over Y . We illustrate this decomposition in Figure 4.

{xc,n,yc,n}n {zc,n}n zt p( · | Dc,xt)
Encode, e(·) Process, ρ(·,xt) Decode, d(·)

Figure 4. A unifying construction of CNPs, with Dc = {(xc,n,yc,n)}n and zc,n = e(xc,n,yc,n).

We present below several schematics showing the architectures of different members of the CNP family, and detail how they
can be constructed following this universal construction.

Original CNP The first architecture is based on (Garnelo et al., 2018a) and is the least complex of the CNP variants,
using a summation as the permutation-invariant aggregation. The diagram is shown in Figure 5. The encoder of a
CNP is an MLP, which maps from each concatenated pair (xc,n,yc,n) ∈ Dc to some representation zc,n ∈ RDz . The
processor sums together these representations, and combines the aggregated representation with the target input using τ :
ρ({zc,n}n,xt) = τ(

∑
n zc,n,xt). τ is often just the concatenation operation. Finally, the decoder consists of another MLP

which maps from zt = τ(
∑

n zc,n,xt) to the parameter space of some distribution over the output space (e.g. Gaussian).

Figure 5. A diagram illustrating the architecture of the plain CNP (Garnelo et al., 2018a). First, the context set (xc,n,yc,n) and the target
tokens xt,n are encoded using point-wise embeddings. These are fed into the CNP processor, which performs a simple permutation-
invariant aggregation of the context tokens. These are then concatenated with the target tokens and fed into the decoder, which outputs the
parameters of the specified NP distribution based on the target representation (in this case, mean and variance of a Gaussian).

5The space of target dependent tokens does not need to be the same as that of context tokens—we have used Z in both cases for
simplicity. It is also possible for Z to be the product of multiple spaces, e.g. Z = Ztoken ×X where we retain information about the
input locations.
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ConvCNP Another member of the CNP family is the ConvCNP (Gordon et al., 2020), that embeds sets into function
space in order to achieve translation equivariance. This can lead to more efficient training in applications where such an
inductive bias is appropriate, such as stationary time-series or spatio-temporal regression tasks. We show in Figure 6 a
schematic of the architecture. The encoder of a ConvCNP is simply the identity function. The processor then encodes
the discrete function represented by input-output pairs {(xc,n,yc,n)}n onto a regular grid using the kernel-interpolation
grid encoder (KI-GE). It then processes this grid using a CNN, which is afterwards combined with the target location
using a kernel-interpolation grid decoder (KI-GD). Letting U = {um}m denote the set of M values on gridded locations
V = {vm}m, we can decompose the ConvCNP processor as

um ←
∑
n

[1, yc,n]
Tψge(vm − xc,n) (6)

U← CNN(U,V) (7)

zt ←
∑
m

umψgd(xt − vm). (8)

Here, ψge, ψgd : RDx × RDx → R denote the KI-GE kernel and KI-GD kernel. As with the CNP, the decoder is an MLP
mapping to the parameter space of some distribution over the output space.

Figure 6. A diagram illustrating the architecture of the ConvCNP (Gordon et al., 2020). First, the context set (xc,n,yc,n) and the target
tokens xt,n are encoded using the identity encoder. These are fed into the ConvCNP processor, which uses a KI-GE to project the tokens
into function space. These are then evaluated at discrete locations using a pre-specified resolution, followed by multiple layers of a
CNN-based architecture acting upon the discretised signal. To decode at arbitrary locations, a KI-GD is used, giving rise to the target
token representation. This is fed into the decoder, which outputs the parameters of the specified NP distribution (in this case, mean and
variance of a Gaussian).

TNPs There are a number of different architectures used for the different members of the TNP family. We provide below
diagrams for two members mentioned in the main paper, namely the TNP of (Nguyen & Grover, 2022) and the induced
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set transformer (ISTNP) of (Lee et al., 2019). For the standard TNP, the encoder consists of an MLP mapping from each
(xc,n,yc,n) ∈ Dc to some representation (token) zc,n ∈ RDz . The processor begins by embedding the target location in
the same space as the context tokens, giving zt ∈ RDz . It then iterates between applying MHSA operations on the set of
context tokens, and MHCA operations from the set of context tokens into the target token:

Zc ← MHSA(Zc)
zt ← MHCA(zt; Zc)

}
× L. (9)

Again, the decoder consists of an MLP mapping from zt to the parameter space of some distribution over outputs.

Figure 7. A diagram illustrating the architecture of the TNP (Nguyen & Grover, 2022). First, the context set (xc,n,yc,n) and the target
tokens xt,n are encoded using point-wise embeddings to obtain the context set representation Zc and target representation Zt. These are
fed into the TNP processor, which takes in the union of [Zc,Zt] and outputs the token corresponding to the target inputs Z(L)

t . At each
layer of the processor, the context set representation is first updated through an MHSA layer, which is then used to modulate the target set
representation through a MHCA layer between the target set representation from the previous layer and the updated context representation.
Finally, the decoder outputs the parameters of the specified NP distribution based on the target representation from the final layer (in this
case, mean and variance of a Gaussian).

One of the main limitations of TNPs is the cost of the attention mechanism, which scales quadratically with the number of
input tokens. Several works (Feng et al., 2023; Lee et al., 2019) addressed this shortcoming by incorporating ideas from the
Perceiver-style architecture (Jaegle et al., 2021) into NPs. The strategy is to introduce a set of M ‘pseudo-tokens’ which
act as an information bottleneck between the context and target sets. Provided that M << Nc, where Nc is the number
of context points, this leads to a significant reduction in computational complexity. The architecture we consider in this
work is called the induced set transformer NP (ISTNP), and differs from the plain TNP in the calculations performed in the
processor. At each layer, the pseudo-token representation is first updated through an MHCA operation from the context set
to the pseudo-tokens. The updated representation is then used to modulate the context and target sets separately, through
separate MHCA operations:
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U← MHCA(U; Zc)
zt ← MHCA(zt; U)
Zc ← MHCA(Zc; U)

× L. (10)

Thus, as apparent in Figure 8, the context and target sets never interact directly, but only through the ‘pseudo-tokens’.
The computational cost at each layer reduces from O(N2

c + NcNt) in the plain TNP, where Nc and Nt represent the
number of context and target points, respectively, to O(M(2Nc + Nt)). This is a significant reduction provided that
M << Nc, resulting in an apparent linear dependency on Nc. However, in practice, M is not independent of Nc, with more
pseudo-tokens needed as the size of context set increases.

Figure 8. A diagram illustrating the architecture of the ISTNP (Lee et al., 2019). As opposed to the regular TNP of Nguyen & Grover
2022, the ISTNP uses a ‘summarised’ representation of the context set through the use of pseudo-tokens. They are first randomly
initialised (U(0)). Then, their representation is updated through cross attention with the context set representation from the previous layer
(i.e. at layer l: U(l) = MHCA(l)(U(l−1),Z

(l)
c )). This updated set of pseudo-tokens U(l) is then used to modulate both the context set

representation at the current layer through cross-attention (i.e. Z(l)
c = MHCA(Z

(l−1)
c ,U(l))), as well as the target set representation

(i.e. Z(l)
t = MHCA(Z

(l−1)
t ,U(l))). Thus, the context and target set representations do not interact directly, but only through the

pseudo-tokens, which act as an information flow bottleneck between the two in order to decrease the computational demands of the TNP.

B. Translation and Approximate Equivariance
We aim to give a brief introduction to Translation Equivariant TNPs (TE-TNPs) (Ashman et al., 2024a) and Approximately
Equivariant NPs (Ashman et al., 2024b), and refer the reader to the aforementioned papers for a more thorough treatment.
Pseudo-code for a forward pass through these models is provided in Algorithms 3 and 4 in Ashman et al. (2024b).

B.1. Translation Equivariant TNPs

As mentioned in Ashman et al. (2024a), if the ground-truth stochastic process we are interested in modelling is stationary,
building translation equivariance into the model leads to more efficient training by reducing the model search space.
Moreover, as formally indicated in Theorem 2.2 in Ashman et al. (2024a), this inductive bias also allows NPs to generalise
spatially.

In order to achieve translation equivariance, we must ensure that each token zn is translation invariant with respect to its
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inputs—this can be achieved by only allowing relative, rather than absolute dependencies on the inputs. More specifically,
the attention mechanism only depends on pairwise distances xi − xj, resulting in the translation equivariant MHSA and
MHCA operations, which we denote as TE-MHSA and TE-MHCA. In addition, unlike the non-equivariant counterpart, we
force the token encoder to only depend on output values yn.

The TE-MHSA operation is constructed analogously to Equation 1, but the inputs to the attention mechanism only depend
on pairwise differences between the inputs, rather than their absolute value

zn ← cat
({ N∑

m=1

αh(zn, zm,xn − xm)zm
TWV,h

}H

h=1

)
WO. (11)

There are various ways in which the translation equivariant attention weighting can be implemented, but we choose to follow
Ashman et al. (2024a) and set αh,n,m = αh(zn, zm,xn − xm), as indicated in Equation 3, as

αh,n,m =
eρh(zn

TWQ,h[WK,h]
T zm,xn−xm)∑N

m=1 e
ρh(zn

TWQ,h[WK,h]
T zm,xn−xm)

, (12)

where ρh : R× RDx → R is a learnable function, parameterised by an MLP, and {zn}Nn=1 only depend on output values.
TE-MHCA is defined analogously

z1,n ← cat
({ N2∑

m=1

αh(z1,n, z2,m,x1,n − x2,m)z2,m
TWV,h

}H
h=1

)
WO. (13)

In Ashman et al. (2024a), the authors also propose optional translation equivariant updates to the inputs, but we do not
use them in our implementation. Together with layer normalisation and pointwise MLPs, the TE-MHSA and TE-MHCA
operations form the TE-MHSA and TE-MHCA blocks. The TE-TNP (TNP (T )) shares an identical architecture to the
regular TNP, with the MHSA and MHCA blocks replaced by TE-MHSA and TE-MHCA blocks.

Translation Equivariant Gridded TNPs The architecture of Swin-TNP (T ) is similar to that of Swin-TNP, with MHSA /
MHCA blocks replaced by TE-MHSA / TE-MHCA blocks:

1. Pseudo-token grid encoder: we follow the definitions from Equation 4, but the pseudo-tokens are shared for each grid
point, and {zc,n}Nc

n=1 only depend on output values {yc,n}Nc
n=1.

um ← TE-MHCA
(
u0
m, {zc,n}n∈N(vm;k)

)
∀m ∈M. (14)

2. Grid processor: We use a Swin Transformer augmented with a fixed set of learnable relative positional encodings. The
number of these encodings is equal to the number of grid points multiplied by the number of heads in the attention
mechanism. Their introduction comes with negligible computational cost.

3. Pseudo-token grid decoder: similarly to Equation 5 we perform nearest-neighbour cross-attention, but replace the MHCA
blocks with TE-MHCA blocks.

zt,n ← TE-MHCA
(
z0t,n, {um}m∈Ñ(xt,n;k)

)
. (15)

B.2. Approximately Equivariant NPs

Although introducing inductive biases such as translation equivariance has been shown to improve sample efficiency and
the ability to generalise, real-world data is rarely perfectly symmetric. To address this, Ashman et al. (2024b) propose
Approximately Equivariant Neural Processes, which relax strict equivariance assumptions within the training domain in a
data-driven manner, while maintaining equivariance out-of-distribution to allow for good generalisation capabilities.

The main insight towards achieving approximate equivariance is outlined in Theorems 2 and 3 in Ashman et al. (2024b),
indicating that any non-equivariant operator between function spaces can be constructed as, or approximated by, an
equivariant mapping with additional, fixed functions as input. They use this result to construct the approximately equivariant
neural process, which, following the unifying construction in Appendix A, can be constructed as a G-equivariant CNP with
encoder e : X × Y → Z , a G-invariant processor ρ :

(⋃∞
n=0Zn

)
× X → Z , and a decoder d : Z → PY . Approximate
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equivariance is achieved by inserting B fixed inputs {ti}Bi=1 into the processor, which become additional model parameters
that break the G-invariance of the processor:

p(Yt|Xt, Dc) =

Nt∏
n=1

p(yt,n|xt,n, Dc) =

Nt∏
n=1

p(yt,n|d(ρ(e(Dc),xt,n, t1, . . . , tB))). (16)

The authors argue that the number of additional inputs determines the degree to which the model breaks equivariance, with
more inputs resulting in a more non-equivariant processor. In the limit B →∞ we eventually recover any non-equivariant
processor.

There are various ways in which these additional inputs can be incorporated into G-equivariant architectures. Here, we only
outline how they are included into the translation equivariant TNP (T ). The authors consider fixed functions on {xc,n}Nc

n=1

which are summed to the initial context tokens {zc,n}Nc
n=1. These are obtained by performing a Fourier expansion on the

context token locations, followed by passing the result through an MLP with two hidden layers of dimension Dz .

The authors introduce two additional techniques to ensure generalisation beyond the training distribution. These are
motivated by the idea that we only have information about local symmetry-breaking features inside the training domain;
outside, where no data are available, it is more reliable to assume strict equivariance. To determine the most suitable
equivariant mapping that should be applied outside the training regime, the authors propose the following view: Any
approximately equivariant mapping can be decomposed into an equivariant component, which is, in some sense, the best
“equivariant approximation” of the original mapping, and a residual non-equivariant component. The latter can then be
approximated by an equivariant mapping with additional fixed inputs (according to Theorems 2 and 3). Thus, they propose
the following:
1. During training, they set the additional basis functions to zero with some fixed probability. This allows the models to

learn a good approximation of the equivariant component of the underlying system when the additional inputs are zero.
2. Forcefully set the additional fixed inputs to zero outside the training domain.
In our implementation of the Swin-TNP (T̃ ), we only add additional fixed inputs to the initial context set embeddings—before
feeding {zc,n}Nc

n=1 into the pseudo-token grid encoder, we perform:

zc,n = ϕ(yc,n) + t(xc,n), (17)

where ϕ is implemented with an MLP, and t(xc,n) is obtained by performing the Fourier expansion, as mentioned above.

C. Related Work
Models for Structured Weather Data As mentioned in Section 3, recently there has been significant interest from the
research community in developing models that are able to scale to massive spatio-temporal datasets—some of the most
successful of which can be seen in weather modelling. The majority operate on structures, gridded data, and are only
trained to perform forecasting. Models such as Aurora (Bodnar et al., 2025), GraphCast (Lam et al., 2023), GenCast
(Price et al., 2025), Pangu (Bi et al., 2023), FuXi (Chen et al., 2023b) and FengWu (Chen et al., 2023a) share a similar
encoder-processor-decoder to our construction of CNPs presented in Section 2.1, in which the input grid is projected onto
some latent space which is then transformed using an efficient form of information propagation (e.g. sparse attention with
Swin Transformer (Bodnar et al., 2025; Bi et al., 2023), message passing with GNNs (Price et al., 2025)) before being
projected back onto the grid at the output.

At the same time, there has been a line of work aiming to develop more flexible methods for spatio-temporal data, either by
enabling models to deal with unstructured data, or by adjusting the training task. Perhaps the most relevant works to ours are
Aardvark (Allen et al., 2025) and FuXi-DA (Xu et al., 2025), both end-to-end weather prediction models that handle both
unstructured and structured data. Aardvark employs kernel interpolation, also known as a SetConv (Gordon et al., 2020), to
move unstructured data onto a grid, followed by a ViT which processes this grid and outputs gridded predictions, whereas
FuXi-DA simply averages observations within each grid cell. We provide an extensive comparison between the kernel
interpolation approach to structuring data and our pseudo-token grid encoder in Section 5, demonstrating significantly better
performance. Additionally, in the GP experiment, we evaluate our encoder against FuXi-DA’s encoder, with the results in
Table 3 showing superior performance.

Another relevant example is Lessig et al. (2023), a task-agnostic stochastic model of atmospheric dynamics, trained to
predict randomly masked or distorted tokens. While the task agnosticism of this approach shares similarities with that of
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NPs, it is unclear how this approach extends to settings in which data can exist at arbitrary spatio-temporal locations, and
they are more limited in their approach to model multiple sources of the input data.

Finally, Schmude et al. (2024) propose Prithvi WxC, a foundation model for weather and climate that can be effectively tuned
for multiple distinct use cases. To this end, they employ a training objective that combines ideas from masked reconstruction
with forecasting, whereby they predict a future state with a variable lead time, based on masked current and past states.
While able to adapt to various downstream tasks through fine-tuning (which generally requires additional architectural
components), the backbone transformer is only able to operate on gridded data. The architecture is based on a 2D vision
transformer that combines approaches from Hiera (Ryali et al., 2023) and MaxVit (Tu et al., 2022). This implies that, as it is,
the model is not able to handle data at arbitrary spatio-temporal locations, and would need architectural adaptations to do so.
Indeed, our grid encoder could represent a solution to move the initial unstructured data onto a structured grid, compatible
with the foundation model’s backbone.

Connections between our method and GNNs It is well known that regular transformers can be interpreted as GNNs (Bron-
stein et al., 2021); in particular, fully-connected graph attention networks (GAT;Veličković et al. 2018). This interpretation
extends to our construction of the transformer processor. In particular, we can interpret the grid encoder as dynamically
constructing a graph connecting the tokenised observations to their nearest neighbours on some latent grid of pseudo-tokens
with a directed edge. The operation of our pseudo-token grid encoder is then a single GAT update. The grid processor can
be interpreted as a fully-connected GAT when a ViT is used, or a sparsely-connected GAT when a Swin Transformer is used.
Finally, similar to the interpretation of the grid encoder, the grid decoder can be interpreted as dynamically constructing a
graph connecting the tokenised target locations to their nearest neighbours on the same latent grid of pseudo-tokens with a
(reversed) directed edge, and performing a single GAT update.

Given these connections, it is reasonable to question why we chose to use attention-based updates rather than other forms of
GNN updates, such as message passing. Our response is straightforward: empirical evidence suggests that transformer-based
implementations achieve superior computational efficiency compared to GNN counterparts for which operations cannot be
performed in parallel (Veličković et al., 2018). Furthermore, the widespread adoption of transformers has led to transformer-
specific operations, such as the attention mechanism, being highly optimised for modern GPU architectures (Dao et al.,
2022; Dao, 2024; Pagliardini et al., 2023).

Universal Physics Transformers The recently proposed universal physics transformers (UPTs; ?) share similar motiva-
tions and methodologies as our work. UPTs consider a different, but related problem of learning approximate solutions
to partial differential equations (PDEs), which can be formulated as learning mappings between function spaces. The
broader family of models which achieve this are known as neural operators (Kovachki et al., 2023). In practice, neural
operators work with a finite number of function evaluations according to some discretisation scheme. Dependent on the
choice of discretisation scheme, the set of function evaluations may not lie on a regularly spaced grid or mesh, and when the
number of function evaluations is large we arrive at a similar problem to that considered in this work. UPTs use a single
message passing layer (Gilmer et al., 2017) to local neighbourhoods of tokenised representations of the discretised function
evaluations into a set of pseudo-tokens. The primary difference between our pseudo-token grid encoder and this approach is
that in UPTs the pseudo-tokens are not constrained to lie on a regular grid; rather, the pseudo-locations are randomly sampled
from the original set of discretised locations. Their approach is motivated by the desiderata for the original discretisation
structure to be preserved; however, it prevents application of efficient grid-based transformer architectures such as Swin
Transformer.

D. Kernel-Interpolation Grid Encoder
Let zn ∈ RDz denote the token representation of input-output pair (xn,yn) after point-wise embedding. We introduce the
set of grid locations V ∈ RM1×···MDx×Dx . For ease of reading, we shall replace the product

∏Dx

d=1Md with M and the
indexing notation m1, . . . ,mDx

with m.

The kernel-interpolation grid encoder obtains a pseudo-token representation U ∈ RM×Dz of Dc on the grid V by
interpolating from all tokens {zc,n}n at corresponding locations {xc,n}n to all pseudo-token locations:

um ←
∑
n

zc,nψ(vm,xc,n) ∀m ∈M. (18)

Here, ψ : X × X → R is the kernel used for interpolation, which we take to be the squared-exponential (SE) kernel when
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X = RDx :

ψSE(vm,xc,n) = exp

(
−

Dx∑
d=1

(xc,n,d − vm,d)
2

ℓ2d

)
(19)

where ℓd denotes the ‘lengthscale’ for dimension d. Similar to the pseudo-token grid encoder, we can restrict the kernel-
interpolation grid encoder to interpolate only from sets of token {zc,n}n∈N(vm;k) for which vm is amongst the k nearest
grid locations. The computational complexity of the kernel-interpolation and pseudo-token grid encoders differ only by a
scale factor when this approach is used.

E. Nearest-Neighbour Cross-Attention in the Grid Decoder
In this section we provide more details, alongside schematics, of our nearest-neighbour cross-attention scheme. As mentioned
in the main text, in the grid decoder we only allow a subset of the gridded pseudo-tokens to attend to the target token (those
in the vicinity of it). Finding the nearest neighbours is not done in the standard k-nearest neighbours fashion, because we
use the same number of nearest neighbours along each dimension of the original data (i.e. latitude and longitude for spatial
interpolation; latitude, longitude and time for spatio-temporal interpolation). This is to ensure that we do not introduce
specific preferences for any dimension. In the case the data lies on a grid with the same spacing in all its dimensions, the
procedure becomes equivalent to k-nearest neighbours.

In practice, we specify the total number of nearest-neighbours we want to use k. We then compute the number of nearest-
neighbours in each dimension by kdim = ceil(k

1
dim(x) ), where dim(x) represents the dimensionality of the input. For efficient

batching purposes, we tend to choose k = (2n − 1)dim(x), where n ∈ N (i.e. 9 for experiments with latitude-longitude
grids, 27 for experiments with latitude-longitude-time grids). We then find the indices in each dimension of these nearest-
neighbours by performing an efficient search that leverages the gridded nature of the data, leading to a computational
complexity of O(kNt), with Nt the number of target points. When the neighbours go off the grid (i.e. for targets very close
to the edges of the grid), we only consider the number of viable (i.e. within the bounds of the grid) neighbours.

Example in 2D This procedure is visualised in Figure 9, where we consider both grids with the same spacing along each
dimension, as well as grids with different spacings. We cover both the case of a central target point, as well as a target point
closer to the edges of the grid.

(a) Same / Central (b) Same / Edge (c) Diff / Central (d) Diff / Edge

Figure 9. Example of our nearest-neighbours procedure in 2D on a 5× 9 grid for 9 nearest neighbours. We consider four different cases.
Same / Diff refers to whether the grid spacing is the same in the two dimensions or different. Central / Edge refers to the position of the
target. In the case of an edge target, we do not consider invalid neighbours (i.e. those that are outside the grid bounds).

Accounting for non-Euclidean geometry A lot of our experiments are performed on environmental data, distributed
across the Earth. For our purposes, we assume the Earth shows cylindrical geometry, whereby there is no such thing as a
grid edge along the longitudinal direction (i.e. a longitude of -180◦ is the same as 180◦). This is not the same for latitude,
where one extreme corresponds to the North Pole, and the other one to the South Pole. Thus, we would like to allow for the
grid to ‘roll’ around the longitudinal direction when computing the nearest neighbours. In this case, there should be no edge
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target points along the longitudinal dimension. This procedure is graphically depicted in Figure 10 and we use it in our
experiments on environmental data.

Figure 10. Example of nearest-neighbours procedure in 2D on a 5× 9 grid for 9 nearest neighbours. We allow rolling along the horizontal
dimension (e.g. longitude), but do not allow rolling along the vertical one (i.e. latitude). Hence, the neighbours extend on the other side of
the grid horizontally, but not vertically. This example corresponds to cylindrical symmetry.

Example for 3D data We also provide examples of the nearest-neighbours procedure on 3D spaces. These dimensions
could represent, for example, latitude, longitude and time, or latitude, longitude and height/pressure levels. In Figure 11 we
consider a case where we do not allow for rolling along any dimension, while in Figure 12 we allow for rolling along one of
the dimensions.

(a) Central (b) Edge

Figure 11. Example of our nearest-neighbours procedure in 3D on a 5× 9× 3 grid for 27 nearest neighbours. We consider two different
cases—whether the target is central or near the edge of the grid. In the case of an edge target (right), we do not consider invalid neighbours
(that are outside the grid bounds).

F. Hardware specifications
For the smaller synthetic GP regression experiment, we perform training and inference for all models on a single NVIDIA
GeForce RTX 2080 Ti GPU with 20 CPU cores. For the other two, larger experiments, we perform training and inference
for all models on a single NVIDIA A100 80GB GPU with 32 CPU cores.
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(a) Central (b) Edge

Figure 12. Example of our nearest-neighbours procedure in 3D on a 5× 9× 3 grid for 27 nearest neighbours. We allow for rolling along
the second dimension, but not along any of the other ones.

G. Experiment Details
Common optimiser details For all experiments and all models, we use the AdamW optimiser (Loshchilov & Hutter,
2019) with a fixed learning rate of 5× 10−4 and apply gradient clipping to gradients with magnitude greater than 0.5.

Common likelihood details For all experiments and all models, we employ a Gaussian likelihood parameterised by a
mean and inverse-softplus variance, i.e. the decoder of each model outputs

µt, log(expσ
2
t − 1) = d(zt), p( · | Dc,xt) = N (·;µt,σ

2
t ). (20)

For the experiment modelling skin and 2m temperature (skt and t2m) with a richer context, we set a minimum noise level
of σ2

min = 0.01 by parameterising

µt, log(exp (σt − σmin)
2 − 1) = d(zt), p( · | Dc,xt) = N (·;µt,σ

2
t ). (21)

CNP details For the CNPs, we encode each (xc,n,yc,n) ∈ Dc in RDz using an MLP with two-hidden layers of dimension
Dz . We obtain a representation for the entire context set by summing these representations together, zc =

∑
n zc,n, which

is then concatenated with the target input xt. The concatenation [zc, xt] is decoded using an MLP with two-hidden layers
of dimension Dz . We use Dz = 128 in all experiments.

ConvCNP details For the ConvCNP model, we use a U-Net architecture (Ronneberger et al., 2015) for the CNN consisting
of 11 layers with input size C. Between the five downward layers we apply pooling with size two. For the five upward layers,
we use 2C input channels and C output channels, as the input channels are formed from the output of the previous layer
concatenated with the output of the corresponding downward layer. Between the upward layers we apply linear up-sampling
to match the grid size of the downward layer. In all experiments, we use C = 128, a kernel size of five or nine, and a
stride of one. We use SE kernels for the SetConv encoder and SetConv decoder with learnable lengthscales for each input
dimension. The grid encoding is modified similarly to the pseudo-token grid encoder, whereby we only interpolate from the
set of observations for which each grid point is the closest grid point. Unless otherwise specified, we also modify the grid
decoding similarly to the pseudo-token grid decoder, whereby we only interpolate from the k = 3Dx nearest points on a
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distance-normalised grid to each target location. We resize the output of the SetConv encoder to dimension C using an MLP
with two hidden layers of dimension C. We resize the output of the SetConv decoder using an MLP with two hidden layers
of dimension C.

Common transformer details For each MHSA / MHCA operation, we construct a layer consisting of two residual
connections, two layer norm operations, one MLP, together with the MHSA / MHCA operation as follows:

Z̃← Z+MHSA/MHCA(layer-norm1(Z))

Z← Z̃+MLP(layer-norm2(Z̃)).
(22)

All MHSA / MHCA operations use H = 8 heads, each with DV = 16 dimensions. We use a Dz = DQK = 128 throughout.

PT-TNP details We use an induced set transformer (IST) architecture for the PT-TNPs, with each layer consisting of the
following set of operations:

U← MHCA-layer(U;Zc)

zt ← MHCA-layer(zt;U)

Zc ← MHCA-layer(Zc;U).

(23)

In all experiments we use five layers, and encoder / decoder MLPs consisting of two hidden layers of dimension Dz .

ViT details The ViT architecture consists of optional patch encoding, followed by five MHSA layers. The patch encoding
is implemented using a single linear layer. In all experiments we use five layers, and encoder / decoder MLPs consisting of
two hidden layers of dimension Dz .

Swin Transformer details Each layer of the Swin Transformer consists of two MHSA layers applied to each window, and
a shifting operation between them. Unless otherwise specified, we use a window size of four and shift size of two for all
dimensions (except for the time dimension in the final experiment, as the original grid only has four elements in the time
dimension). For the second experiment in which the grid covers the entire globe, we allow the Swin attention masks to ‘roll’
over the longitudinal dimension, allowing the pseudo-tokens near 180◦ longitude to attend to those near −180◦ longitude.
In all experiments, we use five Swin Transformer layers (10 MHSA layers in total), and encoder / decoder MLPs consisting
of two hidden layers of dimension Dz . We found that the use of a hierarchical Swin Transformer—as used in the original
Swin Transformer and models such as Aurora (Bodnar et al., 2025)—did not lead to any improvement in performance.

Spherical harmonic embeddings When modelling input data on the sphere (i.e. the final two experiments), the CNP,
PT-TNP, and gridded TNP models first encode the latitude / longitude coordinates using spherical harmonic embeddings
following (Rußwurm et al., 2024) using 10 Legendre polynomials. We found this to improve performance in all cases.

Temporal Fourier embeddings When modelling input data through time (i.e. the final experiment), the CNP, PT-TNP,
and gridded TNP models first encode the temporal coordinates using a Fourier embedding. The time value is originally
provided in hours since 1st January 1970. Following (Bodnar et al., 2025), we embed this using a Fourier embedding of the
following form:

Emb(t) =
[
cos

2πt

λi
, sin

2πt

λi

]
for 0 ≤ i < L/2. (24)

where the λi are log-spaced values between the minimum and maximum wavelength. We set λmin = 1 and λmax = 8760,
the number of hours in a year. We use L = 10.

Great-circle distance For methods using the kernel-interpolation grid encoder (i.e. the ConvCNP and some gridded
TNPs), we use the great-circle distance, rather than Euclidean distance, as the input into the kernel when modelling input
data on the sphere. The haversine formula determines the great-circle distance between two points x1 = (φ1, λ2) and
x2 = (φ2, λ2), where λ and φ denote the latitude and longitude, and is given by:

d(x1,x2) = 2r arcsin

(√
1− cos(∆φ) + cosφ1 · cosφ2 · (1− cos(∆λ))

2

)
(25)

where ∆φ = φ2 − φ1, ∆λ = λ2 − λ1 and r is taken to be 1.
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G.1. Meta-Learning Gaussian Process Regression

We utilise the GPyTorch software package (Gardner et al., 2018) for generating synthetic samples from a GP. As the
number of datapoints in each sampled dataset is very large by GP standards (1.1 × 104), we approximate the SE kernel
using structured kernel interpolation (SKI) (Wilson & Nickisch, 2015) with 100 grid points in each dimension. We use
an observation noise of σn = 0.1 for the smaller and larger lengthscale tasks. In Figure 13, we show an example dataset
generated using a lengthscale of 0.1 to demonstrate the complexity of these datasets. We were unable to compute ground
truth log-likelihood values for these datasets without running into numerical issues.

In addition, we also plot the predictive means (Figure 14) and predictive errors (Figure 15) in the form of heatmaps for a
number of CNP models on a different example dataset.

We train all models for 500, 000 iterations on 160, 000 pre-generated datasets using a batch size of eight. For all models,
excluding the ConvCNP, we apply Fourier embeddings to each input dimension with L = 64 wavelengths with λmin = 0.01
and λmax = 12. We found this to significantly improve the performance of all models.

We provide a plot of the test log-likelihood against the forward pass time in Figure 16, where we include both the larger
models shown in Figure 3, as well as smaller versions. In Table 3, we provide test log-likelihood values for a number of
gridded TNPs and baselines for both tasks. We observe that even when increasing the size of the baseline models they
still underperform the smaller gridded TNPs. We include results for the Swin-TNP with full attention grid decoding (no
nearest-neighbour cross-attention indicated as��NN), which fail to model the more complex dataset when using the PT-GE.

Table 3. Test log-likelihood (↑) for the synthetic GP regression dataset.��NN indicates that NN-CA is not employed. FPT: forward pass
time for a batch size of eight in ms. Params: number of model parameters in units of M.

Model Grid encoder Grid size ℓ = 0.5 (↑) ℓ = 0.1 (↑) FPT Params

CNP - - −0.406 0.112 9 0.21
PT-TNP - M = 128 0.819 0.558 53 1.50
PT-TNP - M = 256 0.819 0.565 74 1.52

ConvCNP SetConv 32× 32 0.801 0.536 13 2.11
ConvCNP SetConv 64× 64 0.830 0.681 93 6.70

ViTNP KI-GE 32× 32 → 16× 16 0.841 0.722 30 1.16
ViTNP PT-GE 32× 32 → 16× 16 0.841 0.721 32 1.39
ViTNP KI-GE 16× 16 0.833 0.711 28 1.09
ViTNP PT-GE 16× 16 0.840 0.712 29 1.22

ViTNP KI-GE 64× 64 → 32× 32 0.842 0.728 44 1.16
ViTNP PT-GE 64× 64 → 32× 32 0.836 0.727 56 1.78
ViTNP KI-GE 32× 32 0.830 0.725 47 1.09
ViTNP PT-GE 32× 32 0.837 0.728 53 1.32

Swin-TNP KI-GE 32× 32 0.844 0.723 39 1.09
Swin-TNP PT-GE 32× 32 0.844 0.723 42 1.32
Swin-TNP Avg-GE 32× 32 0.840 0.723 34 1.22

Swin-TNP KI-GE 64× 64 0.846 0.728 62 1.09
Swin-TNP PT-GE 64× 64 0.847 0.730 69 1.72
Swin-TNP Avg-GE 64× 64 0.845 0.725 58 1.62

Swin-TNP��NN KI-GE 32× 32 0.834 0.716 45 1.09
Swin-TNP��NN PT-GE 32× 32 0.837 0.709 48 1.32

ConvCNP For the ConvCNP models, we use a regular CNN architecture with C = 128 channels and five layers. We use
a kernel size of five for the smaller ConvCNP (32× 32 grid) and a kernel size of nine for the larger ConvCNP (64× 64).

Swin-TNP For the Swin-TNP models, we use a window size of 4× 4 for the smaller model (32× 32 grid) and a window
size of 8× 8 for the larger model (64× 64 grid). The shift size is half the window size in each case. We also provide results
when a simple average pooling is used for the grid encoder, which is similar to Xu et al. 2025 except that the pooling is
performed in token space rather than on raw observations.
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(a) Ground-truth. (b) Swin-TNP, PT-GE, 64× 64 grid.

(c) ConvCNP, 64× 64 grid. (d) PT-TNP, M = 256.

Figure 13. A comparison between the predictive means of a selection of CNP models on a synthetic GP dataset with ℓ = 0.1. The
noiseless ground-truth dataset is shown in Figure 13a, and the context set is a randomly sampled set of Nc = 1× 104 noisy observations
of this. The colour corresponds to the output value, with the same scale used in each plot. Observe the complexity of the ground-truth
dataset, which the Swin-TNP’s predictive mean resembles. The ConvCNP and PT-TNP’s predictive means are notably smoother.
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(a) Ground-truth. (b) Swin-TNP, PT-GE, 64× 64 grid.

(c) ConvCNP, 64× 64 grid. (d) PT-TNP, M = 256.

Figure 14. A comparison between the predictive means of a selection of CNP models on a synthetic GP dataset with ℓ = 0.1. The
noiseless ground-truth dataset is shown in Figure 14a, and the context set is a randomly sampled set of Nc = 1× 104 noisy observations
of this. The colour corresponds to the output value, with the same scale used in each plot.
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(a) Ground-truth. (b) Swin-TNP, PT-GE, 64× 64 grid.

(c) ConvCNP, 64× 64 grid. (d) PT-TNP, M = 256.

Figure 15. A comparison between the difference between the predictive mean and ground-truth for a selection of CNP models on a
synthetic GP dataset with ℓ = 0.1. The noiseless ground-truth dataset is shown in Figure 15a, and the context set is a randomly sampled
set of Nc = 1× 104 noisy observations of this. The colour corresponds to the prediction error, with the same scale used in each plot.
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Figure 16. Test log-likelihood vs. forward pass time (FPT) for the GP datasets. For each model, we show the results for a large and small
(transparent) version. Baselines are hatched. The considered grid sizes are 64× 64 and 32× 32, shown as 64 and 32. For ViTNPs, we
include results with and without patch encoding, the former indicated by the → symbol in-between the pre- and post-patch-encoded grid
sizes. KI / PT: kernel-interpolation / pseudo-token grid encoding.

G.1.1. SMALL-SCALE META-LEARNING GAUSSIAN PROCESS REGRESSION

We also consider a smaller GP regression task with datasets drawn from a GP with SE kernel with lengthscale ℓ = 0.1.
Each dataset in this smaller task has a randomly sized context set, Nc ∼ U{1, 1000}, and a fixed sized target set Nt = 100.
The inputs are sampled uniformly in the range [−2, 2] in each dimension. The use of a smaller dataset allows us to make
comparisons with the regular TNP. In Table 4, we compare the performance of the best performing smaller ViTNP and
Swin-TNP gridded TNPs from the paper with the regular TNP, implemented with five MHSA layers, token dimension
Dz = 128, H = 8 heads and DQ = DKV = 16. We include the standard error of the mean test log-likelihood, which
demonstrate that there is no significant difference in performance between the regular TNP and Swin-TNP. It should be
noted, however, that the regular TNP is more computationally efficient than both gridded TNPs for this small-scale dataset.
This reflects the suitability of gridded TNPs for large-scale datasets, as there is little difference in forward pass time for the
small-scale datasets here and the large-scale datasets considered in the paper for the gridded TNPs. In contrast, the TNP
cannot be implemented on the large-scale datasets considered in the paper due to the quadratic computational and memory
complexity associated with full attention.

Table 4. Test log-likelihood (↑) for the synthetic GP regression dataset. FPT: forward pass time for a batch size of eight in ms. Params:
number of model parameters in units of M.

Model Grid encoder Grid size Test log-likelihood (↑) FPT Params

TNP - - −0.596 ± 0.02 17 0.60
ViTNP PT-GE 32× 32 → 16× 16 −0.657± 0.02 22 1.39

Swin-TNP PT-GE 32× 32 −0.616± 0.02 33 1.32

G.2. Combining Weather Station Observations with Structured Reanalysis

Inspired by the real-life assimilation of 2m temperature (t2m), we use the ERA5 reanalysis dataset to extract skin temperature
(skt) and 2m temperature (t2m) at a 0.25◦ resolution (corresponding to a 721× 1440 grid). We then coarsen the skt grid
to a 180× 360 grid, corresponding to 1◦ in both the latitudinal and longitudinal directions. This implies that, because t2m
lies on a finer grid, it essentially becomes an off-the-grid variable with respect to the coarsened grid on which skt lies. In
order for the experimental setup to better reflect real-life assimilation conditions, we assume to only observe off-the-grid
t2m values at real weather station locations6. In total, there are 9, 957 such weather station locations, extracted from the
HadISD dataset (Dunn et al., 2012). We show their geographical location in Figure 17.

For each task, we first randomly sample a time point, and then use the entire coarsened skt grid as the on-the-grid context

6More specifically, because the 2m temperature values come from the gridded ERA5 data, we only consider the nearest grid points
to the true station locations as valid off-the-grid locations (i.e. if a station has coordinates at (44.19◦, 115.43◦) latitude-longitude, we
consider the grid point at (44.25◦, 115.5◦))
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Figure 17. Station distribution within 1◦ × 1◦ patches. The colour indicates the number of stations within each patch, clipped from a
maximum value of 22 to 15. The distribution is far from uniform, with dense station areas in continents such as North America, Europe
and parts of Asia, and a sparser distribution in Africa, South America, and in the oceans.

data (64, 800 points), as well as Noff,c off-the-grid t2m context points randomly sampled from the station locations. In the
experiment from the main paper, Noff,c ∼ U[0,0.3], but we also consider the case of richer off-the-grid context sets with
Noff,c ∼ U[0.25,0.5] in Table 9. The target locations are all the 9, 957 station locations.

We train all models for 300, 000 iterations on the hourly data between 2009− 2017 with a batch size of eight. Validation
is performed on 2018 and testing on 2019. The test metrics are reported for 16, 000 data samples. Experiment specific
architecture choices are described below.

Input embedding We use spherical harmonic embeddings for the latitude / longitude values. These are not used in the
ConvCNP model as the ConvCNP does not modify the inputs in order to maintain translation equivariance (in this case, with
respect to the great-circle distance).

Grid sizes For the main experiment (with results reported in Table 1), we chose a grid size of 64× 128 for the ConvCNP
and Swin-TNP models, corresponding to a grid spacing of 2.8125◦ in both the latitudinal and longitudinal directions.

In Table 9 we report results for a richer context set using a grid size of 128× 256 for the Swin-TNP models, corresponding
to a grid spacing of ≈ 1.41◦ in both the latitudinal and longitudinal directions. The results for the ConvCNP are for a grid
size of 64× 128, to maintain a smaller gap in parameter count between models.

CNP We use a different deepset for the on- and the off-the-grid data, and the mean as the permutation-invariant function
to aggregate the context tokens, i.e. zc = 1

Noff,c

∑Noff,c
n=1 eoff(xoff,c,n,yoff,c,n) +

1
Non,c

∑Non,c
n=1 eon(xon,c,n,yon,c,n)

PT-TNP We managed to use up to M = 256 pseudo-tokens without running into memory issues. This shows that even
if we only use two variables (one on- and one off-the-grid), PT-TNPs do not scale well to large data. We use a different
encoder for the on- and off-the-grid data, before aggregating the two sets of tokens into a single context set.

ConvCNP For the ConvCNP we use a grid of size 64 × 128 for all experiments. We first separately encode both the
on- and the off-the-grid to the specified grid size using the SetConv. We then concatenate the two and project them to a
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dimension of C = 128 before passing through the U-Net (Ronneberger et al., 2015). The U-Net uses a kernel size of k = 9
with a stride of one.

Swin-TNP For the Swin-TNP models in the main experiment, we use a grid size of 64× 128, a window size of 4× 4 and
a shift size of 2× 2. For the experiment with richer off-the-grid context sets (i.e. between 0.25 and 0.5 of the off-the-grid
data), we use a grid size of 128× 256, a window size of 8× 8 and a shift size of 4× 4.

Swin-TNP (T ) For the Swin-TNP (T ) models we use analogous architectures to Swin-TNP. For the pseudo-token grid
encoder and decoder, we parameterise {ρh}Hh=1 by an MLP with two hidden layers of dimension H and output dimension
H , where H is the number of heads used in the multi-head attention mechanism. For the translation equivariant Swin
processor, we add a fixed set of learnable relative positional encodings.

Swin-TNP (T̃ ) For the Swin-TNP (T̃ ) models we use analogous architectures to Swin-TNP (T ). To break equivariance,
we first perform a Fourier expansion on the context token location, and pass the result through an MLP with two hidden
layers of dimension Dz . We use 16 Fourier coefficients, and drop the fixed inputs out during training with a probability of
0.5. We do not zero them out as during training we observe the entire X domain (i.e., the entire world).

G.2.1. ADDITIONAL RESULTS FOR THE MAIN EXPERIMENT

Aggregated experiment results We provide in Table 5 the results for the t2m station prediction experiment. The figures
correspond to those presented in Table 1, but are aggregated per experiment, and additionally include the root mean squared
error (RMSE) metric and the number of parameters associated with each model. Moreover, we also provide results for the
Swin-TNP using just the t2m station data (Swin-TNP (t2m)), or just the skt gridded data (Swin-TNP (skt)). The superior
performance of the Swin-TNP using both sources of information proves that the model manages to capture meaningful
relationships between the two variables.

Table 5. Test log-likelihood (↑) and RMSE (↓) for the t2m station prediction experiment. The standard errors of the log-likelihood are all
below 0.010, and of the RMSE below 0.013.��NN indicates that NN-CA is not employed. FPT: forward pass time for a batch size of eight
in ms. Params: number of model parameters in units of M.

Model GE Grid size Log-lik. ↑ RMSE ↓ FPT Params

CNP - - 0.636 3.266 32 0.34
PT-TNP - M = 256 1.344 1.659 230 1.57

ConvCNP (��NN) SetConv 64× 128 1.535 1.252 96 9.36

ViTNP KI-GE 48× 96 1.628 1.197 167 1.14
ViTNP PT-GE 48× 96 1.704 1.118 181 1.83
ViTNP KI-GE 144× 288 → 48× 96 1.734 1.073 171 1.29
ViTNP PT-GE 144× 288 → 48× 96 1.808 1.021 215 6.69

Swin-TNP KI-GE 64× 128 1.683 1.157 121 1.14
Swin-TNP PT-GE 64× 128 1.819 1.006 127 2.29

Swin-TNP (��NN) KI-GE 64× 128 1.544 1.436 137 1.14
Swin-TNP (��NN) PT-GE 64× 128 1.636 1.273 144 2.29

Swin-TNP (skt) PT-GE 64× 128 1.427 1.330 123 2.29
Swin-TNP (t2m) PT-GE 64× 128 1.585 1.599 107 2.24

ConvCNP SetConv 192× 384 1.689 1.166 74 9.36
Swin-TNP PT-GE 192× 384 2.053 0.873 306 10.67

Example predictions We provide in Figure 18 a comparison for an example dataset between the predictive errors (i.e.
difference between predicted mean and ground truth) produced by three models: Swin-TNP with PT-GE, ConvCNP, and
PT-TNP. The predictions are performed at all station locations. The stations included in the context set are indicated with a
black dot. The figures show how Swin-TNP usually produces lower errors in comparison to the baselines, indicated through
paler colours. Examples of regions where this is most prominent include central US, as well as southern Australia and
southern Europe. We also provide in Figure 19 a zoomed-in version of Figure 18 focusing on the US region.
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(a) Swin-TNP error.

(b) ConvCNP error.

(c) PT-TNP error.

Figure 18. A comparison between the predictive error—the difference between predictive mean and ground truth—of the 2m temperature
at all weather station locations at 15:00, 28-01-2019. Stations included in the context dataset are shown as black dots (3% of all station
locations). The mean predictive log-likelihoods (averaged across the globe) for these samples are 1.611 (Swin-TNP, PT-GE, grid size of
64× 128), 1.351 (ConvCNP, grid size of 64× 128), and 1.271 (PT-TNP, M = 256).
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(a) Swin-TNP error. (b) ConvCNP error. (c) PT-TNP error.

Figure 19. A comparison between the predictive error of the 2m temperature at the US weather station locations at 15:00, 28-01-2019.
Stations included in the context dataset are shown as black crosses (≈ 3% of station locations). The Swin-TNP uses the PT-GE. Both the
Swin-TNP and ConvCNP use a grid size of 64 × 128. The PT-TNP uses M = 256 pseudo-tokens. The mean log-likelihoods of this
sample for the three models are 1.611, 1.351, and 1.271, respectively.

(a) Swin-TNP histogram. (b) ConvCNP histogram. (c) PT-TNP histogram.

Figure 20. A comparison between the normalised predictive error—the predictive error divided by the predicted standard deviation—of
the t2m at the US weather station locations at 15:00, 28-01-2019. The context set contains observations at 3% of station locations.
Each plot shows a histogram of the normalised errors based on the predictions at all station locations, alongside an overlaid standard
normal distribution that perfect predictive uncertainties should follow. The mean log-likelihoods of the normalised predictive errors
under a standard normal distribution for the Swin-TNP (PT-GE, grid size of 64× 128), ConvCNP (grid size 64× 128), and PT-TNP
(M = 256) are −1.439, −1.490, and −1.380, respectively. For reference, a standard normal distributionn has a negative entropy of
−1.419, indicating that the Swin-TNP has the most accurate predictive uncertainties.

Analysis of the predictive uncertainties For the example dataset considered above, Figure 20 shows histograms of the
normalised predictive errors, defined as the predictive errors divided by the predictive standard deviations. We compute the
mean log-likelihoods under a standard normal distribution, and compare it to the reference negative entropy of the standard
normal distribution of −1.419. This acts as an indicator of the accuracy of the predictive uncertainties produced by the three
models we consider: Swin-TNP (PT-GE, grid size 64 × 128), ConvCNP (grid size 64 × 128), and PT-TNP (M = 256).
For the dataset considered in Figure 20, we obtain −1.439 for Swin-TNP, −1.490 for ConvCNP, and −1.380 for PT-TNP,
indicating that, out of the three models, Swin-TNP outputs the most accurate uncertainties.

Analysis of grid size influence We study to what extent increasing the grid size of the models, and hence their capacity,
improves their predictive performance. We repeat the experiment for two models: Swin-TNP (with PT-GE) and ConvCNP
with a grid size of 192× 384, corresponding to 0.9375◦ in both latitudinal and longitudinal directions. For the Swin-TNP
we use a window size of 8× 8, and a shift size of 4× 4. For the U-Net architecture within the ConvCNP we use a kernel size
of nine. In the decoder of the bigger ConvCNP model, attention is performed over the nearest 9 neighbours, whereas for the
smaller ConvCNP we use full attention. This makes the FPT of the bigger model smaller that that of the 64× 128 model.

The results are shown in Table 6 (and represent a subset of the results shown in Table 5). In comparison to the Swin-TNP
and ConvCNP models which use a grid size of 64× 128, both models improve significantly. However, the bigger ConvCNP
still underperforms both the small and big variant of Swin-TNP, with a significant gap in both log-likelihood and RMSE.

Analysis of influence of nearest-neighbour encoding and decoding A final ablation we perform in this experiment
studies the influence of the number of nearest neighbours considered for the encoder and decoder on the performance of the
model. Initially, we focus on the effect of nearest neighbour decoding, investigating two models—with and without full
attention at decoding time. More specifically, we compare Swin-TNP with PT-GE and KI-GE with a grid size of 64× 128,
and either perform full attention in the grid decoder, or cross-attention over the 9 nearest neighbours (NN-CA). For the
variants with full attention, we evaluate the log-likelihood at 25% randomly sampled station locations instead of all of them
because of memory constraints. The results are shown in Table 7, and indicate that, not only does NN-CA offer a more
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Table 6. Test log-likelihood (↑) and RMSE (↓) for the t2m station prediction experiment when varying grid size for two models. The
standard errors of the log-likelihood are all below 0.004, and of the RMSE below 0.005. ��NN signifies that full attention is applied in the
decoder. FPT: forward pass time for a batch size of eight in ms. Params: number of model parameters in units of M. Best results for each
configuration (Swin-TNP / ConvCNP) are bolded.

Model GE Grid size Log-lik. ↑ RMSE ↓ FPT Params

ConvCNP��NN SetConv 64× 128 1.535 1.252 96 9.36
ConvCNP SetConv 192× 384 1.689 1.166 74 9.36

Swin-TNP PT-GE 64× 128 1.819 1.006 127 2.29
Swin-TNP PT-GE 192× 384 2.053 0.873 306 10.67

scalable decoder attention mechanism, but it also leads to improved predictive performance when applied to spatio-temporal
data. We hypothesise this is due to the inductive biases it introduces, which are appropriate for the strong spatio-temporal
correlations present in the data we used.

Table 7. Test log-likelihood (↑) and RMSE (↓) for the t2m station prediction experiment when varying the decoder attention mechanism—
nearest-neighbour cross-attention and full attention (��NN, indicating that NN-CA is not employed). The standard errors of the log-likelihood
and RMSE are all below 0.003. FPT: forward pass time for a batch size of eight in ms. Params: number of model parameters in units of
M. Best results for each configuration (PT-GE / KI-GE) are bolded.

Model GE Grid size Log-lik. ↑ RMSE ↓ FPT Params

Swin-TNP KI-GE 64× 128 1.683 1.157 121 1.14
Swin-TNP (��NN) KI-GE 64× 128 1.544 1.436 137 1.14

Swin-TNP PT-GE 64× 128 1.819 1.006 127 2.29
Swin-TNP (��NN) PT-GE 64× 128 1.636 1.273 144 2.29

Focusing on just the models using the PT-GE, we also study intermediate regimes for the nearest neighbour decoding
mechanism with kdec = 25, and kdec = 49. Moreover, we also investigate how the models perform with an increased number
of nearest neighbours considered during encoding (kenc = 9). The full results are presented in Table 8, where for each model
we specify the number of nearest neighbours considered in the encoder (kenc) and decoder (kdec).

Table 8. Test log-likelihood (↑) and RMSE (↓) for the t2m station prediction experiment when varying the number of nearest neighbours
considered for the encoder (kenc) and decoder (kdec). ��NN signifies that full attention is applied in the decoder. The standard errors of
the log-likelihood and RMSE are all below 0.003. FPT: forward pass time for a batch size of eight in ms. Params: number of model
parameters in units of M. Best results for each configuration (PT-GE / KI-GE) are bolded.

Model GE kenc kdec Grid size Log-lik. ↑ RMSE ↓ FPT Params

Swin-TNP PT-GE 1 9 64× 128 1.819 1.006 127 2.29
Swin-TNP (��NN) PT-GE 1 - 64× 128 1.636 1.273 144 2.29

Swin-TNP PT-GE 1 25 64× 128 1.787 1.038 207 2.29
Swin-TNP PT-GE 1 49 64× 128 1.810 1.028 327 2.29
Swin-TNP PT-GE 9 9 64× 128 1.857 0.995 264 2.29

We observe that the performance of the models tends to:
• Be optimal for lower values of kdec(9)—we believe this is because locality represents a good inductive bias in the task

we consider. We also suspect that with sufficient training, the models with different kdec would eventually reach similar
performance, but a lower value encourages more efficient training and has a lower computational cost.

• Slightly improve with increasing kenc—the gridded pseudo-tokens are, on average, modulated by more context points,
hence increasing predictive performance. However, this comes at an increased computational cost.

G.2.2. ADDITIONAL RESULTS FOR RICHER CONTEXT SET

In the previous experiment, the model was provided with relatively little context information about the off-the-grid t2m
variable, forcing it to learn meaningful relationships between the relatively sparse off-the-grid information and rich on-the-
grid data (skt values). In order to investigate whether the model still manages to learn these relationships between the off-
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and on-the-grid data (t2m and skt) and to exploit the on-the-grid information even in the presence of more off-the-grid
data7, we also perform an experiment with richer context sets. More specifically, the number of off-the-grid context points is
sampled according to Noff,c ∼ U[0.25,0.5]. The results are given in Table 9.

For the ConvCNP we evaluated two models—one with full decoder attention and one with nearest-neighbour cross-attention
(NN-CA). Similarly to the previous section, we found that the latter has a better performance with a log-likelihood of 1.705
(NN-CA) as opposed to 1.635 (full attention). As such, Table 9 shows the results for the NN-CA ConvCNP model.

Table 9. Test log-likelihood (↑) and RMSE (↓) for the t2m station prediction experiment with richer off-the-grid context information.
The standard errors of both the log-likelihood and the RMSE are all below 0.003. FPT: forward pass time for a batch size of eight in ms.
Params: number of model parameters in units of M.

Model GE Grid size Log-lik. (↑) RMSE (↓) FPT Params

CNP - - 0.715 3.056 27 0.34
PT-TNP - M = 256 1.593 1.403 219 1.57

ConvCNP SetConv 64× 128 1.705 1.100 21 9.36

ViTNP KI-GE 48× 96 1.754 1.112 175 1.14
ViTNP PT-GE 48× 96 1.988 0.932 188 1.83
ViTNP KI-GE 144× 288 → 48× 96 1.842 1.046 179 1.29
ViTNP PT-GE 144× 288 → 48× 96 2.242 0.798 221 6.69

Swin-TNP KI-GE 128× 256 2.362 0.758 174 1.14
Swin-TNP PT-GE 128× 256 2.446 0.697 208 5.43

Swin-TNP (skt) PT-GE 128× 256 1.501 1.266 178 5.43
Swin-TNP (t2m) PT-GE 128× 256 2.331 0.909 186 5.38

The results are consistent with the findings from the main experiment:
• The performances of the baselines (CNP, PT-TNP, and ConvCNP) are significantly worse than the gridded TNP variants

considered.
• Among the ViT variants, the ones that employ patch encoding before projecting to a 48× 96 grid outperform the ones that

directly encode to a 48× 96 grid.
• For each gridded TNP variant, the pseudo-token grid encoder (PT-GE) performs better than the kernel-interpolation one

(KI-GE).
• The variants with a Swin-transformer backbone outperform the ones with a ViT-backbone, even when the latter has more

parameters and a higher FPT.
• Performing nearest-neighbour cross-attention in the decoder as opposed to full attention leads to both computational

speed-ups, as well as enhanced predictive performance.
In comparison to the main experiment, the gap in performance between Swin-TNP and Swin-TNP (t2m) is smaller—this is
expected, given that the context already includes between 25% and 50% of the off-the-grid station locations. However, the
gap is still significant, implying that Swin-TNP manages to leverage the on-the-grid data (skt) and exploits its relationship
with the target t2m to improve its predictive performance.

G.3. Combining Multiple Sources of Unstructured Wind Speed Observations

In this experiment, we consider modelling the eastward (u) and northward (v) components of wind speed at 700hPa, 850hPa
and 1000hPa (surface level). These quantities are essential for understanding and simulating large-scale circulation in the
atmosphere, for wind energy integration into power plants, or for private citizens and public administrations for safety
planning in the case of hazardous situations (Lagomarsino-Oneto et al., 2023). We obtain each of the six modalities from
the ERA5 reanalysis dataset (Hersbach et al., 2020), and construct datasets over a latitude / longitude range of [25◦, 49◦] /
[−125◦,−66◦], which corresponds to the contiguous US, spanning four hours. We show plots of wind speeds at the three
pressure levels for a single time step in Figure 21.

For each task, we first sample a series of four consecutive time points. From this 4× 96× 236 grid, we sample a proportion
pc and pt of total points to form the context and target datasets, where pc ∼ U[0.05,0.25] and pt = 0.25. The context and

7This is achieved by comparing the performance of a model that is only given off-the-grid context information, with a similar model
that is provided with both off- as well as on-the-grid data.
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Figure 21. Wind-speed and direction at each of the three pressure levels, 700hPa, 850hPa and 1000hPa, over the contiguous US at 15:00
GMT, 08-06-1997. The colours correspond to the magnitude and direction of the wind speed.

(a) Swin-TNP error. (b) ConvCNP error. (c) PT-TNP error.

Figure 22. A comparison between the predictive error—the difference between predictive mean and ground truth—of normalised wind
speeds for a selection of CNP models on a small region of the US at 04:00, 01-01-2019. Each plot consists of 2,400 arrows with length
and orientation corresponding to the direction and magnitude of the wind-speed error at the corresponding pressure level. The colour of
each arrow is given by the HSV values with hue dictated by orientation, and saturation and value dictated by length (i.e. the brighter the
colour, the larger the error). For this dataset, the context dataset consists of 5% of the total available observations, and the corresponding
mean predictive log-likelihoods for the Swin-TNP (PT-GE, grid size 4 × 24 × 60), ConvCNP (grid size 4 × 24 × 60) and PT-TNP
(M = 64) are 5.84, 3.23 and 2.41.
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(a) Swin-TNP normalised error. (b) ConvCNP normalised error. (c) PT-TNP normalised error.

Figure 23. A comparison between the normalised predictive error—the predictive error divided by the predictive standard deviation—of
wind speeds for a selection of CNP models on a small region of the US at 04:00, 01-01-2019. Each plot compares a histogram of values
for both the u and v components with a standard normal distribution, which perfect predictive uncertainties follow. For this dataset, the
context dataset consists of 5% of the total available observations. The mean log-likelihoods (averaged over pressure levels and the 4
time points) of the normalised predictive errors under a standard normal distribution for the Swin-TNP (PT-GE, grid size 4× 24× 60),
ConvCNP (grid size 4× 24× 60) and PT-TNP (M = 64) are -1.425, -1.501 and -1.514. For reference, a standard normal distribution has
a negative entropy of -1.419. This indicates that the Swin-TNP has the most accurate predictive uncertainties.
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target locations are sampled independently for each of the six modalities. All models are trained for 300, 000 iterations
on hourly data between 2009 − 2017 with a batch size of eight. Validation is performed on 2018 and testing on 2019.
Experiment specific architecture choices are described below, and a full set of results is provided in Table 10.

Input embedding As the input contains both temporal and latitude / longitude information, we use both Fourier embed-
dings for time and spherical harmonic embeddings for the latitude / longitude values. These are not used in the ConvCNP as
the ConvCNP does not modify the inputs to maintain translation equivariance (in this case, with respect to time and the
great-circle distance).

Grid sizes We chose a grid size of 4× 24× 60 for the ConvCNP and Swin-TNP models, as this corresponds to a grid
spacing of 1◦ in the latitudinal direction and around 1◦ in the longitudinal direction. For the ViTNP, we chose a grid size of
4× 12× 30, corresponding to a grid spacing of 2◦.

CNP A different deepset is used for each modality, with the aggregated context token for each modality then summed
together to form a single aggregated context token, i.e. zc =

∑S
s=1

1
Nc,s

∑Nc,s

n=1 es(xc,n,s,yc,n,s).

PT-TNP For this experiment, we could only use M = 64 pseudo-tokens for the PT-TNP without running into out-of-
memory issues. This highlights a limitation in scaling PT-TNPs to large datasets. We note that there does exist work that
remedies the poor memory scaling of PT-TNPs (Feng et al., 2024); however, this trades off against time complexity which
itself is a bottleneck given the size of datasets we consider. A different encoder is used for each modality, before aggregating
the tokens into a single context set of tokens.

ConvCNP For the ConvCNP, we use a grid size of 4× 24× 60. Each modality is first grid encoded separately using the
SetConv, concatenated together and then to C = 128 dimensions before passing through the U-Net.

Swin-TNP For the Swin-TNP models, we use a grid size of 4× 24× 60, a window size of 4× 4× 4 and a shift size of
0× 2× 2.

Swin-TNP (T ) For the Swin-TNP (T ) models we use analogous architectures to Swin-TNP. For the pseudo-token grid
encoder and decoder, we parameterise {ρh}Hh=1 by an MLP with two hidden layers of dimension H and output dimension
H , where H is the number of heads used in the multi-head attention mechanism. For the translation equivariant Swin
processor, we add a fixed set of learnable relative positional encodings.

Swin-TNP (T̃ ) For the Swin-TNP (T̃ ) models we use analogous architectures to Swin-TNP (T ). To break equivariance,
we first perform a Fourier expansion on the context token locations, and pass the result through an MLP with two hidden
layers of dimension Dz . We use 8 Fourier coefficients, and drop the fixed inputs out during training with a probability of
0.5. We zero them out outside the training region (the US, corresponding to a latitude / longitude range of [25◦, 49◦] /
[−125◦,−66◦]). Although minor, the additional memory overhead from the extra basis functions required us to slightly
reduce the proportion of target points during training, validation, and testing to pt = 0.235.

G.4. Incorporating translation equivariance

We provide the full set of results (including RMSE and parameter count) in Table 11. For the t2m station experiment,
the standard errors of the log-likelihoods are all below 0.004 and those of the RMSE below 0.003. For the wind speed
experiment when tested on the US region, the standard errors of the log-likelihoods are below 0.010 for the Swin-TNP and
Swin-TNP (T ), and below 0.030 for Swin-TNP (T̃ ). The same holds true when tested on Europe, with the exception of the
Swin-TNP which has a standard error of 0.065. The standard errors of the RMSE are below 0.013.

G.5. Additional comparisons to ConvCNP

The ConvCNP is a strong baseline: its FPT is fairly low when we incorporate the NN-CA encoding and decoding mechanisms,
it incorporates translation equivariance, and its number of parameters does not increase with the grid size. To perform a
comprehensive comparison between Swin-TNP and ConvCNP, we provide additional results for larger grid sizes for both
real-world experiments. The results are illustrated in Table 12 and show that:
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Table 10. Test log-likelihood (↑) and RMSE (↓) for the the multi-modal wind speed dataset. All grids have a grid size of 4 in the time
dimension. The standard errors of the log-likelihoods are all below 0.02, and of the RMSE below 0.005.��NN signifies that full attention is
applied in the decoder. FPT: forward pass time for a batch size of eight in ms. Params: number of model parameters in units of M.

Model GE Grid size Log-lik. ↑ RMSE ↓ FPT Params

CNP - - −1.593 2.536 33 0.66
PT-TNP - M = 64 3.988 1.185 166 1.79

ConvCNP��NN SetConv 24× 60 6.143 0.784 210 14.41

ViTNP multi KI-GE 12× 30 5.371 0.908 349 1.49
ViTNP multi PT-GE 12× 30 7.754 0.651 374 2.36
ViTNP multi KI-GE 24× 60 → 12× 30 6.906 0.718 372 1.55
ViTNP multi PT-GE 24× 60 → 12× 30 7.288 0.681 392 3.25

Swin-TNP multi KI-GE 24× 60 7.603 0.651 355 1.49
Swin-TNP multi PT-GE 24× 60 8.603 0.577 375 3.19
Swin-TNP single KI-GE 24× 60 7.794 0.642 366 1.39
Swin-TNP single PT-GE 24× 60 8.073 0.614 364 1.67

ConvCNP SetConv 48× 120 7.841 0.615 64 14.41
Swin-TNP multi PT-GE 48× 120 9.383 0.509 369 6.51

Table 11. Test log-likelihood (↑) for Swin-TNP (T ) and (T̃ ), compared to the non-equivariant Swin-TNP. FPT: forward pass time for a
batch size of eight in ms. Params: number of model parameters in units of M.

t2m stations Wind speed
US Europe

Model Log-lik. (↑) RMSE (↓) FPT Params Log-lik. (↑) RMSE (↓) Log-lik. (↑) RMSE (↓) FPT Params
Swin-TNP (T ) 1.895 0.981 125 1.20 9.972 0.485 10.087 0.483 373 2.09

Swin-TNP (T̃ ) 1.926 0.965 142 1.24 10.086 0.469 10.429 0.477 467 2.12

Swin-TNP 1.819 1.006 127 2.29 8.603 0.577 −13.265 3.000 375 3.19

• In the station experiment, the ConvCNP with the largest grid size (384× 768) still lags behind the smaller Swin-TNP
(64× 128), with twice the FPT, and 4x more parameters.

• In the multi-modal wind speed experiment, ConvCNP at the native resolution of the grid (96× 236) still lags behind
the translation equivariant version of Swin-TNP (T ) with 24× 60 grid size. Efficiency-wise, the ConvCNP has a lower
FPT, but it requires 7x more parameters. ConvCNP (96× 236) also falls behind the bigger Swin-TNP (48× 120), and,
although has a lower FPT, it requires 2x more parameters.

Table 12. Test log-likelihood (↑) for the t2m station prediction (left) / multi-modal wind speed (right) experiments. The standard errors of
the log-likelihood are all below 0.010/0.030. For the wind speed experiment, m- stands for multi GE. FPT: forward pass time for a batch
size of eight in ms. Params: number of model parameters in M.

(a) t2m station prediction experiment.

Model GE Grid size TE Log-lik.↑ FPT Params
ConvCNP SetConv 192× 384 ✓ 1.689 74 9.36
ConvCNP SetConv 288× 576 ✓ 1.784 149 9.36
ConvCNP SetConv 384× 768 ✓ 1.808 259 9.36

Swin-TNP PT-GE 64× 128 × 1.819 127 2.29
Swin-TNP (T ) PT-GE 64× 128 ✓ 1.895 125 1.20

Swin-TNP PT-GE 192× 384 × 2.053 306 10.67

(b) Multi-modal wind speed experiment.

Model GE Grid size TE Log-lik.↑ FPT Params
ConvCNP SetConv 48× 120 ✓ 7.841 64 14.41
ConvCNP SetConv 72× 180 ✓ 8.478 100 14.41
ConvCNP SetConv 96× 236 ✓ 9.253 142 14.41

Swin-TNP m-PT-GE 24× 60 × 8.603 375 3.19
Swin-TNP (T ) m-PT-GE 24× 60 ✓ 9.972 373 2.09

Swin-TNP m-PT-GE 48× 120 × 9.383 369 6.51

G.6. The EAGLE dataset

To show that our approach can be used as a general-purpose tool for spatio-temporal state estimation, we additionally
apply it to a large-scale fluid dynamics dataset called the EAGLE (Janny et al., 2023). For a thorough description of the
data, we refer the reader to Janny et al. (2023). The dataset is composed of ∼ 1.1 million simulations on an irregular 2D
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mesh, modelling unsteady fluid dynamics caused by a moving flow source interacting with nonlinear scene structure. More
specifically, EAGLE models the airflow generated by a 2D drone moving within a 2D scene with varying floor profile.
The dataset comprises of three types of floor geometries (step, triangular, and spline), and for each geometry it contains
roughly 200 different scenes, giving a total of approximately 1, 200 simulations (two simulations per geometry depending on
whether the drone goes to the left or right of the scene). Each simulation contains 990 time steps. The simulated quantities
are the velocity field and the pressure field over the entire domain, sampled on an irregular 2D mesh.

The task we address with Swin-TNP is spatial interpolation, modelling the pressure and velocity at randomly sampled points
in space at a randomly sampled time point. The inputs to the Swin-TNP are 1) the location of the drone, 2) the locations of
the domain boundaries (open or closed), as well as 3) a proportion pc ∼ U[0.05,0.25] of randomly sampled context points
containing the velocity and pressure values at the context locations. Swin-TNP predicts the velocity and pressure at the
remaining target locations. To indicate the different types of inputs (i.e. node associated with the drone / with a boundary
/ within the fluid), we apply a similar strategy as the one for handling multi-modal data, whereby we use input-specific
point-wise encoders.

We train the models for 1, 000, 000 iterations with a batch size of eight. Testing is performed on 80, 000 samples, where a
sample is defined as a randomly-chosen time step from one of the trajectories included in the test set. We report the results
in Table 13 for two different grid sizes—32× 12 and 60× 36—and using both the PT-GE and the KI-GE. All models use
NN-CA in the encoder and decoder with kenc = 1 and kdec = 9, a window size of 4× 4 and a shift size of 2× 2. Moreover,
we provide some example predictions of the velocity field in Figure 24. These results show that our approach can be easily
applied to challenging spatio-temporal datasets, and that, consistent with the findings from the other experiments, our
proposed pseudo-token grid encoder outperforms the kernel-interpolation grid encoder. Future work includes extending the
analysis to spatio-temporal forecasting, and comparing to established approaches that are able to deal with irregular meshes.

Table 13. Test log-likelihood (↑) for the Eagle experiment. The results are based on 80, 000 samples, where a sample is one randomly-
chosen time step from one of the trajectories included in the test set (which are also randomly sampled). FPT: forward pass time for a
batch size of eight in ms. Params: number of model parameters in units of M. Best results are bolded.

Model GE Grid size Log-lik. ↑ Log-lik std. FPT Params

Swin-TNP PT-GE 32× 12 8.153 0.018 41 1.16
Swin-TNP KI-GE 32× 12 7.748 0.018 40 1.41

Swin-TNP PT-GE 60× 36 8.319 0.018 40 1.79
Swin-TNP KI-GE 60× 36 8.059 0.017 40 1.41
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Figure 24. Five example predictions for the EAGLE dataset. The first column shows the true PDE state, and the coloured dots (white and
magenta) represent the context set that is fed to the Swin-TNP. The magenta points denote boundaries, while the white dots are points
within the fluid mesh. The second column shows the predictions of the Swin-TNP with PT-GE (32× 12) in terms of predicted velocity
(i.e. the model predicts the horizontal and vertical velocities and pressures, and we are plotting v =

√
v2x + v2y). The third column shows

the difference between the true and predicted velocities, and the last column shows the predicted standard deviation of the velocity v.
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